1
|
Ren G, Gao K, Bushman FD, Yeager M. Single-particle image reconstruction of a tetramer of HIV integrase bound to DNA. J Mol Biol 2006; 366:286-94. [PMID: 17157316 PMCID: PMC1855144 DOI: 10.1016/j.jmb.2006.11.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/07/2006] [Accepted: 11/07/2006] [Indexed: 01/26/2023]
Abstract
The HIV integrase enzyme (IN) catalyzes the initial DNA breaking and joining reactions that integrate viral DNA in the host chromosome. Structures for individual IN domains have been determined by X-ray crystallography and NMR spectroscopy, but the structure of the complete IN-DNA complex has remained elusive. Homogeneous complexes of IN tetramers were assembled on DNA three-way junction substrates designed to resemble integration intermediates. Electron microscopy and single-particle image analysis of these complexes yielded a three-dimensional reconstruction at approximately 27 A resolution. The map of the IN-DNA complex displays four lobes of density approximately 50 A in diameter. Three of the lobes form a roughly triangular base with a central channel approximately 20 A in diameter. The fourth lobe is centered between two lobes and extends approximately 40 A above the base. We propose that the central channel tethers the target DNA, and two of the lobes may bind the ends of the viral DNA. The asymmetry of the complex is a feature not incorporated in previous structural models and potentially provides the first view of an asymmetric reaction intermediate.
Collapse
Affiliation(s)
- Gang Ren
- The Scripps Research Institute, Department of Cell Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
2
|
|
3
|
Lewinski MK, Bushman FD. Retroviral DNA integration--mechanism and consequences. ADVANCES IN GENETICS 2005; 55:147-81. [PMID: 16291214 DOI: 10.1016/s0065-2660(05)55005-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integration of retroviral cDNA into the host cell chromosome is an essential step in its replication. This process is catalyzed by the retroviral integrase protein, which is conserved among retroviruses and retrotransposons. Integrase binds viral and host DNA in a complex, called the preintegration complex (PIC), with other viral and cellular proteins. While the PIC is capable of directing integration of the viral DNA into any chromosomal location, different retroviruses have clear preferences for integration in or near particular chromosomal features. The determinants of integration site selection are under investigation but may include retrovirus-specific interactions between integrase and tethering factors bound to the host cell chromosomes. Research into the mechanisms of retroviral integration site selection has shed light on the phenomena of insertional mutagenesis and viral latency.
Collapse
Affiliation(s)
- Mary K Lewinski
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92186, USA
| | | |
Collapse
|
4
|
Bonnenfant S, Thomas CM, Vita C, Subra F, Deprez E, Zouhiri F, Desmaële D, D'Angelo J, Mouscadet JF, Leh H. Styrylquinolines, integrase inhibitors acting prior to integration: a new mechanism of action for anti-integrase agents. J Virol 2004; 78:5728-36. [PMID: 15140970 PMCID: PMC415813 DOI: 10.1128/jvi.78.11.5728-5736.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that styrylquinolines (SQLs) are integrase inhibitors in vitro. They compete with the long terminal repeat substrate for integrase. Here, we describe the cellular mode of action of these molecules. We show that SQLs do not interfere with virus entry. In fact, concentrations of up to 20 times the 50% inhibitory concentration did not inhibit cell-to-cell fusion or affect the interaction between GP120 and CD4 in vitro. Moreover, the pseudotype of the retrovirus envelope did not affect drug activity. Quantitative reverse transcription PCR experiments showed that SQLs do not inhibit the entry of the genomic RNA. In contrast, the treatment of human immunodeficiency virus type 1-infected cells with SQLs reduced the amount of the late cDNA, suggesting for the first time that integrase targeting molecules may affect the accumulation of DNA during reverse transcription. The cellular target of SQLs was confirmed by the appearance of mutations in the integrase gene when viruses were grown in the presence of increasing concentrations of SQLs. Finally, these mutations led to SQL-resistant viruses when introduced into the wild-type sequence. In contrast, SQLs were fully active against reverse transcriptase inhibitor- and diketo acid-resistant viruses, positioning SQLs as a second group of anti-integrase compounds.
Collapse
|
5
|
Bai Y, Soda Y, Izawa K, Tanabe T, Kang X, Tojo A, Hoshino H, Miyoshi H, Asano S, Tani K. Effective transduction and stable transgene expression in human blood cells by a third-generation lentiviral vector. Gene Ther 2003; 10:1446-57. [PMID: 12900759 DOI: 10.1038/sj.gt.3302026] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Difficulty in gene transduction of human blood cells, including hematopoietic stem cells, has hampered the development of gene therapy applications for hematological disorders, encouraging the development and use of new gene delivery systems. In this study, we used a third-generation self-inactivating (SIN) lentiviral vector system based on human immunodeficiency virus type 1 (HIV-1) to improve transduction efficiency and prevent vector-related toxicity. The transduction efficiency of the HIV-1-based vector was compared directly with the Moloney murine leukemia virus (MLV) SIN vector in human leukemia cell lines. Initial transduction efficiencies were almost 100% for the HIV and less than 50% for the MLV vectors. Similar results were observed in 11 types of primary cells obtained from leukemia or myeloma patients. Transgene expression persisted for 8 weeks in cells transduced with the HIV vector, but declined with the MLV vector. In addition, resting peripheral blood lymphocytes and CD34(+) hematopoietic cells were transduced successfully with the HIV vector, but not with the MLV vector. Finally, we confirmed vector gene integration in almost all colony-forming cells transduced with the HIV vector, but not with the MLV vector. In conclusion, this lentiviral vector is an excellent gene transduction system for human blood cells because of its high gene transduction and host chromosome integration efficiency.
Collapse
Affiliation(s)
- Y Bai
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zargarian L, Benleumi MS, Renisio JG, Merad H, Maroun RG, Wieber F, Mauffret O, Porumb H, Troalen F, Fermandjian S. Strategy to discriminate between high and low affinity bindings of human immunodeficiency virus, type 1 integrase to viral DNA. J Biol Chem 2003; 278:19966-73. [PMID: 12626494 DOI: 10.1074/jbc.m211711200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The last decade has contributed to our understanding of the three-dimensional structure of the human immunodeficiency virus, type 1 (HIV-1) integrase (IN) and to the description of how the enzyme catalyzes the viral DNA integration into the host DNA. Recognition of the viral DNA termini by IN is sequence-specific, and that of the host DNA does not require particular sequence, although in physicochemical studies IN fails to discriminate between the two interactions. Here, such discrimination was allowed thanks to a model system using designed oligonucleotides and peptides as binding structures. Spectroscopic (circular dichroism, NMR, and fluorescence anisotropy) techniques and biochemical (enzymatic and filter binding) assays clearly indicated that the amphipathic helix alpha4, located at the catalytic domain surface, is responsible for the specific high affinity binding of the enzyme to viral DNA. Analogues of the alpha4 peptide having increased helicity and still bearing the biologically relevant lysines 156 and 159 on the DNA binding face, and oligonucleotides conserving an intact attachment site, are required to achieve high affinity complexes (Kd of 1.5 nm). Data corroborate previous in vivo results obtained with mutated viruses.
Collapse
Affiliation(s)
- Loussinée Zargarian
- Département de Biologie et Pharmacologie Structurales, UMR 8113 CNRS, Institut Gustave Roussy, Villejuif 94805 and Ecole Normale Supérieure de Cachan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Podtelezhnikov AA, Gao K, Bushman FD, McCammon JA. Modeling HIV-1 integrase complexes based on their hydrodynamic properties. Biopolymers 2003; 68:110-20. [PMID: 12579583 DOI: 10.1002/bip.10217] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present a model structure of a candidate tetramer for HIV-1 integrase. The model was built in three steps using data from fluorescence anisotropy, structures of the individual integrase domains, cross-linking data, and other biochemical data. First, the structure of the full-length integrase monomer was modeled using the individual domain structures and the hydrodynamic properties of the full-length protein that were recently measured by fluorescence depolarization. We calculated the rotational correlation times for different arrangements of three integrase domains, revealing that only structures with close proximity among the domains satisfied the experimental data. The orientations of the domains were constrained by iterative tests against the data on cross-linking and footprinting in integrase-DNA complexes. Second, the structure of an integrase dimer was obtained by joining the model monomers in accordance with the available dimeric crystal structures of the catalytic core. The hydrodynamic properties of the dimer were in agreement with the experimental values. Third, the active sites of the two model dimers were placed in agreement with the spacing between the sites of integration on target DNA as well as the integrase-DNA cross-linking data, resulting in twofold symmetry of a tetrameric complex. The model is consistent with the experimental data indicating that the F185K substitution, which is found in the model at a tetramerization interface, selectively disrupts correct complex formation in vitro and HIV replication in vivo. Our model of the integrase tetramer bound to DNA may help to design anti-integrase inhibitors.
Collapse
Affiliation(s)
- Alexei A Podtelezhnikov
- Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0365, USA.
| | | | | | | |
Collapse
|
8
|
Rowley DC, Hansen MST, Rhodes D, Sotriffer CA, Ni H, McCammon JA, Bushman FD, Fenical W. Thalassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase. Bioorg Med Chem 2002; 10:3619-25. [PMID: 12213478 DOI: 10.1016/s0968-0896(02)00241-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus (HIV) replication requires integration of viral cDNA into the host genome, a process mediated by the viral enzyme integrase. We describe a new series of HIV integrase inhibitors, thalassiolins A-C (1-3), isolated from the Caribbean sea grass Thalassia testudinum. The thalassiolins are distinguished from other flavones previously studied by the substitution of a sulfated beta-D-glucose at the 7-position, a substituent that imparts increased potency against integrase in biochemical assays. The most active of these molecules, thalassiolin A (1), displays in vitro inhibition of the integrase catalyzed strand transfer reaction (IC50=0.4 microM) and an antiviral IC50 of 30 microM. Molecular modeling studies indicate a favorable binding mode is probable at the catalytic core domain of HIV-1 integrase.
Collapse
Affiliation(s)
- David C Rowley
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Pierson TC, Zhou Y, Kieffer TL, Ruff CT, Buck C, Siliciano RF. Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection. J Virol 2002; 76:8518-31. [PMID: 12163571 PMCID: PMC136977 DOI: 10.1128/jvi.76.17.8518-8513.2002] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most current evidence suggests that the infection of resting CD4(+) T cells by human immunodeficiency virus type 1 (HIV-1) is not productive due to partial or complete blocks in the viral life cycle at steps prior to integration of the viral genome into the host cell chromosome. However, stimulation of an infected resting T cell by antigen, cytokines, or microenvironmental factors can overcome these blocks and allow for the production of progeny virions. In this study, we sought to understand the structure and fate of the virus in unstimulated resting CD4(+) T cells. Using a novel linker-mediated PCR assay designed to detect and characterize linear unintegrated forms of the HIV-1 genome, we demonstrate that reverse transcription can proceed to completion following the infection of resting T cells, generating the substrate for the retroviral integration reaction. However, reverse transcription in resting T cells is far slower than in activated T cells, requiring 2 to 3 days to complete. The delay in completing reverse transcription may make the viral DNA genome more susceptible to competing decay processes. To explore the relationship between the formation of the linear viral genome and the stability of the preintegration state, we employed a recombinant HIV-1 virus expressing the enhanced green fluorescent protein to measure the rate at which HIV-1 decays in the preintegration state. Our results demonstrate that the preintegration state is labile and decays rapidly (half-life = 1 day) following the entry of HIV-1 into a resting T cell, with significant decay occurring during the slow process of reverse transcription.
Collapse
Affiliation(s)
- Theodore C Pierson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- M Stevenson
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Bushman FD. Integration site selection by lentiviruses: biology and possible control. Curr Top Microbiol Immunol 2002; 261:165-77. [PMID: 11892246 DOI: 10.1007/978-3-642-56114-6_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Retroviruses integrate into naked DNA in a generally sequence nonspecific fashion, but closer study reveals a variety of forces that influence target site selection. Primary sequence of the target plays a small but detectable role. Proteins bound to target DNA can inhibit integration by blocking access of integration complexes or stimulate integration by distorting DNA. An important example of the latter is DNA distortion in nucleosomal DNA. In vivo integration has not yet been convincingly shown to be biased in favor of any identifiable sequence features, though this could still change in future studies. Many applications of retroviral vectors could be facilitated by targeting integration in vivo to predetermined sites. Towards this end, several groups have studied the properties of fusions of integrase proteins to sequence-specific DNA-binding domains. To date such studies establish that targeting can work well in reactions in vitro, but a variety of obstacles complicate applications in vivo. However, naturally occurring retrotransposons do carry out highly targeted integration using retrovirus-like integrase proteins, fueling long-term hopes for targeting with retroviral integrases as well.
Collapse
Affiliation(s)
- F D Bushman
- Infectious Disease Laboratory, Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Brooun A, Richman DD, Kornbluth RS. HIV-1 preintegration complexes preferentially integrate into longer target DNA molecules in solution as detected by a sensitive, polymerase chain reaction-based integration assay. J Biol Chem 2001; 276:46946-52. [PMID: 11595745 DOI: 10.1074/jbc.m108000200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
After entering a cell and undergoing reverse transcription, the retroviral genome is contained in a preintegration complex (PIC) that mediates its integration into host cell DNA. PICs have been shown to prefer torsionally strained DNA, but the effect of target DNA length has not been previously examined. In this report, concatemerization of a repeating 105-base pair unit was used to vary target DNA length independently from basic DNA sequence, while maintaining both PICs and target DNAs in solution. Integration junctions were quantified by real-time fluorescence-monitored polymerase chain reaction amplification using primers in the viral long terminal repeat and the target DNA. Unreacted target DNA severely inhibited the post-reaction polymerase chain reaction detection step, requiring its removal using lambda exonuclease digestion. Integration into a 32-unit concatemer of target DNA was markedly more efficient than integration into a monomeric unit, indicating that longer target DNA was preferred. This substrate was used to construct a simple, robust, and adaptable assay that can serve as a method for studying the host cell factors that enhance PIC integration, and as a drug discovery platform for integration inhibitors active against PICs.
Collapse
Affiliation(s)
- A Brooun
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
13
|
Vandegraaff N, Kumar R, Hocking H, Burke TR, Mills J, Rhodes D, Burrell CJ, Li P. Specific inhibition of human immunodeficiency virus type 1 (HIV-1) integration in cell culture: putative inhibitors of HIV-1 integrase. Antimicrob Agents Chemother 2001; 45:2510-6. [PMID: 11502522 PMCID: PMC90685 DOI: 10.1128/aac.45.9.2510-2516.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the effect of potential human immunodeficiency virus type 1 (HIV-1) integrase inhibitors during virus replication in cell culture, we used a modified nested Alu-PCR assay to quantify integrated HIV DNA in combination with the quantitative analysis of extrachromosomal HIV DNA. The two diketo acid integrase inhibitors (L-708,906 and L-731,988) blocked the accumulation of integrated HIV-1 DNA in T cells following infection but did not alter levels of newly synthesized extrachromosomal HIV DNA. In contrast, we demonstrated that L17 (a member of the bisaroyl hydrazine family of integrase inhibitors) and AR177 (an oligonucleotide inhibitor) blocked the HIV replication cycle at, or prior to, reverse transcription, although both drugs inhibited integrase activity in cell-free assays. Quercetin dihydrate (a flavone) was shown to not have any antiviral activity in our system despite reported anti-integration properties in cell-free assays. This refined Alu-PCR assay for HIV provirus is a useful tool for screening anti-integration compounds identified in biochemical assays for their ability to inhibit the accumulation of integrated HIV DNA in cell culture, and it may be useful for studying the effects of these inhibitors in clinical trials.
Collapse
Affiliation(s)
- N Vandegraaff
- National Centre for HIV Virology Research, Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, Adelaide, Australia 5000.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Gao K, Butler SL, Bushman F. Human immunodeficiency virus type 1 integrase: arrangement of protein domains in active cDNA complexes. EMBO J 2001; 20:3565-76. [PMID: 11432843 PMCID: PMC125503 DOI: 10.1093/emboj/20.13.3565] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Early steps of retroviral replication involve reverse transcription of the viral RNA genome and integration of the resulting cDNA copy into a chromosome of the host cell. The viral-encoded integrase protein carries out the initial DNA breaking and joining reactions that mediate integration. The organization of the active integrase-DNA complex is unknown, though integrase is known to act as a multimer, and high resolution structures of the isolated integrase domains have been determined. Here we use site-specific cross-linking based on disulfide bond formation to map integrase-DNA contacts in active complexes. We establish that the DNA-binding C-terminal domain of one integrase monomer acts with the central catalytic domain from another monomer at each viral cDNA end. These data allow detailed modeling of an integrase tetramer in which pairs of trans interactions link integrase dimers bound to substrate DNA. We also detected a conformational change in integrase- DNA complexes accompanying cleavage of the viral cDNA terminus.
Collapse
Affiliation(s)
| | | | - Frederic Bushman
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
Corresponding author e-mail:
| |
Collapse
|
15
|
Li L, Olvera JM, Yoder KE, Mitchell RS, Butler SL, Lieber M, Martin SL, Bushman FD. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 2001; 20:3272-81. [PMID: 11406603 PMCID: PMC150207 DOI: 10.1093/emboj/20.12.3272] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Early after infection, the retroviral RNA genome is reverse transcribed to generate a linear cDNA copy, then that copy is integrated into a chromosome of the host cell. We report that unintegrated viral cDNA is a substrate for the host cell non-homologous DNA end joining (NHEJ) pathway, which normally repairs cellular double-strand breaks by end ligation. NHEJ activity was found to be required for an end-ligation reaction that circularizes a portion of the unintegrated viral cDNA in infected cells. Consistent with this, the NHEJ proteins Ku70 and Ku80 were found to be bound to purified retroviral replication intermediates. Cells defective in NHEJ are known to undergo apoptosis in response to retroviral infection, a response that we show requires reverse transcription to form the cDNA genome but not subsequent integration. We propose that the double-strand ends present in unintegrated cDNA promote apoptosis, as is known to be the case for chromosomal double-strand breaks, and cDNA circularization removes the pro-apoptotic signal.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Lieber
- Infectious Disease Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037,
Department of Pathology, Norris Cancer Center, University of Southern California, Los Angeles, CA and University of Colorado School of Medicine, 4200 E. Ninth Avenue, Denver, CO, USA Corresponding author e-mail:
| | - Sandra L. Martin
- Infectious Disease Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037,
Department of Pathology, Norris Cancer Center, University of Southern California, Los Angeles, CA and University of Colorado School of Medicine, 4200 E. Ninth Avenue, Denver, CO, USA Corresponding author e-mail:
| | - Frederic D. Bushman
- Infectious Disease Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037,
Department of Pathology, Norris Cancer Center, University of Southern California, Los Angeles, CA and University of Colorado School of Medicine, 4200 E. Ninth Avenue, Denver, CO, USA Corresponding author e-mail:
| |
Collapse
|
16
|
Neamati N, Marchand C, Pommier Y. HIV-1 integrase inhibitors: past, present, and future. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 49:147-65. [PMID: 11013763 DOI: 10.1016/s1054-3589(00)49026-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- N Neamati
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
17
|
Abstract
The pol gene of HIV-1 encodes for three essential enzymes, protease (PR), reverse transcriptase (RT) and integrase (IN). More than 16 drugs, targeting two of these enzymes, PR and RT have been approved by the FDA. At present, there are no clinically useful agents that inhibit the third enzyme, IN. Combination chemotherapy consisting of PR and RT inhibitors has shown remarkable success in the clinic and has benefited many patients. It is thought that a combination of drugs targeting all three enzymes should further incapacitate the virus. Discovery of highly selective PR inhibitors owe their success to the recent development in structure-guided drug design. During the past several years a plethora of structures of HIV-1 PR in complex with an inhibitor have been solved by x-ray crystallography. This incredible wealth of information provided opportunities for the discovery of second and third generation inhibitors. Due to the inherent nature of IN and insufficient structural information, structure-based inhibitor design selective for IN has not kept pace. However, because of recent developments in the field such information could soon become available. In this review, emphasis is placed on inhibitors with identified or proposed drug binding sites on IN.
Collapse
Affiliation(s)
- N Neamati
- University of Southern California, School of Pharmacy, 1985 Zonal Avenue, PSC 304BA, Los Angeles, CA 90089-9121, USA.
| |
Collapse
|
18
|
Moreau K, Torne-Celer C, Faure C, Verdier G, Ronfort C. In vivo retroviral integration: fidelity to size of the host DNA duplication might Be reduced when integration occurs near sequences homologous to LTR ends. Virology 2000; 278:133-6. [PMID: 11112489 DOI: 10.1006/viro.2000.0641] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrated retroviral DNAs are flanked by a short duplication of target DNA whose size is virus specific and invariable. We have sequenced the junctions between an ALSV (Avian Leukemia and Sarcoma Viruses)-based vector and quail DNA from five individual proviruses. Three proviruses were flanked by the expected 6-bp duplication of host DNA, whereas the two others were flanked by a 5-bp duplication. Nucleotide sequencing of the native integration sites of these two proviruses showed that these integrations had occurred at the immediate vicinity of either a CA or a TG dinucleotide, revealing striking microhomologies between the integration sites and viral LTR ends. These results suggest that size duplication of the target DNA might be influenced by nucleotidic sequence at the site of integration.
Collapse
Affiliation(s)
- K Moreau
- Centre de Génétique Moléculaire et Cellulaire, Institut National de la Recherche Agronomique, Villeurbanne cedex, 69622, France
| | | | | | | | | |
Collapse
|
19
|
Abstract
Diverse mobile DNA elements are believed to pirate host cell enzymes to complete DNA transfer. Prominent examples are provided by retroviral cDNA integration and transposon insertion. These reactions initially involve the attachment of each element 3' DNA end to staggered sites in the host DNA by element-encoded integrase or transposase enzymes. Unfolding of such intermediates yields DNA gaps at each junction. It has been widely assumed that host DNA repair enzymes complete attachment of the remaining DNA ends, but the enzymes involved have not been identified for any system. We have synthesized DNA substrates containing the expected gap and 5' two-base flap structure present in retroviral integration intermediates and tested candidate enzymes for the ability to support repair in vitro. We find three required activities, two of which can be satisfied by multiple enzymes. These are a polymerase (polymerase beta, polymerase delta and its cofactor PCNA, or reverse transcriptase), a nuclease (flap endonuclease), and a ligase (ligase I, III, or IV and its cofactor XRCC4). A proposed pathway involving retroviral integrase and reverse transcriptase did not carry out repair under the conditions tested. In addition, prebinding of integrase protein to gapped DNA inhibited repair reactions, indicating that gap repair in vivo may require active disassembly of the integrase complex.
Collapse
Affiliation(s)
- K E Yoder
- Infectious Disease Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
20
|
Li L, Yoder K, Hansen MS, Olvera J, Miller MD, Bushman FD. Retroviral cDNA integration: stimulation by HMG I family proteins. J Virol 2000; 74:10965-74. [PMID: 11069991 PMCID: PMC113176 DOI: 10.1128/jvi.74.23.10965-10974.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To replicate, a retrovirus must synthesize a cDNA copy of the viral RNA genome and integrate that cDNA into a chromosome of the host. We have investigated the role of a host cell cofactor, HMG I(Y) protein, in integration of human immunodeficiency virus type 1 (HIV-1) and Moloney murine leukemia virus (MoMLV) cDNA. Previously we reported that HMG I(Y) cofractionates with HIV-1 preintegration complexes (PICs) isolated from freshly infected cells. PICs depleted of required components by treatment with high concentrations of salt could be reconstituted by addition of purified HMG I(Y) in vitro. Here we report studies using immunoprecipitation that indicate that HMG I(Y) is associated with MoMLV preintegration complexes. In mechanistic studies, we show for both HIV-1 and MoMLV that each HMG I(Y) monomer must contain multiple DNA binding domains to stimulate integration by HMG I(Y)-depleted PICs. We also find that HMG I(Y) can condense model HIV-1 or MoMLV cDNA in vitro as measured by stimulation of intermolecular ligation. This reaction, like reconstitution of integration, depends on the presence of multiple DNA binding domains in each HMG I(Y) monomer. These data suggest that binding of multivalent HMG I(Y) monomers to multiple cDNA sites compacts retroviral cDNA, thereby promoting formation of active integrase-cDNA complexes.
Collapse
Affiliation(s)
- L Li
- Infectious Disease Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Despite the success of protease and reverse transcriptase inhibitors, new drugs to suppress HIV-1 replication are still needed. Several other early events in the viral life cycle (stages before the viral genome is inserted into host cell DNA) are susceptible to drugs, including virus attachment to target cells, membrane fusion and post-entry events such as integration, accessory-gene function and assembly of viral particles. Among these, inhibitors of virus-cell fusion and integration are the most promising candidates.
Collapse
Affiliation(s)
- J P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
22
|
Mitchell SS, Rhodes D, Bushman FD, Faulkner DJ. Cyclodidemniserinol trisulfate, a sulfated serinolipid from the Palauan ascidian Didemnum guttatum that inhibits HIV-1 integrase. Org Lett 2000; 2:1605-7. [PMID: 10841490 DOI: 10.1021/ol005866o] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structure--see text] Bioassay-guided fractionation of extracts of the Palauan ascidian Didemnum guttatum led to the isolation of cyclodidemniserinol trisulfate (1) as an inhibitor of HIV-1 integrase, which is an attractive target for anti-retroviral chemotherapy. The structure of cyclodidemniserinol trisulfate (1), the stereochemistry of which was only partially determined, was elucidated by interpretation of NMR and mass spectral data.
Collapse
Affiliation(s)
- S S Mitchell
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla 92093-0212, USA
| | | | | | | |
Collapse
|
23
|
Molteni V, Rhodes D, Rubins K, Hansen M, Bushman FD, Siegel JS. A new class of HIV-1 integrase inhibitors: the 3,3,3', 3'-tetramethyl-1,1'-spirobi(indan)-5,5',6,6'-tetrol family. J Med Chem 2000; 43:2031-9. [PMID: 10821715 DOI: 10.1021/jm990600c] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Integration is a required step in HIV replication, but as yet no inhibitors of the integration step have been developed for clinical use. Many inhibitors have been identified that are active against purified viral-encoded integrase protein; of these, many contain a catechol moiety. Though this substructure contributes potency in inhibitors, it is associated with toxicity and so the utility of catechol-containing inhibitors has been questioned. We have synthesized and tested a systematic series of derivatives of a catechol-containing inhibitor (1) with the goal of identifying catechol isosteres that support inhibition. We find that different patterns of substitution on the aromatic ring suffice for inhibition when Mn(2+) is used as a cofactor. Importantly, the efficiency is different when Mg(2+), the more likely in vivo cofactor, is used. These data emphasize the importance of assays with Mg(2+) and offer new catechol isosteres for use in integrase inhibitors.
Collapse
Affiliation(s)
- V Molteni
- Department of Chemistry, University of California, San Diego, La Jolla, California 92093-0358, USA
| | | | | | | | | | | |
Collapse
|
24
|
Carteau S, Gorelick RJ, Bushman FD. Coupled integration of human immunodeficiency virus type 1 cDNA ends by purified integrase in vitro: stimulation by the viral nucleocapsid protein. J Virol 1999; 73:6670-9. [PMID: 10400764 PMCID: PMC112751 DOI: 10.1128/jvi.73.8.6670-6679.1999] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integration of retroviral cDNA involves coupled joining of the two ends of the viral genome at precisely spaced positions in the host cell DNA. Correct coupled joining is essential for viral replication, as shown, for example, by the finding that viral mutants defective in coupled joining are defective in integration and replication. To date, reactions with purified human immunodeficiency virus type 1 (HIV-1) integrase protein in vitro have supported mainly uncoupled joining of single cDNA ends. We have analyzed an activity stimulating coupled joining present in HIV-1 virions, which led to the finding that the HIV-1 nucleocapsid (NC) protein can stimulate coupled joining more than 1,000-fold under some conditions. The requirements for stimulating coupled joining were investigated in assays with mutant NC proteins, revealing that mutations in the zinc finger domains can influence stimulation of integration. These findings (i) provide a means for assembling more authentic integrase complexes for mechanistic studies, (ii) reveal a new activity of NC protein in vitro, (iii) indicate a possible role for NC in vivo, and (iv) provide a possible method for identifying a new class of inhibitors that disrupt coupled joining.
Collapse
Affiliation(s)
- S Carteau
- Infectious Disease Laboratory, Salk Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|