1
|
Eren AM, Banfield JF. Modern microbiology: Embracing complexity through integration across scales. Cell 2024; 187:5151-5170. [PMID: 39303684 PMCID: PMC11450119 DOI: 10.1016/j.cell.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Microbes were the only form of life on Earth for most of its history, and they still account for the vast majority of life's diversity. They convert rocks to soil, produce much of the oxygen we breathe, remediate our sewage, and sustain agriculture. Microbes are vital to planetary health as they maintain biogeochemical cycles that produce and consume major greenhouse gases and support large food webs. Modern microbiologists analyze nucleic acids, proteins, and metabolites; leverage sophisticated genetic tools, software, and bioinformatic algorithms; and process and integrate complex and heterogeneous datasets so that microbial systems may be harnessed to address contemporary challenges in health, the environment, and basic science. Here, we consider an inevitably incomplete list of emergent themes in our discipline and highlight those that we recognize as the archetypes of its modern era that aim to address the most pressing problems of the 21st century.
Collapse
Affiliation(s)
- A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany; Marine Biological Laboratory, Woods Hole, MA, USA; Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Environmental Science Policy, and Management, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Meilander J, Jewell M, Caporaso JG. Microbiome multi-omics can accelerate human excrement composting research. MICROBIOME 2024; 12:174. [PMID: 39285488 PMCID: PMC11403854 DOI: 10.1186/s40168-024-01894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024]
Abstract
In this editorial, we discuss the need for a new, long-term strategy for managing human excrement (feces and urine) to facilitate health equity and promote environmental sustainability. Human excrement composting (HEC), a human-directed process driven by highly variable and diverse microbiomes, provides a means to advance this need and we discuss how microbiome science can help to advance HEC research. We argue that the technological advancements that have driven the growth of microbiome science, including microbiome and untargeted metabolome profiling, can be leveraged to enhance our understanding of safe and efficient HEC. We conclude by presenting our perspective on how we can begin applying these technologies to develop accessible procedures for safe HEC. Video Abstract.
Collapse
Affiliation(s)
- Jeff Meilander
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | | | - J Gregory Caporaso
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA.
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
3
|
Oberreiter V, Gelabert P, Brück F, Franz S, Zelger E, Szedlacsek S, Cheronet O, Cano FT, Exler F, Zagorc B, Karavanić I, Banda M, Gasparyan B, Straus LG, Gonzalez Morales MR, Kappelman J, Stahlschmidt M, Rattei T, Kraemer SM, Sawyer S, Pinhasi R. Maximizing efficiency in sedimentary ancient DNA analysis: a novel extract pooling approach. Sci Rep 2024; 14:19388. [PMID: 39169089 PMCID: PMC11339378 DOI: 10.1038/s41598-024-69741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
In the last few decades, the field of ancient DNA has taken a new direction towards using sedimentary ancient DNA (sedaDNA) for studying human and mammalian population dynamics as well as past ecosystems. However, the screening of numerous sediment samples from archaeological sites remains a time-consuming and costly endeavor, particularly when targeting hominin DNA. Here, we present a novel high-throughput method that facilitates the fast and efficient analysis of sediment samples by applying a pooled testing approach. This method combines multiple extracts, enabling early parallelization of laboratory procedures and effective aDNA screening. Pooled samples with detectable aDNA signals undergo detailed analysis, while empty pools are discarded. We have successfully applied our method to multiple sediment samples from Middle and Upper Paleolithic sites in Europe, Asia, and Africa. Notably, our results reveal that an aDNA signal remains discernible even when pooled with four negative samples. We also demonstrate that the DNA yield of double-stranded libraries increases significantly when reducing the extract input, potentially mitigating the effects of inhibition. By embracing this innovative approach, researchers can analyze large numbers of sediment samples for aDNA preservation, achieving significant cost reductions of up to 70% and reducing hands-on laboratory time to one-fifth.
Collapse
Affiliation(s)
- Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Florian Brück
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stefan Franz
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Evelyn Zelger
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Sophie Szedlacsek
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | | | - Florian Exler
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Ivor Karavanić
- Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Marko Banda
- Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Boris Gasparyan
- Institute of Archaeology and Ethnography, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Lawrence Guy Straus
- Department of Anthropology, University of New Mexico, Albuquerque, USA
- EvoAdapta Group Universidad de Cantabria, Santander, Spain
| | - Manuel R Gonzalez Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, Gobierno de Cantabria, Banco Santander, Spain
| | - John Kappelman
- Department of Anthropology and Department of Earth and Planetary Sciences, The University of Texas, Austin, TX, USA
| | - Mareike Stahlschmidt
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan M Kraemer
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Institut für Analytische Chemie, University of Vienna, Vienna, Austria
- Forschungsverbund Umwelt und Klima, University of Vienna, Vienna, Austria
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Razi S, Tarcea N, Henkel T, Ravikumar R, Pistiki A, Wagenhaus A, Girnus S, Taubert M, Küsel K, Rösch P, Popp J. Raman-Activated, Interactive Sorting of Isotope-Labeled Bacteria. SENSORS (BASEL, SWITZERLAND) 2024; 24:4503. [PMID: 39065901 PMCID: PMC11281290 DOI: 10.3390/s24144503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Due to its high spatial resolution, Raman microspectroscopy allows for the analysis of single microbial cells. Since Raman spectroscopy analyzes the whole cell content, this method is phenotypic and can therefore be used to evaluate cellular changes. In particular, labeling with stable isotopes (SIPs) enables the versatile use and observation of different metabolic states in microbes. Nevertheless, static measurements can only analyze the present situation and do not allow for further downstream evaluations. Therefore, a combination of Raman analysis and cell sorting is necessary to provide the possibility for further research on selected bacteria in a sample. Here, a new microfluidic approach for Raman-activated continuous-flow sorting of bacteria using an optical setup for image-based particle sorting with synchronous acquisition and analysis of Raman spectra for making the sorting decision is demonstrated, showing that active cells can be successfully sorted by means of this microfluidic chip.
Collapse
Affiliation(s)
- Sepehr Razi
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
| | - Nicolae Tarcea
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Thomas Henkel
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
| | - Ramya Ravikumar
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Aikaterini Pistiki
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
| | - Annette Wagenhaus
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Sophie Girnus
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Martin Taubert
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kirsten Küsel
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Jürgen Popp
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| |
Collapse
|
5
|
Toxqui-Rodríguez S, Holhorea PG, Naya-Català F, Calduch-Giner JÀ, Sitjà-Bobadilla A, Piazzon C, Pérez-Sánchez J. Differential Reshaping of Skin and Intestinal Microbiota by Stocking Density and Oxygen Availability in Farmed Gilthead Sea Bream ( Sparus aurata): A Behavioral and Network-Based Integrative Approach. Microorganisms 2024; 12:1360. [PMID: 39065128 PMCID: PMC11278760 DOI: 10.3390/microorganisms12071360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Fish were kept for six weeks at three different initial stocking densities and water O2 concentrations (low-LD, 8.5 kg/m3 and 95-70% O2 saturation; medium-MD, 17 kg/m3 and 55-75% O2 saturation; high-HD, 25 kg/m3 and 60-45% O2 saturation), with water temperature increasing from 19 °C to 26-27 °C. The improvement in growth performance with the decrease in stocking density was related to changes in skin and intestinal mucosal microbiomes. Changes in microbiome composition were higher in skin, with an increased abundance of Alteromonas and Massilia in HD fish. However, these bacteria genera were mutually exclusive, and Alteromonas abundance was related to a reactive behavior and systemic growth regulation via the liver Gh/Igf system, while Massilia was correlated to a proactive behavior and a growth regulatory transition towards muscle rather than liver. At the intestinal level, microbial abundance showed an opposite trend for two bacteria taxa, rendering in a low abundance of Reyranella and a high abundance of Prauserella in HD fish. This trend was correlated with up-regulated host gene expression, affecting the immune response, epithelial cell turnover, and abiotic stress response. Most of the observed responses are adaptive in nature, and they would serve to infer new welfare indicators for increased stress resilience.
Collapse
Affiliation(s)
- Socorro Toxqui-Rodríguez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (S.T.-R.); (P.G.H.); (F.N.-C.); (J.À.C.-G.)
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (A.S.-B.); (C.P.)
| | - Paul George Holhorea
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (S.T.-R.); (P.G.H.); (F.N.-C.); (J.À.C.-G.)
| | - Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (S.T.-R.); (P.G.H.); (F.N.-C.); (J.À.C.-G.)
| | - Josep Àlvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (S.T.-R.); (P.G.H.); (F.N.-C.); (J.À.C.-G.)
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (A.S.-B.); (C.P.)
| | - Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (A.S.-B.); (C.P.)
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (S.T.-R.); (P.G.H.); (F.N.-C.); (J.À.C.-G.)
| |
Collapse
|
6
|
Hou S, Tang T, Cheng S, Liu Y, Xia T, Chen T, Fuhrman J, Sun F. DeepMicroClass sorts metagenomic contigs into prokaryotes, eukaryotes and viruses. NAR Genom Bioinform 2024; 6:lqae044. [PMID: 38711860 PMCID: PMC11071121 DOI: 10.1093/nargab/lqae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Sequence classification facilitates a fundamental understanding of the structure of microbial communities. Binary metagenomic sequence classifiers are insufficient because environmental metagenomes are typically derived from multiple sequence sources. Here we introduce a deep-learning based sequence classifier, DeepMicroClass, that classifies metagenomic contigs into five sequence classes, i.e. viruses infecting prokaryotic or eukaryotic hosts, eukaryotic or prokaryotic chromosomes, and prokaryotic plasmids. DeepMicroClass achieved high performance for all sequence classes at various tested sequence lengths ranging from 500 bp to 100 kbps. By benchmarking on a synthetic dataset with variable sequence class composition, we showed that DeepMicroClass obtained better performance for eukaryotic, plasmid and viral contig classification than other state-of-the-art predictors. DeepMicroClass achieved comparable performance on viral sequence classification with geNomad and VirSorter2 when benchmarked on the CAMI II marine dataset. Using a coastal daily time-series metagenomic dataset as a case study, we showed that microbial eukaryotes and prokaryotic viruses are integral to microbial communities. By analyzing monthly metagenomes collected at HOT and BATS, we found relatively higher viral read proportions in the subsurface layer in late summer, consistent with the seasonal viral infection patterns prevalent in these areas. We expect DeepMicroClass will promote metagenomic studies of under-appreciated sequence types.
Collapse
Affiliation(s)
- Shengwei Hou
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tianqi Tang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Siliangyu Cheng
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuanhao Liu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tian Xia
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ting Chen
- Department of Computer Science and Technology, Institute of Artificial Intelligence & BNRist, Tsinghua University, Beijing 100084, China
| | - Jed A Fuhrman
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Fengzhu Sun
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Buetas E, Jordán-López M, López-Roldán A, D'Auria G, Martínez-Priego L, De Marco G, Carda-Diéguez M, Mira A. Full-length 16S rRNA gene sequencing by PacBio improves taxonomic resolution in human microbiome samples. BMC Genomics 2024; 25:310. [PMID: 38528457 DOI: 10.1186/s12864-024-10213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Sequencing variable regions of the 16S rRNA gene (≃300 bp) with Illumina technology is commonly used to study the composition of human microbiota. Unfortunately, short reads are unable to differentiate between highly similar species. Considering that species from the same genus can be associated with health or disease it is important to identify them at the lowest possible taxonomic rank. Third-generation sequencing platforms such as PacBio SMRT, increase read lengths allowing to sequence the whole gene with the maximum taxonomic resolution. Despite its potential, full length 16S rRNA gene sequencing is not widely used yet. The aim of the current study was to compare the sequencing output and taxonomic annotation performance of the two approaches (Illumina short read sequencing and PacBio long read sequencing of 16S rRNA gene) in different human microbiome samples. DNA from saliva, oral biofilms (subgingival plaque) and faeces of 9 volunteers was isolated. Regions V3-V4 and V1-V9 were amplified and sequenced by Illumina Miseq and by PacBio Sequel II sequencers, respectively. RESULTS With both platforms, a similar percentage of reads was assigned to the genus level (94.79% and 95.06% respectively) but with PacBio a higher proportion of reads were further assigned to the species level (55.23% vs 74.14%). Regarding overall bacterial composition, samples clustered by niche and not by sequencing platform. In addition, all genera with > 0.1% abundance were detected in both platforms for all types of samples. Although some genera such as Streptococcus tended to be observed at higher frequency in PacBio than in Illumina (20.14% vs 14.12% in saliva, 10.63% vs 6.59% in subgingival plaque biofilm samples) none of the differences were statistically significant when correcting for multiple testing. CONCLUSIONS The results presented in the current manuscript suggest that samples sequenced using Illumina and PacBio are mostly comparable. Considering that PacBio reads were assigned at the species level with higher accuracy than Illumina, our data support the use of PacBio technology for future microbiome studies, although a higher cost is currently required to obtain an equivalent number of reads per sample.
Collapse
Affiliation(s)
- Elena Buetas
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| | - Marta Jordán-López
- Department of Periodontics, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Andrés López-Roldán
- Department of Periodontics, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Giuseppe D'Auria
- Sequencing and Bioinformatics Service, Fundació Per Al Foment de La Investigació Sanitària I Biomèdica de La Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | - Llucia Martínez-Priego
- Sequencing and Bioinformatics Service, Fundació Per Al Foment de La Investigació Sanitària I Biomèdica de La Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | - Griselda De Marco
- Sequencing and Bioinformatics Service, Fundació Per Al Foment de La Investigació Sanitària I Biomèdica de La Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | | | - Alex Mira
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
- CIBER Center for Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
8
|
Jin J, Yamamoto R, Shiroguchi K. High-throughput identification and quantification of bacterial cells in the microbiota based on 16S rRNA sequencing with single-base accuracy using BarBIQ. Nat Protoc 2024; 19:207-239. [PMID: 38012397 DOI: 10.1038/s41596-023-00906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/24/2023] [Indexed: 11/29/2023]
Abstract
Bacteria often function as a community, called the microbiota, consisting of many different bacterial species. The accurate identification of bacterial types and the simultaneous quantification of the cells of each bacterial type will advance our understanding of microbiota; however, this cannot be performed by conventional 16S rRNA sequencing methods as they only identify and quantify genes, which do not always represent cells. Here, we present a protocol for our developed method, barcoding bacteria for identification and quantification (BarBIQ). In BarBIQ, the 16S rRNA genes of single bacterial cells are amplified and attached to a unique cellular barcode in a droplet. Sequencing the tandemly linked cellular barcodes and 16S rRNA genes from many droplets (representing many cells with unique cellular barcodes) and clustering the sequences using the barcodes determines both the bacterial type for each cell based on 16S rRNA gene and the number of cells for each bacterial type based on the quantity of barcode types sequenced. Single-base accuracy for 16S rRNA sequencing is achieved via the barcodes and by avoiding chimera formation from 16S rRNA genes of different bacteria using droplets. For data processing, an easy-to-use bioinformatic pipeline is available ( https://github.com/Shiroguchi-Lab/BarBIQ_Pipeline_V1_2_0 ). This protocol allows researchers with experience in molecular biology but without bioinformatics experience to perform the process in ~2 weeks. We show the application of BarBIQ in mouse gut microbiota analysis as an example; however, this method is also applicable to other microbiota samples, including those from the mouth and skin, marine environments, soil and plants, as well as those from other terrestrial environments.
Collapse
Affiliation(s)
- Jianshi Jin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan.
| | - Reiko Yamamoto
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan
| | - Katsuyuki Shiroguchi
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan.
| |
Collapse
|
9
|
Moreno IJ, Brahamsha B, Donia MS, Palenik B. Diverse Microbial Hot Spring Mat Communities at Black Canyon of the Colorado River. MICROBIAL ECOLOGY 2023; 86:1534-1551. [PMID: 36757423 PMCID: PMC10497668 DOI: 10.1007/s00248-023-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The thermophilic microbial mat communities at hot springs in the Black Canyon of the Colorado River, thought to harbor the protistan human pathogen Naegleria fowleri, were surveyed using both culture-independent and -dependent methods to further understand the ecology of these hot spring microbiomes. Originating from Lake Mead source water, seven spring sites were sampled, varying in temperature from 25 to 55 °C. Amplicon-based high-throughput sequencing of twelve samples using 16S rRNA primers (hypervariable V4 region) revealed that most mats are dominated by cyanobacterial taxa, some but not all similar to those dominating the mats at other studied hot spring systems. 18S rRNA amplicon sequencing (V9 region) demonstrated a diverse community of protists and other eukaryotes including a highly abundant amoebal sequence related to Echinamoeba thermarum. Additional taxonomic and diversity metric analyses using near full-length 16S and 18S rRNA gene sequencing allowed a higher sequence-based resolution of the community. The mat sequence data suggest a major diversification of the cyanobacterial orders Leptolyngbyales, as well as microdiversity among several cyanobacterial taxa. Cyanobacterial isolates included some representatives of ecologically abundant taxa. A Spearman correlation analysis of short-read amplicon sequencing data supported the co-occurrences of populations of cyanobacteria, chloroflexi, and bacteroidetes providing evidence of common microbial co-occurrences across the Black Canyon hot springs.
Collapse
Affiliation(s)
- Ivan J Moreno
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Bianca Brahamsha
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brian Palenik
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Le Lay C, Hamm JN, Williams TJ, Shi M, Cavicchioli R, Holmes EC. Viral community composition of hypersaline lakes. Virus Evol 2023; 9:vead057. [PMID: 37692898 PMCID: PMC10492444 DOI: 10.1093/ve/vead057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
Despite their widespread distribution and remarkable antiquity no RNA viruses definitively associated with the domain Archaea have been identified. In contrast, 17 families of DNA viruses are known to infect archaea. In an attempt to uncover more of the elusive archaeal virosphere, we investigated the metatranscriptomes of hypersaline lakes that are a rich source of archaea. We sequenced RNA extracted from water filter samples of Lake Tyrrell (Victoria, Australia) and cultures seeded from four lakes in Antarctica. To identify highly divergent viruses in these data, we employed a variety of search tools, including Hidden Markov models (HMMs) and position-specific scoring matrices (PSSMs). From this, we identified 12 highly divergent, RNA virus-like candidate sequences from the virus phyla Artverviricota, Duplornaviricota, Kitrinoviricota, Negarnaviricota, and Pisuviricota, including those with similarity to the RNA-dependent RNA polymerase (RdRp). An additional analysis with an artificial intelligence (AI)-based approach that utilises both sequence and structural information identified seven putative and highly divergent RdRp sequences of uncertain phylogenetic position. A sequence matching the Pisuviricota from Deep Lake in Antarctica had the strongest RNA virus signal. Analyses of the dinucleotide representation of the virus-like candidates in comparison to that of potential host species were in some cases compatible with an association to archaeal or bacterial hosts. Notably, however, the use of archaeal CRISPR spacers as a BLAST database failed to detect any RNA viruses. We also described DNA viruses from the families Pleolipoviridae, Sphaerolipoviridae, Halspiviridae, and the class Caudoviricetes. Although we were unable to provide definitive evidence the existence of an RNA virus of archaea in these hypersaline lakes, this study lays the foundations for further investigations of highly divergent RNA viruses in natural environments.
Collapse
Affiliation(s)
- Callum Le Lay
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, P.O. Box 59, Den Burg NL-1790 AB, The Netherlands
| |
Collapse
|
11
|
Papudeshi B, Vega AA, Souza C, Giles SK, Mallawaarachchi V, Roach MJ, An M, Jacobson N, McNair K, Mora MF, Pastrana K, Boling L, Leigh C, Harker C, Plewa WS, Grigson SR, Bouras G, Decewicz P, Luque A, Droit L, Handley SA, Wang D, Segall AM, Dinsdale EA, Edwards RA. Host interactions of novel Crassvirales species belonging to multiple families infecting bacterial host, Bacteroides cellulosilyticus WH2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531146. [PMID: 36945541 PMCID: PMC10028833 DOI: 10.1101/2023.03.05.531146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Bacteroides, the prominent bacteria in the human gut, play a crucial role in degrading complex polysaccharides. Their abundance is influenced by phages belonging to the Crassvirales order. Despite identifying over 600 Crassvirales genomes computationally, only few have been successfully isolated. Continued efforts in isolation of more Crassvirales genomes can provide insights into phage-host-evolution and infection mechanisms. We focused on wastewater samples, as potential sources of phages infecting various Bacteroides hosts. Sequencing, assembly, and characterization of isolated phages revealed 14 complete genomes belonging to three novel Crassvirales species infecting Bacteroides cellulosilyticus WH2. These species, Kehishuvirus sp. 'tikkala' strain Bc01, Kolpuevirus sp. 'frurule' strain Bc03, and 'Rudgehvirus jaberico' strain Bc11, spanned two families, and three genera, displaying a broad range of virion productions. Upon testing all successfully cultured Crassvirales species and their respective bacterial hosts, we discovered that they do not exhibit co-evolutionary patterns with their bacterial hosts. Furthermore, we observed variations in gene similarity, with greater shared similarity observed within genera. However, despite belonging to different genera, the three novel species shared a unique structural gene that encodes the tail spike protein. When investigating the relationship between this gene and host interaction, we discovered evidence of purifying selection, indicating its functional importance. Moreover, our analysis demonstrated that this tail spike protein binds to the TonB-dependent receptors present on the bacterial host surface. Combining these observations, our findings provide insights into phage-host interactions and present three Crassvirales species as an ideal system for controlled infectivity experiments on one of the most dominant members of the human enteric virome. Impact statement Bacteriophages play a crucial role in shaping microbial communities within the human gut. Among the most dominant bacteriophages in the human gut microbiome are Crassvirales phages, which infect Bacteroides. Despite being widely distributed, only a few Crassvirales genomes have been isolated, leading to a limited understanding of their biology, ecology, and evolution. This study isolated and characterized three novel Crassvirales genomes belonging to two different families, and three genera, but infecting one bacterial host, Bacteroides cellulosilyticus WH2. Notably, the observation confirmed the phages are not co-evolving with their bacterial hosts, rather have a shared ability to exploit similar features in their bacterial host. Additionally, the identification of a critical viral protein undergoing purifying selection and interacting with the bacterial receptors opens doors to targeted therapies against bacterial infections. Given Bacteroides role in polysaccharide degradation in the human gut, our findings advance our understanding of the phage-host interactions and could have important implications for the development of phage-based therapies. These discoveries may hold implications for improving gut health and metabolism to support overall well-being. Data summary The genomes used in this research are available on Sequence Read Archive (SRA) within the project, PRJNA737576. Bacteroides cellulosilyticus WH2, Kehishuvirus sp. 'tikkala' strain Bc01, Kolpuevirus sp. ' frurule' strain Bc03, and 'Rudgehvirus jaberico' strain Bc11 are all available on GenBank with accessions NZ_CP072251.1 ( B. cellulosilyticus WH2), QQ198717 (Bc01), QQ198718 (Bc03), and QQ198719 (Bc11), and we are working on making the strains available through ATCC. The 3D protein structures for the three Crassvirales genomes are available to download at doi.org/10.25451/flinders.21946034.
Collapse
Affiliation(s)
- Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Alejandro A. Vega
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Cole Souza
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Michael J. Roach
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Michelle An
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Nicole Jacobson
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Katelyn McNair
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
| | - Maria Fernanda Mora
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Karina Pastrana
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Lance Boling
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Christopher Leigh
- Adelaide Microscopy, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Clarice Harker
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Will S. Plewa
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Susanna R. Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Przemysław Decewicz
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Antoni Luque
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
| | - Lindsay Droit
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott A. Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anca M. Segall
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| |
Collapse
|
12
|
De Alcaraz-Fossoul J, Wang Y, Liu R, Mancenido M, Marshall PA, Núñez C, Broatch J, Ferry L. Microbes in fingerprints: A source for dating crime evidence? Forensic Sci Int Genet 2023; 65:102883. [PMID: 37120981 DOI: 10.1016/j.fsigen.2023.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Interest in the human microbiome has grown in recent years because of increasing applications to biomedicine and forensic science. However, the potential for dating evidence at a crime scene based upon time-dependent changes in microbial signatures has not been established, despite a relatively straightforward scientific process for isolating the microbiome. We hypothesize that modifications in microbial diversity, abundance, and succession can provide estimates of the time a surface was touched for investigative purposes. In this proof-of-concept research, the sequencing and analysis of the 16 S rRNA gene from microbes present in fresh and aged latent fingerprints deposited by three donors with pre- and post-washed hands is reported. The stability of major microbial phyla is confirmed while the dynamics of less abundant groups is described up to 21 days post-deposition. Most importantly, a phylum is suggested as the source for possible biological markers to date fingerprints: Deinococcus-Thermus.
Collapse
Affiliation(s)
- Josep De Alcaraz-Fossoul
- Forensic Science Department, Henry C. Lee College of Criminal Justice and Forensic Science, University of New Haven; West Haven, Connecticut 06516, United States.
| | - Yue Wang
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University; Glendale, Arizona 85306, United States
| | - Ruoqian Liu
- School of Mathematical and Statistical Sciences, The College of Liberal Arts and Sciences, Arizona State University; Tempe, Arizona 85251, United States
| | - Michelle Mancenido
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University; Glendale, Arizona 85306, United States
| | - Pamela Ann Marshall
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University; Glendale, Arizona 85306, United States
| | - Celeste Núñez
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University; Glendale, Arizona 85306, United States
| | - Jennifer Broatch
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University; Glendale, Arizona 85306, United States
| | - Lara Ferry
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University; Glendale, Arizona 85306, United States
| |
Collapse
|
13
|
Vijayan J, Nathan VK, Ammini P, Ammanamveetil AMH. Bacterial diversity in the aquatic system in India based on metagenome analysis-a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28383-28406. [PMID: 36680718 PMCID: PMC9862233 DOI: 10.1007/s11356-023-25195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/04/2023] [Indexed: 04/16/2023]
Abstract
Microbial analysis has become one of the most critical areas in aquatic ecology and a crucial component for assessing the contribution of microbes in food web dynamics and biogeochemical processes. Initial research was focused on estimating the abundance and distribution of the microbes using microscopy and culture-based analysis, which are undoubtedly complex tasks. Over the past few decades, microbiologists have endeavored to apply and extend molecular techniques to address pertinent questions related to the function and metabolism of microbes in aquatic ecology. Metagenomics analysis has revolutionized aquatic ecology studies involving the investigation of the genome of a mixed community of organisms in an ecosystem to identify microorganisms, their functionality, and the discovery of novel proteins. This review discusses the metagenomics analysis of bacterial diversity in and around different aquatic systems in India.
Collapse
Affiliation(s)
- Jasna Vijayan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India.
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, Sastra Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamilnadu, India
| | - Parvathi Ammini
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - Abdulla Mohamed Hatha Ammanamveetil
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India
| |
Collapse
|
14
|
Gautam A, Zeng W, Huson DH. DIAMOND + MEGAN Microbiome Analysis. Methods Mol Biol 2023; 2649:107-131. [PMID: 37258860 DOI: 10.1007/978-1-0716-3072-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Metagenomics is the study of microbiomes using DNA sequencing technologies. Basic computational tasks are to determine the taxonomic composition (who is out there?), the functional composition (what can they do?), and also to correlate changes of composition to changes in external parameters (how do they compare?). One approach to address these issues is to first align all sequences against a protein reference database such as NCBI-nr and to then perform taxonomic and functional binning of all sequences based on their alignments. The resulting classifications can then be interactively analyzed and compared. Here we illustrate how to pursue this approach using the DIAMOND+MEGAN pipeline, on two different publicly available datasets, one containing short-read samples and other containing long-read samples.
Collapse
Affiliation(s)
- Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Wenhuan Zeng
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Daniel H Huson
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Davenport R, Curtis‐Jackson P, Dalkmann P, Davies J, Fenner K, Hand L, McDonough K, Ott A, Ortega‐Calvo JJ, Parsons JR, Schäffer A, Sweetlove C, Trapp S, Wang N, Redman A. Scientific concepts and methods for moving persistence assessments into the 21st century. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1454-1487. [PMID: 34989108 PMCID: PMC9790601 DOI: 10.1002/ieam.4575] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 05/19/2023]
Abstract
The evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concentration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for soluble, nonvolatile, single-constituent test substances, which do not represent the wide range of manufactured chemical substances. In addition, the Organisation for Economic Co-operation and Development (OECD) screening and simulation test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates of chemical degradation half-lives can be very uncertain and may misrepresent real environmental processes. In this paper, we address the challenges and limitations facing current test methods and the scientific advances that are helping to both understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through comparison against substances with well-quantified degradation profiles; (3) analytical methods that allow quantification for parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or chemical processes and test system design when evaluating test data. We also identify that, while such advancements could improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr Environ Assess Manag 2022;18:1454-1487. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | - Philipp Dalkmann
- Bayer AG, Crop Science Division, Environmental SafetyMonheimGermany
| | | | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of ChemistryUniversity of ZürichZürichSwitzerland
| | - Laurence Hand
- Syngenta, Product Safety, Jealott's Hill International Research CentreBracknellUK
| | | | - Amelie Ott
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC)BrusselsBelgium
| | - Jose Julio Ortega‐Calvo
- Instituto de Recursos Naturales y Agrobiología de SevillaConsejo Superior de Investigaciones CientíficasSevillaSpain
| | - John R. Parsons
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Andreas Schäffer
- RWTH Aachen University, Institute for Environmental ResearchAachenGermany
| | - Cyril Sweetlove
- L'Oréal Research & InnovationEnvironmental Research DepartmentAulnay‐sous‐BoisFrance
| | - Stefan Trapp
- Department of Environmental EngineeringTechnical University of DenmarkBygningstorvetLyngbyDenmark
| | - Neil Wang
- Total Marketing & ServicesParis la DéfenseFrance
| | - Aaron Redman
- ExxonMobil Petroleum and ChemicalMachelenBelgium
| |
Collapse
|
16
|
Costas-Selas C, Martínez-García S, Logares R, Hernández-Ruiz M, Teira E. Role of Bacterial Community Composition as a Driver of the Small-Sized Phytoplankton Community Structure in a Productive Coastal System. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02125-2. [PMID: 36305941 DOI: 10.1007/s00248-022-02125-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
We present here the first detailed description of the seasonal patterns in bacterial community composition (BCC) in shelf waters off the Ría de Vigo (Spain), based on monthly samplings during 2 years. Moreover, we studied the relationship between bacterial and small-sized eukaryotic community composition to identify potential biotic interactions among components of these two communities. Bacterial operational taxonomic unit (OTU) richness and diversity systematically peaked in autumn-winter, likely related to low resource availability during this period. BCC showed seasonal and vertical patterns, with Rhodobacteraceae and Flavobacteriaceae families dominating in surface waters, and SAR11 clade dominating at the base of the photic zone (30 m depth). BCC variability was significantly explained by environmental variables (e.g., temperature of water, solar radiation, or dissolved organic matter). Interestingly, a strong and significant correlation was found between BCC and small-sized eukaryotic community composition (ECC), which suggests that biotic interactions may play a major role as structuring factors of the microbial plankton in this productive area. In addition, co-occurrence network analyses revealed strong and significant, mostly positive, associations between bacteria and small-sized phytoplankton. Positive associations likely result from mutualistic relationships (e.g., between Dinophyceae and Rhodobacteraceae), while some negative correlations suggest antagonistic interactions (e.g., between Pseudo-nitzchia sp. and SAR11). These results support the key role of biotic interactions as structuring factors of the small-sized eukaryotic community, mostly driven by positive associations between small-sized phytoplankton and bacteria.
Collapse
Affiliation(s)
- Cecilia Costas-Selas
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Sandra Martínez-García
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| | - Ramiro Logares
- Departament de Biologia Marina I Oceanografia, Institut de Ciéncies del Mar (ICM), CSIC, Catalonia, Barcelona, Spain
| | - Marta Hernández-Ruiz
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| | - Eva Teira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| |
Collapse
|
17
|
Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases. Int J Mol Sci 2022; 23:ijms23063043. [PMID: 35328479 PMCID: PMC8950772 DOI: 10.3390/ijms23063043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Among carbohydrate active enzymes, glycoside phosphorylases (GPs) are valuable catalysts for white biotechnologies, due to their exquisite capacity to efficiently re-modulate oligo- and poly-saccharides, without the need for costly activated sugars as substrates. The reversibility of the phosphorolysis reaction, indeed, makes them attractive tools for glycodiversification. However, discovery of new GP functions is hindered by the difficulty in identifying them in sequence databases, and, rather, relies on extensive and tedious biochemical characterization studies. Nevertheless, recent advances in automated tools have led to major improvements in GP mining, activity predictions, and functional screening. Implementation of GPs into innovative in vitro and in cellulo bioproduction strategies has also made substantial advances. Herein, we propose to discuss the latest developments in the strategies employed to efficiently discover GPs and make the best use of their exceptional catalytic properties for glycoside bioproduction.
Collapse
|
18
|
Blandón LM, Marín MA, Quintero M, Jutinico-Shubach LM, Montoya-Giraldo M, Santos-Acevedo M, Gómez-León J. Diversity of cultivable bacteria from deep-sea sediments of the Colombian Caribbean and their potential in bioremediation. Antonie van Leeuwenhoek 2022; 115:421-431. [PMID: 35066712 DOI: 10.1007/s10482-021-01706-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/28/2021] [Indexed: 11/26/2022]
Abstract
The diversity of deep-sea cultivable bacteria was studied in seven sediment samples of the Colombian Caribbean. Three hundred and fifty two marine bacteria were isolated according to its distinct morphological character on the solid media, then DNA sequences of the 16S rRNA were amplified to identify the isolated strains. The identified bacterial were arranged in three phylogenetic groups, Firmicutes, Proteobacteria, and Actinobacteria, with 34 different OTUs defined at ≥ 97% of similarity and 70 OTUs at ≥ 98.65%, being the 51% Firmicutes, 34% Proteobacteria and 15% Actinobacteria. Bacillus and Fictibacillus were the dominant genera in Firmicutes, Halomonas and Pseudomonas in Proteobacteria and Streptomyces and Micromonospora in Actinobacteria. In addition, the strains were tested for biosurfactants and lipolytic enzymes production, with 120 biosurfactant producing strains (mainly Firmicutes) and, 56 lipolytic enzymes producing strains (Proteobacteria). This report contributes to the understanding of the diversity of the marine deep-sea cultivable bacteria from the Colombian Caribbean, and their potential application as bioremediation agents.
Collapse
Affiliation(s)
- Lina Marcela Blandón
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Colombia
| | - Mario Alejandro Marín
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Marynes Quintero
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Colombia
| | - Laura Marcela Jutinico-Shubach
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Colombia
| | - Manuela Montoya-Giraldo
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Colombia
| | - Marisol Santos-Acevedo
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Colombia
| | - Javier Gómez-León
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Colombia.
| |
Collapse
|
19
|
Rodriguez-Valera F, Pushkarev A, Rosselli R, Béjà O. Searching Metagenomes for New Rhodopsins. Methods Mol Biol 2022; 2501:101-108. [PMID: 35857224 DOI: 10.1007/978-1-0716-2329-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Most microbial groups have not been cultivated yet, and the only way to approach the enormous diversity of rhodopsins that they contain in a sensible timeframe is through the analysis of their genomes. High-throughput sequencing technologies have allowed the release of community genomics (metagenomics) of many habitats in the photic zones of the ocean and lakes. Already the harvest is impressive and included from the first bacterial rhodopsin (proteorhodopsin) to the recent discovery of heliorhodopsin by functional metagenomics. However, the search continues using bioinformatic or biochemical routes.
Collapse
Affiliation(s)
- Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Alina Pushkarev
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Riccardo Rosselli
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Oded Béjà
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
20
|
Kunimitsu M, Kataoka Y, Nakagami G, Weller CD, Sanada H. Factors related to the composition and diversity of wound microbiota investigated using culture-independent molecular methods: a scoping review. Drug Discov Ther 2021; 15:78-86. [PMID: 33952764 DOI: 10.5582/ddt.2021.01036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
All open wounds are often colonized by commensal microbes as a loss of skin can provide a ready portal of entry for microorganisms. Although the wound microbiota is known to be associated with wound infection and with delayed healing, the factors related to the formations of wound microbiota contributing to such poor clinical outcomes are not clear and have not led to effective infection prevention interventions. This review aimed to scope the factors related to the composition and diversity of wound microbiota that have been investigated using culture-independent molecular methods. Original articles on wound microbiota published from January 1986 to February 2020 were included in this review. Thirty-one articles met the inclusion criteria and were grouped according to wound types: chronic, acute, and animal model wounds. The factors identified were categorized according to patient characteristics, wound characteristics, treatment, and sampling. Although some studies reported the effect size of the factors, the values were small. No studies elucidated the mechanism of wound microbiota formation. The results of this scoping review highlight that the factors associated with the diversity of wound microbiota are poorly understood and that further studies are needed.
Collapse
Affiliation(s)
- Mao Kunimitsu
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yukie Kataoka
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Carolina D Weller
- School of Nursing and Midwifery, Monash University, Melbourne, Australia
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Priya P, Aneesh B, Harikrishnan K. Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. J Microbiol Methods 2021; 185:106215. [PMID: 33839214 DOI: 10.1016/j.mimet.2021.106215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Intense agricultural practices to meet rising food demands have caused ecosystem perturbations. For sustainable crop production, biological agents are gaining attention, but exploring their functional potential on a multi-layered complex ecosystem like the rhizosphere is challenging. This review explains the significance of genomics as a culture-independent molecular tool to understand the diversity and functional significance of the rhizosphere microbiome for sustainable agriculture. It discusses the recent significant studies in the rhizosphere environment carried out using evolving techniques like metagenomics, metatranscriptomics, and metaproteomics, their challenges, constraints infield application, and prospective solutions. The recent advances in techniques such as nanotechnology for the development of bioformulations and visualization techniques contemplating environmental safety were also discussed. The need for development of metagenomic data sets of regionally important crops, their plant microbial interactions and agricultural practices for narrowing down significant data from huge databases have been suggested. The role of taxonomical and functional diversity of soil microbiota in understanding soil suppression and part played by the microbial metabolites in the process have been analyzed and discussed in the context of 'omics' approach. 'Omics' studies have revealed important information about microbial diversity, their responses to various biotic and abiotic stimuli, and the physiology of disease suppression. This can be translated to crop sustainability and combinational approaches with advancing visualization and analysis methodologies fix the existing knowledge gap to a huge extend. With improved data processing and standardization of the methods, details of plant-microbe interactions can be successfully decoded to develop sustainable agricultural practices.
Collapse
Affiliation(s)
- P Priya
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - B Aneesh
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences Cochin University of Science and Technology, Cochin, Kerala, India.
| | - K Harikrishnan
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
22
|
Effects of Land Use and Pollution Loadings on Ecotoxicological Assays and Bacterial Taxonomical Diversity in Constructed Wetlands. DIVERSITY 2021. [DOI: 10.3390/d13040149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Freshwater ecosystems are affected by anthropogenic alterations. Different studies have extensively studied the concentrations of metals, nutrients, and water quality as measurements of pollution in freshwater ecosystems. However, few studies have been able to link these pollutants to bioindicators as a risk assessment tool. This study aimed to examine the potential of two bioindicators, plant ecotoxicological assays and sediment bacterial taxonomic diversity, in ecological risk assessment for six freshwater constructed wetlands in a rapidly urbanizing watershed with diverse land uses. Sediment samples were collected summer, 2015 and 2017, and late summer and early fall in 2016 to conduct plant ecotoxicological assays based on plant (Lepidium, Sinapis and Sorghum) growth inhibition and identify bacterial taxonomical diversity by the 16S rRNA gene sequences. Concentrations of metals such as lead (Pb) and mercury (Hg) (using XRF), and nutrients such as nitrate and phosphate (using HACH DR 2800TM spectrophotometer) were measured in sediment and water samples respectively. Analyses of response patterns revealed that plant and bacterial bioindicators were highly responsive to variation in the concentrations of these pollutants. Hence, this opens up the scope of using these bioindicators for ecological risk assessment in constructed freshwater wetland ecosystems within urbanizing watersheds.
Collapse
|
23
|
Abstract
The term “microbiome” is currently applied predominantly to assemblages of organisms with 16S rRNA genes. In this context, “microbiome” is a misnomer that has been conferred a wide-ranging primacy over terms for community members lacking such genes, e.g., mycobiome, eukaryome, and virome, yet these are also important subsets of microbial communities. Widespread convenient and affordable 16S rRNA sequencing pipelines have accelerated continued use of such a “microbiome”, but at what intellectual and practical costs? Here we show that the use of “microbiome” in ribosomal gene-based studies has been egregiously misapplied, and discuss potential impacts. We argue that the current focus of “microbiome” research, predominantly on only ‘bacteria’, presents a dangerous narrowing of scope which encourages dismissal and even ignorance of other organisms’ contributions to microbial diversity, sensu stricto, and as etiologic agents; we put this in context by discussing cases in both marine microbial diversity and the role of pathogens in global amphibian decline. Fortunately, the solution is simple. We must use descriptive nouns that strictly reflect the outcomes attainable by the methods used. “Microbiome”, as a descriptive noun, should only be used when diversity in the three recognized domains is explored.
Collapse
|
24
|
Ciuffreda L, Rodríguez-Pérez H, Flores C. Nanopore sequencing and its application to the study of microbial communities. Comput Struct Biotechnol J 2021; 19:1497-1511. [PMID: 33815688 PMCID: PMC7985215 DOI: 10.1016/j.csbj.2021.02.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022] Open
Abstract
Since its introduction, nanopore sequencing has enhanced our ability to study complex microbial samples through the possibility to sequence long reads in real time using inexpensive and portable technologies. The use of long reads has allowed to address several previously unsolved issues in the field, such as the resolution of complex genomic structures, and facilitated the access to metagenome assembled genomes (MAGs). Furthermore, the low cost and portability of platforms together with the development of rapid protocols and analysis pipelines have featured nanopore technology as an attractive and ever-growing tool for real-time in-field sequencing for environmental microbial analysis. This review provides an up-to-date summary of the experimental protocols and bioinformatic tools for the study of microbial communities using nanopore sequencing, highlighting the most important and recent research in the field with a major focus on infectious diseases. An overview of the main approaches including targeted and shotgun approaches, metatranscriptomics, epigenomics, and epitranscriptomics is provided, together with an outlook to the major challenges and perspectives over the use of this technology for microbial studies.
Collapse
Affiliation(s)
- Laura Ciuffreda
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| |
Collapse
|
25
|
DeLong EF. Genome-enabled exploration of microbial ecology and evolution in the sea: a rising tide lifts all boats. Environ Microbiol 2021; 23:1301-1321. [PMID: 33459471 PMCID: PMC8049014 DOI: 10.1111/1462-2920.15403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/26/2022]
Abstract
As a young bacteriologist just launching my career during the early days of the 'microbial revolution' in the 1980s, I was fortunate to participate in some early discoveries, and collaborate in the development of cross-disciplinary methods now commonly referred to as "metagenomics". My early scientific career focused on applying phylogenetic and genomic approaches to characterize 'wild' bacteria, archaea and viruses in their natural habitats, with an emphasis on marine systems. These central interests have not changed very much for me over the past three decades, but knowledge, methodological advances and new theoretical perspectives about the microbial world certainly have. In this invited 'How we did it' perspective, I trace some of the trajectories of my lab's collective efforts over the years, including phylogenetic surveys of microbial assemblages in marine plankton and sediments, development of microbial community gene- and genome-enabled surveys, and application of genome-guided, cultivation-independent functional characterization of novel enzymes, pathways and their relationships to in situ biogeochemistry. Throughout this short review, I attempt to acknowledge, all the mentors, students, postdocs and collaborators who enabled this research. Inevitably, a brief autobiographical review like this cannot be fully comprehensive, so sincere apologies to any of my great colleagues who are not explicitly mentioned herein. I salute you all as well!
Collapse
Affiliation(s)
- Edward F DeLong
- Daniel K. Inouye Centre for Microbial Oceanography: Research and Education, University of Hawaii, Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
26
|
DeLong EF. Exploring Marine Planktonic Archaea: Then and Now. Front Microbiol 2021; 11:616086. [PMID: 33519774 PMCID: PMC7838436 DOI: 10.3389/fmicb.2020.616086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
In 1977, Woese and Fox leveraged molecular phylogenetic analyses of ribosomal RNAs and identified a new microbial domain of life on Earth, the Archaebacteria (now known as Archaea). At the time of their discovery, only one archaebacterial group, the strictly anaerobic methanogens, was known. But soon, other phenotypically unrelated microbial isolates were shown to belong to the Archaea, many originating from extreme habitats, including extreme halophiles, extreme thermophiles, and thermoacidophiles. Since most Archaea seemed to inhabit extreme or strictly anoxic habitats, it came as a surprise in 1992 when two new lineages of archaea were reported to be abundant in oxygen rich, temperate marine coastal waters and the deep ocean. Since that time, studies of marine planktonic archaea have revealed many more surprises, including their unexpected ubiquity, unusual symbiotic associations, unpredicted physiologies and biogeochemistry, and global abundance. In this Perspective, early work conducted on marine planktonic Archaea by my lab group and others is discussed in terms of the relevant historical context, some of the original research motivations, and surprises and discoveries encountered along the way.
Collapse
Affiliation(s)
- Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography Research and Education, University of Hawai'i at Mănoa, Honolulu, HI, United States
| |
Collapse
|
27
|
Gardiner LJ, Haiminen N, Utro F, Parida L, Seabolt E, Krishna R, Kaufman JH. Re-purposing software for functional characterization of the microbiome. MICROBIOME 2021; 9:4. [PMID: 33422152 PMCID: PMC7797099 DOI: 10.1186/s40168-020-00971-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Widespread bioinformatic resource development generates a constantly evolving and abundant landscape of workflows and software. For analysis of the microbiome, workflows typically begin with taxonomic classification of the microorganisms that are present in a given environment. Additional investigation is then required to uncover the functionality of the microbial community, in order to characterize its currently or potentially active biological processes. Such functional analysis of metagenomic data can be computationally demanding for high-throughput sequencing experiments. Instead, we can directly compare sequencing reads to a functionally annotated database. However, since reads frequently match multiple sequences equally well, analyses benefit from a hierarchical annotation tree, e.g. for taxonomic classification where reads are assigned to the lowest taxonomic unit. RESULTS To facilitate functional microbiome analysis, we re-purpose well-known taxonomic classification tools to allow us to perform direct functional sequencing read classification with the added benefit of a functional hierarchy. To enable this, we develop and present a tree-shaped functional hierarchy representing the molecular function subset of the Gene Ontology annotation structure. We use this functional hierarchy to replace the standard phylogenetic taxonomy used by the classification tools and assign query sequences accurately to the lowest possible molecular function in the tree. We demonstrate this with simulated and experimental datasets, where we reveal new biological insights. CONCLUSIONS We demonstrate that improved functional classification of metagenomic sequencing reads is possible by re-purposing a range of taxonomic classification tools that are already well-established, in conjunction with either protein or nucleotide reference databases. We leverage the advances in speed, accuracy and efficiency that have been made for taxonomic classification and translate these benefits for the rapid functional classification of microbiomes. While we focus on a specific set of commonly used methods, the functional annotation approach has broad applicability across other sequence classification tools. We hope that re-purposing becomes a routine consideration during bioinformatic resource development. Video abstract.
Collapse
Affiliation(s)
| | - Niina Haiminen
- IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 USA
| | - Filippo Utro
- IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 USA
| | - Laxmi Parida
- IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 USA
| | - Ed Seabolt
- IBM Almaden Research Center, San Jose, CA 95120 USA
| | - Ritesh Krishna
- IBM Research, The Hartree Centre, Warrington, WA4 4AD UK
| | | |
Collapse
|
28
|
Lopez Leyva L, Brereton NJ, Koski KG. Emerging frontiers in human milk microbiome research and suggested primers for 16S rRNA gene analysis. Comput Struct Biotechnol J 2020; 19:121-133. [PMID: 33425245 PMCID: PMC7770459 DOI: 10.1016/j.csbj.2020.11.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Human milk is the ideal food for infants due to its unique nutritional and immune properties, and more recently human milk has also been recognized as an important source of bacteria for infants. However, a substantial amount of fundamental human milk microbiome information remains unclear, such as the origin, composition and function of the community and its members. There is emerging evidence to suggest that the diversity and composition of the milk microbiome might differ between lactation stages, due to maternal factors and diet, agrarian and urban lifestyles, and geographical location. The evolution of the methods used for studying milk microbiota, transitioning from culture dependent-approaches to include culture-independent approaches, has had an impact on findings and, in particular, primer selection within 16S rRNA gene barcoding studies have led to discrepancies in observed microbiota communities. Here, the current state-of-the-art is reviewed and emerging frontiers essential to improving our understanding of the human milk microbiome are considered.
Collapse
Affiliation(s)
- Lilian Lopez Leyva
- School of Human Nutrition, McGill University, Macdonald Stewart Building, 21111 Lakeshore Road, Ste-Anne de Bellevue, QC H9X 3V9, Canada
| | - Nicholas J.B. Brereton
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montreal, QC H1X 2B2, Canada
| | - Kristine G. Koski
- School of Human Nutrition, McGill University, Macdonald Stewart Building, 21111 Lakeshore Road, Ste-Anne de Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
29
|
Kowal K, Tkaczyk A, Pierzchała M, Bownik A, Ślaska B. Identification of Mitochondrial DNA (NUMTs) in the Nuclear Genome of Daphnia magna. Int J Mol Sci 2020; 21:E8725. [PMID: 33218217 PMCID: PMC7699184 DOI: 10.3390/ijms21228725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 01/30/2023] Open
Abstract
This is the first study in which the Daphnia magna (D. magna) nuclear genome (nDNA) obtained from the GenBank database was analyzed for pseudogene sequences of mitochondrial origin. To date, there is no information about pseudogenes localized in D. magna genome. This study aimed to identify NUMTs, their length, homology, and location for potential use in evolutionary studies and to check whether their occurrence causes co-amplification during mitochondrial genome (mtDNA) analyses. Bioinformatic analysis showed 1909 fragments of the mtDNA of D. magna, of which 1630 were located in ten linkage groups (LG) of the nDNA. The best-matched NUMTs covering >90% of the gene sequence have been identified for two mt-tRNA genes, and they may be functional nuclear RNA molecules. Isolating the total DNA in mtDNA studies, co-amplification of nDNA fragments is unlikely in the case of amplification of the whole tRNA genes as well as fragments of other genes. It was observed that TRNA-MET fragments had the highest level of sequence homology, thus they could be evolutionarily the youngest. The lowest homology was found in the D-loop-derived pseudogene. It may probably be the oldest NUMT incorporated into the nDNA; however, further analysis is necessary.
Collapse
Affiliation(s)
- Krzysztof Kowal
- Faculty of Animal Sciences and Bioeconomy, Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 Str., 20-950 Lublin, Poland; (K.K.); (A.T.)
| | - Angelika Tkaczyk
- Faculty of Animal Sciences and Bioeconomy, Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 Str., 20-950 Lublin, Poland; (K.K.); (A.T.)
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36a Str., 05-552 Jastrzębiec, Poland;
| | - Adam Bownik
- Faculty of Environmental Biology, Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37 Str., 20-262 Lublin, Poland;
| | - Brygida Ślaska
- Faculty of Animal Sciences and Bioeconomy, Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 Str., 20-950 Lublin, Poland; (K.K.); (A.T.)
| |
Collapse
|
30
|
Pawlowski J, Apothéloz‐Perret‐Gentil L, Altermatt F. Environmental DNA: What's behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Mol Ecol 2020; 29:4258-4264. [DOI: 10.1111/mec.15643] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Jan Pawlowski
- Department of Genetics and Evolution University of Geneva Geneva Switzerland
- ID‐Gene ecodiagnostics, Campus Biotech Innovation Park Geneva Switzerland
- Institute of Oceanology Polish Academy of Sciences Sopot Poland
| | - Laure Apothéloz‐Perret‐Gentil
- Department of Genetics and Evolution University of Geneva Geneva Switzerland
- ID‐Gene ecodiagnostics, Campus Biotech Innovation Park Geneva Switzerland
| | - Florian Altermatt
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
| |
Collapse
|
31
|
Jankowski R. Virus et épidémies virales dans la théorie métabolique de l’évolution. ANNALES FRANÇAISES D'OTO-RHINO-LARYNGOLOGIE ET DE PATHOLOGIE CERVICO-FACIALE 2020. [PMCID: PMC7833959 DOI: 10.1016/j.aforl.2020.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Les virus, dont l’épidémie de SARS-CoV-2 actuelle, représentent une clé dans la compréhension de la vie et de l’évolution. La cellule a pu naître d’un enfermement aqueux dans une enveloppe lipidique incrustée de chromophores capturant les photons solaires. L’incorporation d’azote dans la chimie cellulaire primordiale autorisait la synthèse des acides aminés et nucléiques, prélude de l’ARN qui aurait précédé l’ADN. La métagénomique permet d’accéder aux sédiments nucléoprotéiques synthétisés par le gogol de cellules métaboliquement différenciées qui ont jalonné l’évolution du vivant. La réplication d’un virus, particule nucléoprotéique, se déroule passivement dans une cellule compétente. Un virus ne semble connu que par l’épidémie qu’il déclenche en étant transporté d’un hôte à l’autre. En décomposant la particule virale, la cellule hôte paraît ressusciter la fonction métabolique de l’acide nucléique qui synthétise sans contrôle ses composants. Ceux-ci s’auto-assemblent et sont exportés par exocytose ou cytolyse. Sans cellule, les virus ne paraissent que matière inerte. La contamination intracellulaire d’un virus ne parvient cependant pas toujours à la réplication : le génome viral peut disparaître, rester latent, se réveiller, rester inséré dans le génome cellulaire, devenir un oncogène ou induire l’auto-immunité. Les rétrovirus endogènes des cellules eucaryotes soulèvent la question de leur rôle dans l’évolution.
Collapse
|
32
|
Abstract
Viruses, including the SARS-CoV-2 virus responsible for the current COVID-19 epidemic, are a key to the understanding of life and evolution. Cells may have arisen from aqueous sequestration inside a lipid envelope studded with chromophores capable of capturing solar photons. Nitrogen incorporation in the primordial cell chemistry allowed synthesis of amino acids and nucleic acids, a prelude to RNA and subsequently DNA. Metagenomics provides access to nucleoprotein sediments synthesised by a googol of metabolically differentiated cells that have marked the evolution of life. Replication of a virus, a nucleoprotein particle, occurs passively in competent cells. Viruses are only identified in the context of the epidemic that they induce as a result of transmission from one host to another. By breaking down the viral particle, the host cell appears to resurrect the metabolic function of the nucleic acid, which synthesises its components without any form of control. Viral products undergo self-assembly and are exported by either exocytosis or cytolysis. In the absence of cells, viruses appear to be inert. However, intracellular contamination of a virus does not always result in replication: the viral genome can disappear, remain latent, wake up, remain embedded in the cellular genome, become an oncogene or induce auto-immunity. The presence of endogenous retroviruses in eukaryotic cells raises the question of their possible role in evolution.
Collapse
Affiliation(s)
- R Jankowski
- ORL et Chirurgie Cervico-Faciale, Hôpital de Brabois, CHRU de Nancy, Université de Lorraine, Bâtiment Louis-Mathieu, 54500 Vandoeuvre-les-Nancy, France; EA 3450 DevAH-Développement, Adaptation et Handicap, Régulations Cardio-Respiratoires et de la Motricité, Faculté de Médecine, Université de Lorraine, 54505, Vandoeuvre-les-Nancy, France; UMR_S 1256 INSERM, Nutrition, génétique et expositions aux risques environnementaux, Faculté de Médecine, 9, avenue de la Forêt-de-Haye, 54500 Vandœuvre-lès-Nancy, France.
| |
Collapse
|
33
|
Porter TM, Hajibabaei M. Putting COI Metabarcoding in Context: The Utility of Exact Sequence Variants (ESVs) in Biodiversity Analysis. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00248] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
34
|
Chen Q, Meyer WA, Zhang Q, White JF. 16S rRNA metagenomic analysis of the bacterial community associated with turf grass seeds from low moisture and high moisture climates. PeerJ 2020; 8:e8417. [PMID: 31942261 PMCID: PMC6956778 DOI: 10.7717/peerj.8417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Turfgrass investigators have observed that plantings of grass seeds produced in moist climates produce seedling stands that show greater stand evenness with reduced disease compared to those grown from seeds produced in dry climates. Grass seeds carry microbes on their surfaces that become endophytic in seedlings and promote seedling growth. We hypothesize that incomplete development of the microbiome associated with the surface of seeds produced in dry climates reduces the performance of seeds. Little is known about the influence of moisture on the structure of this microbial community. We conducted metagenomic analysis of the bacterial communities associated with seeds of three turf species (Festuca rubra, Lolium arundinacea, and Lolium perenne) from low moisture (LM) and high moisture (HM) climates. The bacterial communities were characterized by Illumina high-throughput sequencing of 16S rRNA V3–V4 regions. We performed seed germination tests and analyzed the correlations between the abundance of different bacterial groups and seed germination at different taxonomy ranks. Climate appeared to structure the bacterial communities associated with seeds. LM seeds vectored mainly Proteobacteria (89%). HM seeds vectored a denser and more diverse bacterial community that included Proteobacteria (50%) and Bacteroides (39%). At the genus level, Pedobacter (20%), Sphingomonas (13%), Massilia (12%), Pantoea (12%) and Pseudomonas (11%) were the major genera in the bacterial communities regardless of climate conditions. Massilia, Pantoea and Pseudomonas dominated LM seeds, while Pedobacter and Sphingomonas dominated HM seeds. The species of turf seeds did not appear to influence bacterial community composition. The seeds of the three turf species showed a core microbiome consisting of 27 genera from phyla Actinobacteria, Bacteroidetes, Patescibacteria and Proteobacteria. Differences in seed-vectored microbes, in terms of diversity and density between high and LM climates, may result from effects of moisture level on the colonization of microbes and the development of microbe community on seed surface tissues (adherent paleas and lemmas). The greater diversity and density of seed vectored microbes in HM climates may benefit seedlings by helping them tolerate stress and fight disease organisms, but this dense microbial community may also compete with seedlings for nutrients, slowing or modulating seed germination and seedling growth.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - William A Meyer
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Qiuwei Zhang
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - James F White
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
35
|
Singh H, Kamble A, Sawant S. 16S ribosomal RNA gene-based metagenomics: A review. BIOMEDICAL RESEARCH JOURNAL 2020. [DOI: 10.4103/bmrj.bmrj_4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
36
|
Hewson I. Technical pitfalls that bias comparative microbial community analyses of aquatic disease Ian Hewson. DISEASES OF AQUATIC ORGANISMS 2019; 137:109-124. [PMID: 31854329 DOI: 10.3354/dao03432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The accessibility of high-throughput DNA sequencing technologies has attracted the application of comparative microbial analyses to study diseases. These studies present a window into host microbiome diversity and composition that can be used to address ecological theory in the context of host biology and behavior. Recently, comparative microbiome studies have been used to study non-vertebrate aquatic diseases to elucidate microorganisms potentially involved in disease processes or in disease prevention. These investigations suffer from many well-described biases, especially prior to sequence analyses, that could lead to misleading conclusions. Microbiome-focused studies of aquatic metazoan diseases provide valuable documentation of microbial ecology, although, they are only a starting point for establishing disease etiology, which demands quantitative validation through targeted approaches. The microbiome approach to understanding disease is most useful after laboratory diagnostics guided by pathology have failed to identify a causative agent. This opinion piece presents several technical pitfalls which may affect wider interpretation of microbe-host interactions through comparative microbial community analyses and provides recommendations, based on studies in non-aquatic systems, for incorporation into future aquatic disease research.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
37
|
Heinrichs L, Aytur SA, Bucci JP. Whole metagenomic sequencing to characterize the sediment microbial community within the Stellwagen Bank National Marine Sanctuary and preliminary biosynthetic gene cluster screening of Streptomyces scabrisporus. Mar Genomics 2019; 50:100718. [PMID: 31680056 DOI: 10.1016/j.margen.2019.100718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 10/25/2022]
Abstract
Understanding the marine sediment microbial community structure is of increasing importance to microbiologists since little is known of the diverse taxonomy that exists within this environment. Quantifying microbial species distribution patterns within marine sanctuaries is necessary to address conservation requirements. The objectives of this study were to characterize the relative abundance and biodiversity of metagenome samples of the sediment microbial community in the Stellwagen Bank National Marine Sanctuary (SBNMS). Related to the need for a comprehensive assessment of the microbial habitat within marine sanctuaries is the increased threat of antibiotic-resistant pathogens, coupled with multi-resistant bacterial strains. This has necessitated a renewed search for bioactive compounds in marine benthic habitat. An additional aim was to initiate quantification of biosynthetic gene clusters in species that have potential for natural product and drug discovery relevant to human health. Surficial sediment from 18 samples was collected in the summer and fall of 2017 from three benthic sites in the SBNMS. Microbial DNA was extracted from samples, and sequencing libraries were prepared for taxonomic analysis. Whole metagenome sequencing (WMGS) in combination with a bioinformatics pipeline was employed to delineate the taxa of bacteria present in each sample. Among all sampling sites, biodiversity was higher for summer compared to fall for class (p = 0.0013; F = 4.5) and genus (p = 0.0219; F = 4.4). Actinobacteria was the fifth most abundant class in both seasons (7.81%). Streptomyces was observed to be the fourth most abundant genus in both seasons with significantly higher prevalence in summer compared to fall samples. In summer, site 3 had the highest percentage of Streptomyces (1.71%) compared to sites 2 (1.62%) and 1 (1.37%). The results enabled preliminary quantification of the sequenced hits from the SBNMS sites with the highest potential for harboring secondary metabolite biosynthetic gene clusters for Streptomyces scabrisporus strain (NF3) genomic regions. This study is one of the first to use a whole metagenomics approach to characterize sediment microbial biodiversity in partnership with the SBNMS and demonstrates the potential for future ecological and biomedical research.
Collapse
Affiliation(s)
- Lina Heinrichs
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824, United States of America
| | - Semra A Aytur
- Department of Health Management and Policy, University of New Hampshire, 4 Library Way, Durham, NH 03824, United States of America
| | - John P Bucci
- Marine Microverse Institute, PO Box 59, Kittery Point, ME 03905, and the School of Marine Science and Ocean Engineering, University of New Hampshire, 8 College Road, Durham, NH 03824, United States of America.
| |
Collapse
|
38
|
Comparison of Water Sampling between Environmental DNA Metabarcoding and Conventional Microscopic Identification: A Case Study in Gwangyang Bay, South Korea. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9163272] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our study focuses on methodological comparison of plankton community composition in relation to ecological monitoring and assessment with data sampling. Recently, along with the advancement of monitoring techniques, metabarcoding has been widely used in the context of environmental DNA (eDNA). We examine the applicability of eDNA metabarcoding for effective monitoring and assessment of community composition, compared with conventional observation using microscopic identification in a coastal ecosystem, Gwangynag Bay in South Korea. Our analysis is based primarily on two surveys at a total of 15 study sites in early and late summer (June and September) of the year 2018. The results of our study demonstrate the similarity and dissimilarity of biological communities in composition, richness and diversity between eDNA metabarcoding and conventional microscopic identification. It is found that, overall, eDNA metabarcoding appears to provide a wider variety of species composition, while conventional microscopic identification depicts more distinct plankton communities in sites. Finally, we suggest that eDNA metabarcoding is a practically useful method and can be potentially considered as a valuable alternative for biological monitoring and diversity assessments.
Collapse
|
39
|
Taşkan E, Bulak S, Taşkan B, Şaşmaz M, El Abed S, El Abed A. Nitinol as a suitable anode material for electricity generation in microbial fuel cells. Bioelectrochemistry 2019; 128:118-125. [DOI: 10.1016/j.bioelechem.2019.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 01/26/2023]
|
40
|
Gonzalez E, Pitre FE, Brereton NJB. ANCHOR: a 16S rRNA gene amplicon pipeline for microbial analysis of multiple environmental samples. Environ Microbiol 2019; 21:2440-2468. [PMID: 30990927 PMCID: PMC6851558 DOI: 10.1111/1462-2920.14632] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 01/04/2023]
Abstract
Analysis of 16S ribosomal RNA (rRNA) gene amplification data for microbial barcoding can be inaccurate across complex environmental samples. A method, ANCHOR, is presented and designed for improved species‐level microbial identification using paired‐end sequences directly, multiple high‐complexity samples and multiple reference databases. A standard operating procedure (SOP) is reported alongside benchmarking against artificial, single sample and replicated mock data sets. The method is then directly tested using a real‐world data set from surface swabs of the International Space Station (ISS). Simple mock community analysis identified 100% of the expected species and 99% of expected gene copy variants (100% identical). A replicated mock community revealed similar or better numbers of expected species than MetaAmp, DADA2, Mothur and QIIME1. Analysis of the ISS microbiome identified 714 putative unique species/strains and differential abundance analysis distinguished significant differences between the Destiny module (U.S. laboratory) and Harmony module (sleeping quarters). Harmony was remarkably dominated by human gastrointestinal tract bacteria, similar to enclosed environments on earth; however, Destiny module bacteria also derived from nonhuman microbiome carriers present on the ISS, the laboratory's research animals. ANCHOR can help substantially improve sequence resolution of 16S rRNA gene amplification data within biologically replicated environmental experiments and integrated multidatabase annotation enhances interpretation of complex, nonreference microbiomes.
Collapse
Affiliation(s)
- Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada.,Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada
| | - Frederic E Pitre
- Institut de Recherche en Biologie Végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada.,Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - Nicholas J B Brereton
- Institut de Recherche en Biologie Végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
| |
Collapse
|
41
|
Sawaya NA, Djurhuus A, Closek CJ, Hepner M, Olesin E, Visser L, Kelble C, Hubbard K, Breitbart M. Assessing eukaryotic biodiversity in the Florida Keys National Marine Sanctuary through environmental DNA metabarcoding. Ecol Evol 2019; 9:1029-1040. [PMID: 30805138 PMCID: PMC6374654 DOI: 10.1002/ece3.4742] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023] Open
Abstract
Environmental DNA (eDNA) is the DNA suspended in the environment (e.g., water column), which includes cells, gametes, and other material derived from but not limited to shedding of tissue, scales, mucus, and fecal matter. Amplifying and sequencing marker genes (i.e., metabarcoding) from eDNA can reveal the wide range of taxa present in an ecosystem through analysis of a single water sample. Metabarcoding of eDNA provides higher resolution data than visual surveys, aiding in assessments of ecosystem health. This study conducted eDNA metabarcoding of two molecular markers (cytochrome c oxidase I (COI) and 18S ribosomal RNA (rRNA) genes) to survey eukaryotic diversity across multiple trophic levels in surface water samples collected at three sites along the coral reef tract within the Florida Keys National Marine Sanctuary (FKNMS) during four research cruises in 2015. The 18S rRNA gene sequences recovered 785 genera while the COI gene sequences recovered 115 genera, with only 33 genera shared between the two datasets, emphasizing the complementarity of these marker genes. Community composition for both genetic markers clustered by month of sample collection, suggesting that temporal variation has a larger effect on biodiversity than spatial variability in the FKNMS surface waters. Sequences from both marker genes were dominated by copepods, but each marker recovered distinct phytoplankton groups, with 18S rRNA gene sequences dominated by dinoflagellates and COI sequences dominated by coccolithophores. Although eDNA samples were collected from surface waters, many benthic species such as sponges, crustaceans, and corals were identified. These results show the utility of eDNA metabarcoding for cataloging biodiversity to establish an ecosystem baseline against which future samples can be compared in order to monitor community changes.
Collapse
Affiliation(s)
- Natalie A. Sawaya
- College of Marine ScienceUniversity of South FloridaSaint PetersburgFlorida
| | - Anni Djurhuus
- College of Marine ScienceUniversity of South FloridaSaint PetersburgFlorida
| | - Collin J. Closek
- Stanford Center for Ocean SolutionsStanford UniversityStanfordCalifornia
- Department of Civil and Environmental EngineeringStanford UniversityStanfordCalifornia
| | - Megan Hepner
- College of Marine ScienceUniversity of South FloridaSaint PetersburgFlorida
| | - Emily Olesin
- Florida Fish and Wildlife Conservation Commission‐Fish and Wildlife Research InstituteSaint PetersburgFlorida
| | - Lindsey Visser
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida
- NOAA Atlantic Oceanographic and Meteorological LaboratoryMiamiFlorida
| | | | - Katherine Hubbard
- Florida Fish and Wildlife Conservation Commission‐Fish and Wildlife Research InstituteSaint PetersburgFlorida
| | - Mya Breitbart
- College of Marine ScienceUniversity of South FloridaSaint PetersburgFlorida
| |
Collapse
|
42
|
Alves LDF, Westmann CA, Lovate GL, de Siqueira GMV, Borelli TC, Guazzaroni ME. Metagenomic Approaches for Understanding New Concepts in Microbial Science. Int J Genomics 2018; 2018:2312987. [PMID: 30211213 PMCID: PMC6126073 DOI: 10.1155/2018/2312987] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/21/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
Over the past thirty years, since the dawn of metagenomic studies, a completely new (micro) universe was revealed, with the potential to have profound impacts on many aspects of the society. Remarkably, the study of human microbiome provided a new perspective on a myriad of human traits previously regarded as solely (epi-) genetically encoded, such as disease susceptibility, immunological response, and social and nutritional behaviors. In this context, metagenomics has established a powerful framework for understanding the intricate connections between human societies and microbial communities, ultimately allowing for the optimization of both human health and productivity. Thus, we have shifted from the old concept of microbes as harmful organisms to a broader panorama, in which the signal of the relationship between humans and microbes is flexible and directly dependent on our own decisions and practices. In parallel, metagenomics has also been playing a major role in the prospection of "hidden" genetic features and the development of biotechnological applications, through the discovery of novel genes, enzymes, pathways, and bioactive molecules with completely new or improved biochemical functions. Therefore, this review highlights the major milestones over the last three decades of metagenomics, providing insights into both its potentialities and current challenges.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- Department of Biochemistry, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cauã Antunes Westmann
- Department of Cell Biology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriel Lencioni Lovate
- Department of Biochemistry, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Tiago Cabral Borelli
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
43
|
The journey of gut microbiome – An introduction and its influence on metabolic disorders. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11515-018-1490-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
The Emergency Medical Service Microbiome. Appl Environ Microbiol 2018; 84:AEM.02098-17. [PMID: 29222105 DOI: 10.1128/aem.02098-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/01/2017] [Indexed: 11/20/2022] Open
Abstract
Emergency medical services (EMS) personnel are an integral component of the health care framework and function to transport patients from various locations to and between care facilities. In addition to physical injury, EMS personnel are expected to be at high risk to acquire and transmit health care-associated infections (HAIs) in the workplace. However, currently, little is known about EMS biosafety risk factors and the epidemiological contribution of EMS to pathogen transmission within and outside the health care sector. Health care facility microbiomes contain diverse bacterial, fungal, and viral pathogens that cause over 1.7 million HAIs each year in the United States alone. While hospital microbiomes have been relatively well studied, there is scant information about EMS infrastructure and equipment microbiomes or the role(s) they play in HAI transmission between health care facilities. We review recent literature investigating the microbiome of ambulances and other EMS service facilities which consistently identify antibiotic-resistant pathogens causing HAIs, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus, and Klebsiella pneumoniae Our review provides evidence that EMS microbiomes are dynamic and important pathogen reservoirs, and it underscores the need for more widespread and in-depth microbiome studies to elucidate patterns of pathogen transmission. We discuss emerging DNA sequencing technologies and other methods that can be applied to characterize and mitigate EMS biosafety risks in the future. Understanding the complex interplay between EMS and hospital microbiomes will provide key insights into pathogen transmission mechanisms and identify strategies to minimize HAIs and community infection.
Collapse
|
45
|
Greninger AL. A decade of RNA virus metagenomics is (not) enough. Virus Res 2018; 244:218-229. [PMID: 29055712 PMCID: PMC7114529 DOI: 10.1016/j.virusres.2017.10.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022]
Abstract
It is hard to overemphasize the role that metagenomics has had on our recent understanding of RNA virus diversity. Metagenomics in the 21st century has brought with it an explosion in the number of RNA virus species, genera, and families far exceeding that following the discovery of the microscope in the 18th century for eukaryotic life or culture media in the 19th century for bacteriology or the 20th century for virology. When the definition of success in organism discovery is measured by sequence diversity and evolutionary distance, RNA viruses win. This review explores the history of RNA virus metagenomics, reasons for the successes so far in RNA virus metagenomics, and methodological concerns. In addition, the review briefly covers clinical metagenomics and environmental metagenomics and highlights some of the critical accomplishments that have defined the fast pace of RNA virus discoveries in recent years. Slightly more than a decade in, the field is exhausted from its discoveries but knows that there is yet even more out there to be found.
Collapse
Affiliation(s)
- Alexander L Greninger
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, United States; Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
46
|
Banerji A, Bagley M, Elk M, Pilgrim E, Marinson J, Santo Domingo J. Spatial and temporal dynamics of a freshwater eukaryotic plankton community revealed via 18S rRNA gene metabarcoding. HYDROBIOLOGIA 2018; 818:71-86. [PMID: 31595089 PMCID: PMC6781235 DOI: 10.1007/s10750-018-3593-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
DNA metabarcoding is a sophisticated molecular tool that can enhance biological surveys of freshwater plankton communities by providing broader taxonomic coverage and, for certain groups, higher taxonomic resolution compared to morphological methods. We conducted 18S rRNA gene metabarcoding analyses on 214 water samples collected over a four-month period from multiple sites within a freshwater reservoir. We detected 1,314 unique operational taxonomic units that included various metazoans, protists, chlorophytes, and fungi. Alpha diversity differed among sites, suggesting local habitat variation linked to differing species responses. Strong temporal variation was detected at both daily and monthly scales. Diversity and relative abundance patterns for several protist groups (including dinoflagellates, ciliates, and cryptophytes) differed from arthropods (e.g., cladocerans and copepods), a traditional focus of plankton surveys. This suggests that the protists respond to different environmental dimensions and may therefore provide additional information regarding ecosystem status. Comparison of the sequence-based population survey data to conventional-based data revealed similar trends for taxa that were ranked among the most abundant in both approaches, although some groups were missing in each data set. These results highlight the potential benefit of supplementing conventional biological survey approaches with metabarcoding to obtain a more comprehensive understanding of freshwater plankton community structure and dynamics.
Collapse
Affiliation(s)
- A Banerji
- US Environmental Protection Agency, Cincinnati, USA
| | - M Bagley
- US Environmental Protection Agency, Cincinnati, USA
| | - M Elk
- US Environmental Protection Agency, Cincinnati, USA
| | - E Pilgrim
- US Environmental Protection Agency, Cincinnati, USA
| | - J Marinson
- US Environmental Protection Agency, Cincinnati, USA
| | | |
Collapse
|
47
|
Smukowski Heil C, Burton JN, Liachko I, Friedrich A, Hanson NA, Morris CL, Schacherer J, Shendure J, Thomas JH, Dunham MJ. Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C. Yeast 2017; 35:71-84. [PMID: 28892574 DOI: 10.1002/yea.3280] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022] Open
Abstract
Interspecific hybridization is a common mechanism enabling genetic diversification and adaptation; however, the detection of hybrid species has been quite difficult. The identification of microbial hybrids is made even more complicated, as most environmental microbes are resistant to culturing and must be studied in their native mixed communities. We have previously adapted the chromosome conformation capture method Hi-C to the assembly of genomes from mixed populations. Here, we show the method's application in assembling genomes directly from an uncultured, mixed population from a spontaneously inoculated beer sample. Our assembly method has enabled us to de-convolute four bacterial and four yeast genomes from this sample, including a putative yeast hybrid. Downstream isolation and analysis of this hybrid confirmed its genome to consist of Pichia membranifaciens and that of another related, but undescribed, yeast. Our work shows that Hi-C-based metagenomic methods can overcome the limitation of traditional sequencing methods in studying complex mixtures of genomes. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Joshua N Burton
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Anne Friedrich
- Genetics, Genomics, and Microbiology, University of Strasbourg, Strasbourg, France
| | - Noah A Hanson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Joseph Schacherer
- Genetics, Genomics, and Microbiology, University of Strasbourg, Strasbourg, France
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - James H Thomas
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
48
|
Abstract
The microbial diversity within cave ecosystems is largely unknown. Ozark caves maintain a year-round stable temperature (12–14 °C), but most parts of the caves experience complete darkness. The lack of sunlight and geological isolation from surface-energy inputs generate nutrient-poor conditions that may limit species diversity in such environments. Although microorganisms play a crucial role in sustaining life on Earth and impacting human health, little is known about their diversity, ecology, and evolution in community structures. We used five Ozark region caves as test sites for exploring bacterial diversity and monitoring long-term biodiversity. Illumina MiSeq sequencing of five cave soil samples and a control sample revealed a total of 49 bacterial phyla, with seven major phyla: Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Chloroflexi, Bacteroidetes, and Nitrospirae. Variation in bacterial composition was observed among the five caves studied. Sandtown Cave had the lowest richness and most divergent community composition. 16S rRNA gene-based metagenomic analysis of cave-dwelling microbial communities in the Ozark caves revealed that species abundance and diversity are vast and included ecologically, agriculturally, and economically relevant taxa.
Collapse
|
49
|
Abstract
The skin is colonized by a diverse collection of microorganisms which, for the most part, peacefully coexist with their hosts. Skin and soft tissue infections (SSTIs) encompass a variety of conditions; in immunocompromised hosts, SSTIs can be caused by diverse microorganisms-most commonly bacteria, but also fungi, viruses, mycobacteria, and protozoa. The diagnosis of SSTIs is difficult because they may commonly masquerade as other clinical syndromes or can be a manifestation of systemic disease. In immunocompromised hosts, SSTI poses a major diagnostic challenge, and clinical dermatological assessment should be initially performed; to better identify the pathogen and to lead to appropriate treatment, etiology should include cultures of lesions and blood, biopsy with histology, specific microbiological analysis with special stains, molecular techniques, and antigen-detection methodologies. Here, we reviewed the epidemiology, pathophysiology, clinical presentation, and diagnostic techniques, including molecular biological techniques, used for SSTIs, with a focus on the immunocompromised host, such as patients with cellular immunodeficiency, HIV, and diabetic foot infection.
Collapse
|
50
|
Affiliation(s)
- Igor B Zhulin
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|