1
|
Ye C, Gosser C, Runyon ED, Zha J, Cai J, Beharry Z, Bowes Rickman C, Klingeborn M, Liu Y, Xie J, Cai H. Src family kinases engage differential pathways for encapsulation into extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e96. [PMID: 37588411 PMCID: PMC10426749 DOI: 10.1002/jex2.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 08/18/2023]
Abstract
Extracellular vesicles (EVs) are heterogeneous biological nanoparticles secreted by all cell types. Identifying the proteins preferentially encapsulated in secreted EVs will help understand their heterogeneity. Src family kinases including Src and Fyn are a group of tyrosine kinases with fatty acylation modifications and/or multiple lysine residues (contributing charge interaction) at their N-terminus. Here, we demonstrate that Src and Fyn kinases were preferentially encapsulated in EVs and fatty acylation including myristoylation and palmitoylation facilitated their encapsulation. Genetic loss or pharmacological inhibition of myristoylation suppressed Src and/or Fyn kinase levels in EVs. Similarly, loss of palmitoylation reduced Fyn levels in EVs. Additionally, mutation of lysine at sites 5, 7, and 9 of Src kinase also inhibited the encapsulation of myristoylated Src into EVs. Knockdown of TSG101, which is a protein involved in the endosomal sorting complexes required for transport (ESCRT) protein complex mediated EVs biogenesis and led to a reduction of Src levels in EVs. In contrast, filipin III treatment, which disturbed the lipid raft structure, reduced Fyn kinase levels, but not Src kinase levels in EVs. Finally, elevated levels of Src protein were detected in the serum EVs of host mice carrying constitutively active Src-mediated prostate tumors in vivo. Collectively, the data suggest that different EVs biogenesis pathways exist and can regulate the encapsulation of specific proteins into EVs. This study provides an understanding of the EVs heterogeneity created by different EVs biogenesis pathways.
Collapse
Affiliation(s)
- Chenming Ye
- Department of Pharmaceutical and Biomedical Sciences, College of PharmacyUniversity of Georgia AthensAthensGeorgiaUSA
| | - Cade Gosser
- Department of Pharmaceutical and Biomedical Sciences, College of PharmacyUniversity of Georgia AthensAthensGeorgiaUSA
| | - Ethan Daniel Runyon
- Department of Pharmaceutical and Biomedical Sciences, College of PharmacyUniversity of Georgia AthensAthensGeorgiaUSA
| | - Junyi Zha
- Department of Pharmaceutical and Biomedical Sciences, College of PharmacyUniversity of Georgia AthensAthensGeorgiaUSA
| | - Jingwen Cai
- Department of Cellular Biology and AnatomyAugusta UniversityAugustaGeorgiaUSA
| | - Zanna Beharry
- Department of Chemical and Physical SciencesUniversity of Virgin IslandsUSA
| | - Catherine Bowes Rickman
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Cell BiologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Yutao Liu
- Department of Cellular Biology and AnatomyAugusta UniversityAugustaGeorgiaUSA
| | - Jin Xie
- Department of ChemistryUniversity of Georgia AthensAthensGeorgiaUSA
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of PharmacyUniversity of Georgia AthensAthensGeorgiaUSA
| |
Collapse
|
2
|
Tohumeken S, Deme P, Yoo SW, Gupta S, Rais R, Slusher BS, Haughey NJ. Neuronal deletion of nSMase2 reduces the production of Aβ and directly protects neurons. Neurobiol Dis 2023; 177:105987. [PMID: 36603748 DOI: 10.1016/j.nbd.2023.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023] Open
Abstract
Extracellular vesicles (EVs) have been proposed to regulate the deposition of Aβ. Multiple publications have shown that APP, amyloid processing enzymes and Aβ peptides are associated with EVs. However, very little Aβ is associated with EVs compared with the total amount Aβ present in human plasma, CSF, or supernatants from cultured neurons. The involvement of EVs has largely been inferred by pharmacological inhibition or whole body deletion of the sphingomyelin hydrolase neutral sphingomyelinase-2 (nSMase2) that is a key regulator for the biogenesis of at-least one population of EVs. Here we used a Cre-Lox system to selectively delete nSMase2 from pyramidal neurons in APP/PS1 mice (APP/PS1-SMPD3-Nex1) and found a ∼ 70% reduction in Aβ deposition at 6 months of age and ∼ 35% reduction at 12 months of age in both cortex and hippocampus. Brain ceramides were increased in APP/PS1 compared with Wt mice, but were similar to Wt in APP/PS1-SMPD3-Nex1 mice suggesting that elevated brain ceramides in this model involves neuronally expressed nSMase2. Reduced levels of PSD95 and deficits of long-term potentiation in APP/PS1 mice were normalized in APP/PS1-SMPD3-Nex1 mice. In contrast, elevated levels of IL-1β, IL-8 and TNFα in APP/PS1 mice were not normalized in APP/PS1-SMPD3-Nex1 mice compared with APP/PS1 mice. Mechanistic studies showed that the size of liquid ordered membrane microdomains was increased in APP/PS1 mice, as were the amounts of APP and BACE1 localized to these microdomains. Pharmacological inhibition of nSMase2 activity with PDDC reduced the size of the liquid ordered membrane microdomains, reduced the localization of APP with BACE1 and reduced the production of Aβ1-40 and Aβ1-42. Although inhibition of nSMase2 reduced the release and increased the size of EVs, very little Aβ was associated with EVs in all conditions tested. We also found that nSMase2 directly protected neurons from the toxic effects of oligomerized Aβ and preserved neural network connectivity despite considerable Aβ deposition. These data demonstrate that nSMase2 plays a role in the production of Aβ by stabilizing the interaction of APP with BACE1 in liquid ordered membrane microdomains, and directly protects neurons from the toxic effects of Aβ. The effects of inhibiting nSMase2 on EV biogenesis may be independent from effects on Aβ production and neuronal protection.
Collapse
Affiliation(s)
- Sehmus Tohumeken
- The Johns Hopkins University School of Medicine, Departments of Neurology, United States of America
| | - Pragney Deme
- The Johns Hopkins University School of Medicine, Departments of Neurology, United States of America
| | - Seung Wan Yoo
- The Johns Hopkins University School of Medicine, Departments of Neurology, United States of America
| | - Sujasha Gupta
- The Johns Hopkins University School of Medicine, Departments of Neurology, United States of America
| | - Rana Rais
- The Johns Hopkins University School of Medicine, Departments of Psychiatry, United States of America
| | - Barbara S Slusher
- The Johns Hopkins University School of Medicine, Departments of Neurology, United States of America; The Johns Hopkins University School of Medicine, Departments of Johns Hopkins Drug Discovery, United States of America; The Johns Hopkins University School of Medicine, Departments of Psychiatry, United States of America; The Johns Hopkins University School of Medicine, Departments of Pharmacology and Molecular Sciences, United States of America; The Johns Hopkins University School of Medicine, Departments of Department of Oncology, United States of America; The Johns Hopkins University School of Medicine, Departments of Department of Neuroscience, United States of America; The Johns Hopkins University School of Medicine, Departments of Department of Medicine, Baltimore, MD, United States of America
| | - Norman J Haughey
- The Johns Hopkins University School of Medicine, Departments of Neurology, United States of America; The Johns Hopkins University School of Medicine, Departments of Johns Hopkins Drug Discovery, United States of America.
| |
Collapse
|
3
|
Xu Y, Shi Z, Bao L. An expanding repertoire of protein acylations. Mol Cell Proteomics 2022; 21:100193. [PMID: 34999219 PMCID: PMC8933697 DOI: 10.1016/j.mcpro.2022.100193] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 01/03/2023] Open
Abstract
Protein post-translational modifications play key roles in multiple cellular processes by allowing rapid reprogramming of individual protein functions. Acylation, one of the most important post-translational modifications, is involved in different physiological activities including cell differentiation and energy metabolism. In recent years, the progression in technologies, especially the antibodies against acylation and the highly sensitive and effective mass spectrometry–based proteomics, as well as optimized functional studies, greatly deepen our understanding of protein acylation. In this review, we give a general overview of the 12 main protein acylations (formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, glutarylation, palmitoylation, myristoylation, benzoylation, crotonylation, and 2-hydroxyisobutyrylation), including their substrates (histones and nonhistone proteins), regulatory enzymes (writers, readers, and erasers), biological functions (transcriptional regulation, metabolic regulation, subcellular targeting, protein–membrane interactions, protein stability, and folding), and related diseases (cancer, diabetes, heart disease, neurodegenerative disease, and viral infection), to present a complete picture of protein acylations and highlight their functional significance in future research. Provide a general overview of the 12 main protein acylations. Acylation of viral proteins promotes viral integration and infection. Hyperacylation of histone has antitumous and neuroprotective effects. MS is widely used in the identification of acylation but has its challenges.
Collapse
Affiliation(s)
- Yuxuan Xu
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China
| | - Zhenyu Shi
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China
| | - Li Bao
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China.
| |
Collapse
|
4
|
Gao X, Mazière AD, Beard R, Klumperman J, Hannoush RN. Fatty acylation enhances the cellular internalization and cytosolic distribution of a cystine-knot peptide. iScience 2021; 24:103220. [PMID: 34712919 PMCID: PMC8529511 DOI: 10.1016/j.isci.2021.103220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
Delivering peptides into cells could open up possibilities for targeting intracellular proteins. Although fatty acylation of peptide therapeutics improves their systemic half-life, it remains unclear how it influences their cellular uptake. Here, we demonstrate that a fatty acylated peptide exhibits enhanced cellular internalization and cytosolic distribution compared to the un-acylated version. By using a cystine-knot peptide as a model system, we report an efficient strategy for site-specific conjugation of fatty acids. Peptides modified with fatty acids of different chain lengths entered cells through clathrin-mediated and macropinocytosis pathways. The cellular uptake was mediated by the length of the hydrocarbon chain, with myristic acid conjugates displaying the highest distribution across the cytoplasm including the cytosol, and endomembranes of the ER, Golgi and mitochondria. Our studies demonstrate how fatty acylation improves the cellular uptake of peptides, and lay the groundwork for future development of bioactive peptides with enhanced intracellular distribution. A synthetic strategy comprises site-specific conjugation of fatty acids to peptides Fatty acylation of a peptide enhances its cellular uptake and cytosolic distribution Myristoylated peptides display a high cytoplasmic distribution Fatty acylated peptides are internalized via multiple endocytic routes
Collapse
Affiliation(s)
- Xinxin Gao
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Ann De Mazière
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rhiannon Beard
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Judith Klumperman
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| |
Collapse
|
5
|
Tzou FY, Su TY, Lin WS, Kuo HC, Yu YL, Yeh YH, Liu CC, Kuo CH, Huang SY, Chan CC. Dihydroceramide desaturase regulates the compartmentalization of Rac1 for neuronal oxidative stress. Cell Rep 2021; 35:108972. [PMID: 33852856 DOI: 10.1016/j.celrep.2021.108972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/18/2021] [Accepted: 03/19/2021] [Indexed: 11/19/2022] Open
Abstract
Disruption of sphingolipid homeostasis is known to cause neurological disorders, but the mechanisms by which specific sphingolipid species modulate pathogenesis remain unclear. The last step of de novo sphingolipid synthesis is the conversion of dihydroceramide to ceramide by dihydroceramide desaturase (human DEGS1; Drosophila Ifc). Loss of ifc leads to dihydroceramide accumulation, oxidative stress, and photoreceptor degeneration, whereas human DEGS1 variants are associated with leukodystrophy and neuropathy. In this work, we demonstrate that DEGS1/ifc regulates Rac1 compartmentalization in neuronal cells and that dihydroceramide alters the association of active Rac1 with organelle-mimicking membranes. We further identify the Rac1-NADPH oxidase (NOX) complex as the major cause of reactive oxygen species (ROS) accumulation in ifc-knockout (ifc-KO) photoreceptors and in SH-SY5Y cells with the leukodystrophy-associated DEGS1H132R variant. Suppression of Rac1-NOX activity rescues degeneration of ifc-KO photoreceptors and ameliorates oxidative stress in DEGS1H132R-carrying cells. Therefore, we conclude that DEGS1/ifc deficiency causes dihydroceramide accumulation, resulting in Rac1 mislocalization and NOX-dependent neurodegeneration.
Collapse
Affiliation(s)
- Fei-Yang Tzou
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Tsu-Yi Su
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wan-Syuan Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Han-Chun Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Lian Yu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Han Yeh
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chung-Chih Liu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
6
|
Vona R, Iessi E, Matarrese P. Role of Cholesterol and Lipid Rafts in Cancer Signaling: A Promising Therapeutic Opportunity? Front Cell Dev Biol 2021; 9:622908. [PMID: 33816471 PMCID: PMC8017202 DOI: 10.3389/fcell.2021.622908] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cholesterol is a lipid molecule that plays an essential role in a number of biological processes, both physiological and pathological. It is an essential structural constituent of cell membranes, and it is fundamental for biosynthesis, integrity, and functions of biological membranes, including membrane trafficking and signaling. Moreover, cholesterol is the major lipid component of lipid rafts, a sort of lipid-based structures that regulate the assembly and functioning of numerous cell signaling pathways, including those related to cancer, such as tumor cell growth, adhesion, migration, invasion, and apoptosis. Considering the importance of cholesterol metabolism, its homeostasis is strictly regulated at every stage: import, synthesis, export, metabolism, and storage. The alterations of this homeostatic balance are known to be associated with cardiovascular diseases and atherosclerosis, but mounting evidence also connects these behaviors to increased cancer risks. Although there is conflicting evidence on the role of cholesterol in cancer development, most of the studies consistently suggest that a dysregulation of cholesterol homeostasis could lead to cancer development. This review aims to discuss the current understanding of cholesterol homeostasis in normal and cancerous cells, summarizing key findings from recent preclinical and clinical studies that have investigated the role of major players in cholesterol regulation and the organization of lipid rafts, which could represent promising therapeutic targets.
Collapse
Affiliation(s)
- Rosa Vona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità [Italian National Institute of Health], Rome, Italy
| | - Elisabetta Iessi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità [Italian National Institute of Health], Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità [Italian National Institute of Health], Rome, Italy
| |
Collapse
|
7
|
SRC Signaling in Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:57-71. [PMID: 33123993 DOI: 10.1007/978-3-030-47189-7_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pioneering experiments performed by Harold Varmus and Mike Bishop in 1976 led to one of the most influential discoveries in cancer research and identified the first cancer-causing oncogene called Src. Later experimental and clinical evidence suggested that Src kinase plays a significant role in promoting tumor growth and progression and its activity is associated with poor patient survival. Thus, several Src inhibitors were developed and approved by FDA for treatment of cancer patients. Tumor microenvironment (TME) is a highly complex and dynamic milieu where significant cross-talk occurs between cancer cells and TME components, which consist of tumor-associated macrophages, fibroblasts, and other immune and vascular cells. Growth factors and chemokines activate multiple signaling cascades in TME and induce multiple kinases and pathways, including Src, leading to tumor growth, invasion/metastasis, angiogenesis, drug resistance, and progression. Here, we will systemically evaluate recent findings regarding regulation of Src and significance of targeting Src in cancer therapy.
Collapse
|
8
|
Kwon OH, Cho YY, Kim TW, Chung S. O-GlcNAcylation of Amyloid-β Protein Precursor by Insulin Signaling Reduces Amyloid-β Production. J Alzheimers Dis 2020; 69:1195-1211. [PMID: 31156159 DOI: 10.3233/jad-190060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is caused by the accumulation of neurotoxic amyloid-β (Aβ) peptides. Aβ is derived from amyloid-β protein precursor (AβPP). In the non-amyloidogenic pathway, AβPP is cleaved by α-secretase and γ-secretase at the plasma membrane, excluding Aβ production. Alternatively, AβPP in the plasma membrane is internalized via endocytosis, and delivered to early endosomes and lysosomes, where it is cleaved by β-secretase and γ-secretase. Recent studies have shown that insulin in the periphery crosses the blood-brain barrier, and plays important roles in the brain. Furthermore, impaired insulin signaling has been linked to the progression of AD, and intranasal insulin administration improves memory impairments and cognition. However, the underlying molecular mechanisms of insulin treatment remain largely unknown. To investigate the effects of insulin on AβPP processing, we tested the effects of insulin on neuroblastoma SH-SY5Y cells overexpressing AβPP, and cultured rat cortical neurons. We found that insulin increased the level of cell surface AβPP, decreasing the endocytosis rate of AβPP. Insulin reduced Aβ generation through upregulation of AβPP O-GlcNAcylation via Akt insulin signaling. Our present data suggest that insulin affects Aβ production by regulating AβPP processing through AβPP O-GlcNAcylation. These results provide mechanistic insight into the beneficial effects of insulin, and a possible link between insulin deficient diabetes and cerebral amyloidosis in the pathogenesis of AD.
Collapse
Affiliation(s)
- Oh Hoon Kwon
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yoon Young Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Tae-Wan Kim
- Department of Pathology and Cell Biology, and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Sungkwon Chung
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| |
Collapse
|
9
|
Karanji AK, Beasely M, Sharif D, Ranjbaran A, Legleiter J, Valentine SJ. Investigating the interactions of the first 17 amino acid residues of Huntingtin with lipid vesicles using mass spectrometry and molecular dynamics. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4470. [PMID: 31756784 PMCID: PMC7342490 DOI: 10.1002/jms.4470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/04/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The first 17 amino acid residues of Huntingtin protein (Nt17 of htt) are thought to play an important role in the protein's function; Nt17 is one of two membrane binding domains in htt. In this study the binding ability of Nt17 peptide with vesicles comprised of two subclasses of phospholipids is studied using electrospray ionization - mass spectrometry (ESI-MS) and molecular dynamics (MD) simulations. Overall, the peptide is shown to have a greater propensity to interact with vesicles of phosphatidylcholine (PC) rather than phosphatidylethanolamine (PE) lipids. Mass spectra show an increase in lipid-bound peptide adducts where the ordering of the number of such specie is 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) > 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) > 1-palmitoyl-2-oleoyl-sn-glycero-3 phosphoethanolamine (POPE). MD simulations suggest that the compactness of the bilayer plays a role in governing peptide interactions. The peptide shows greater disruption of the DOPC bilayer order at the surface and interacts with the hydrophobic tails of lipid molecules via hydrophobic residues. Conversely, the POPE vesicle remains ordered and lipids display transient interactions with the peptide through the formation of hydrogen bonds with hydrophilic residues. The POPC system displays intermediate behavior with regard to the degree of peptide-membrane interaction. Finally, the simulations suggest a helix stabilizing effect resulting from the interactions between hydrophobic residues and the lipid tails of the DOPC bilayer.
Collapse
Affiliation(s)
- Ahmad Kiani Karanji
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| | - Maryssa Beasely
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| | - Daud Sharif
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| | - Ali Ranjbaran
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown WV 26506
| | - Justin Legleiter
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
- Blanchette Rockefeller Neurosciences Institute, Robert C. Byrd Health Sciences Center, P.O. Box 9304, West Virginia University, Morgantown, West Virginia 26506, United States
- NanoSAFE, P.O. Box 6223, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Stephen J. Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| |
Collapse
|
10
|
Behrendorff JBYH, Sandoval-Ibañez OA, Sharma A, Pribil M. Membrane-Bound Protein Scaffolding in Diverse Hosts Using Thylakoid Protein CURT1A. ACS Synth Biol 2019; 8:611-620. [PMID: 30884945 DOI: 10.1021/acssynbio.8b00418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein scaffolding is a useful strategy for controlling the spatial arrangement of cellular components via protein-protein interactions. Protein scaffolding has primarily been used to colocalize soluble proteins in the cytoplasm, but many proteins require membrane association for proper function. Scaffolding at select membrane domains would provide an additional level of control over the distribution of proteins within a cell and could aid in exploiting numerous metabolic pathways that contain membrane-associated enzymes. We developed and characterized a membrane-bound protein scaffolding module based on the thylakoid protein CURT1A. This scaffolding module forms homo-oligomers in the membrane, causing proteins fused to CURT1A to cluster together at membrane surfaces. It is functional in diverse expression hosts and can scaffold proteins at thylakoid membranes in chloroplasts, endoplasmic reticulum in higher plants and Saccharomyces cerevisiae, and the inner membrane of Escherichia coli.
Collapse
Affiliation(s)
- James B. Y. H. Behrendorff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Omar A. Sandoval-Ibañez
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Anurag Sharma
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
11
|
Tapodi A, Clemens DM, Uwineza A, Jarrin M, Goldberg MW, Thinon E, Heal WP, Tate EW, Nemeth-Cahalan K, Vorontsova I, Hall JE, Quinlan RA. BFSP1 C-terminal domains released by post-translational processing events can alter significantly the calcium regulation of AQP0 water permeability. Exp Eye Res 2019; 185:107585. [PMID: 30790544 PMCID: PMC6713518 DOI: 10.1016/j.exer.2019.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/26/2019] [Accepted: 02/03/2019] [Indexed: 01/20/2023]
Abstract
BFSP1 (beaded filament structural protein 1, filensin) is a cytoskeletal protein expressed in the eye lens. It binds AQP0 in vitro and its C-terminal sequences have been suggested to regulate the water channel activity of AQP0. A myristoylated fragment from the C-terminus of BFSP1 was found in AQP0 enriched fractions. Here we identify BFSP1 as a substrate for caspase-mediated cleavage at several C-terminal sites including D433. Cleavage at D433 exposes a cryptic myristoylation sequence (434–440). We confirm that this sequence is an excellent substrate for both NMT1 and 2 (N-myristoyl transferase). Thus caspase cleavage may promote formation of myristoylated fragments derived from the BFSP1 C-terminus (G434-S665). Myristoylation at G434 is not required for membrane association. Biochemical fractionation and immunogold labeling confirmed that C-terminal BFSP1 fragments containing the myristoylation sequence colocalized with AQP0 in the same plasma membrane compartments of lens fibre cells. To determine the functional significance of the association of BFSP1 G434-S665 sequences with AQP0, we measured AQP0 water permeability in Xenopus oocytes co-transfected with transcripts expressing both AQP0 and various C-terminal domain fragments of BFSP1 generated by caspase cleavage. We found that different fragments dramatically alter the response of AQP0 to different concentrations of Ca2+. The complete C-terminal fragment (G434-S665) eliminates calcium regulation altogether. Shorter fragments can enhance regulation by elevated calcium or reverse the response, indicative of the regulatory potential of BFSP1 with respect to AQP0. In particular, elimination of the myristoylation site by the mutation G434A reverses the order of water permeability sensitivity to different Ca2+ concentrations.
Collapse
Affiliation(s)
- Antal Tapodi
- Department of Biosciences, The University of Durham, South Road, Durham, DH1 3LE, UK
| | | | - Alice Uwineza
- Department of Biosciences, The University of Durham, South Road, Durham, DH1 3LE, UK
| | - Miguel Jarrin
- Department of Biosciences, The University of Durham, South Road, Durham, DH1 3LE, UK
| | - Martin W Goldberg
- Department of Biosciences, The University of Durham, South Road, Durham, DH1 3LE, UK
| | - Emmanuelle Thinon
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK; Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | - William P Heal
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK; Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK; Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | | | | | - James E Hall
- Physiology and Biophysics, UC Irvine, Irvine, CA, USA.
| | - Roy A Quinlan
- Department of Biosciences, The University of Durham, South Road, Durham, DH1 3LE, UK; Biophysical Sciences Institute, The University of Durham, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
12
|
Abstract
Palmitoylation or S-acylation is the posttranslational attachment of fatty acids to cysteine residues and is common among integral and peripheral membrane proteins. Palmitoylated proteins have been found in every eukaryotic cell type examined (yeast, insect, and vertebrate cells), as well as in viruses grown in these cells. The exact functions of protein palmitoylation are not well understood. Intrinsically hydrophilic proteins, especially signaling molecules, are anchored by long-chain fatty acids to the cytoplasmic face of the plasma membrane. Palmitoylation may also promote targeting to membrane subdomains enriched in glycosphingolipids and cholesterol or affect protein-protein interactions.This chapter describes (1) a standard protocol for metabolic labeling of palmitoylated proteins and also the procedures to prove a covalent and ester-type linkage of the fatty acids, (2) a simple method to analyze the fatty acid content of S-acylated proteins, (3) two methods to analyze dynamic palmitoylation for a given protein, and (4) protocols to study cell-free palmitoylation of proteins.
Collapse
Affiliation(s)
- Larisa Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Ludwig Krabben
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Zentrum für Infektionsmedizin, Institut für Virologie, Berlin, Germany
| | - Marina Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Michael Veit
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Zentrum für Infektionsmedizin, Institut für Virologie, Berlin, Germany.
| |
Collapse
|
13
|
Huang Y, Huang S, Di Scala C, Wang Q, Wandall HH, Fantini J, Zhang YQ. The glycosphingolipid MacCer promotes synaptic bouton formation in Drosophila by interacting with Wnt. eLife 2018; 7:38183. [PMID: 30355446 PMCID: PMC6202054 DOI: 10.7554/elife.38183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/09/2018] [Indexed: 01/05/2023] Open
Abstract
Lipids are structural components of cellular membranes and signaling molecules that are widely involved in development and diseases, but the underlying molecular mechanisms are poorly understood, partly because of the vast variety of lipid species and complexity of synthetic and turnover pathways. From a genetic screen, we identify that mannosyl glucosylceramide (MacCer), a species of glycosphingolipid (GSL), promotes synaptic bouton formation at the Drosophila neuromuscular junction (NMJ). Pharmacological and genetic analysis shows that the NMJ growth-promoting effect of MacCer depends on normal lipid rafts, which are known to be composed of sphingolipids, sterols and select proteins. MacCer positively regulates the synaptic level of Wnt1/Wingless (Wg) and facilitates presynaptic Wg signaling, whose activity is raft-dependent. Furthermore, a functional GSL-binding motif in Wg exhibiting a high affinity for MacCer is required for normal NMJ growth. These findings reveal a novel mechanism whereby the GSL MacCer promotes synaptic bouton formation via Wg signaling.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
| | - Sheng Huang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China.,Sino-Danish College, Sino-Danish Center for Education and Research, Chinese Academy of Sciences, Beijing, China
| | | | - Qifu Wang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacques Fantini
- UNIS UMR_S 1072, INSERM, Aix-Marseille Université, Marseille, France
| | - Yong Q Zhang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
| |
Collapse
|
14
|
Visualizing bioactive ceramides. Chem Phys Lipids 2018; 216:142-151. [PMID: 30266560 DOI: 10.1016/j.chemphyslip.2018.09.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 11/23/2022]
Abstract
In the last 30 years, ceramides have been found to mediate a myriad of biological processes. Ceramides have been recognized as bioactive molecules and their metabolizing enzymes are attractive targets in cancer therapy and other diseases. The molecular mechanism of action of cellular ceramides are still not fully established, with insights into roles through modification of lipid rafts, creation of ceramide platforms, ceramide channels, or through regulation of direct protein effectors such as protein phosphatases and kinases. Recently, the 'Many Ceramides' hypothesis focuses on distinct pools of subcellular ceramides and ceramide species as potential defined bioactive entities. Traditional methods that measure changes in ceramide levels in the whole cell, such as mass spectrometry, fluorescent ceramide analogues, and ceramide antibodies, fail to differentiate specific bioactive species at the subcellular level. However, a few ceramide binding proteins have been reported, and a smaller subgroup within these, have been shown to translocate to ceramide-enriched membranes, revealing these localized pools of bioactive ceramides. In this review we want to discuss and consolidate these works and explore the possibility of defining these binding proteins as new tools are emerging to visualize bioactive ceramides in cells. Our goal is to encourage the scientific community to explore these ceramide partners, to improve techniques to refine the list of these binding partners, making possible the identification of specific domains that recognize and bind ceramides to be used to visualize the 'Many Ceramides' in the cell.
Collapse
|
15
|
Nakhaei-Rad S, Haghighi F, Nouri P, Rezaei Adariani S, Lissy J, Kazemein Jasemi NS, Dvorsky R, Ahmadian MR. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Crit Rev Biochem Mol Biol 2018; 53:130-156. [PMID: 29457927 DOI: 10.1080/10409238.2018.1431605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Nakhaei-Rad
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Fereshteh Haghighi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Parivash Nouri
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Soheila Rezaei Adariani
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Jana Lissy
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Neda S Kazemein Jasemi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Radovan Dvorsky
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Mohammad Reza Ahmadian
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| |
Collapse
|
16
|
Herrero A, Reis-Cardoso M, Jiménez-Gómez I, Doherty C, Agudo-Ibañez L, Pinto A, Calvo F, Kolch W, Crespo P, Matallanas D. Characterisation of HRas local signal transduction networks using engineered site-specific exchange factors. Small GTPases 2018; 11:371-383. [PMID: 29172991 DOI: 10.1080/21541248.2017.1406434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ras GTPases convey signals from different types of membranes. At these locations, different Ras isoforms, interactors and regulators generate different biochemical signals and biological outputs. The study of Ras localisation-specific signal transduction networks has been hampered by our inability to specifically activate each of these Ras pools. Here, we describe a new set of site-specific tethered exchange factors, engineered by fusing the RasGRF1 CDC25 domain to sub-localisation-defining cues, whereby Ras pools at specific locations can be precisely activated. We show that the CDC25 domain has a high specificity for activating HRas but not NRas and KRas. This unexpected finding means that our constructs mainly activate endogenous HRas. Hence, their use enabled us to identify distinct pathways regulated by HRas in endomembranes and plasma membrane microdomains. Importantly, these new constructs unveil different patterns of HRas activity specified by their subcellular localisation. Overall, the targeted GEFs described herein constitute ideal tools for dissecting spatially-defined HRas biochemical and biological functions.
Collapse
Affiliation(s)
- Ana Herrero
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| | | | - Iñaki Jiménez-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Carolanne Doherty
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| | - Lorena Agudo-Ibañez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Adán Pinto
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,Conway Institute, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain.,Centro de Investigación Biomédica en Red CIBERONC, Instituto de Salud Calos III , Madrid, Spain
| | - David Matallanas
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| |
Collapse
|
17
|
Close WL, Anderson AN, Pellett PE. Betaherpesvirus Virion Assembly and Egress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:167-207. [PMID: 29896668 DOI: 10.1007/978-981-10-7230-7_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Virions are the vehicle for cell-to-cell and host-to-host transmission of viruses. Virions need to be assembled reliably and efficiently, be released from infected cells, survive in the extracellular environment during transmission, recognize and then trigger entry of appropriate target cells, and disassemble in an orderly manner during initiation of a new infection. The betaherpesvirus subfamily includes four human herpesviruses (human cytomegalovirus and human herpesviruses 6A, 6B, and 7), as well as viruses that are the basis of important animal models of infection and immunity. Similar to other herpesviruses, betaherpesvirus virions consist of four main parts (in order from the inside): the genome, capsid, tegument, and envelope. Betaherpesvirus genomes are dsDNA and range in length from ~145 to 240 kb. Virion capsids (or nucleocapsids) are geometrically well-defined vessels that contain one copy of the dsDNA viral genome. The tegument is a collection of several thousand protein and RNA molecules packed into the space between the envelope and the capsid for delivery and immediate activity upon cellular entry at the initiation of an infection. Betaherpesvirus envelopes consist of lipid bilayers studded with virus-encoded glycoproteins; they protect the virion during transmission and mediate virion entry during initiation of new infections. Here, we summarize the mechanisms of betaherpesvirus virion assembly, including how infection modifies, reprograms, hijacks, and otherwise manipulates cellular processes and pathways to produce virion components, assemble the parts into infectious virions, and then transport the nascent virions to the extracellular environment for transmission.
Collapse
Affiliation(s)
- William L Close
- Department of Microbiology & Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ashley N Anderson
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Philip E Pellett
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
18
|
Lin M, Zhang X, Jia B, Guan S. Suppression of glioblastoma growth and angiogenesis through molecular targeting of methionine aminopeptidase-2. J Neurooncol 2017; 136:243-254. [PMID: 29116484 DOI: 10.1007/s11060-017-2663-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Abstract
Methionine aminopeptidases (MetAPs) have been pharmacologically linked to cell growth, angiogenesis, and tumor progression, which make it an attractive target for cancer therapy. We investigated MetAP2's biological role in glioblastoma (GBM), an aggressive tumor characterized by massive neovascularization. We examined the effect of anti-MetAP2 RNA interference on proliferation and angiogenesis in GBM cell line. The biological effects of MetAP2 knockdown were assessed by comparing the proliferation, tumorigenecity, and angiogenesis of parental cells and MetAP2 knockdown cells. We generated MetAP2 knockdown cells using lentiviral short hairpin RNAs against MetAP2 in SNB19 GBM cells, which normally express high levels of MetAP2. MetAP2 knockdown cells were less proliferative and less tumorigenic when compared to the parental cells. MetAP2 knockdown decreased vascular endothelial growth factor (VEGF) secretion and expression at the mRNA and protein levels. Decreased VEGF expression in MetAP2 knockdown cells correlated very well with decreased vessel formation in a tube formation assay. We showed that VEGF suppression in MetAP2 knockdown cells was mediated by the von Hippel-Lindau protein. In in vivo animal studies using an intracranial SNB19 tumor model, MetAP2 knockdown also reduced the tumor growth rate and angiogenesis, which in turn prolonged the survival of mice in xenograft model. Our results show that MetAP2 regulates angiogenesis in GBM and identify MetAP2-specific substrates that may serve as candidates for clinical assay development.
Collapse
Affiliation(s)
- Ming Lin
- Department of Anesthesiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Xuyu Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510089, People's Republic of China
| | - Bingjie Jia
- School of Biology and Biological Engineering, South China University of Technology, 382 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China
| | - Su Guan
- School of Biology and Biological Engineering, South China University of Technology, 382 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
19
|
Skotte NH, Sanders SS, Singaraja RR, Ehrnhoefer DE, Vaid K, Qiu X, Kannan S, Verma C, Hayden MR. Palmitoylation of caspase-6 by HIP14 regulates its activation. Cell Death Differ 2017; 24:433-444. [PMID: 27911442 PMCID: PMC5344205 DOI: 10.1038/cdd.2016.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/03/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023] Open
Abstract
Caspase-6 (CASP6) has an important role in axonal degeneration during neuronal apoptosis and in the neurodegenerative diseases Alzheimer and Huntington disease. Decreasing CASP6 activity may help to restore neuronal function in these and other diseases such as stroke and ischemia, where increased CASP6 activity has been implicated. The key to finding approaches to decrease CASP6 activity is a deeper understanding of the mechanisms regulating CASP6 activation. We show that CASP6 is posttranslationally palmitoylated by the palmitoyl acyltransferase HIP14 and that the palmitoylation of CASP6 inhibits its activation. Palmitoylation of CASP6 is decreased both in Hip14-/- mice, where HIP14 is absent, and in YAC128 mice, a model of Huntington disease, where HIP14 is dysfunctional and where CASP6 activity is increased. Molecular modeling suggests that palmitoylation of CASP6 may inhibit its activation via steric blockage of the substrate-binding groove and inhibition of CASP6 dimerization, both essential for CASP6 function. Our studies identify palmitoylation as a novel CASP6 modification and as a key regulator of CASP6 activity.
Collapse
Affiliation(s)
- Niels H Skotte
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Shaun S Sanders
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Roshni R Singaraja
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine at Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138648, Singapore
| | - Dagmar E Ehrnhoefer
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Kuljeet Vaid
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Xiaofan Qiu
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Srinivasaragavan Kannan
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Chandra Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551, Singapore
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
20
|
Cruz JND, Magro DDD, Lima DDD, Cruz JGPD. Simvastatin treatment reduces the cholesterol content of membrane/lipid rafts, implicating the N -methyl-D-aspartate receptor in anxiety: a literature review. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000116102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
21
|
Bhattacharyya R, Fenn RH, Barren C, Tanzi RE, Kovacs DM. Palmitoylated APP Forms Dimers, Cleaved by BACE1. PLoS One 2016; 11:e0166400. [PMID: 27875558 PMCID: PMC5119739 DOI: 10.1371/journal.pone.0166400] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/30/2016] [Indexed: 11/26/2022] Open
Abstract
A major rate-limiting step for Aβ generation and deposition in Alzheimer's disease brains is BACE1-mediated cleavage (β-cleavage) of the amyloid precursor protein (APP). We previously reported that APP undergoes palmitoylation at two cysteine residues (Cys186 and Cys187) in the E1-ectodomain. 8-10% of total APP is palmitoylated in vitro and in vivo. Palmitoylated APP (palAPP) shows greater preference for β-cleavage than total APP in detergent resistant lipid rafts. Protein palmitoylation is known to promote protein dimerization. Since dimerization of APP at its E1-ectodomain results in elevated BACE1-mediated cleavage of APP, we have now investigated whether palmitoylation of APP affects its dimerization and whether this leads to elevated β-cleavage of the protein. Here we report that over 90% of palAPP is dimerized while only ~20% of total APP forms dimers. PalAPP-dimers are predominantly cis-oriented while total APP dimerizes in both cis- and trans-orientation. PalAPP forms dimers 4.5-times more efficiently than total APP. Overexpression of the palmitoylating enzymes DHHC7 and DHHC21 that increase palAPP levels and Aβ release, also increased APP dimerization in cells. Conversely, inhibition of APP palmitoylation by pharmacological inhibitors reduced APP-dimerization in coimmunoprecipitation and FLIM/FRET assays. Finally, in vitro BACE1-activity assays demonstrate that palmitoylation-dependent dimerization of APP promotes β-cleavage of APP in lipid-rich detergent resistant cell membranes (DRMs), when compared to total APP. Most importantly, generation of sAPPβ-sAPPβ dimers is dependent on APP-palmitoylation while total sAPPβ generation is not. Since BACE1 shows preference for palAPP dimers over total APP, palAPP dimers may serve as novel targets for effective β-cleavage inhibitors of APP as opposed to BACE1 inhibitors.
Collapse
Affiliation(s)
- Raja Bhattacharyya
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States of America
| | - Rebecca H. Fenn
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States of America
| | - Cory Barren
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States of America
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States of America
| | - Dora M. Kovacs
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States of America
| |
Collapse
|
22
|
Motta M, Chillemi G, Fodale V, Cecchetti S, Coppola S, Stipo S, Cordeddu V, Macioce P, Gelb BD, Tartaglia M. SHOC2 subcellular shuttling requires the KEKE motif-rich region and N-terminal leucine-rich repeat domain and impacts on ERK signalling. Hum Mol Genet 2016; 25:3824-3835. [PMID: 27466182 DOI: 10.1093/hmg/ddw229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 11/15/2022] Open
Abstract
SHOC2 is a scaffold protein composed almost entirely by leucine-rich repeats (LRRs) and having an N-terminal region enriched in alternating lysine and glutamate/aspartate residues (KEKE motifs). SHOC2 acts as a positive modulator of the RAS-RAF-MEK-ERK signalling cascade by favouring stable RAF1 interaction with RAS. We previously reported that the p.Ser2Gly substitution in SHOC2 underlies Mazzanti syndrome, a RASopathy clinically overlapping Noonan syndrome, promoting N-myristoylation and constitutive targeting of the mutant to the plasma membrane. We also documented transient nuclear translocation of wild-type SHOC2 upon EGF stimulation, suggesting a more complex function in signal transduction.Here, we characterized the domains controlling SHOC2 shuttling between the nucleus and cytoplasm, and those contributing to SHOC2S2G mistargeting to the plasma membrane, analysed the structural organization of SHOC2's LRR motifs, and determined the impact of SHOC2 mislocalization on ERK signalling. We show that LRRs 1 to 13 constitute a structurally recognizable domain required for SHOC2 import into the nucleus and constitutive targeting of SHOC2S2G to the plasma membrane, while the KEKE motif-rich region is necessary to achieve efficient SHOC2 export from the nucleus. We also document that SHOC2S2G localizes both in raft and non-raft domains, and that it translocates to the non-raft domains following stimulation. Finally, we demonstrate that SHOC2 trapping at different subcellular sites has a diverse impact on ERK signalling strength and dynamics, suggesting a dual counteracting modulatory role of SHOC2 in the control of ERK signalling exerted at different intracellular compartments.
Collapse
Affiliation(s)
- Marialetizia Motta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Giovanni Chillemi
- CINECA, SCAI-SuperComputing Applications and Innovation Department, Rome, Italy
| | | | | | - Simona Coppola
- Italian National Centre for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Stipo
- Department of Hematology, Oncology and Molecular Medicine
| | | | | | - Bruce D Gelb
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
23
|
Extent of pre-translational regulation for the control of nucleocytoplasmic protein localization. BMC Genomics 2016; 17:472. [PMID: 27342569 PMCID: PMC4919871 DOI: 10.1186/s12864-016-2854-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/22/2016] [Indexed: 11/18/2022] Open
Abstract
Background Appropriate protein subcellular localization is essential for proper cellular function. Central to the regulation of protein localization are protein targeting motifs, stretches of amino acids serving as guides for protein entry in a specific cellular compartment. While the use of protein targeting motifs is modulated in a post-translational manner, mainly by protein conformational changes and post-translational modifications, the presence of these motifs in proteins can also be regulated in a pre-translational manner. Here, we investigate the extent of pre-translational regulation of the main signals controlling nucleo-cytoplasmic traffic: the nuclear localization signal (NLS) and the nuclear export signal (NES). Results Motif databases and manual curation of the literature allowed the identification of 175 experimentally validated NLSs and 120 experimentally validated NESs in human. Following mapping onto annotated transcripts, these motifs were found to be modular, most (73 % for NLS and 88 % for NES) being encoded entirely in only one exon. The presence of a majority of these motifs is regulated in an alternative manner at the transcript level (61 % for NLS and 72 % for NES) while the remaining motifs are present in all coding isoforms of their encoding gene. NLSs and NESs are pre-translationally regulated using four main mechanisms: alternative transcription/translation initiation, alternative translation termination, alternative splicing of the exon encoding the motif and frameshift, the first two being by far the most prevalent mechanisms. Quantitative analysis of the presence of these motifs using RNA-seq data indicates that inclusion of these motifs can be regulated in a tissue-specific and a combinatorial manner, can be altered in disease states in a directed way and that alternative inclusion of these motifs is often used by proteins with diverse interactors and roles in diverse pathways, such as kinases. Conclusions The pre-translational regulation of the inclusion of protein targeting motifs is a prominent and tightly-regulated mechanism that adds another layer in the control of protein subcellular localization. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2854-4) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites. Sci Rep 2016; 6:28249. [PMID: 27306108 PMCID: PMC4910163 DOI: 10.1038/srep28249] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/01/2016] [Indexed: 01/19/2023] Open
Abstract
As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-Lipid, but also an integrative database and visualization tool. We performed a systematic analysis of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is expected to serve as useful resource for the research on lipid modifications, especially on their co-regulation.
Collapse
|
25
|
Chavan TS, Jang H, Khavrutskii L, Abraham SJ, Banerjee A, Freed BC, Johannessen L, Tarasov SG, Gaponenko V, Nussinov R, Tarasova NI. High-Affinity Interaction of the K-Ras4B Hypervariable Region with the Ras Active Site. Biophys J 2015; 109:2602-2613. [PMID: 26682817 PMCID: PMC4699860 DOI: 10.1016/j.bpj.2015.09.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/08/2015] [Accepted: 09/16/2015] [Indexed: 12/24/2022] Open
Abstract
Ras proteins are small GTPases that act as signal transducers between cell surface receptors and several intracellular signaling cascades. They contain highly homologous catalytic domains and flexible C-terminal hypervariable regions (HVRs) that differ across Ras isoforms. KRAS is among the most frequently mutated oncogenes in human tumors. Surprisingly, we found that the C-terminal HVR of K-Ras4B, thought to minimally impact the catalytic domain, directly interacts with the active site of the protein. The interaction is almost 100-fold tighter with the GDP-bound than the GTP-bound protein. HVR binding interferes with Ras-Raf interaction, modulates binding to phospholipids, and slightly slows down nucleotide exchange. The data indicate that contrary to previously suggested models of K-Ras4B signaling, HVR plays essential roles in regulation of signaling. High affinity binding of short peptide analogs of HVR to K-Ras active site suggests that targeting this surface with inhibitory synthetic molecules for the therapy of KRAS-dependent tumors is feasible.
Collapse
Affiliation(s)
- Tanmay S Chavan
- Medicinal Chemistry Department, University of Illinois at Chicago, Chicago, Illinois; Biochemistry and Molecular Genetics Department, University of Illinois at Chicago, Chicago, Illinois
| | - Hyunbum Jang
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Lyuba Khavrutskii
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Sherwin J Abraham
- Biochemistry and Molecular Genetics Department, University of Illinois at Chicago, Chicago, Illinois
| | - Avik Banerjee
- Chemistry Department, University of Illinois at Chicago, Chicago, Illinois; Structural Biophysics Laboratory, National Cancer Institute at Frederick, Frederick, Maryland
| | - Benjamin C Freed
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Liv Johannessen
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Sergey G Tarasov
- Chemistry Department, University of Illinois at Chicago, Chicago, Illinois; Structural Biophysics Laboratory, National Cancer Institute at Frederick, Frederick, Maryland
| | - Vadim Gaponenko
- Biochemistry and Molecular Genetics Department, University of Illinois at Chicago, Chicago, Illinois.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nadya I Tarasova
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland.
| |
Collapse
|
26
|
Ebersole B, Petko J, Woll M, Murakami S, Sokolina K, Wong V, Stagljar I, Lüscher B, Levenson R. Effect of C-Terminal S-Palmitoylation on D2 Dopamine Receptor Trafficking and Stability. PLoS One 2015; 10:e0140661. [PMID: 26535572 PMCID: PMC4633242 DOI: 10.1371/journal.pone.0140661] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 09/29/2015] [Indexed: 01/11/2023] Open
Abstract
We have used bioorthogonal click chemistry (BCC), a sensitive non-isotopic labeling method, to analyze the palmitoylation status of the D2 dopamine receptor (D2R), a G protein-coupled receptor (GPCR) crucial for regulation of processes such as mood, reward, and motor control. By analyzing a series of D2R constructs containing mutations in cysteine residues, we found that palmitoylation of the D2R most likely occurs on the C-terminal cysteine residue (C443) of the polypeptide. D2Rs in which C443 was deleted showed significantly reduced palmitoylation levels, plasma membrane expression, and protein stability compared to wild-type D2Rs. Rather, the C443 deletion mutant appeared to accumulate in the Golgi, indicating that palmitoylation of the D2R is important for cell surface expression of the receptor. Using the full-length D2R as bait in a membrane yeast two-hybrid (MYTH) screen, we identified the palmitoyl acyltransferase (PAT) zDHHC4 as a D2R interacting protein. Co-immunoprecipitation analysis revealed that several other PATs, including zDHHC3 and zDHHC8, also interacted with the D2R and that each of the three PATs was capable of affecting the palmitoylation status of the D2R. Finally, biochemical analyses using D2R mutants and the palmitoylation blocker, 2-bromopalmitate indicate that palmitoylation of the receptor plays a role in stability of the D2R.
Collapse
Affiliation(s)
- Brittany Ebersole
- Department of Pharmacology, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jessica Petko
- Department of Pharmacology, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Matthew Woll
- Department of Pharmacology, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Shoko Murakami
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kate Sokolina
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Victoria Wong
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Igor Stagljar
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bernhard Lüscher
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robert Levenson
- Department of Pharmacology, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
27
|
Roy J, Pondenis H, Fan TM, Das A. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs. Biochemistry 2015; 54:6299-302. [PMID: 26415091 DOI: 10.1021/acs.biochem.5b00954] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.
Collapse
Affiliation(s)
- Jahnabi Roy
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| | - Holly Pondenis
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| | - Timothy M Fan
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| | - Aditi Das
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| |
Collapse
|
28
|
Aittaleb M, Chen PJ, Akaaboune M. Failure of lysosome clustering and positioning in the juxtanuclear region in cells deficient in rapsyn. J Cell Sci 2015; 128:3744-56. [PMID: 26330529 DOI: 10.1242/jcs.172536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/23/2015] [Indexed: 01/06/2023] Open
Abstract
Rapsyn, a scaffold protein, is required for the clustering of acetylcholine receptors (AChRs) at contacts between motor neurons and differentiating muscle cells. Rapsyn is also expressed in cells that do not express AChRs. However, its function in these cells remains unknown. Here, we show that rapsyn plays an AChR-independent role in organizing the distribution and mobility of lysosomes. In cells devoid of AChRs, rapsyn selectively induces the clustering of lysosomes at high density in the juxtanuclear region without affecting the distribution of other intracellular organelles. However, when the same cells overexpress AChRs, rapsyn is recruited away from lysosomes to colocalize with AChR clusters on the cell surface. In rapsyn-deficient (Rapsn(-/-)) myoblasts or cells overexpressing rapsyn mutants, lysosomes are scattered within the cell and highly dynamic. The increased mobility of lysosomes in Rapsn(-/-) cells is associated with a significant increase in lysosomal exocytosis, as evidenced by increased release of lysosomal enzymes and plasma membrane damage when cells were challenged with the bacterial pore-forming toxin streptolysin-O. These findings uncover a new link between rapsyn, lysosome positioning, exocytosis and plasma membrane integrity.
Collapse
Affiliation(s)
- Mohamed Aittaleb
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Po-Ju Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mohammed Akaaboune
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Scolari S, Imkeller K, Jolmes F, Veit M, Herrmann A, Schwarzer R. Modulation of cell surface transport and lipid raft localization by the cytoplasmic tail of the influenza virus hemagglutinin. Cell Microbiol 2015; 18:125-36. [PMID: 26243691 PMCID: PMC7162421 DOI: 10.1111/cmi.12491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/28/2015] [Accepted: 07/13/2015] [Indexed: 11/30/2022]
Abstract
Viral glycoproteins are highly variable in their primary structure, but on the other hand feature a high functional conservation to fulfil their versatile tasks during the pathogenic life cycle. Typically, all protein domains are optimized in that indispensable functions can be assigned to small conserved motifs or even individual amino acids. The cytoplasmic tail of many viral spike proteins, although of particular relevance for the virus biology, is often only insufficiently characterized. Hemagglutinin (HA), the receptor-binding protein of the influenza virus comprises a short cytoplasmic tail of 13 amino acids that exhibits three highly conserved palmitoylation sites. However, the particular importance of these modifications and the tail in general for intracellular trafficking and lateral membrane organization remains elusive. In this study, we generated HA core proteins consisting of transmembrane domain, cytoplasmic tail and a minor part of the ectodomain, tagged with a yellow fluorescent protein. Different mutation and truncation variants of these chimeric proteins were investigated using confocal microscopy, to characterize the role of cytoplasmic tail and palmitoylation for the intracellular trafficking to plasma membrane and Golgi apparatus. In addition, we assessed raft partitioning of the variants by Foerster resonance energy transfer with an established raft marker. We revealed a substantial influence of the cytoplasmic tail length on the intracellular distribution and surface exposure of the proteins. A complete removal of the tail hampers a physiological trafficking of the protein, whereas a partial truncation can be compensated by cytoplasmic palmitoylations. Plasma membrane raft partitioning on the other hand was found to imperatively require palmitoylations, and the cysteine at position 551 turned out to be of most relevance. Our data shed further light on the tight interconnection between cytoplasmic elements and intracellular trafficking and suggest a function of HA palmitoylations in both lateral sorting and anterograde trafficking of the glycoprotein.
Collapse
Affiliation(s)
- Silvia Scolari
- Department of Biology, Molecular Biophysics, Humboldt University Berlin, 10115, Berlin, Germany
| | - Katharina Imkeller
- Department of Biology, Molecular Biophysics, Humboldt University Berlin, 10115, Berlin, Germany
| | - Fabian Jolmes
- Department of Biology, Molecular Biophysics, Humboldt University Berlin, 10115, Berlin, Germany
| | - Michael Veit
- Department of Immunology and Molecular Biology, Free University, 14163, Berlin, Germany
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, Humboldt University Berlin, 10115, Berlin, Germany
| | - Roland Schwarzer
- Department of Biology, Molecular Biophysics, Humboldt University Berlin, 10115, Berlin, Germany.,Department of Biological Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| |
Collapse
|
30
|
Belmabrouk S, Kharrat N, Benmarzoug R, Rebai A. Exploring proteome-wide occurrence of clusters of charged residues in eukaryotes. Proteins 2015; 83:1252-61. [PMID: 25963617 DOI: 10.1002/prot.24823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/17/2015] [Accepted: 04/29/2015] [Indexed: 11/09/2022]
Abstract
Clusters of charged residues are one of the key features of protein primary structure since they have been associated to important functions of proteins. Here, we present a proteome wide scan for the occurrence of Charge Clusters in Protein sequences using a new search tool (FCCP) based on a score-based methodology. The FCCP was run to search charge clusters in seven eukaryotic proteomes: Arabidopsis thaliana, Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, Homo sapiens, Mus musculus, and Saccharomyces cerevisiae. We found that negative charge clusters (NCCs) are three to four times more frequent than positive charge clusters (PCCs). The Drosophila proteome is on average the most charged, whereas the human proteome is the least charged. Only 3 to 8% of the studied protein sequences have negative charge clusters, while 1.6 to 3% having PCCs and only 0.07 to 0.6% have both types of clusters. NCCs are localized predominantly in the N-terminal and C-terminal domains, while PCCs tend to be localized within the functional domains of the protein sequences. Furthermore, the gene ontology classification revealed that the protein sequences with negative and PCCs are mainly binding proteins.
Collapse
Affiliation(s)
- Sabrine Belmabrouk
- Laboratory of Molecular and Cellular Screening Processes, Centre De Biotechnologie De Sfax, Bioinformatics Group, PoBox '1177,'3018 Sfax, Tunisia
| | - Najla Kharrat
- Laboratory of Molecular and Cellular Screening Processes, Centre De Biotechnologie De Sfax, Bioinformatics Group, PoBox '1177,'3018 Sfax, Tunisia
| | - Riadh Benmarzoug
- Laboratory of Molecular and Cellular Screening Processes, Centre De Biotechnologie De Sfax, Bioinformatics Group, PoBox '1177,'3018 Sfax, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre De Biotechnologie De Sfax, Bioinformatics Group, PoBox '1177,'3018 Sfax, Tunisia
| |
Collapse
|
31
|
Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling. Apoptosis 2015; 20:584-606. [DOI: 10.1007/s10495-015-1104-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Olety B, Ono A. Roles played by acidic lipids in HIV-1 Gag membrane binding. Virus Res 2014; 193:108-15. [PMID: 24998886 PMCID: PMC4252750 DOI: 10.1016/j.virusres.2014.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
The MA domain mediates plasma membrane (PM) targeting of HIV-1 Gag, leading to particle assembly at the PM. The interaction between MA and acidic phospholipids, in addition to N-terminal myristoyl moiety, promotes Gag binding to lipid membranes. Among acidic phospholipids, PI(4,5)P2, a PM-specific phosphoinositide, is essential for proper HIV-1 Gag localization to the PM and efficient virus particle production. Recent studies further revealed that MA-bound RNA negatively regulates HIV-1 Gag membrane binding and that PI(4,5)P2 is necessary to overcome this RNA-imposed block. In this review, we will summarize the current understanding of Gag-membrane interactions and discuss potential roles played by acidic phospholipids.
Collapse
Affiliation(s)
- Balaji Olety
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
33
|
Pessi A. Cholesterol-conjugated peptide antivirals: a path to a rapid response to emerging viral diseases. J Pept Sci 2014; 21:379-86. [PMID: 25331523 PMCID: PMC7167725 DOI: 10.1002/psc.2706] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/01/2014] [Accepted: 09/15/2014] [Indexed: 12/18/2022]
Abstract
While it is now possible to identify and genetically fingerprint the causative agents of emerging viral diseases, often with extraordinary speed, suitable therapies cannot be developed with equivalent speed, because drug discovery requires information that goes beyond knowledge of the viral genome. Peptides, however, may represent a special opportunity. For all enveloped viruses, fusion between the viral and the target cell membrane is an obligatory step of the life cycle. Class I fusion proteins harbor regions with a repeating pattern of amino acids, the heptad repeats (HRs), that play a key role in fusion, and HR‐derived peptides such as enfuvirtide, in clinical use for HIV, can block the process. Because of their characteristic sequence pattern, HRs are easily identified in the genome by means of computer programs, providing the sequence of candidate peptide inhibitors directly from genomic information. Moreover, a simple chemical modification, the attachment of a cholesterol group, can dramatically increase the antiviral potency of HR‐derived inhibitors and simultaneously improve their pharmacokinetics. Further enhancement can be provided by dimerization of the cholesterol‐conjugated peptide. The examples reported so far include inhibitors of retroviruses, paramyxoviruses, orthomyxoviruses, henipaviruses, coronaviruses, and filoviruses. For some of these viruses, in vivo efficacy has been demonstrated in suitable animal models. The combination of bioinformatic lead identification and potency/pharmacokinetics improvement provided by cholesterol conjugation may form the basis for a rapid response strategy, where development of an emergency cholesterol‐conjugated therapeutic would immediately follow the availability of the genetic information of a new enveloped virus. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Antonello Pessi
- PeptiPharma, Viale Città D'Europa 679, 00141, Roma, Italy; JV Bio, Via Gaetano Salvatore 486, 80145, Napoli, Italy; CEINGE, Via Gaetano Salvatore 486, 80145, Napoli, Italy
| |
Collapse
|
34
|
Stackpole EE, Akins MR, Fallon JR. N-myristoylation regulates the axonal distribution of the Fragile X-related protein FXR2P. Mol Cell Neurosci 2014; 62:42-50. [PMID: 25109237 DOI: 10.1016/j.mcn.2014.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/21/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome, the leading cause of inherited intellectual disability and autism, is caused by loss of function of Fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein that regulates local protein synthesis in the somatodendritic compartment. However, emerging evidence also indicates important roles for FMRP in axonal and presynaptic functions. In particular, FMRP and its homologue FXR2P localize axonally and presynaptically to discrete endogenous structures in the brain termed Fragile X granules (FXGs). FXR2P is a component of all FXGs and is necessary for the axonal and presynaptic localization of FMRP to these structures. We therefore sought to identify and characterize structural features of FXR2P that regulate its axonal localization. Sequence analysis reveals that FXR2P harbors a consensus N-terminal myristoylation sequence (MGXXXS) that is absent in FMRP. Using click chemistry with wild type and an unmyristoylatable G2A mutant we demonstrate that FXR2P is N-myristoylated on glycine 2, establishing it as a lipid-modified RNA binding protein. To investigate the role of FXR2P N-myristoylation in neurons we generated fluorescently tagged wild type and unmyristoylatable FXR2P (WT and G2A, respectively) and expressed them in primary cortical cultures. Both FXR2P(WT) and FXR2P(G2A) are expressed at equivalent overall levels and are capable of forming FMRP-containing axonal granules. However, FXR2P(WT) granules are largely restricted to proximal axonal segments while granules formed with unmyristoylatable FXR2P(G2A) are localized throughout the axonal arbor, including in growth cones. These studies indicate that N-terminal myristoylation of the RNA binding protein FXR2P regulates its localization within the axonal arbor. Moreover, since FMRP localization within axonal domains requires its association with FXR2P, these findings suggest that FXR2P lipid modification is a control point for the axonal and presynaptic distribution of FMRP.
Collapse
Affiliation(s)
- Emily E Stackpole
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Michael R Akins
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
35
|
Goldston AM, Sharma AI, Paul KS, Engman DM. Acylation in trypanosomatids: an essential process and potential drug target. Trends Parasitol 2014; 30:350-60. [PMID: 24954795 DOI: 10.1016/j.pt.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022]
Abstract
Fatty acylation--the addition of fatty acid moieties such as myristate and palmitate to proteins--is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their protein targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Amanda M Goldston
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Aabha I Sharma
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Kimberly S Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - David M Engman
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
36
|
Schwarzer R, Levental I, Gramatica A, Scolari S, Buschmann V, Veit M, Herrmann A. The cholesterol-binding motif of the HIV-1 glycoprotein gp41 regulates lateral sorting and oligomerization. Cell Microbiol 2014; 16:1565-81. [PMID: 24844300 DOI: 10.1111/cmi.12314] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/24/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
Abstract
Enveloped viruses often use membrane lipid rafts to assemble and bud, augment infection and spread efficiently. However, the molecular bases and functional consequences of the partitioning of viral glycoproteins into microdomains remain intriguing questions in virus biology. Here, we measured Foerster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) to study the role of distinct membrane proximal regions of the human immunodeficiency virus glycoprotein gp41 for lipid raft partitioning in living Chinese hamster ovary cells (CHO-K1). Gp41 was labelled with a fluorescent protein at the exoplasmic face of the membrane, preventing any interference of the fluorophore with the proposed role of the transmembrane and cytoplasmic domains in lateral organization of gp41. Raft localization was deduced from interaction with an established raft marker, a fluorescently tagged glycophosphatidylinositol anchor and the cholesterol recognition amino acid consensus (CRAC) was identified as the crucial lateral sorting determinant in CHO-K1 cells. Interestingly, the raft association of gp41 indicates a substantial cell-to-cell heterogeneity of the plasma membrane microdomains. In complementary fluorescence polarization microscopy, a distinct CRAC requirement was found for the oligomerization of the gp41 variants. Our data provide further insight into the molecular basis and biological implications of the cholesterol dependent lateral sorting of viral glycoproteins for virus assembly at cellular membranes.
Collapse
Affiliation(s)
- Roland Schwarzer
- Department of Biology, Molecular Biophysics, Humboldt University, 10115, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Lhor M, Bernier SC, Horchani H, Bussières S, Cantin L, Desbat B, Salesse C. Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Adv Colloid Interface Sci 2014; 207:223-39. [PMID: 24560216 PMCID: PMC4028306 DOI: 10.1016/j.cis.2014.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Membrane binding of proteins such as short chain dehydrogenase reductases or tail-anchored proteins relies on their N- and/or C-terminal hydrophobic transmembrane segment. In this review, we propose guidelines to characterize such hydrophobic peptide segments using spectroscopic and biophysical measurements. The secondary structure content of the C-terminal peptides of retinol dehydrogenase 8, RGS9-1 anchor protein, lecithin retinol acyl transferase, and of the N-terminal peptide of retinol dehydrogenase 11 has been deduced by prediction tools from their primary sequence as well as by using infrared or circular dichroism analyses. Depending on the solvent and the solubilization method, significant structural differences were observed, often involving α-helices. The helical structure of these peptides was found to be consistent with their presumed membrane binding. Langmuir monolayers have been used as membrane models to study lipid-peptide interactions. The values of maximum insertion pressure obtained for all peptides using a monolayer of 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE) are larger than the estimated lateral pressure of membranes, thus suggesting that they bind membranes. Polarization modulation infrared reflection absorption spectroscopy has been used to determine the structure and orientation of these peptides in the absence and in the presence of a DOPE monolayer. This lipid induced an increase or a decrease in the organization of the peptide secondary structure. Further measurements are necessary using other lipids to better understand the membrane interactions of these peptides.
Collapse
Affiliation(s)
- Mustapha Lhor
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sarah C Bernier
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Habib Horchani
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sylvain Bussières
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Line Cantin
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Bernard Desbat
- CBMN-UMR 5248 CNRS, Université de Bordeaux, IPB, Allée Geoffroy Saint Hilaire, 33600 Pessac, France
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
38
|
Ebersole B, Petko J, Levenson R. Bioorthogonal click chemistry to assay mu-opioid receptor palmitoylation using 15-hexadecynoic acid and immunoprecipitation. Anal Biochem 2014; 451:25-7. [PMID: 24463015 DOI: 10.1016/j.ab.2014.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 11/26/2022]
Abstract
We have developed a modification of bioorthogonal click chemistry to assay the palmitoylation of cellular proteins. This assay uses 15-hexadecynoic acid (15-HDYA) as a chemical probe in combination with protein immunoprecipitation using magnetic beads in order to detect S-palmitoylation of proteins of interest. Here we demonstrate the utility of this approach for the mu-opioid receptor (MOR), a G-protein-coupled receptor (GPCR) responsible for mediating the analgesic and addictive properties of most clinically relevant opioid agonist drugs. This technique provides a rapid, non-isotopic, and efficient method to assay the palmitoylation status of a variety of cellular proteins, including most GPCRs.
Collapse
Affiliation(s)
- Brittany Ebersole
- Program in Chemical Biology, Penn State College of Medicine, Hershey, PA 17033, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Jessica Petko
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Robert Levenson
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
39
|
Kapus A, Janmey P. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations. Compr Physiol 2013; 3:1231-81. [PMID: 23897686 DOI: 10.1002/cphy.c120015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions.
Collapse
Affiliation(s)
- András Kapus
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
40
|
Pedro MP, Vilcaes AA, Tomatis VM, Oliveira RG, Gomez GA, Daniotti JL. 2-Bromopalmitate reduces protein deacylation by inhibition of acyl-protein thioesterase enzymatic activities. PLoS One 2013; 8:e75232. [PMID: 24098372 PMCID: PMC3788759 DOI: 10.1371/journal.pone.0075232] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/07/2013] [Indexed: 11/18/2022] Open
Abstract
S-acylation, the covalent attachment of palmitate and other fatty acids on cysteine residues, is a reversible post-translational modification that exerts diverse effects on protein functions. S-acylation is catalyzed by protein acyltransferases (PAT), while deacylation requires acyl-protein thioesterases (APT), with numerous inhibitors for these enzymes having already been developed and characterized. Among these inhibitors, the palmitate analog 2-brompalmitate (2-BP) is the most commonly used to inhibit palmitoylation in cells. Nevertheless, previous results from our laboratory have suggested that 2-BP could affect protein deacylation. Here, we further investigated in vivo and in vitro the effect of 2-BP on the acylation/deacylation protein machinery, with it being observed that 2-BP, in addition to inhibiting PAT activity in vivo, also perturbed the acylation cycle of GAP-43 at the level of depalmitoylation and consequently affected its kinetics of membrane association. Furthermore, 2-BP was able to inhibit in vitro the enzymatic activities of human APT1 and APT2, the only two thioesterases shown to mediate protein deacylation, through an uncompetitive mechanism of action. In fact, APT1 and APT2 hydrolyzed both the monomeric form as well as the micellar state of the substrate palmitoyl-CoA. On the basis of the obtained results, as APTs can mediate deacylation on membrane bound and unbound substrates, this suggests that the access of APTs to the membrane interface is not a necessary requisite for deacylation. Moreover, as the enzymatic activity of APTs was inhibited by 2-BP treatment, then the kinetics analysis of protein acylation using 2-BP should be carefully interpreted, as this drug also inhibits protein deacylation.
Collapse
Affiliation(s)
- Maria P. Pedro
- Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Aldo A. Vilcaes
- Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Vanesa M. Tomatis
- Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Rafael G. Oliveira
- Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Guillermo A. Gomez
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Jose L. Daniotti
- Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
41
|
Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. J Neurosci 2013; 33:11169-83. [PMID: 23825420 DOI: 10.1523/jneurosci.4704-12.2013] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brains of patients affected by Alzheimer's disease (AD) contain large deposits of aggregated amyloid β-protein (Aβ). Only a small fraction of the amyloid precursor protein (APP) gives rise to Aβ. Here, we report that ∼10% of APP undergoes a post-translational lipid modification called palmitoylation. We identified the palmitoylation sites in APP at Cys¹⁸⁶ and Cys¹⁸⁷. Surprisingly, point mutations introduced into these cysteines caused nearly complete ER retention of APP. Thus, either APP palmitoylation or disulfide bridges involving these Cys residues appear to be required for ER exit of APP. In later compartments, palmitoylated APP (palAPP) was specifically enriched in lipid rafts. In vitro BACE1 cleavage assays using cell or mouse brain lipid rafts showed that APP palmitoylation enhanced BACE1-mediated processing of APP. Interestingly, we detected an age-dependent increase in endogenous mouse brain palAPP levels. Overexpression of selected DHHC palmitoyl acyltransferases increased palmitoylation of APP and doubled Aβ production, while two palmitoylation inhibitors reduced palAPP levels and APP processing. We have found previously that acyl-coenzyme A:cholesterol acyltransferase (ACAT) inhibition led to impaired APP processing. Here we demonstrate that pharmacological inhibition or genetic inactivation of ACAT decrease lipid raft palAPP levels by up to 76%, likely resulting in impaired APP processing. Together, our results indicate that APP palmitoylation enhances amyloidogenic processing by targeting APP to lipid rafts and enhancing its BACE1-mediated cleavage. Thus, inhibition of palAPP formation by ACAT or specific palmitoylation inhibitors would appear to be a valid strategy for prevention and/or treatment of AD.
Collapse
|
42
|
Lu SX, Hrabak EM. The myristoylated amino-terminus of an Arabidopsis calcium-dependent protein kinase mediates plasma membrane localization. PLANT MOLECULAR BIOLOGY 2013; 82:267-78. [PMID: 23609608 PMCID: PMC3668125 DOI: 10.1007/s11103-013-0061-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 04/15/2013] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CDPK) are a major group of calcium-stimulated kinases found in plants and some protists. Many CDPKs are membrane-associated, presumably because of lipid modifications at their amino termini. We investigated the subcellular location and myristoylation of AtCPK5, a member of the Arabidopsis CDPK family. Most AtCPK5 was associated with the plasma membrane as demonstrated by two-phase fractionation of plant microsomes and by in vivo detection of AtCPK5-GFP fusion proteins. AtCPK5 was a substrate for plant N-myristoyltransferase and myristoylation was prevented by converting the glycine at the proposed site of myristate attachment to alanine (G2A). In transgenic plants, a G2A mutation completely abolished AtCPK5 membrane association, indicating that myristoylation was essential for membrane binding. The first sixteen amino acids of AtCPK5 were sufficient to direct plasma membrane localization. In addition, differentially phosphorylated forms of AtCPK5 were detected both in planta and after expression of AtCPK5 in a cell-free plant extract. Our results demonstrate that AtCPK5 is myristoylated at its amino terminus and that myristoylation is required for membrane binding.
Collapse
Affiliation(s)
- Sheen X. Lu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
- Present Address: Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA 09905 USA
| | - Estelle M. Hrabak
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
43
|
Cellular and Molecular Biology of Neuronal Dystonin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:85-120. [DOI: 10.1016/b978-0-12-405210-9.00003-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Tułodziecka K, Czeredys M, Nałęcz KA. Palmitoylcarnitine affects localization of growth associated protein GAP-43 in plasma membrane subdomains and its interaction with Gα(o) in neuroblastoma NB-2a cells. Neurochem Res 2012; 38:519-29. [PMID: 23224819 DOI: 10.1007/s11064-012-0944-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/26/2012] [Accepted: 11/28/2012] [Indexed: 11/24/2022]
Abstract
Palmitoylcarnitine was observed previously to promote differentiation of neuroblastoma NB-2a cells, and to affect protein kinase C (PKC). Palmitoylcarnitine was also observed to increase palmitoylation of several proteins, including a PKC substrate, whose expression augments during differentiation of neural cells-a growth associated protein GAP-43, known to bind phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. Since palmitoylated proteins are preferentially localized in sphingolipid- and cholesterol-rich microdomains of plasma membrane, the present study has been focused on a possible effect of palmitoylcarnitine on GAP-43 localization in these microdomains. Palmitoylcarnitine treatment resulted in GAP-43 appearance in floating fractions (rafts) in sucrose gradient and increased co-localization with cholesterol and with PI(4,5)P(2), although co-localization of both lipids decreased. GAP-43 disappeared from raft fraction upon treatment with 2-bromopalmitate (an inhibitor of palmitoylating enzymes) and after treatment with etomoxir (carnitine palmitoyltransferase I inhibitor). Raft localization of GAP-43 was completely abolished by treatment with methyl-β-cyclodextrin, a cholesterol binding agent, while there was no change upon sequestration of PI(4,5)P(2) with neomycin. GAP-43 co-precipitated with a monomeric form of Gα(o), a phenomenon diminished after palmitoylcarnitine treatment and paralleled by a decrease of Gα(o) in the raft fraction. These observations point to palmitoylation of GAP-43 as a mechanism leading to an increased localization of this protein in microdomains of plasma membrane rich in cholesterol, in majority different, however, from microdomains in which PI(4,5)P(2) is present. This localization correlates with decreased interaction with Gα(o) and suppression of its activity-an important step regulating neural cell differentiation.
Collapse
Affiliation(s)
- Karolina Tułodziecka
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | | | | |
Collapse
|
45
|
Abstract
The article summarises the results of more than 30 years of research on palmitoylation (S‐acylation) of viral proteins, the post‐translational attachment of fatty acids to cysteine residues of integral and peripheral membrane proteins. Analysing viral proteins is not only important to characterise the cellular pathogens but also instrumental to decipher the palmitoylation machinery of cells. This comprehensive review describes methods to identify S‐acylated proteins and covers the fundamental biochemistry of palmitoylation: the location of palmitoylation sites in viral proteins, the fatty acid species found in S‐acylated proteins, the intracellular site of palmitoylation and the enzymology of the reaction. Finally, the functional consequences of palmitoylation are discussed regarding binding of proteins to membranes or membrane rafts, entry of enveloped viruses into target cells by spike‐mediated membrane fusion as well as assembly and release of virus particles from infected cells. The topics are described mainly for palmitoylated proteins of influenza virus, but proteins of other important pathogens, such as the causative agents of AIDS and severe acute respiratory syndrome, and of model viruses are discussed.
Collapse
Affiliation(s)
- Michael Veit
- Department of Immunology and Molecular Biology, Free University, Berlin, Germany.
| |
Collapse
|
46
|
Ma J, Rahlfs S, Jortzik E, Schirmer RH, Przyborski JM, Becker K. Subcellular localization of adenylate kinases in Plasmodium falciparum. FEBS Lett 2012; 586:3037-43. [PMID: 22819813 DOI: 10.1016/j.febslet.2012.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/14/2012] [Accepted: 07/02/2012] [Indexed: 11/18/2022]
Abstract
Adenylate kinases (AK) play a key role in nucleotide signaling processes and energy metabolism by catalyzing the reversible conversion of ATP and AMP to 2 ADP. In the malaria parasite Plasmodium falciparum this reaction is mediated by AK1, AK2, and a GTP:AMP phosphotransferase (GAK). Here, we describe two additional adenylate kinase-like proteins: PfAKLP1, which is homologous to human AK6, and PfAKLP2. Using GFP-fusion proteins and life cell imaging, we demonstrate a cytosolic localization for PfAK1, PfAKLP1, and PfAKLP2, whereas PfGAK is located in the mitochondrion. PfAK2 is located at the parasitophorous vacuole membrane, and this localization is driven by N-myristoylation.
Collapse
Affiliation(s)
- Jipeng Ma
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Protein N-myristoylation is required for cellular morphological changes induced by two formin family proteins, FMNL2 and FMNL3. Biosci Biotechnol Biochem 2012; 76:1201-9. [PMID: 22790947 DOI: 10.1271/bbb.120069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The subcellular localization of 13 recently identified N-myristoylated proteins and the effects of overexpression of these proteins on cellular morphology were examined with the aim of understanding the physiological roles of the protein N-myristoylation that occurs on these proteins. Immunofluorescence staining of HEK293T cells transfected with cDNAs coding for the proteins revealed that most of them were associated with the plasma membrane or the membranes of intracellular compartments, and did not affect cellular morphology. However, two proteins, formin-like2 (FMNL2) and formin-like3 (FMNL3), both of them are members of the formin family of proteins, were associated mainly with the plasma membrane and induced significant cellular morphological changes. Inhibition of protein N-myristoylation by replacement of Gly2 with Ala or by the use of N-myristoylation inhibitor significantly inhibited membrane localization and the induction of cellular morphological changes, indicating that protein N-myristoylation plays critical roles in the cellular morphological changes induced by FMNL2 and FMNL3.
Collapse
|
48
|
Bieberich E. It's a lipid's world: bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochem Res 2012; 37:1208-29. [PMID: 22246226 DOI: 10.1007/s11064-011-0698-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/31/2011] [Indexed: 01/20/2023]
Abstract
Lipids are often considered membrane components whose function is to embed proteins into cell membranes. In the last two decades, studies on brain lipids have unequivocally demonstrated that many lipids have critical cell signaling functions; they are called "bioactive lipids". Pioneering work in Dr. Robert Ledeen's laboratory has shown that two bioactive brain sphingolipids, sphingomyelin and the ganglioside GM1 are major signaling lipids in the nuclear envelope. In addition to derivatives of the sphingolipid ceramide, the bioactive lipids discussed here belong to the classes of terpenoids and steroids, eicosanoids, and lysophospholipids. These lipids act mainly through two mechanisms: (1) direct interaction between the bioactive lipid and a specific protein binding partner such as a lipid receptor, protein kinase or phosphatase, ion exchanger, or other cell signaling protein; and (2) formation of lipid microdomains or rafts that regulate the activity of a group of raft-associated cell signaling proteins. In recent years, a third mechanism has emerged, which invokes lipid second messengers as a regulator for the energy and redox balance of differentiating neural stem cells (NSCs). Interestingly, developmental niches such as the stem cell niche for adult NSC differentiation may also be metabolic compartments that respond to a distinct combination of bioactive lipids. The biological function of these lipids as regulators of NSC differentiation will be reviewed and their application in stem cell therapy discussed.
Collapse
Affiliation(s)
- Erhard Bieberich
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street Room CA4012, Augusta, GA 30912, USA.
| |
Collapse
|
49
|
Protein palmitoylation and subcellular trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2981-94. [DOI: 10.1016/j.bbamem.2011.07.009] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/06/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023]
|
50
|
Guan X, Fierke CA. Understanding Protein Palmitoylation: Biological Significance and Enzymology. Sci China Chem 2011; 54:1888-1897. [PMID: 25419213 DOI: 10.1007/s11426-011-4428-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein palmitoylation is a widespread lipid modification in which one or more cysteine thiols on a substrate protein are modified to form a thioester with a palmitoyl group. This lipid modification is readily reversible; a feature of protein palmitoylation that allows for rapid regulation of the function of many cellular proteins. Mutations in palmitoyltransferases (PATs), the enzymes that catalyze the formation of this modification, are associated with a number of neurological diseases and cancer progression. This review summarizes the crucial role of palmitoylation in biological systems, the discovery of the DHHC protein family that catalyzes protein palmitoylation, and the development of methods for investigating the catalytic mechanism of PATs.
Collapse
Affiliation(s)
- Xiaomu Guan
- Departments of Chemistry and Biological Chemistry, University of Michigan, 930 N University, Ann Arbor, MI 48109-1055, USA
| | - Carol A Fierke
- Departments of Chemistry and Biological Chemistry, University of Michigan, 930 N University, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|