1
|
Highton D, Caldwell M, Tachtsidis I, Elwell CE, Smith M, Cooper CE. The influence of carbon dioxide on cerebral metabolism and oxygen consumption: combining multimodal monitoring with dynamic systems modelling. Biol Open 2024; 13:bio060087. [PMID: 38180242 PMCID: PMC10810564 DOI: 10.1242/bio.060087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Hypercapnia increases cerebral blood flow. The effects on cerebral metabolism remain incompletely understood although studies show an oxidation of cytochrome c oxidase, Complex IV of the mitochondrial respiratory chain. Systems modelling was combined with previously published non-invasive measurements of cerebral tissue oxygenation, cerebral blood flow, and cytochrome c oxidase redox state to evaluate any metabolic effects of hypercapnia. Cerebral tissue oxygen saturation and cytochrome oxidase redox state were measured with broadband near infrared spectroscopy and cerebral blood flow velocity with transcranial Doppler ultrasound. Data collected during 5-min hypercapnia in awake human volunteers were analysed using a Fick model to determine changes in brain oxygen consumption and a mathematical model of cerebral hemodynamics and metabolism (BrainSignals) to inform on mechanisms. Either a decrease in metabolic substrate supply or an increase in metabolic demand modelled the cytochrome oxidation in hypercapnia. However, only the decrease in substrate supply explained both the enzyme redox state changes and the Fick-calculated drop in brain oxygen consumption. These modelled outputs are consistent with previous reports of CO2 inhibition of mitochondrial succinate dehydrogenase and isocitrate dehydrogenase. Hypercapnia may have physiologically significant effects suppressing oxidative metabolism in humans and perturbing mitochondrial signalling pathways in health and disease.
Collapse
Affiliation(s)
- David Highton
- Neurocritical Care Unit, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- Princess Alexandra Hospital Southside Clinical Unit, University of Queensland, Brisbane QLD 4102, Australia
| | - Matthew Caldwell
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Clare E. Elwell
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Martin Smith
- Neurocritical Care Unit, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Chris E. Cooper
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
2
|
Kaynezhad P, Tachtsidis I, Aboelnour A, Sivaprasad S, Jeffery G. Watching synchronous mitochondrial respiration in the retina and its instability in a mouse model of macular degeneration. Sci Rep 2021; 11:3274. [PMID: 33558624 PMCID: PMC7870852 DOI: 10.1038/s41598-021-82811-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial function declines with age and in some diseases, but we have been unable to analyze this in vivo. Here, we optically examine retinal mitochondrial function as well as choroidal oxygenation and hemodynamics in aging C57 and complement factor H (CFH-/-) mice, proposed models of macular degeneration which suffer early retinal mitochondrial decline. In young C57s mitochondrial populations respire in coupled oscillatory behavior in cycles of ~ 8 min, which is phase linked to choroidal oscillatory hemodynamics. In aging C57s, the oscillations are less regular being ~ 14 min and more dissociated from choroidal hemodynamics. The mitochondrial oscillatory cycles are extended in CFH-/- mice being ~ 16 min and are further dissociated from choroidal hemodynamics. Mitochondrial decline occurs before age-related changes to choroidal vasculature, hence, is the likely origin of oscillatory disruption in hemodynamics. This technology offers a non-invasive technique to detect early retinal disease and its relationship to blood oxygenation in vivo and in real time.
Collapse
Affiliation(s)
- Pardis Kaynezhad
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Asmaa Aboelnour
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Sobha Sivaprasad
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.
| |
Collapse
|
3
|
Chen WL, Wagner J, Heugel N, Sugar J, Lee YW, Conant L, Malloy M, Heffernan J, Quirk B, Zinos A, Beardsley SA, Prost R, Whelan HT. Functional Near-Infrared Spectroscopy and Its Clinical Application in the Field of Neuroscience: Advances and Future Directions. Front Neurosci 2020; 14:724. [PMID: 32742257 PMCID: PMC7364176 DOI: 10.3389/fnins.2020.00724] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/17/2020] [Indexed: 01/20/2023] Open
Abstract
Similar to functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS) detects the changes of hemoglobin species inside the brain, but via differences in optical absorption. Within the near-infrared spectrum, light can penetrate biological tissues and be absorbed by chromophores, such as oxyhemoglobin and deoxyhemoglobin. What makes fNIRS more advantageous is its portability and potential for long-term monitoring. This paper reviews the basic mechanisms of fNIRS and its current clinical applications, the limitations toward more widespread clinical usage of fNIRS, and current efforts to improve the temporal and spatial resolution of fNIRS toward robust clinical usage within subjects. Oligochannel fNIRS is adequate for estimating global cerebral function and it has become an important tool in the critical care setting for evaluating cerebral oxygenation and autoregulation in patients with stroke and traumatic brain injury. When it comes to a more sophisticated utilization, spatial and temporal resolution becomes critical. Multichannel NIRS has improved the spatial resolution of fNIRS for brain mapping in certain task modalities, such as language mapping. However, averaging and group analysis are currently required, limiting its clinical use for monitoring and real-time event detection in individual subjects. Advances in signal processing have moved fNIRS toward individual clinical use for detecting certain types of seizures, assessing autonomic function and cortical spreading depression. However, its lack of accuracy and precision has been the major obstacle toward more sophisticated clinical use of fNIRS. The use of high-density whole head optode arrays, precise sensor locations relative to the head, anatomical co-registration, short-distance channels, and multi-dimensional signal processing can be combined to improve the sensitivity of fNIRS and increase its use as a wide-spread clinical tool for the robust assessment of brain function.
Collapse
Affiliation(s)
- Wei-Liang Chen
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Neurology, Children's Hospital of Wisconsin, Milwaukee, WI, United States.,School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Wagner
- Department of Biochemical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Nicholas Heugel
- Department of Biochemical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey Sugar
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yu-Wen Lee
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Neurology, Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | - Lisa Conant
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marsha Malloy
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Neurology, Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | - Joseph Heffernan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brendan Quirk
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anthony Zinos
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biochemical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Scott A Beardsley
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biochemical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert Prost
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Harry T Whelan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Neurology, Children's Hospital of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Kim E, Anguluan E, Youn S, Kim J, Hwang JY, Kim JG. Non-invasive measurement of hemodynamic change during 8 MHz transcranial focused ultrasound stimulation using near-infrared spectroscopy. BMC Neurosci 2019; 20:12. [PMID: 30885121 PMCID: PMC6423784 DOI: 10.1186/s12868-019-0493-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/12/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Transcranial focused ultrasound (tFUS) attracts wide attention in neuroscience as an effective noninvasive approach to modulate brain circuits. In spite of this, the effects of tFUS on the brain is still unclear, and further investigation is needed. The present study proposes to use near-infrared spectroscopy (NIRS) to observe cerebral hemodynamic change caused by tFUS in a noninvasive manner. RESULTS The results show a transient increase of oxyhemoglobin and decrease of deoxyhemoglobin concentration in the mouse model induced by ultrasound stimulation of the somatosensory cortex with a frequency of 8 MHz but not in sham. In addition, the amplitude of hemodynamics change can be related to the peak intensity of the acoustic wave. CONCLUSION High frequency 8 MHz ultrasound was shown to induce hemodynamic changes measured using NIRS through the intact mouse head. The implementation of NIRS offers the possibility of investigating brain response noninvasively for different tFUS parameters through cerebral hemodynamic change.
Collapse
Affiliation(s)
- Evgenii Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Eloise Anguluan
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Sangyeon Youn
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Jihun Kim
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Jae Youn Hwang
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| |
Collapse
|
5
|
Myllylä T, Harju M, Korhonen V, Bykov A, Kiviniemi V, Meglinski I. Assessment of the dynamics of human glymphatic system by near-infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201700123. [PMID: 28802090 DOI: 10.1002/jbio.201700123] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/25/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023]
Abstract
Fluctuations in brain water content has attracted increasing interest, particularly as regards studies of the glymphatic system, which is connected with the complex organization of dural lymphatic vessels, responsible for cleaning tissue. Disturbances of glymphatic circulation are associated with several brain disorders, including dementia. This article introduces an approach to noninvasive measurement of water dynamics in the human brain utilizing near-infrared spectroscopy (NIRS). We demonstrate the possibility to sense dynamic variations of water content between the skull and grey matter, for instance, in the subarachnoid space. Measured fluctuations in water content, especially in the cerebrospinal fluid (CSF), are assumed to be correlated with the dynamics of glymphatic circulation. The sampling volume for the NIRS optode was estimated by Monte Carlo modelling for the wavelengths of 660, 740, 830 and 980 nm. In addition, using combinations of these wavelengths, this article presents the calculation models for quantifying water and haemodynamics. The presented NIRS technique allows long-term functional brain monitoring, including sleeping time. Furthermore, it is used in combination with different magnetic neuroimaging techniques, particularly magnetic resonance encephalography. Using the combined setup, we report the preliminary results on the interaction between CSF and blood oxygen level-dependent fluctuations.
Collapse
Affiliation(s)
- Teemu Myllylä
- Optoelectronics and Measurement Techniques Unit, University of Oulu, Oulu, Finland
- Oulu Functional Neuroimaging Group, Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Markus Harju
- Inverse Problems Group, Department of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Vesa Korhonen
- Oulu Functional Neuroimaging Group, Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Alexander Bykov
- Optoelectronics and Measurement Techniques Unit, University of Oulu, Oulu, Finland
- Department of Photonics and Optical Information Technology, ITMO University, St Petersburg, Russia
| | - Vesa Kiviniemi
- Oulu Functional Neuroimaging Group, Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Igor Meglinski
- Optoelectronics and Measurement Techniques Unit, University of Oulu, Oulu, Finland
- Department of Photonics and Optical Information Technology, ITMO University, St Petersburg, Russia
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
- Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| |
Collapse
|
6
|
Abstract
Transfusion decision making (TDM) in the critically ill requires consideration of: (1) anemia tolerance, which is linked to active pathology and to physiologic reserve, (2) differences in donor RBC physiology from that of native RBCs, and (3) relative risk from anemia-attributable oxygen delivery failure vs hazards of transfusion, itself. Current approaches to TDM (e.g. hemoglobin thresholds) do not: (1) differentiate between patients with similar anemia, but dissimilar pathology/physiology, and (2) guide transfusion timing and amount to efficacy-based goals (other than resolution of hemoglobin thresholds). Here, we explore approaches to TDM that address the above gaps.
Collapse
Affiliation(s)
- Chris Markham
- Division of Critical Care Medicine, Department of Pediatrics, Washington University School of Medicine, McDonnell Pediatric Research Building, Campus Box 8208, 660 South Euclid Avenue, St Louis, MO 63110-1093, USA
| | - Sara Small
- Social Systems Design Laboratory, Brown School of Social Work, Washington University, Campus Box 1196, 1 Brookings Drive, St Louis, MO 63130, USA
| | - Peter Hovmand
- Social Systems Design Laboratory, Brown School of Social Work, Washington University, Campus Box 1196, 1 Brookings Drive, St Louis, MO 63130, USA
| | - Allan Doctor
- Division of Critical Care Medicine, Department of Pediatrics, Washington University School of Medicine, McDonnell Pediatric Research Building, Campus Box 8208, 660 South Euclid Avenue, St Louis, MO 63110-1093, USA.
| |
Collapse
|
7
|
Dunne L, Hebden J, Tachtsidis I. Development of a near infrared multi-wavelength, multi-channel, time-resolved spectrometer for measuring brain tissue haemodynamics and metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 812:181-186. [PMID: 24729231 PMCID: PMC4338597 DOI: 10.1007/978-1-4939-0620-8_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We present a novel time domain functional near infrared spectroscopy system using a supercontinuum laser allowing us to measure the coefficient of absorption and scattering of up to 16 multiplexed wavelengths in the near infrared region. This is a four detector system that generates up to 3 mW of light for each wavelength with a narrow 2-3 nm FWHM bandwidth between 650 and 890 nm; each measurement of 16 wavelengths per channel can be performed up to a rate of 1 Hz. We can therefore quantify absolute haemoglobin changes in tissue and are currently investigating which and how many wavelengths are needed to resolve additional chromophores in tissue, such as water and the oxidation state of cytochrome-c-oxidase.
Collapse
Affiliation(s)
- Luke Dunne
- Department of Medical Physics & Bioengineering, University College London, Malet Place Eng. Building, Gower Street, London, WC1E 6BT, UK.
| | - Jem Hebden
- Department of Medical Physics & Bioengineering, University College London, Malet Place Eng. Building, Gower Street, London, WC1E 6BT, UK
| | - Ilias Tachtsidis
- Department of Medical Physics & Bioengineering, University College London, Malet Place Eng. Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
8
|
Ghosh A, Tachtsidis I, Kolyva C, Cooper CE, Smith M, Elwell CE. Use of a hybrid optical spectrometer for the measurement of changes in oxidized cytochrome c oxidase concentration and tissue scattering during functional activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 737:119-24. [PMID: 22259091 PMCID: PMC4038013 DOI: 10.1007/978-1-4614-1566-4_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arnab Ghosh
- Neurosurgical Critical Care Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK
| | | | | | | | | | | |
Collapse
|
9
|
Da Silva NS, Potrich JW. Effect of GaAlAs laser irradiation on enzyme activity. Photomed Laser Surg 2010; 28:431-4. [PMID: 19857051 DOI: 10.1089/pho.2008.2410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine the influence of laser irradiation on enzyme activity. BACKGROUND DATA Enzymes are catalysts of extraordinary efficiency, able to accelerate reactions by manifold. Enzyme laser light activation is currently a fast-growing field and a large number of studies have been produced. MATERIALS AND METHODS Liquid CNPG amylase and control serum (Qualitrol 1H) were used in the experiments. Laboratory analysis of alpha-amylase was performed on two sample groups: (i) E + S and (ii) E + S + L, in six repetitions per irradiation dose. Group 2 was irradiated with gallium-aluminum-arsenide (GaAlAs) 904 nm at doses of 0.01, 0.1, 0.5, and 1 J/cm(2). Enzyme activity was read using a spectrophotometer equipped with a thermostatic chamber capable of precise absorbance measurement at 405 nm. RESULTS The results were analyzed with the Student's t-test, and the percentage of enzyme activity was determined. Photomodulation of alpha-amylase activity by GaAlAs laser was analyzed following irradiation with different doses. Irradiation doses from 0.01 to 1 J/cm(2) led to differences in enzyme activity: 0.01 J/cm(2) (0.10%), 0.1 J/cm(2) (13.44%), 0.5 J/cm(2) (12.57%), and 1 J/cm(2) (-6.10%). CONCLUSION Irradiation doses of 0.1 J/cm(2) and 0.5 J/cm(2) led to statistically significant increases in enzyme activity in comparison to the control. The similar curves of the effects of temperature and pH on enzymatic activity observed in this study suggest that laser irradiation also possess an optimum dose to modulate the enzymatic activity. That is, enzymes have an optimum laser dose (or range) at which their activity is maximal, whereas at higher or lower doses activity decreases.
Collapse
Affiliation(s)
- Newton Soares Da Silva
- Laboratório de Biologia Celular & Tecidual, Instituto de Pesquisa & Desenvolvimento, UNIVAP, São José dos Campos, Brazil.
| | | |
Collapse
|
10
|
Bhatia S, Ragheb J, Johnson M, Oh S, Sandberg DI, Lin WC. The role of optical spectroscopy in epilepsy surgery in children. Neurosurg Focus 2009; 25:E24. [PMID: 18759626 DOI: 10.3171/foc/2008/25/9/e24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Surgery is an important therapeutic modality for pediatric patients with intractable epilepsy. However, existing imaging and diagnostic technologies such as MR imaging and electrocochleography (ECoG) do not always effectively delineate the true resection margin of an epileptic cortical lesion because of limitations in their sensitivity. Optical spectroscopic techniques such as fluorescence and diffuse reflectance spectroscopy provide a nondestructive means of gauging the physiological features of the brain in vivo, including hemodynamics and metabolism. In this study, the authors investigate the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to assist epilepsy surgery in children. METHODS In vivo static fluorescence and diffuse reflectance spectra were acquired from the brain in children undergoing epilepsy surgery. Spectral measurements were obtained using a portable spectroscopic system in conjunction with a fiber optic probe. The optical investigations were conducted at the normal and abnormal cortex as defined by intraoperative ECoG and preoperative imaging studies. Biopsy samples were taken from the investigated sites located within the zone of resection. The optical spectra were classified into multiple subsets in accordance with the ECoG and histological study results. The authors used statistical comparisons between 2 given data subsets to identify unique spectral features. Empirical discrimination algorithms were developed using the identified spectral features to determine if the objective of the study was achieved. RESULTS Fifteen pediatric patients were enrolled in this pilot study. Elevated diffuse reflectance signals between 500 and 600 nm and/or between 650 and 850 nm were observed commonly in the investigated sites with abnormal ECoG and/or histological features in 10 patients. The appearance of a fluorescent peak at 400 nm was observed in both normal and abnormal cortex of 5 patients. These spectral alterations were attributed to changes in morphological and/or biochemical characteristics of the epileptic cortex. The sensitivities and specificities of the empirical discrimination algorithms, which were constructed using the identified spectral features, were all > 90%. CONCLUSIONS The results of this study demonstrate the feasibility of using static fluorescence and diffuse reflectance spectroscopy to differentiate normal from abnormal cortex on the basis of intraoperative assessment of ECoG and histological features. It is therefore possible to use fluorescence and diffuse reflectance spectroscopy as an aid in epilepsy surgery.
Collapse
Affiliation(s)
- Sanjiv Bhatia
- Brain Institute, Miami Children's Hospital, Miami, Florida 33131, USA
| | | | | | | | | | | |
Collapse
|
11
|
Wolf M, Ferrari M, Quaresima V. Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:062104. [PMID: 18163807 DOI: 10.1117/1.2804899] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This review celebrates the 30th anniversary of the first in vivo near-infrared (NIR) spectroscopy (NIRS) publication, which was authored by Professor Frans Jobsis. At first, NIRS was utilized to experimentally and clinically investigate cerebral oxygenation. Later it was applied to study muscle oxidative metabolism. Since 1993, the discovery that the functional activation of the human cerebral cortex can be explored by NIRS has added a new dimension to the research. To obtain simultaneous multiple and localized information, a further major step forward was achieved by introducing NIR imaging (NIRI) and tomography. This review reports on the progress of the NIRS and NIRI instrumentation for brain and muscle clinical applications 30 years after the discovery of in vivo NIRS. The review summarizes the measurable parameters in relation to the different techniques, the main characteristics of the prototypes under development, and the present commercially available NIRS and NIRI instrumentation. Moreover, it discusses strengths and limitations and gives an outlook into the "bright" future.
Collapse
Affiliation(s)
- Martin Wolf
- University Hospital Zurich, Clinic of Neonatology, Biomedical Optics Research Laboratory, 8091 Zurich, Switzerland.
| | | | | |
Collapse
|
12
|
Hillman EMC. Optical brain imaging in vivo: techniques and applications from animal to man. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:051402. [PMID: 17994863 PMCID: PMC2435254 DOI: 10.1117/1.2789693] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical brain imaging has seen 30 years of intense development, and has grown into a rich and diverse field. In-vivo imaging using light provides unprecedented sensitivity to functional changes through intrinsic contrast, and is rapidly exploiting the growing availability of exogenous optical contrast agents. Light can be used to image microscopic structure and function in vivo in exposed animal brain, while also allowing noninvasive imaging of hemodynamics and metabolism in a clinical setting. This work presents an overview of the wide range of approaches currently being applied to in-vivo optical brain imaging, from animal to man. Techniques include multispectral optical imaging, voltage sensitive dye imaging and speckle-flow imaging of exposed cortex, in-vivo two-photon microscopy of the living brain, and the broad range of noninvasive topography and tomography approaches to near-infrared imaging of the human brain. The basic principles of each technique are described, followed by examples of current applications to cutting-edge neuroscience research. In summary, it is shown that optical brain imaging continues to grow and evolve, embracing new technologies and advancing to address ever more complex and important neuroscience questions.
Collapse
Affiliation(s)
- Elizabeth M C Hillman
- Columbia University, Laboratory for Functional Optical Imaging, Department of Biomedical Engineering, 351ET, 1210 Amsterdam Avenue, New York, New York 10027, USA.
| |
Collapse
|
13
|
Tachtsidis I, Tisdall M, Leung TS, Cooper CE, Delpy DT, Smith M, Elwell CE. Investigation ofin vivomeasurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension. Physiol Meas 2006; 28:199-211. [PMID: 17237591 DOI: 10.1088/0967-3334/28/2/008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously used a continuous four-wavelength near-infrared spectrometer to measure changes in the cerebral concentrations of oxy-haemoglobin (Delta[HbO(2)] and deoxy-haemoglobin (Delta[HHb]) during head-up tilt in patients with primary autonomic failure. The measured changes in light attenuation also allow calculation of changes in the concentration of oxidized cytochrome-c-oxidase (Delta[(ox)CCO]), and this paper analyses the Delta[(ox)CCO] during the severe episodes of orthostatic hypotension produced by this experimental protocol. We studied 12 patients during a passive change in position from supine to a 60 degrees head-up tilt. The challenge caused a reduction in mean blood pressure of 59.93 (+/-26.12) mmHg (Mean (+/-SD), p < 0.0001), which was associated with a reduction in the total concentration of haemoglobin (Delta[HbT] = Delta[HbO(2)] + Delta[HHb]) of 5.02 (+/-3.81) microM (p < 0.0001) and a reduction in the haemoglobin difference concentration (Delta[Hb(diff)] = Delta[HbO(2)] - Delta[HHb]) of 14.4 (+/-6.73) microM (p < 0.0001). We observed a wide range of responses in Delta[(ox)CCO]. Six patients demonstrated a drop in Delta[(ox)CCO] (0.17 +/- 0.15 microM); four patients demonstrated no change (0.01 +/- 0.12 microM) and two patients showed an increase in Delta[(ox)CCO] (0.21 +/- 0.01 microM). Investigation of the association between the changes in concentrations of haemoglobin species and the Delta[(ox)CCO] for each patient show a range of relationships. This suggests that a simple mechanism for crosstalk, which might produce artefactual changes in [(ox)CCO], is not present between the haemoglobin and the (ox)CCO NIRS signals. Further investigation is required to determine the clinical significance of the changes in [(ox)CCO].
Collapse
Affiliation(s)
- I Tachtsidis
- Department of Medical Physics and Bioengineering, Malet Place Engineering Building, University College London, Gower Street, London, UK.
| | | | | | | | | | | | | |
Collapse
|
14
|
Lubart R, Lavi R, Friedmann H, Rochkind S. Photochemistry and Photobiology of Light Absorption by Living Cells. Photomed Laser Surg 2006; 24:179-85. [PMID: 16706696 DOI: 10.1089/pho.2006.24.179] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this review, we summarize a part of our research concerning photobiostimulative effects on cardiomyocytes, sperm cells, and nerve cells. We concentrate on results demonstrating that photobiostimulation can be described by the Arndt-Schultz (A.S.) curve. Results monitoring an increase in reactive oxygen species (ROS) concentration following visible light irradiation describe the ascending part of the A.S. curve, whereas those that describe the antioxidant role of photobiostimulation represent the descending part of the curve.
Collapse
Affiliation(s)
- Rachel Lubart
- Department of Physics, Bar-Ilan University, Ramat-Gan, Israel.
| | | | | | | |
Collapse
|
15
|
Bennet L, Roelfsema V, Pathipati P, Quaedackers JS, Gunn AJ. Relationship between evolving epileptiform activity and delayed loss of mitochondrial activity after asphyxia measured by near-infrared spectroscopy in preterm fetal sheep. J Physiol 2006; 572:141-54. [PMID: 16484298 PMCID: PMC1779651 DOI: 10.1113/jphysiol.2006.105197] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Early onset cerebral hypoperfusion after birth is highly correlated with neurological injury in premature infants, but the relationship with the evolution of injury remains unclear. We studied changes in cerebral oxygenation, and cytochrome oxidase (CytOx) using near-infrared spectroscopy in preterm fetal sheep (103-104 days of gestation, term is 147 days) during recovery from a profound asphyxial insult (n= 7) that we have shown produces severe subcortical injury, or sham asphyxia (n= 7). From 1 h after asphyxia there was a significant secondary fall in carotid blood flow (P < 0.001), and total cerebral blood volume, as reflected by total haemoglobin (P < 0.005), which only partially recovered after 72 h. Intracerebral oxygenation (difference between oxygenated and deoxygenated haemoglobin concentrations) fell transiently at 3 and 4 h after asphyxia (P < 0.01), followed by a substantial increase to well over sham control levels (P < 0.001). CytOx levels were normal in the first hour after occlusion, was greater than sham control values at 2-3 h (P < 0.05), but then progressively fell, and became significantly suppressed from 10 h onward (P < 0.01). In the early hours after reperfusion the fetal EEG was highly suppressed, with a superimposed mixture of fast and slow epileptiform transients; overt seizures developed from 8 +/- 0.5 h. These data strongly indicate that severe asphyxia leads to delayed, evolving loss of mitochondrial oxidative metabolism, accompanied by late seizures and relative luxury perfusion. In contrast, the combination of relative cerebral deoxygenation with evolving epileptiform transients in the early recovery phase raises the possibility that these early events accelerate or worsen the subsequent mitochondrial failure.
Collapse
Affiliation(s)
- L Bennet
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
16
|
Ward KR, Ivatury RR, Barbee RW, Terner J, Pittman R, Torres Filho IP, Spiess B. Near infrared spectroscopy for evaluation of the trauma patient: a technology review. Resuscitation 2005; 68:27-44. [PMID: 16325319 DOI: 10.1016/j.resuscitation.2005.06.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 06/06/2005] [Accepted: 06/06/2005] [Indexed: 12/22/2022]
Abstract
Clinicians now realize the limitations of the physical examination in detecting compensated shock states, the severity of uncompensated states, and in determining the adequacy of resuscitation in order to prevent subsequent post-traumatic multisystem organ failure and death. A renewed interest has developed in interrogating the state of oxygen transport at the end-organ level in the trauma patient. Although used as a research tool and now clinically to monitor cerebral oxygenation during complex cardiovascular and neurosurgery, near infrared absorption spectroscopy (NIRS) is being more aggressively investigated and now marketed clinically as a noninvasive means to assess tissue oxygenation in the trauma patient at the end organ level. This paper will describe the principles of NIRS and the basis for its proposed use in the trauma patient to assess tissue oxygenation. This includes its known limitations, current controversies, and what will be needed in the future to make this technology a part of the initial and ongoing assessment of the trauma patient. The ultimate goal of such techniques is to prevent misassessment of patients and inadequate resuscitation, which are believed to be major initiators in the development of multisystem organ failure and death.
Collapse
Affiliation(s)
- Kevin R Ward
- Virginia Commonwealth University Reanimation Engineering Shock Center, VCURES, Department of Emergency Medicine, Virginia Commonwealth University, P.O. Box 980401, Richmond VA 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Wong-Riley MTT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, Kane M, Whelan HT. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 2004; 280:4761-71. [PMID: 15557336 DOI: 10.1074/jbc.m409650200] [Citation(s) in RCA: 616] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Far red and near infrared (NIR) light promotes wound healing, but the mechanism is poorly understood. Our previous studies using 670 nm light-emitting diode (LED) arrays suggest that cytochrome c oxidase, a photoacceptor in the NIR range, plays an important role in therapeutic photobiomodulation. If this is true, then an irreversible inhibitor of cytochrome c oxidase, potassium cyanide (KCN), should compete with LED and reduce its beneficial effects. This hypothesis was tested on primary cultured neurons. LED treatment partially restored enzyme activity blocked by 10-100 microm KCN. It significantly reduced neuronal cell death induced by 300 microm KCN from 83.6 to 43.5%. However, at 1-100 mm KCN, the protective effects of LED decreased, and neuronal deaths increased. LED significantly restored neuronal ATP content only at 10 microm KCN but not at higher concentrations of KCN tested. Pretreatment with LED enhanced efficacy of LED during exposure to 10 or 100 microm KCN but did not restore enzyme activity to control levels. In contrast, LED was able to completely reverse the detrimental effect of tetrodotoxin, which only indirectly down-regulated enzyme levels. Among the wavelengths tested (670, 728, 770, 830, and 880 nm), the most effective ones (830 nm, 670 nm) paralleled the NIR absorption spectrum of oxidized cytochrome c oxidase, whereas the least effective wavelength, 728 nm, did not. The results are consistent with our hypothesis that the mechanism of photobiomodulation involves the up-regulation of cytochrome c oxidase, leading to increased energy metabolism in neurons functionally inactivated by toxins.
Collapse
|
18
|
Abstract
Optical approaches to investigate cerebral function and metabolism have long been applied in invasive studies. From the neuron cultured to the exposed cortex in the human during neurosurgical procedures, high spatial resolution can be reached and several processes such as membrane potential, cell swelling, metabolism of mitochondrial chromophores, and vascular response can be monitored, depending on the respective preparation. The authors focus on an extension of optical methods to the noninvasive application in the human. Starting with the pioneering work of Jöbsis 25 years ago, near-infrared spectroscopy (NIRS) has been used to investigate functional activation of the human cerebral cortex. Recently, several groups have started to use imaging systems that allow the generation of images of a larger area of the subject's head and, thereby, the production of maps of cortical oxygenation changes. Such images have a much lower spatial resolution compared with the invasively obtained optical images. The noninvasive NIRS images, however, can be obtained in undemanding set-ups that can be easily combined with other functional methods, in particular EEG. Moreover, NIRS is applicable to bedside use. The authors briefly review some of the abundant literature on intrinsic optical signals and the NIRS imaging studies of the past few years. The weaknesses and strengths of the approach are critically discussed. The authors conclude that NIRS imaging has two major advantages: it can address issues concerning neurovascular coupling in the human adult and can extend functional imaging approaches to the investigation of the diseased brain.
Collapse
Affiliation(s)
- Hellmuth Obrig
- Department of Neurology, Charité, Humboldt University, Berlin, Germany.
| | | |
Collapse
|
19
|
Kennan RP, Kim D, Maki A, Koizumi H, Constable RT. Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI. Hum Brain Mapp 2002; 16:183-9. [PMID: 12112772 PMCID: PMC6871823 DOI: 10.1002/hbm.10039] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2001] [Accepted: 02/20/2002] [Indexed: 11/10/2022] Open
Abstract
Near infrared optical topography (OT) is the simultaneous acquisition of hemoglobin absorption from an array of optical fibers on the scalp to construct maps of cortical activity. We demonstrate that OT can be used to determine lateralization of prefrontal areas to a language task that has been validated by functional MRI (fMRI). Studies were performed on six subjects using a visually presented language task. Laterality was quantified by the relative number of activated pixels in each hemisphere for fMRI, and the total hemoglobin responses in each hemisphere for OT. All subjects showed varying degrees of left hemisphere language dominance and the mean laterality indices for subjects who underwent both OT and fMRI were in good agreement. These studies demonstrate that OT gives predictions of hemispheric dominance that are consistent with fMRI. Due to the ease of use and portable nature of OT, it is anticipated that optical topography will be valuable tool for neurological examinations of cognitive function.
Collapse
Affiliation(s)
- Richard P Kennan
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | |
Collapse
|
20
|
Obrig H, Neufang M, Wenzel R, Kohl M, Steinbrink J, Einhäupl K, Villringer A. Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. Neuroimage 2000; 12:623-39. [PMID: 11112395 DOI: 10.1006/nimg.2000.0657] [Citation(s) in RCA: 433] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UNLABELLED We investigated slow spontaneous oscillations in cerebral oxygenation in the human adult's visual cortex. The rationale was (1) to demonstrate their detectability by near infrared spectroscopy (NIRS); (2) to analyze the spectral power of as well as the phase relationship between the different NIRS parameters (oxygenated and deoxygenated hemoglobin and cytochrome-oxidase; oxy-Hb/deoxy-Hb/Cyt-ox). Also (3) influences of functional stimulation and hypercapnia on power and phase shifts were investigated. The results show that-in line with the literature-low frequency oscillations (LFO) centred around 0.1 s(-1) and even slower oscillations at about 0.04 s(-1) (very low frequency, VLFO) can be distinguished. Their respective power differs between oxy-Hb, deoxy-Hb, and Cyt-ox. Either frequency (LFO and VLFO) is altered in magnitude by functional stimulation of the cortical area examined. Also we find a change of the phase shift between the vascular parameters (oxy-Hb, tot-Hb) and the metabolic parameter (Cyt-ox) evoked by the stimulation. It is shown that hypercapnia attenuates the LFO in oxy-Hb and deoxy-Hb. CONCLUSIONS (1) spontaneous vascular and metabolic LFO and VLFO can be reproducibly detected by NIRS in the human adult. (2) Their spectral characteristics and their response to hypercapnia are in line with those described in exposed cortex (for review see (Hudetz et al., 1998)) and correspond to findings with transcranial doppler sonography (TCD) (Diehl et al., 1995) and fMRI (Biswal et al., 1997). (3) The magnitude of and phase relation between NIRS-parameters at the LFO may allow for a local noninvasive assessment of autoregulatory mechanisms in the adult brain.
Collapse
Affiliation(s)
- H Obrig
- Neurologische Klinik der Charité, Humboldt-Universität zu Berlin, 10098 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Raad RA, Tan WK, Bennet L, Gunn AJ, Davis SL, Gluckman PD, Johnston BM, Williams CE. Role of the cerebrovascular and metabolic responses in the delayed phases of injury after transient cerebral ischemia in fetal sheep. Stroke 1999; 30:2735-41; discussion 2741-2. [PMID: 10583005 DOI: 10.1161/01.str.30.12.2735] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Perinatal hypoxic-ischemic injuries can trigger a cascade of events leading to delayed deterioration and cell death several hours later. The objective of this study was to characterize the cerebral blood flow responses and the changes in extracellular glucose and lactate during the delayed phases of injury and to determine their relationships with the pathophysiological events after hypoxic-ischemic injury. METHODS Two groups of near-term chronically instrumented fetal sheep were subjected to 30 minutes of cerebral hypoperfusion. In the first group, regional cerebral blood flow was measured over the next 24 hours with radiolabeled microspheres. In the second, cortical extracellular glucose and lactate were measured by microdialysis. Parietal electrocorticographic activity and cortical impedance were recorded continuously in both groups, and the extent of neuronal loss was determined histologically at 72 hours after injury. RESULTS Cerebral blood flow was transiently impaired in the cortex during reperfusion, whereas during the delayed phase, there was a marked increase in cerebral blood flow. The severity of cortical neuronal loss was related to the degree of hypoperfusion in the immediate reperfusion period and inversely related to the magnitude of the delayed hyperperfusion. Cortical extracellular lactate was elevated after injury, and both glucose and lactate secondarily increased during the delayed phase of injury. CONCLUSIONS The delayed phase is accompanied by a period of hyperperfusion that may protect marginally viable tissue.
Collapse
Affiliation(s)
- R A Raad
- Research Centre for Developmental Medicine and Biology, School of Medicine, University of Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mayhew J, Zheng Y, Hou Y, Vuksanovic B, Berwick J, Askew S, Coffey P. Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain. Neuroimage 1999; 10:304-26. [PMID: 10458944 DOI: 10.1006/nimg.1999.0460] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Imaging of neural activation has been used to produce maps of functional architecture and metabolic activity. There is some uncertainty associated with the sources underlying the intrinsic signals. It has been reported that following increased neural activity there was little increased oxygen consumption ( approximately 5%), although glucose consumption increased by approximately 50%. The research we describe uses a modification of the Beer-Lambert Law called path-length scaling analysis (PLSA) to analyze the spectra of the hemodynamic and metabolic responses to vibrissal stimulation in rat somatosensory cortex. The results of the PLSA algorithm were compared with those obtained using a linear spectrographic analysis method (we refer to this as LMCA). There are differences in the results of the analysis depending on which of the two algorithms (PLSA or LMCA) is used. Using the LMCA algorithm, we obtain results showing an increase in the volume of Hbr at approximately 2 s, following onset of stimulation but no complementary decrease in oxygenated haemoglobin (HbO(2)). These results are similar to a previous report. In contrast, after using the PLSA algorithm, the time series of the chromophore changes shows no evidence for an increase in the volume of deoxygenated haemoglobin (Hbr). However, after further analysis of the time series from the PLSA using general linear models (GLM) to remove contributions from low frequency baseline oscillations, both the HbO(2) and Hbr times series of the response to stimulation were found to be biphasic with an early decrease in saturation peaking approximately 1 s after onset of stimulation followed by a larger increase in saturation peaking at approximately 3 s. Finally, following the PLSA-then-GLM analysis procedure, we do not find convincing evidence for an increase in cytochrome oxidation following stimulation, though we demonstrate the PLSA algorithm to be capable of disassociating changes in cytochrome oxidation state from changes in hemoglobin oxygenation.
Collapse
Affiliation(s)
- J Mayhew
- Artificial Intelligence Vision Research Unit and Department of Psychology, University of Sheffield, Sheffield, S10 2TP, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Marks KA, Mallard CE, Roberts I, Williams CE, Gluckman PD, Edwards AD. Nitric oxide synthase inhibition and delayed cerebral injury after severe cerebral ischemia in fetal sheep. Pediatr Res 1999; 46:8-13. [PMID: 10400127 DOI: 10.1203/00006450-199907000-00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
After transient cerebral ischemia in fetal sheep, delayed disruptions in cerebral energetics are represented by a delayed increase in cortical impedance, a progressive decrease in the concentration of oxidized cytochrome oxidase as measured by near-infrared spectroscopy, and cortical seizures. Because the production of nitric oxide (NO), a potent mediator of neuronal death, is increased during this phase, the present study investigated whether inhibition of NO synthesis could ameliorate the delayed disruption in cerebral energetics. Eleven late gestation fetal sheep were subjected to 30 min of transient cerebral ischemia in utero. Two hours later, the treatment group (n = 5) received a continuous infusion of N(G)-nitro-L-arginine, a competitive inhibitor of NO synthase, whereas the control group (n = 6) received PBS. Changes in concentration of oxidized cytochrome oxidase, cortical impedance, and electrocortical activity were observed for 3 d. A delayed increase in cortical impedance of similar magnitude and duration commenced at 14+/-4 h in the control and at 15+/-3 h in the treatment groups. The progressive decrease in oxidized cytochrome oxidase signal, by -2.2+/-0.2 micromol/L in the control and -2.0+/-0.4 micromol/L in the treatment group at 72 h postischemia, was similar in both groups. In both groups, delayed cortical seizures were indicated by intense low-frequency electrocortical activity. In the treatment group, duration of cortical seizures was increased and the intensity of the final electrocortical activity was more depressed (-19+/-1 dB versus -10+/-2 dB). The results indicate that after cerebral ischemia in fetal sheep, NO synthase inhibition does not ameliorate the delayed disruptions in cerebral energetics. However, the effect of NO synthase inhibition on delayed cortical seizures may improve our understanding of the role of NO during this phase.
Collapse
Affiliation(s)
- K A Marks
- Department of Pediatrics, Imperial College School of Medicine, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Heekeren HR, Kohl M, Obrig H, Wenzel R, von Pannwitz W, Matcher SJ, Dirnagl U, Cooper CE, Villringer A. Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation. J Cereb Blood Flow Metab 1999; 19:592-603. [PMID: 10366189 DOI: 10.1097/00004647-199906000-00002] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study the authors used a whole-spectrum near-infrared spectroscopy approach to noninvasively assess changes in hemoglobin oxygenation and cytochrome-c oxidase redox state (Cyt-Ox) in the occipital cortex during visual stimulation. The system uses a white light source (halogen lamp). The light reflected from the subject's head is spectrally resolved by a spectrograph and dispersed on a cooled charge-coupled device camera. The authors showed the following using this approach: (1) Changes in cerebral hemoglobin oxygenation (increase in concentration of oxygenated hemoglobin, decrease in concentration of deoxygenated hemoglobin) in the human occipital cortex during visual stimulation can be assessed quantitatively. (2) The spectral changes during functional activation cannot be completely explained by changes in hemoglobin oxygenation solely; Cyt-Ox has to be included in the analysis. Only if Cyt-Ox is considered can the spectral changes in response to increased brain activity be explained. (3) Cytochrome-c oxidase in the occipital cortex of human subjects is transiently oxidized during visual stimulation. This allows us to measure vascular and intracellular energy status simultaneously.
Collapse
Affiliation(s)
- H R Heekeren
- Department of Neurology, Charité, Humboldt-University, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Quaresima V, Springett R, Cope M, Wyatt JT, Delpy DT, Ferrari M, Cooper CE. Oxidation and reduction of cytochrome oxidase in the neonatal brain observed by in vivo near-infrared spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1366:291-300. [PMID: 9814843 DOI: 10.1016/s0005-2728(98)00129-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Near-infrared spectroscopy was used to determine the relationship between the redox state of mitochondrial cytochrome oxidase CuA and haemoglobin oxygenation in the isoflurane-anaesthetized neonatal pig brain. Adding 7% CO2 to the inspired gases increased the total haemoglobin concentration by 8 microM and oxidized CuA by 0.2 microM. Decreasing the inspired oxygen fraction to zero for 90 s dropped the oxyhaemoglobin concentration by 27 microM and reduced CuA by 1.8 microM. However, no change in the CuA redox state was observed until oxyhaemoglobin had decreased by more than 10 microM. The response of the CuA redox state to these stimuli was very similar following 80% replacement of the haemoglobin by a perfluorocarbon blood substitute; this demonstrates that the results in the normal haematocrit were not a spectral artefact due to the high haemoglobin/cytochrome oxidase ratio. We conclude that the large reductions in the CuA redox state during anoxia are caused by a decrease in the rate of oxygen delivery to the cytochrome oxidase oxygen binding site; the small oxidations, however, are likely to reflect the effects of metabolic changes on the redox state of CuA, rather than increases in the rate of oxygen delivery.
Collapse
Affiliation(s)
- V Quaresima
- Dip. Scienze e Tecnologie Biomediche, Università di L'Aquila, Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
Cooper CE, Delpy DT, Nemoto EM. The relationship of oxygen delivery to absolute haemoglobin oxygenation and mitochondrial cytochrome oxidase redox state in the adult brain: a near-infrared spectroscopy study. Biochem J 1998; 332 ( Pt 3):627-32. [PMID: 9620863 PMCID: PMC1219521 DOI: 10.1042/bj3320627] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Near-infrared spectroscopy was used to determine the effect of changes in the rate of oxygen delivery to the adult rat brain on the absolute concentrations of oxyhaemoglobin, deoxyhaemoglobin and the redox state of the CuA centre in mitochondrial cytochrome oxidase. The cytochrome oxidase detection algorithm was determined to be robust to large changes in haemoglobin oxygenation and concentration. By assuming complete haemoglobin deoxygenation and CuA reduction following mechanical ventilation on 100% N2O, the absolute concentration of oxyhaemoglobin (35 microM), deoxyhaemoglobin (27 microM) and the redox state of CuA (82% oxidized) were calculated in the normal adult brain. The mean arterial blood pressure was decreased by exsanguination. When the pressure reached 100 mmHg, haemoglobin oxygenation started to fall, but the total haemoglobin concentration and oxidized CuA levels only fell when cerebral blood volume autoregulation mechanisms failed at 50 mmHg. Haemoglobin oxygenation fell linearly with decreases in the rate of oxygen delivery to the brain, but the oxidized CuA concentration did not start to fall until this rate was 50% of normal. The results suggest that the brain maintains more than adequate oxygen delivery to mitochondria and that near-infrared spectroscopy may be a good measure of oxygen insufficiency in vivo.
Collapse
Affiliation(s)
- C E Cooper
- Department of Biological Sciences, Central Campus, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | | | | |
Collapse
|
27
|
Cooper CE, Springett R. Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy. Philos Trans R Soc Lond B Biol Sci 1997; 352:669-76. [PMID: 9232854 PMCID: PMC1691958 DOI: 10.1098/rstb.1997.0048] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytochrome oxidase is the terminal electron acceptor of the mitochondrial respiratory chain. It is responsible for the vast majority of oxygen consumption in the body and essential for the efficient generation of cellular ATP. The enzyme contains four redox active metal centres; one of these, the binuclear CuA centre, has a strong absorbance in the near-infrared that enables it to be detectable in vivo by near-infrared spectroscopy. However, the fact that the concentration of this centre is less than 10% of that of haemoglobin means that its detection is not a trivial matter. Unlike the case with deoxyhaemoglobin and oxyhaemoglobin, concentration changes of the total cytochrome oxidase protein occur very slowly (over days) and are therefore not easily detectable by near-infrared spectroscopy. However, the copper centre rapidly accepts and donates an electron, and can thus change its redox state quickly; this redox change is detectable by near-infrared spectroscopy. Many factors can affect the CuA redox state in vivo (Cooper et al. 1994), but most significant is likely to be the molecular oxygen concentration (at low oxygen tensions, electrons build up on CuA as reduction of oxygen by the enzyme starts to limit the steady-state rate of electron transfer). The factors underlying haemoglobin oxygenation, deoxygenation and blood volume changes are, in general, well understood by the clinicians and physiologists who perform near-infrared spectroscopy measurements. In contrast, the factors that control the steady-state redox level of CuA in cytochrome oxidase are still a matter of active debate, even amongst biochemists studying the isolated enzyme and mitochondria. Coupled with the difficulties of accurate in vivo measurements it is perhaps not surprising that the field of cytochrome oxidase near-infrared spectroscopy has a somewhat chequered past. Too often papers have been written with insufficient information to enable the measurements to be repeated and few attempts have been made to test the algorithms in vivo. In recent years a number of research groups and commercial spectrometer manufacturers have made a concerted attempt to not only say how they are attempting to measure cytochrome oxidase by near-infrared spectroscopy but also to demonstrate that they are really doing so. We applaud these attempts, which in general fall into three areas: first, modelling of data can be performed to determine what problems are likely to derail cytochrome oxidase detection algorithms (Matcher et al. 1995); secondly haemoglobin concentration changes can be made by haemodilution (using saline or artificial blood substitutes) in animals (Tamura 1993) or patients (Skov & Greisen 1994); and thirdly, the cytochrome oxidase redox state can be fixed by the use of mitochondrial inhibitors and then attempts make to cause spurious cytochrome changes by dramatically varying haemoglobin oxygenation, haemoglobin concentration and light scattering (Cooper et al. 1997). We have previously written reviews covering the difficulties of measuring the cytochrome near-infrared spectroscopy signal in vivo (Cooper et al. 1997) and the factors affecting the oxidation state of cytochrome oxidase CuA (Cooper et al. 1994). In this article we would like to strike a somewhat more optimistic note--we will stress the usefulness this measurement may have in the clinical environment, as well as describing conditions under which we can have confidence that we are measuring real changes in the CuA redox state.
Collapse
Affiliation(s)
- C E Cooper
- Department of Biological and Chemical Sciences, University of Essex, Colchester, UK
| | | |
Collapse
|