1
|
Islam SM, Hasan M, Alam J, Dey A, Molineaux D. In Silico Screening, Molecular Dynamics Simulation and Binding Free Energy Identify Single-Point Mutations That Destabilize p53 and Reduce Binding to DNA. Proteins 2025; 93:498-514. [PMID: 39264222 PMCID: PMC11695177 DOI: 10.1002/prot.26747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Considering p53's pivotal role as a tumor suppressor protein, proactive identification and characterization of potentially harmful p53 mutations are crucial before they appear in the population. To address this, four computational prediction tools-SIFT, Polyphen-2, PhD-SNP, and MutPred2-utilizing sequence-based and machine-learning algorithms, were employed to identify potentially deleterious p53 nsSNPs (nonsynonymous single nucleotide polymorphisms) that may impact p53 structure, dynamics, and binding with DNA. These computational methods identified three variants, namely, C141Y, C238S, and L265P, as detrimental to p53 stability. Furthermore, molecular dynamics (MD) simulations revealed that all three variants exhibited heightened structural flexibility compared to the native protein, especially the C141Y and L265P mutations. Consequently, due to the altered structure of mutant p53, the DNA-binding affinity of all three variants decreased by approximately 1.8 to 9.7 times compared to wild-type p53 binding with DNA (14 μM). Notably, the L265P mutation exhibited an approximately ten-fold greater reduction in binding affinity. Consequently, the presence of the L265P mutation in p53 could pose a substantial risk to humans. Given that p53 regulates abnormal tumor growth, this research carries significant implications for surveillance efforts and the development of anticancer therapies.
Collapse
Affiliation(s)
- Shahidul M. Islam
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| | - Mehedi Hasan
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| | - Jahidul Alam
- Department of Molecular Biology and Biotechnology, Queen’s University Belfast, Northern Ireland, BT7 1NN, United Kingdom
| | - Anonya Dey
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Dylan Molineaux
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
2
|
Canchi Sistla H, Talluri S, Rajagopal T, Venkatabalasubramanian S, Rao Dunna N. Genomic instability in ovarian cancer: Through the lens of single nucleotide polymorphisms. Clin Chim Acta 2025; 565:119992. [PMID: 39395774 DOI: 10.1016/j.cca.2024.119992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Ovarian cancer (OC) is the deadliest gynecological malignancy among all female reproductive cancers. It is characterized by high mortality rate and poor prognosis. Genomic instability caused by mutations, single nucleotide polymorphisms (SNPs), copy number variations (CNVs), microsatellite instability (MSI), and chromosomal instability (CIN) are associated with OC predisposition. SNPs, which are highly prevalent in the general population, show a greater relative risk contribution, particularly in sporadic cancers. Understanding OC etiology in terms of genetic basis can increase the use of molecular diagnostics and provide promising approaches for designing novel treatment modalities. This will help deliver personalized medicine to OC patients, which may soon be within reach. Given the pivotal impact of SNPs in cancers, the primary emphasis of this review is to shed light on their prevalence in key caretaker genes that closely monitor genomic integrity, viz., DNA damage response, repair, cell cycle checkpoints, telomerase maintenance, and apoptosis and their clinical implications in OC. We highlight the current challenges faced in different SNP-based studies. Various computational methods and bioinformatic tools employed to predict the functional impact of SNPs have also been comprehensively reviewed concerning OC research. Overall, this review identifies that variants in the DDR and HRR pathways are the most studied, implying their critical role in the disease. Conversely, variants in other pathways, such as NHEJ, MMR, cell cycle, apoptosis, telomere maintenance, and PARP genes, have been explored the least.
Collapse
Affiliation(s)
- Harshavardhani Canchi Sistla
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA- Deemed University, Thanjavur 613 401, India
| | - Srikanth Talluri
- Dana Farber Cancer Institute, Boston, MA 02215, USA; Veterans Administration Boston Healthcare System, West Roxbury, MA 02132, USA
| | | | - Sivaramakrishnan Venkatabalasubramanian
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai 603 203, India
| | - Nageswara Rao Dunna
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA- Deemed University, Thanjavur 613 401, India.
| |
Collapse
|
3
|
Takeuchi R, Nomura T, Yaguchi M, Kuwahara N, Amino Y, Taguchi C, Suzuki I, Suzuki H, Nagashima T, Arikawa K, Okada Y, Nomoto T, Hiratsuka K. Cyclosporine A causes gingival overgrowth via reduced G1 cell cycle arrest in gingival fibroblasts. PLoS One 2024; 19:e0309189. [PMID: 39705288 DOI: 10.1371/journal.pone.0309189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 12/22/2024] Open
Abstract
Gingival overgrowth caused by cyclosporine A is due to increased fibroblast proliferation in gingival tissues. Cell cycle system balances proliferation and anti-proliferation of gingival fibroblasts and plays a role in the maintenance of its population in gingival tissues. When cells detect and respond to abnormalities (e.g. DNA damage), cell cycle progression is arrested in the G1 phase until the completion of damage restoration. In this study, we investigated the effects of cyclosporine A on G1 cell cycle arrest and on its regulators in gingival fibroblasts to clarify the mechanism of cyclosporine A-induced gingival overgrowth. Human gingival fibroblasts from healthy donors were cultured to semi-confluence and were then treated with or without 200 ng/mL (166 nM) cyclosporine A in D-MEM with 2% fetal bovine serum. Cell proliferation was assessed by counting total cell numbers. The distribution of cell cycle phases was assessed using flow cytometric analysis. The levels of mRNA and protein expression for cell cycle regulators were quantified using reverse transcription-quantitative PCR and western blot analysis, respectively. Treatment with cyclosporine A markedly increased cell proliferation, inhibited G1 cell cycle arrest, significantly increased CDC25A and CYCLIN E1 mRNA expression levels, significantly decreased P21, SMAD3 and SMAD4 mRNA expression levels, significantly upregulated the protein expression levels of CDC25A, CYCLIN E1, pCDK2 and pRB1 and significantly downregulated the protein expression levels of P21, SMAD3 and SMAD4. Treatment with cyclosporine A also increased MYC and ATM mRNA expression levels and decreased CDK2, ATR, P27, P53 and RB1 mRNA expression levels but not significantly. These results demonstrate that cyclosporine A causes gingival overgrowth due to the following mechanism in gingival fibroblasts: cyclosporine A increases levels of phospho-CDK2 and CYCLIN E1 by upregulating CDC25A and downregulating P21 with the downregulation of SMAD3 and SMAD4, which results in the inhibition of G1 cell cycle arrest.
Collapse
Affiliation(s)
- Reiri Takeuchi
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Takatoshi Nomura
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Manabu Yaguchi
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Noriko Kuwahara
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yuta Amino
- Department of Oral Implantology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Chieko Taguchi
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Itaru Suzuki
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Haruka Suzuki
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Teruaki Nagashima
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
- Department of Community Oral Health, Nihon University Graduate School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Kazumune Arikawa
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yuichiro Okada
- Department of Histology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Takato Nomoto
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| |
Collapse
|
4
|
Takeuchi R, Kuwahara N, Amino Y, Hayashi S, Taguchi C, Suzuki I, Suzuki H, Nagashima T, Arikawa K, Okada Y, Nomoto T, Hiratsuka K. Cyclosporine A Causes Gingival Overgrowth by Promoting Entry into the S Phase at the G1/S Cell Cycle Checkpoint in Gingival Fibroblasts Exposed to Lipopolysaccharide. Diseases 2024; 12:322. [PMID: 39727652 DOI: 10.3390/diseases12120322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVES Cyclosporine A promotes gingival fibrosis by enhancing the proliferation of gingival fibroblasts, leading to gingival overgrowth. The population of gingival fibroblasts is regulated by cell cycle machinery, which balances cell growth and inhibition. Cells that detect DNA damage pause at the G1/S checkpoint to repair the damage instead of progressing to the S phase. Previous studies have linked drug-induced gingival overgrowth to the response of fibroblasts to lipopolysaccharide (LPS) and cyclosporine A. This research investigates the effects of cyclosporine A on the G1/S checkpoint and its mediators in LPS-treated gingival fibroblasts to clarify the mechanisms behind cyclosporine-A-induced gingival overgrowth. METHODS Semi-confluent human gingival fibroblasts were treated with LPS or cyclosporine A in DMEM. Cell proliferation was evaluated by counting the total number of cells. The distribution of the cell cycle phases was analyzed using flow cytometry. Additionally, the expression levels of mRNAs and proteins related to cell cycle regulators were quantified by reverse-transcription quantitative PCR and Western blotting, respectively. RESULTS Cyclosporine A treatment significantly enhanced cell proliferation and the G1-S cell cycle transition. It increased the mRNA levels of CDC25A and CYCLIN D while decreasing those of RB1, SMAD3, and SMAD4. Additionally, it upregulated the protein levels of CDC25A, CYCLIN D, CDK4, CDK6, and pRB and downregulated the protein levels of SMAD3 and SMAD4. CONCLUSIONS Gingival overgrowth induced by cyclosporine A could be attributed to these alterations.
Collapse
Affiliation(s)
- Reiri Takeuchi
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Noriko Kuwahara
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Yuta Amino
- Department of Oral Implantology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Sachiyo Hayashi
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Chieko Taguchi
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Itaru Suzuki
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Haruka Suzuki
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Teruaki Nagashima
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
- Department of Community Oral Health, Nihon University Graduate School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Kazumune Arikawa
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Yuichiro Okada
- Department of Histology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Takato Nomoto
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| |
Collapse
|
5
|
Ramzan A, Rashid MU, Malkani N. Unlocking the role of miR-17: Driving G1-S cell cycle transition in oral tongue cancer through integrated bioinformatics and laboratory analyses. Arch Oral Biol 2024; 171:106160. [PMID: 39674084 DOI: 10.1016/j.archoralbio.2024.106160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
OBJECTIVE This study aims to identify miRNA-mediated regulation of the cell cycle in oral tongue cancer. METHODS Comprehensive computational analysis was performed on the GEO dataset "GSE168227". DIANA Tool-mir path v.3, STRING, Cytoscape 3.6.0, Enrichr, and TargetScan Human 7.2 were utilized to identify and analyze miRNAs and their targets in oral tongue cancer. The identified miRNA and its target genes were further analyzed in oral tongue cancer patients using qPCR and immunohistochemistry (IHC). RESULTS Computational analysis revealed miR-17 as a differentially expressed miRNA in oral tongue cancer. Database analysis indicated potential binding sites of miR-17 for CDKN1A and CCND1 mRNA at 3'-UTR. In oral tongue cancer samples, miR-17, CDKN1A, and CCND1expression were upregulated compared to controls. IHC demonstrated overexpression of p21 and Cyclin D1 across various tumor grades, with predominant cytoplasmic expression of p21 observed in oral tongue cancer samples. CONCLUSION The findings suggest that miR-17 may regulate the G1-S transition of the cell cycle in oral tongue cancer. Further validation and functional studies are warranted to confirm their role as biomarkers.
Collapse
Affiliation(s)
- Ammara Ramzan
- Department of Zoology, GC University, Lahore, Pakistan
| | - Muhammad Usman Rashid
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Naila Malkani
- Department of Zoology, GC University, Lahore, Pakistan.
| |
Collapse
|
6
|
Doan CC, Le TL, Ho NQC, Nguyen TT, Hoang NQH, Le PC, Le NTL, Tran TLG, Nguyen TPT, Hoang NS. Cytotoxic effects of the standardized extract from Curcuma aromatica Salisb. rhizomes via induction of mitochondria-mediated caspase-dependent apoptotic pathway and p21-mediated G0/G1 cell cycle arrest on human gastric cancer AGS cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024:1-23. [PMID: 39635983 DOI: 10.1080/15287394.2024.2433577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Curcuma aromatica Salisb. (C. aromatica) is one of the traditional herbs used to treat microbial infection, skin eruption, coronary heart disease, and other diseases, including cancer. However, the inhibitory effects and underlying mechanisms of action of C. aromatica on gastric cancer cells have not yet been fully elucidated. Our study aimed to examine the possible molecular mechanisms underlying the cytotoxic effects attributed to C. aromatica rhizome standardized extract against gastric cancer cells. The components of two major active compounds in C. aromatica rhizome extract were quantitatively analyzed using a simple and validated HPLC method. Cytotoxicity was determined in different gastric cancer and non-cancer cell lines. The biological activities of the extract targeting apoptosis and cell cycle-related genes on gastric cancer AGS cells were also investigated to elucidate the mechanisms relating to the anti-proliferative effect of C. aromatica rhizomes. The two major active compounds curdione and germacrone, in the C. aromatica extract were standardized to 0.64% and 1.12% w/w, respectively. The standardized extract (CAE) exerted cytotoxic effects on various cancer cells, whereas minimal effects at equivalent doses were noted for normal cells. CAE concentration-dependently suppressed growth of gastric cancer AGS cells via induction of apoptosis. Further studies revealed that CAE treatment disrupted mitochondrial membrane potential (ΔΨm), increased Bax/Bcl-2 ratio, and cytochrome c release, resulting in activation of caspase-9/-3 and subsequent cleavage of PARP. Further, the inhibitory effects of caspase-9/-3 expression by a synthetic pan-caspase inhibitor partially protected cells against apoptosis following CAE treatment. In addition, CAE significantly promoted cell death in AGS cells via an accumulation of cells in the G0/G1 phase. This effect was associated with upregulation of the CDK inhibitor p21 and downregulation of cyclin D1, cyclin E, CDK4, and CDK2 expression. Our data indicated that CAE exerted anti-proliferative activity by activating the mitochondria-mediated caspase-dependent apoptotic pathway and arresting the p21-mediated G0/G1 cell cycle on human gastric cancer AGS cells.
Collapse
Affiliation(s)
- Chinh Chung Doan
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Thanh Long Le
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Nguyen Quynh Chi Ho
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Thi Thuy Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Nghia Quang Huy Hoang
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Phuc Chien Le
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Nguyen Tu Linh Le
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Thi Linh Giang Tran
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Thi Phuong Thao Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Nghia Son Hoang
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| |
Collapse
|
7
|
Naghinezhad J, Hosseini E, Siavashpour Z, Houshyari M, Khajetash B, Ghasemzadeh M. Designing a linear accelerator-based "X irradiation system" for platelet products: an efficient, safe, accessible and cost-effective alternative for conventional X- or gamma irradiators. Sci Rep 2024; 14:28363. [PMID: 39550453 PMCID: PMC11569130 DOI: 10.1038/s41598-024-80118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
X-irradiation of blood products is an alternative for gamma-ray to prevent post-transfusion GvHD. However, commercial X-irradiators are not widely available while little is known about their safety and efficacy for platelet products. This study introduces an efficient, accessible and cost-effective "X irradiation system" for platelet concentrates (PCs). By constructing a suitable radiation box (phantom) for a clinically available linear accelerator, an "X irradiation system" was designed specifically for PCs. PCs were divided into three equal bags either exposed to X- and gamma-irradiation or kept unirradiated (control). Irradiation-induced inhibition of T cells proliferation was examined by MTT and cell cycle assays on mononuclear cells (MNCs) obtained from PCs. The inhibitory effect of irradiation on allorecognition ability of MNCs was assessed by mixed lymphocyte reaction where MTT evaluated lymphocyte proliferation responses and flowcytometry examined CD8+T lymphocytes activity. Platelet activation was also examined with P-selectin expression and PAC-1 binding by flowcytometry. X- and gamma-irradiation reduced T cell proliferation while disturbing the cell-cycle with reduced entry of T-cells into the S phase and their G2 arrest. Both types of irradiations also effectively reduced "lymphocyte allorecognition responses" while inactivating CD8+T lymphocytes in platelet products but with no significant effect on platelet activity. This is the first study that showed "X irradiation system" effectively suppresses T cell proliferation and CD8+T lymphocyte activity in platelet products, with no effect to platelet quality and activation markers. This may suggest the LINAC-based "X irradiation system" with a dose of 30Gy as efficient and safe as gamma-irradiation for platelet products.
Collapse
Affiliation(s)
- Jalal Naghinezhad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Next to the Milad Tower, Hemmat Exp. Way, P.O.Box:14665-1157, Tehran, Iran
| | - Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Next to the Milad Tower, Hemmat Exp. Way, P.O.Box:14665-1157, Tehran, Iran.
| | - Zahra Siavashpour
- Radiology oncology Department, Medical School, Shohada-e Tajrish Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Houshyari
- Radiology oncology Department, Medical School, Shohada-e Tajrish Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Benyamin Khajetash
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Next to the Milad Tower, Hemmat Exp. Way, P.O.Box:14665-1157, Tehran, Iran.
| |
Collapse
|
8
|
Yao Q, Gao S, Sun Q, Liuhua Wang, Ren J, Wang D. POLQ knockdown inhibits proliferation, migration, and invasion by inducing cell cycle arrest in colorectal cancer. Discov Oncol 2024; 15:633. [PMID: 39520627 PMCID: PMC11550297 DOI: 10.1007/s12672-024-01496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Polymerase θ (POLQ) is an error-prone translesion synthesis polymerase that participates in the repair of DNA double-strand breaks. Previous studies have reported that the level of POLQ expression is distinctly upregulated in colorectal cancer (CRC), but little attention has been given to its function and regulation of CRC progression. This study aimed to explore the specific function of POLQ in CRC. METHODS Quantitative real-time PCR and western blotting analysis were used to assess the transcription and translation levels of POLQ. Then, POLQ was stably silenced using small interfering RNA in SW480 and HCT116 cells. Afterwards, the function of POLQ in CRC cells was proven via Cell Counting Kit‑8, scratch wound healing, colony formation, and Boyden chamber assays. Furthermore, we investigated the effects of POLQ on the cell cycle signaling pathway that obtained from biological pathway enrichment analysis and further verified by activating the signaling pathway. RESULTS The results showed that POLQ was highly expressed in CRC tissues and cells and was associated with poor clinical outcomes of patients. Knockdown of POLQ significantly reduced the proliferation, migration and invasion of CRC cells. Additionally, POLQ knockdown markedly decreased the expression levels of MMP2 and MMP9, and blocked cell cycle progression by inhibiting the expression of G1/M and S/M phases proteins. CONCLUSIONS POLQ knockdown restrained the progression of CRC by blocking the cell cycle signaling pathway.
Collapse
Affiliation(s)
- Qing Yao
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, 225001, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou, Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic, Yangzhou, 225001, China
| | - Shuyang Gao
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, 225001, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou, Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic, Yangzhou, 225001, China
| | - Qiannan Sun
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- Yangzhou, Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic, Yangzhou, 225001, China
- Medical Research Center of Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Liuhua Wang
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou, Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic, Yangzhou, 225001, China
| | - Jun Ren
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou, Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic, Yangzhou, 225001, China
| | - Daorong Wang
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, 225001, China.
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China.
- Yangzhou, Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic, Yangzhou, 225001, China.
| |
Collapse
|
9
|
Stahl A, Heider J, Wüst R, Fallgatter AJ, Schenke-Layland K, Volkmer H, Templin MF. Patient iPSC-derived neural progenitor cells display aberrant cell cycle control, p53, and DNA damage response protein expression in schizophrenia. BMC Psychiatry 2024; 24:757. [PMID: 39482642 PMCID: PMC11526604 DOI: 10.1186/s12888-024-06127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe psychiatric disorder associated with alterations in early brain development. Details of underlying pathomechanisms remain unclear, despite genome and transcriptome studies providing evidence for aberrant cellular phenotypes and pathway deregulation in developing neuronal cells. However, mechanistic insight at the protein level is limited. METHODS Here, we investigate SCZ-specific protein expression signatures of neuronal progenitor cells (NPC) derived from patient iPSC in comparison to healthy controls using high-throughput Western Blotting (DigiWest) in a targeted proteomics approach. RESULTS SCZ neural progenitors displayed altered expression and phosphorylation patterns related to Wnt and MAPK signaling, protein synthesis, cell cycle regulation and DNA damage response. Consistent with impaired cell cycle control, SCZ NPCs also showed accumulation in the G2/M cell phase and reduced differentiation capacity. Furthermore, we correlated these findings with elevated p53 expression and phosphorylation levels in SCZ patient-derived cells, indicating a potential implication of p53 in hampering cell cycle progression and efficient neurodevelopment in SCZ. CONCLUSIONS Through targeted proteomics we demonstrate that SCZ NPC display coherent mechanistic alterations in regulation of DNA damage response, cell cycle control and p53 expression. These findings highlight the suitability of iPSC-based approaches for modeling psychiatric disorders and contribute to a better understanding of the disease mechanisms underlying SCZ, particularly during early development.
Collapse
Affiliation(s)
- Aaron Stahl
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, 72076, Germany.
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany.
| | - Johanna Heider
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany
| | - Richard Wüst
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, 72076, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, 72076, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, 72076, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, 72076, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, 72076, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany
| | - Hansjürgen Volkmer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany
| | - Markus F Templin
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany.
| |
Collapse
|
10
|
Mattsson J, Rogne P, Landström M, Wolf-Watz M. Robust approach for production of the human oncology target Aurora kinase B in complex with its binding partner INCENP. Biochimie 2024:S0300-9084(24)00237-2. [PMID: 39424257 DOI: 10.1016/j.biochi.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Protein kinases are key players in many eukaryotic signal transduction cascades and are as a result often linked to human disease. In humans, the mitotic protein kinase family of Aurora kinases consist of three members: Aurora A, B and C. All three members are involved in cell division with proposed implications in various human cancers. The human Aurora kinase B has in particular proven challenging to study with structural biology approaches, and this is mainly due to difficulties in producing the large quantities of active enzyme required for such studies. Here, we present a novel and E. coli-based production system that allows for production of milligram quantities of well-folded and active human Aurora B in complex with its binding partner INCENP. The complex is produced as a continuous polypeptide chain and the resulting fusion protein is cleaved with TEV protease to generate a stable and native heterodimer of the Aurora B:INCENP complex. The activity, stability and degree of phosphorylation of the protein complex was quantified by using a coupled ATPase assay, 31P NMR spectroscopy and mass spectrometry. The developed production system enables isotope labeling and we here report the first 1H-15N-HSQC of the human Aurora B:INCENP complex. Our developed production strategy paves the way for future structural and functional studies of Aurora B and can as such assist the development of novel anticancer drugs targeting this important mitotic protein kinase.
Collapse
Affiliation(s)
- Jonna Mattsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Maréne Landström
- Department of Medical Biosciences 6M, Pathology, Umeå University, 901 85, Umeå, Sweden
| | | |
Collapse
|
11
|
Golla U, Patel S, Shah N, Talamo S, Bhalodia R, Claxton D, Dovat S, Sharma A. From Deworming to Cancer Therapy: Benzimidazoles in Hematological Malignancies. Cancers (Basel) 2024; 16:3454. [PMID: 39456548 PMCID: PMC11506385 DOI: 10.3390/cancers16203454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Drug repurposing is a strategy to discover new therapeutic uses for existing drugs, which have well-established toxicity profiles and are often more affordable. This approach has gained significant attention in recent years due to the high costs and low success rates associated with traditional drug development. Drug repositioning offers a more time- and cost-effective path for identifying new treatments. Several FDA-approved non-chemotherapy drugs have been investigated for their anticancer potential. Among these, anthelmintic benzimidazoles (such as albendazole, mebendazole, and flubendazole) have garnered interest due to their effects on microtubules and oncogenic signaling pathways. Blood cancers, which frequently develop resistance and have high mortality rates, present a critical need for effective therapies. This review highlights the recent advances in repurposing benzimidazoles for blood malignancies. These compounds induce cell cycle arrest, differentiation, tubulin depolymerization, loss of heterozygosity, proteasomal degradation, and inhibit oncogenic signaling to exert their anticancer effects. We also discuss current limitations and strategies to overcome them, emphasizing the potential of combining benzimidazoles with standard therapies for improved treatment of hematological cancers.
Collapse
Affiliation(s)
- Upendarrao Golla
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Satyam Patel
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Nyah Shah
- Department of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Stella Talamo
- Department of Medicine, Liberty University College of Osteopathic Medicine, Lynchburg, VA 24502, USA;
| | - Riya Bhalodia
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.B.); (S.D.)
| | - David Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.B.); (S.D.)
| | - Arati Sharma
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
12
|
Song G, Liu J, Tang X, Zhong J, Zeng Y, Zhang X, Zhou J, Zhou J, Cao L, Zhang Q, Li Y. Cell cycle checkpoint revolution: targeted therapies in the fight against malignant tumors. Front Pharmacol 2024; 15:1459057. [PMID: 39464635 PMCID: PMC11505109 DOI: 10.3389/fphar.2024.1459057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Malignant tumors are among the most important causes of death worldwide. The pathogenesis of a malignant tumor is complex and has not been fully elucidated. Studies have shown that such pathogenesis is related to abnormal cell cycle progression. The expression levels of cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors as well as functions of the cell cycle checkpoints determine whether the cell cycle progression is smooth. Cell-cycle-targeting drugs have the advantages of high specificity, low toxicity, low side effects, and low drug resistance. Identifying drugs that target the cell cycle and applying them in clinical treatments are expected to promote chemotherapeutic developments against malignant tumors. This article aims to review drugs targeted against the cell cycle and their action mechanisms.
Collapse
Affiliation(s)
- Guangming Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jue Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, The affiliated Zhuzhou hospital Xiangya medical college, Central South University, Zhuzhou, Hunan, China
| | - Jie Zhong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuhuan Zeng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaodi Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianbin Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jie Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lu Cao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qunfeng Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, The affiliated Zhuzhou hospital Xiangya medical college, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
13
|
Susanti NMP, Kurniawan F, Damayanti S, Kartasasmita RE, Tjahjono DH. The novel selective inhibitors of cyclin-dependent kinase 4/6: in vitro and in silico study. Sci Rep 2024; 14:23505. [PMID: 39379427 PMCID: PMC11461483 DOI: 10.1038/s41598-024-71865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
One of the main regulators in the cell cycle is cyclin-dependent kinase 4 and 6 (CDK4/6). FDA has approved CDK4/6 inhibitors for the treatment of patients with metastatic breast cancer. However, the development of selective agents remains problematic due to the conservation of their ATP binding sites. In the previous in silico study, ZINC585292724, ZINC585292587, ZINC585291674, and ZINC585291474 have been identified as potential inhibitors. Therefore, the present study aimed to analyze the selectivity and inhibitory activity of the four compounds against CDK4/6 in vitro as well as determine the potential for their further development in silico. The in vitro results showed that the four compounds had good selectivity towards both kinases, due to their similar structure. In agreement with the in silico results, ZINC585291674 produced the best inhibitory activity against CDK4 and CDK6, with IC50 of 184.14 nM and 111.78 nM, respectively. Their ADMET profile were also similar to reference compound of Palbociclib. Based on this, ZINC585291674 can be used as a lead compound for further inhibitor development.
Collapse
Affiliation(s)
- Ni Made Pitri Susanti
- School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia
- Study Program of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Udayana, Badung, 80361, Indonesia
| | - Fransiska Kurniawan
- School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia
| | - Sophi Damayanti
- School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia
| | | | | |
Collapse
|
14
|
Bellala RS, Chittineedi P, Llaguno SNS, Mosquera JAN, Mohiddin GJ, Pandrangi SL. Down-Regulation of Cysteine-Glutamate Antiporter in ALDH1A1 Expressing Oral and Breast Cancer Stem Cells Induced Oxidative Stress-Triggered Ferroptosis. J Cancer 2024; 15:6160-6176. [PMID: 39513121 PMCID: PMC11540493 DOI: 10.7150/jca.89429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/24/2024] [Indexed: 11/15/2024] Open
Abstract
Background: Sulfasalazine, an xCT inhibitor, is being used as a repurposed antineoplastic drug to induce ferroptosis. Ferroptosis is a regulated necrotic cell death pathway that is dependent on iron reserves. Interestingly, cancer stem cells (CSCs) that are regarded as major drivers of resistance to conventional therapies accompanied with tumor relapse and recurrence have bulk amount of iron reserves in the form of ferritin. This suggests that inducing ferroptosis might disrupt stemness and drug-resistant mechanisms in cancer stem cells, thereby reducing the risk of drug-resistance, cancer recurrence, and relapse. Materials & Methods: In the present study, ALDH1A1 expressing oral (OCSCs) and breast (BCSCs) cancer stem cells were sorted and used to investigate the role of sulfasalazine to induce ferroptosis. To check the self-renewability of CSCs spheroid formation, assay was performed and the resultant CSCs were treated with sulfasalazine (SAS) and subjected to gene expression analysis RT-PCR and flow cytometry. FACS was performed to check stem cell marker expression, cell cycle arrest, and apoptosis. Results: Our results suggest that the cells showed a gradual increase in sphere formation till S3 in the case of OCSCs and S2 in the case of BCSCs, with a gradual decrease in sphere-forming efficiency from the respective generations. When treated with 0.6mM SAS, these cells induced ferroptosis by downregulating stem cell markers like ALDH1A1, SLC7A11, ferritin, and GPx-4 with a concomitant increase in transferrin and STEAP-3. Flow cytometry studies revealed that the cells have undergone mitochondrial dysfunction characterized by loss of membrane potential and the cell cycle progression was halted in the G2/M phase. Conclusion: In the present study, we demonstrate that SAS potentially induced ferroptosis accompanied with oxidative stress in both OCSCs as well as BCSCs by lowering GPx-4 activity, a key enzyme that scavenges the products produced as a result of oxidative stress.
Collapse
Affiliation(s)
- Ravi Shankar Bellala
- Onco-Stem Cell Research Laboratory, Dept of Life Sciences, School of Science, GITAM (Deemed to Be) University, Visakhapatnam-530045, India
| | - Prasanthi Chittineedi
- Onco-Stem Cell Research Laboratory, Dept of Life Sciences, School of Science, GITAM (Deemed to Be) University, Visakhapatnam-530045, India
| | - Sungey Naynee Sánchez Llaguno
- Department Of Life Sciences and Agriculture, Armed Forces University-Espe, Santo Domingo 230101, Ecuador, South America
| | - Juan Alejandro Neira Mosquera
- Department Of Life Sciences and Agriculture, Armed Forces University-Espe, Santo Domingo 230101, Ecuador, South America
| | - Gooty Jaffer Mohiddin
- Department Of Life Sciences and Agriculture, Armed Forces University-Espe, Santo Domingo 230101, Ecuador, South America
| | - Santhi Latha Pandrangi
- Onco-Stem Cell Research Laboratory, Dept of Life Sciences, School of Science, GITAM (Deemed to Be) University, Visakhapatnam-530045, India
| |
Collapse
|
15
|
Sekar JAP, Li YC, Schlessinger A, Pandey G. A web portal for exploring kinase-substrate interactions. NPJ Syst Biol Appl 2024; 10:113. [PMID: 39362876 PMCID: PMC11450209 DOI: 10.1038/s41540-024-00442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024] Open
Abstract
Interactions between protein kinases and their substrates are critical for the modulation of complex signaling pathways. Currently, there is a large amount of information available about kinases and their substrates in disparate public databases. However, these data are difficult to interpret in the context of cellular systems, which can be facilitated by examining interactions among multiple proteins at once, such as the network of interactions that constitute a signaling pathway. We present KiNet, a user-friendly web portal that integrates and shares information about kinase-substrate interactions from multiple databases of post-translational modifications. KiNet enables the visual exploration of these interactions in systems contexts, such as pathways, domain families, and custom protein set inputs, in an interactive fashion. We expect KiNet to be useful as a knowledge discovery tool for kinase-substrate interactions, and the aggregated KiNet dataset to be useful for protein kinase studies and systems-level analyses. The portal is available at https://kinet.kinametrix.com/ .
Collapse
Affiliation(s)
- John A P Sekar
- Department of Genetics and Genomic Sciences, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yan Chak Li
- Department of Genetics and Genomic Sciences, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
16
|
Salmenov R, Mummery C, ter Huurne M. Cell cycle visualization tools to study cardiomyocyte proliferation in real-time. Open Biol 2024; 14:240167. [PMID: 39378987 PMCID: PMC11461051 DOI: 10.1098/rsob.240167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Cardiomyocytes in the adult human heart are quiescent and those lost following heart injury are not replaced by proliferating survivors. Considerable effort has been made to understand the mechanisms underlying cardiomyocyte cell cycle exit and re-entry, with view to discovering therapeutics that could stimulate cardiomyocyte proliferation and heart regeneration. The advent of large compound libraries and robotic liquid handling platforms has enabled the screening of thousands of conditions in a single experiment but success of these screens depends on the appropriateness and quality of the model used. Quantification of (human) cardiomyocyte proliferation in high throughput has remained problematic because conventional antibody-based staining is costly, technically challenging and does not discriminate between cardiomyocyte division and failure in karyokinesis or cytokinesis. Live cell imaging has provided alternatives that facilitate high-throughput screening but these have other limitations. Here, we (i) review the cell cycle features of cardiomyocytes, (ii) discuss various cell cycle fluorescent reporter systems, and (iii) speculate on what could improve their predictive value in the context of cardiomyocyte proliferation. Finally, we consider how these new methods can be used in combination with state-of-the-art three-dimensional human cardiac organoid platforms to identify pro-proliferative signalling pathways that could stimulate regeneration of the human heart.
Collapse
Affiliation(s)
- Rustem Salmenov
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden2300RC, The Netherlands
| | - Christine Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden2300RC, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden2300RC, The Netherlands
| | - Menno ter Huurne
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden2300RC, The Netherlands
| |
Collapse
|
17
|
Sergeeva SV, Loshchenova PS, Oshchepkov DY, Orishchenko KE. Crosstalk between BER and NHEJ in XRCC4-Deficient Cells Depending on hTERT Overexpression. Int J Mol Sci 2024; 25:10405. [PMID: 39408734 PMCID: PMC11476898 DOI: 10.3390/ijms251910405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Targeting DNA repair pathways is an important strategy in anticancer therapy. However, the unrevealed interactions between different DNA repair systems may interfere with the desired therapeutic effect. Among DNA repair systems, BER and NHEJ protect genome integrity through the entire cell cycle. BER is involved in the repair of DNA base lesions and DNA single-strand breaks (SSBs), while NHEJ is responsible for the repair of DNA double-strand breaks (DSBs). Previously, we showed that BER deficiency leads to downregulation of NHEJ gene expression. Here, we studied BER's response to NHEJ deficiency induced by knockdown of NHEJ scaffold protein XRCC4 and compared the knockdown effects in normal (TIG-1) and hTERT-modified cells (NBE1). We investigated the expression of the XRCC1, LIG3, and APE1 genes of BER and LIG4; the Ku70/Ku80 genes of NHEJ at the mRNA and protein levels; as well as p53, Sp1 and PARP1. We found that, in both cell lines, XRCC4 knockdown leads to a decrease in the mRNA levels of both BER and NHEJ genes, though the effect on protein level is not uniform. XRCC4 knockdown caused an increase in p53 and Sp1 proteins, but caused G1/S delay only in normal cells. Despite the increased p53 protein, p21 did not significantly increase in NBE1 cells with overexpressed hTERT, and this correlated with the absence of G1/S delay in these cells. The data highlight the regulatory function of the XRCC4 scaffold protein and imply its connection to a transcriptional regulatory network or mRNA metabolism.
Collapse
Affiliation(s)
- Svetlana V. Sergeeva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Polina S. Loshchenova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Dmitry Yu. Oshchepkov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
| | - Konstantin E. Orishchenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| |
Collapse
|
18
|
Wang X, Liu Q, Zhuang Z, Cheng J, Zhang W, Jiang Q, Guo Y, Li R, Lu X, Cui L, Weng J, Tang Y, Yue J, Gao S, Hong K, Qiao J, Jiang H, Guo J, Zhang Z. Decoding the pathogenesis of spermatogenic failure in cryptorchidism through single-cell transcriptomic profiling. Cell Rep Med 2024; 5:101709. [PMID: 39226895 PMCID: PMC11528238 DOI: 10.1016/j.xcrm.2024.101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/20/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Cryptorchidism, commonly known as undescended testis, affects 1%-9% of male newborns, posing infertility and testis tumor risks. Despite its prevalence, the detailed pathophysiology underlying male infertility within cryptorchidism remains unclear. Here, we profile and analyze 46,644 single-cell transcriptomes from individual testicular cells obtained from adult males diagnosed with cryptorchidism and healthy controls. Spermatogenesis compromise in cryptorchidism links primarily to spermatogonium self-renewal and differentiation dysfunctions. We illuminate the involvement of testicular somatic cells, including immune cells, thereby unveiling the activation and degranulation of mast cells in cryptorchidism. Mast cells are identified as contributors to interstitial fibrosis via transforming growth factor β1 (TGF-β1) and cathepsin G secretion. Furthermore, significantly increased levels of secretory proteins indicate mast cell activation and testicular fibrosis in the seminal plasma of individuals with cryptorchidism compared to controls. These insights serve as valuable translational references, enriching our comprehension of testicular pathogenesis and informing more precise diagnosis and targeted therapeutic strategies for cryptorchidism.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qiang Liu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Ziyan Zhuang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Jianxing Cheng
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Wenxiu Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Qiaoling Jiang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yifei Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Ran Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaojian Lu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Lina Cui
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Jiaming Weng
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Yanlin Tang
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Jingwei Yue
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Songzhan Gao
- Department of Andrology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Hong
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing, China; Department of Urology, Institute of Urology, Peking University First Hospital, Beijing, China.
| | - Jingtao Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China.
| | - Zhe Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Department of Urology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
19
|
Calheiros-Lobo M, Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Exploring the Therapeutic Implications of Co-Targeting the EGFR and Spindle Assembly Checkpoint Pathways in Oral Cancer. Pharmaceutics 2024; 16:1196. [PMID: 39339232 PMCID: PMC11435222 DOI: 10.3390/pharmaceutics16091196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Head and neck cancer (HNC), the sixth most common cancer worldwide, is increasing in incidence, with oral squamous cell carcinoma (OSCC) as the predominant subtype. OSCC mainly affects middle-aged to elderly males, often occurring on the posterior lateral border of the tongue, leading to significant disfigurement and functional impairments, such as swallowing and speech difficulties. Despite advancements in understanding OSCC's genetic and epigenetic variations, survival rates for advanced stages remain low, highlighting the need for new treatment options. Primary treatment includes surgery, often combined with radiotherapy (RT) and chemotherapy (CT). Cetuximab-based chemotherapy, targeting the overexpressed epidermal growth factor receptor (EGFR) in 80-90% of HNCs, is commonly used but correlates with poor prognosis. Additionally, monopolar spindle 1 (MPS1), a spindle assembly checkpoint (SAC) component, is a significant target due to its role in genomic fidelity during mitosis and its overexpression in several cancers. This review explores EGFR and MPS1 as therapeutic targets in HNC, analyzing their molecular mechanisms and the effects of their inhibition on cancer cells. It also highlights the promise of combinatorial approaches, such as microtubule-targeting agents (MTAs) and antimitotic agents, in improving HNC therapies, patient outcomes, and survival rates.
Collapse
Affiliation(s)
- Mafalda Calheiros-Lobo
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| | - João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| | - Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| | - Luís Monteiro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
- Medicine and Oral Surgery Department, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| |
Collapse
|
20
|
Gardner LL, Thompson SJ, O'Connor JD, McMahon SJ. Modelling radiobiology. Phys Med Biol 2024; 69:18TR01. [PMID: 39159658 DOI: 10.1088/1361-6560/ad70f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Radiotherapy has played an essential role in cancer treatment for over a century, and remains one of the best-studied methods of cancer treatment. Because of its close links with the physical sciences, it has been the subject of extensive quantitative mathematical modelling, but a complete understanding of the mechanisms of radiotherapy has remained elusive. In part this is because of the complexity and range of scales involved in radiotherapy-from physical radiation interactions occurring over nanometres to evolution of patient responses over months and years. This review presents the current status and ongoing research in modelling radiotherapy responses across these scales, including basic physical mechanisms of DNA damage, the immediate biological responses this triggers, and genetic- and patient-level determinants of response. Finally, some of the major challenges in this field and potential avenues for future improvements are also discussed.
Collapse
Affiliation(s)
- Lydia L Gardner
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - John D O'Connor
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
- Ulster University School of Engineering, York Street, Belfast BT15 1AP, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
21
|
Talarposhti MV, Salehzadeh A, Jalali A. Comparing the toxicity effects of copper oxide nanoparticles conjugated with Lapatinib on breast (MDA-MB-231) and lung (A549) cancer cell lines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6855-6866. [PMID: 38563880 DOI: 10.1007/s00210-024-03071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
In recent years, the increase in cancer morbidity and mortality has presented scientists with a major challenge in developing new therapeutic agents against cancer cells. This study aims to characterize the anticancer effects of copper oxide nanoparticles (NPs) conjugated with Lapatinib (CuO@Lapatinib) on breast and lung cancer cell lines. The physicochemical properties of the NPs were characterized by fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), and zeta potential analyses. The antiproliferative potential of the NPs in the breast (MDA-MB-231) and lung (A549) cancer cell lines and a normal cell line (MRC5) was investigated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Flow cytometry and Hoechst staining were used to evaluate cell apoptosis and cell cycle analysis. The reactive oxygen species (ROS) levels in the treated and control cells were also determined. The NPs were spherical, with a size range of 20-59nm, a DLS size of 338nm, and a zeta potential of -42.9 mV. The half maximal inhibitory concentration (IC50) of CuO@Lapatinib NPs for the normal, breast cancer, and lung cancer cell lines was 105, 98, and 87 µg/ml, respectively. Treatment with CuO@Lapatinib NPs caused considerable apoptosis induction in breast cancer (from 0.65% to 68.96%) and lung cancer cell lines (from 1.11% to 44.11%). Also, an increased level of cell cycle arrest at the S phase was observed in both cancer cell lines. The ROS level in the breast and lung cancer cell lines after treatment with CuO@Lapatinib NPs increased by 3.45 and 21.04 folds, respectively. Nuclear morphological alterations, including chromatin condensation and fragmentation, were observed in both cancer cell lines. This study indicates CuO@Lapatinib is a potent antiproliferative compound with more efficient inhibitory effects on lung cancer than breast cancer cells, which can be related to the higher ROS generation in the A549 cell line.
Collapse
Affiliation(s)
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Amir Jalali
- Department of Biology, Faculty of Science, Arak University, Arak, 384817758, Iran
| |
Collapse
|
22
|
Raza W, Meena A, Luqman S. THF induces apoptosis by downregulating initiation, promotion, and progression phase biomarkers in skin and lung carcinoma. J Biochem Mol Toxicol 2024; 38:e23838. [PMID: 39243196 DOI: 10.1002/jbt.23838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
3,5,7-Trihydroxy-2-phenylchromen-4-one (THF) possesses a diverse range of pharmacological activities. Evidence suggests that THF exerts anticancer activity by distinct mechanisms of action. This study explores the anticancer potential of THF in human lung (A549) and skin (A431) cancer cells by employing different antiproliferative assays. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, neutral red uptake, sulphorhodamine B, and cell motility assays were used to confirm the anticancer potential of THF. Cell target-based and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays were used to explore the effect of THF on the initiation, promotion and progression phase biomarkers of carcinogenesis. THF suppresses the activity of lipoxygenase-5 up to ~40% in both A549 and A431 cells and up to ~50% hyaluronidase activity in A549 cells. qRT-PCR assay reveals that THF inhibits the activity of phosphatidyl inositol-3 kinase/protein kinase B/mammalian target of rapamycin in both cell lines, which is responsible for the initiation of cancer. It also arrests the G2/M phase of the cell cycle in A431 cells and increases the sub-diploid population in both A549 and A431 cell lines which leads to cell death. Annexin V-FITC assay confirmed that THF induces apoptosis and necrosis in A431 and A549 cell lines. Further investigation revealed that THF not only enhances reactive oxygen species production but also modulates mitochondrial membrane potential in both cell lines. It significantly inhibits S-180 tumour formation at 5 and 10 mg/kg bw, i.p. dose. An acute skin toxicity study on mice showed that erythema and edema scores are within the acceptable range, besides acceptable drug-likeness properties and non-toxic effects on human erythrocytes. Conclusively, THF showed potent anticancer activity on skin and lung carcinoma cell lines, suppressed the level of the biomarkers and inhibited tumour growth in mice.
Collapse
Affiliation(s)
- Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
23
|
Raza W, Meena A, Luqman S. Diosmetin: A dietary flavone as modulator of signaling pathways in cancer progression. Mol Carcinog 2024; 63:1627-1642. [PMID: 38888206 DOI: 10.1002/mc.23774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Flavonoids, constituting the most extensive category of polyphenols, founds in a variety of plants and comprise over 9000 compounds. Diosmetin, O-methylated flavone (3',5,7-trihydroxy-4'-methoxyflavone) of flavonoid aglycone diosmin have witnessed a significant surge in recent years. Many studies showed that flavonoids induced cytotoxicity in different organ specific cancer types. Thus, current review evaluates the anticancer potential of diosmetin and shed light on its mechanism of action such as cell cycle regulation, apoptosis via both intrinsic and extrinsic pathway, autophagy and tumour progression and metastasis. It also provides comprehensive analysis of different cancer targets and their role in breast, colon, hepatic, gliomas, leukemia, lung, prostate and skin cancer. Combination studies of diosmetin to improve drug sensitivity and reduce toxicity towards normal cells has been also discussed. Besides, in vitro studies, present review also discuss the anticancer potential of diosmetin on xenograft mice model. Different natural sources of diosmetin, limitations, pharmacokinetic analysis and toxicity study also summarized in current review. The emphasis on enhancing solubility and permeability for clinical utility has been thoroughly highlighted with particular attention given to the utilization of nano formulations to overcome existing barriers. At last, in-depth analysis of current challenges and a forward-looking perspective deliberated to address the existing gaps and position it as a promising lead compound for clinical applications in cancer treatment. This discussion is boosted by diosmetin's potential anticancer properties on different cancers, makes valuable candidates in the ongoing quest for effective therapeutic interventions against cancer.
Collapse
Affiliation(s)
- Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
24
|
Wang RH, Chen PR, Chen YT, Chen YC, Chu YH, Chien CC, Chien PC, Lo SY, Wang ZL, Tsou MC, Chen SY, Chiu GS, Chen WL, Wu YH, Wang LHC, Wang WC, Lin SY, Kung HJ, Wang LH, Cheng HC, Lin KT. Hydrogen sulfide coordinates glucose metabolism switch through destabilizing tetrameric pyruvate kinase M2. Nat Commun 2024; 15:7463. [PMID: 39198443 PMCID: PMC11358145 DOI: 10.1038/s41467-024-51875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Most cancer cells reprogram their glucose metabolic pathway from oxidative phosphorylation to aerobic glycolysis for energy production. By reducing enzyme activity of pyruvate kinase M2 (PKM2), cancer cells attain a greater fraction of glycolytic metabolites for macromolecule synthesis needed for rapid proliferation. Here we demonstrate that hydrogen sulfide (H2S) destabilizes the PKM2 tetramer into monomer/dimer through sulfhydration at cysteines, notably at C326, leading to reduced PKM2 enzyme activity and increased PKM2-mediated transcriptional activation. Blocking PKM2 sulfhydration at C326 through amino acid mutation stabilizes the PKM2 tetramer and crystal structure further revealing the tetramer organization of PKM2-C326S. The PKM2-C326S mutant in cancer cells rewires glucose metabolism to mitochondrial respiration, significantly inhibiting tumor growth. In this work, we demonstrate that PKM2 sulfhydration by H2S inactivates PKM2 activity to promote tumorigenesis and inhibiting this process could be a potential therapeutic approach for targeting cancer metabolism.
Collapse
Grants
- National Science and Technology Council (Taiwan), 108-2314-B-007-003-MY3, 111-2320-B-007-005-MY3; National Tsing Hua University (NTHU), 111Q2713E1, 112Q2511E1, and 112Q2521E1, 113Q2524E1.
- National Science and Technology Council (Taiwan), 110-2320-B-007-004-MY3; National Health Research Institutes (Taiwan), NHRI-EX113-11124BI. National Tsing Hua University (NTHU), 112QI033E1
- National Science and Technology Council (Taiwan),110-2320-B-039-066; Ministry of Education (Taiwan), CMRC-CENTER-0
- National Science and Technology Council (Taiwan), 108-2311-B-007-002-MY3, 111-2311-B-007-009
Collapse
Affiliation(s)
- Rong-Hsuan Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Pin-Ru Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yue-Ting Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Chang Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Hsin Chu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Chen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Chen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shao-Yun Lo
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Zhong-Liang Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Min-Chen Tsou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ssu-Yu Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Guang-Shen Chiu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Ling Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Hsuan Wu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Hsing-Jien Kung
- College of Medical Science and Technology, PhD Program for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Lu-Hai Wang
- Chiese Medicine Research Center, and Institute of Integrated Medicine, China Medical University, Taichung City, Taiwan.
| | - Hui-Chun Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - Kai-Ti Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
25
|
Dutta D, Al Hoque A, Paul B, Park JH, Chowdhury C, Quadir M, Banerjee S, Choudhury A, Laha S, Sepay N, Boro P, Kaipparettu BA, Mukherjee B. EpCAM-targeted betulinic acid analogue nanotherapy improves therapeutic efficacy and induces anti-tumorigenic immune response in colorectal cancer tumor microenvironment. J Biomed Sci 2024; 31:81. [PMID: 39164686 PMCID: PMC11334571 DOI: 10.1186/s12929-024-01069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Betulinic acid (BA) has been well investigated for its antiproliferative and mitochondrial pathway-mediated apoptosis-inducing effects on various cancers. However, its poor solubility and off-target activity have limited its utility in clinical trials. Additionally, the immune modulatory role of betulinic acid analogue in the tumor microenvironment (TME) is largely unknown. Here, we designed a potential nanotherapy for colorectal cancer (CRC) with a lead betulinic acid analogue, named as 2c, carrying a 1,2,3-triazole-moiety attached to BA through a linker, found more effective than BA for inhibiting CRC cell lines, and was chosen here for this investigation. Epithelial cell adhesion molecule (EpCAM) is highly overexpressed on the CRC cell membrane. A single-stranded short oligonucleotide sequence, aptamer (Apt), that folds into a 3D-defined architecture can be used as a targeting ligand for its specific binding to a target protein. EpCAM targeting aptamer was designed for site-specific homing of aptamer-conjugated-2c-loaded nanoparticles (Apt-2cNP) at the CRC tumor site to enhance therapeutic potential and reduce off-target toxicity in normal cells. We investigated the in vitro and in vivo therapeutic efficacy and anti-tumorigenic immune response of aptamer conjugated nanotherapy in CRC-TME. METHODS After the characterization of nanoengineered aptamer conjugated betulinic acid nanotherapy, we evaluated therapeutic efficacy, tumor targeting efficiency, and anti-tumorigenic immune response using cell-based assays and mouse and rat models. RESULTS We found that Apt-2cNP improved drug bioavailability, enhanced its biological half-life, improved antiproliferative activity, and minimized off-target cytotoxicity. Importantly, in an in vivo TME, Apt-2cNP showed promising signs of anti-tumorigenic immune response (increased mDC/pDC ratio, enhanced M1 macrophage population, and CD8 T-cells). Furthermore, in vivo upregulation of pro-apoptotic while downregulation of anti-apoptotic genes and significant healing efficacy on cancer tissue histopathology suggest that Apt-2cNP had predominantly greater therapeutic potential than the non-aptamer-conjugated nanoparticles and free drug. Moreover, we observed greater tumor accumulation of the radiolabeled Apt-2cNP by live imaging in the CRC rat model. CONCLUSIONS Enhanced therapeutic efficacy and robust anti-tumorigenic immune response of Apt-2cNP in the CRC-TME are promising indicators of its potential as a prospective therapeutic agent for managing CRC. However, further studies are warranted.
Collapse
Affiliation(s)
- Debasmita Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA.
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Ashique Al Hoque
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Brahamacharry Paul
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
- Department of Psychology and Neuroscience Program, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | | | - Soumik Laha
- CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | - Nayim Sepay
- Department of Chemistry, Jadavpur University, Kolkata, India
| | - Priyanka Boro
- CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | | | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| |
Collapse
|
26
|
Lin Y, Xiong G, Xia X, Yin Z, Zou X, Zhang X, Zhang C, Ye J. Authentication and validation of key genes in the treatment of atopic dermatitis with Runfuzhiyang powder: combined RNA-seq, bioinformatics analysis, and experimental research. Front Genet 2024; 15:1335093. [PMID: 39149589 PMCID: PMC11324508 DOI: 10.3389/fgene.2024.1335093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Background Atopic dermatitis (AD) is inflammatory disease. So far, therapeutic mechanism of Runfuzhiyang powder on AD remains to be studied. This study aimed to mine key biomarkers to explore potential molecular mechanism for AD incidence and Runfuzhiyang powder treatment. Methods The control group, AD group, treat group (AD mice treated with Runfuzhiyang powder were utilized for studying. Differentially expressed AD-related genes were acquired by intersecting of key module genes related to control group, AD group and treatment group which were screened by WGCNA and AD-related differentially expressed genes (DEGs). KEGG and GO analyses were further carried out. Next, LASSO regression analysis was utilized to screen feature genes. The ROC curves were applied to validate the diagnostic ability of feature genes to obtain AD-related biomarkers. Then protein-protein interaction (PPI) network, immune infiltration analysis and single-gene gene set enrichment analysis (GSEA) were presented. Finally, TF-mRNA-lncRNA and drug-gene networks of biomarkers were constructed. Results 4 AD-related biomarkers (Ddit4, Sbf2, Senp8 and Zfp777) were identified in AD groups compared with control group and treat group by LASSO regression analysis. The ROC curves revealed that four biomarkers had good distinguishing ability between AD group and control group, as well as AD group and treatment group. Next, GSEA revealed that pathways of E2F targets, KRAS signaling up and inflammatory response were associated with 4 biomarkers. Then, we found that Ddit4, Sbf2 and Zfp777 were significantly positively correlated with M0 Macrophage, and were significantly negatively relevant to Resting NK. Senp8 was the opposite. Finally, a TF-mRNA-lncRNA network including 200 nodes and 592 edges was generated, and 20 drugs targeting SENP8 were predicted. Conclusion 4 AD-related and Runfuzhiyang powder treatment-related biomarkers (Ddit4, Sbf2, Senp8 and Zfp777) were identified, which could provide a new idea for targeted treatment and diagnosis of AD.
Collapse
Affiliation(s)
- Yan Lin
- Department of Dermatology, The No.1 Affiliated Hospital of Yunnan University of CM, Kunming, China
| | - Guangyi Xiong
- Biology and Medical Statistic Unit, Basic Medical Science School, Yunnan University of CM, Kunming, China
| | - Xiansong Xia
- Teaching Affairs Department, Yunnan University of CM, Kunming, China
| | - Zhiping Yin
- Department of Laboratory Medicine, The No.1 Affiliated Hospital of Yunnan University of CM, Kunming, China
| | - Xuhui Zou
- Department of Dermatology, The No.1 Affiliated Hospital of Yunnan University of CM, Kunming, China
| | - Xu Zhang
- Department of Dermatology, The No.1 Affiliated Hospital of Yunnan University of CM, Kunming, China
| | - Chenghao Zhang
- Department of Dermatology, The No.1 Affiliated Hospital of Yunnan University of CM, Kunming, China
| | - Jianzhou Ye
- Department of Dermatology, The No.1 Affiliated Hospital of Yunnan University of CM, Kunming, China
| |
Collapse
|
27
|
Gupta S, Silveira DA, Lorenzoni PR, Mombach JCM, Hashimoto RF. LncRNA PTENP1/miR-21/PTEN Axis Modulates EMT and Drug Resistance in Cancer: Dynamic Boolean Modeling for Cell Fates in DNA Damage Response. Int J Mol Sci 2024; 25:8264. [PMID: 39125832 PMCID: PMC11311614 DOI: 10.3390/ijms25158264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
It is well established that microRNA-21 (miR-21) targets phosphatase and tensin homolog (PTEN), facilitating epithelial-to-mesenchymal transition (EMT) and drug resistance in cancer. Recent evidence indicates that PTEN activates its pseudogene-derived long non-coding RNA, PTENP1, which in turn inhibits miR-21. However, the dynamics of PTEN, miR-21, and PTENP1 in the DNA damage response (DDR) remain unclear. Thus, we propose a dynamic Boolean network model by integrating the published literature from various cancers. Our model shows good agreement with the experimental findings from breast cancer, hepatocellular carcinoma (HCC), and oral squamous cell carcinoma (OSCC), elucidating how DDR activation transitions from the intra-S phase to the G2 checkpoint, leading to a cascade of cellular responses such as cell cycle arrest, senescence, autophagy, apoptosis, drug resistance, and EMT. Model validation underscores the roles of PTENP1, miR-21, and PTEN in modulating EMT and drug resistance. Furthermore, our analysis reveals nine novel feedback loops, eight positive and one negative, mediated by PTEN and implicated in DDR cell fate determination, including pathways related to drug resistance and EMT. Our work presents a comprehensive framework for investigating cellular responses following DDR, underscoring the therapeutic potential of targeting PTEN, miR-21, and PTENP1 in cancer treatment.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| | | | - Pedro R. Lorenzoni
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (P.R.L.); (J.C.M.M.)
| | - Jose Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (P.R.L.); (J.C.M.M.)
| | - Ronaldo F. Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| |
Collapse
|
28
|
Atemin A, Ivanova A, Kanev PB, Uzunova S, Nedelcheva-Veleva M, Stoynov S. Dynamics of Replication-Associated Protein Levels through the Cell Cycle. Int J Mol Sci 2024; 25:8230. [PMID: 39125800 PMCID: PMC11311332 DOI: 10.3390/ijms25158230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The measurement of dynamic changes in protein level and localization throughout the cell cycle is of major relevance to studies of cellular processes tightly coordinated with the cycle, such as replication, transcription, DNA repair, and checkpoint control. Currently available methods include biochemical assays of cells in bulk following synchronization, which determine protein levels with poor temporal and no spatial resolution. Taking advantage of genetic engineering and live-cell microscopy, we performed time-lapse imaging of cells expressing fluorescently tagged proteins under the control of their endogenous regulatory elements in order to follow their levels throughout the cell cycle. We effectively discern between cell cycle phases and S subphases based on fluorescence intensity and distribution of co-expressed proliferating cell nuclear antigen (PCNA)-mCherry. This allowed us to precisely determine and compare the levels and distribution of multiple replication-associated factors, including Rap1-interacting factor 1 (RIF1), minichromosome maintenance complex component 6 (MCM6), origin recognition complex subunit 1 (ORC1, and Claspin, with high spatiotemporal resolution in HeLa Kyoto cells. Combining these data with available mass spectrometry-based measurements of protein concentrations reveals the changes in the concentration of these proteins throughout the cell cycle. Our approach provides a practical basis for a detailed interrogation of protein dynamics in the context of the cell cycle.
Collapse
Affiliation(s)
| | | | | | | | | | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G., Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (A.I.); (P.-B.K.); (S.U.); (M.N.-V.)
| |
Collapse
|
29
|
Garg P, Malhotra J, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging Therapeutic Strategies to Overcome Drug Resistance in Cancer Cells. Cancers (Basel) 2024; 16:2478. [PMID: 39001539 PMCID: PMC11240358 DOI: 10.3390/cancers16132478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The rise of drug resistance in cancer cells presents a formidable challenge in modern oncology, necessitating the exploration of innovative therapeutic strategies. This review investigates the latest advancements in overcoming drug resistance mechanisms employed by cancer cells, focusing on emerging therapeutic modalities. The intricate molecular insights into drug resistance, including genetic mutations, efflux pumps, altered signaling pathways, and microenvironmental influences, are discussed. Furthermore, the promising avenues offered by targeted therapies, combination treatments, immunotherapies, and precision medicine approaches are highlighted. Specifically, the synergistic effects of combining traditional cytotoxic agents with molecularly targeted inhibitors to circumvent resistance pathways are examined. Additionally, the evolving landscape of immunotherapeutic interventions, including immune checkpoint inhibitors and adoptive cell therapies, is explored in terms of bolstering anti-tumor immune responses and overcoming immune evasion mechanisms. Moreover, the significance of biomarker-driven strategies for predicting and monitoring treatment responses is underscored, thereby optimizing therapeutic outcomes. For insights into the future direction of cancer treatment paradigms, the current review focused on prevailing drug resistance challenges and improving patient outcomes, through an integrative analysis of these emerging therapeutic strategies.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, India
| | - Jyoti Malhotra
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
30
|
Smith AA, Vesey A, Helfrich C, Pasternak JA. Late gestation fetal hypothyroidism alters cell cycle regulation across multiple organ systems. BMC Vet Res 2024; 20:268. [PMID: 38902754 PMCID: PMC11188211 DOI: 10.1186/s12917-024-04102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Hypothyroidism is a common endocrine disruption observed in utero that adversely affects fetal growth and maturation leading to long-term impacts on health; however, the exact molecular mechanisms by which these deleterious effects occur are unknown. We hypothesize that fetal hypothyroidism during late gestation will disrupt cell cycle regulation in a tissue-specific manner. To evaluate this, eight pregnant gilts were dosed with either methimazole or an equivalent negative control during days 85-106 out of 114 days of gestation (n = 4/group). Following treatment, the gilts were humanely euthanized, and tissue samples of fetal heart, ileum, kidney, lung, liver, muscle, spleen, and thymus taken from two male and two female fetuses (n = 32) from each gilt. RESULTS The relative expression of three cell cycle promoters (CDK1, CDK2, and CDK4), and one cell cycle inhibitor (CDKN1A) was compared in each tissue to determine the effect of hypothyroidism on the developing fetus. All of the eight tissues examined experienced at least one significant up- or downregulation in the expression of the aforementioned genes as a result of treatment with methimazole. Substantial changes were observed in the liver and muscle, with the latter experiencing significant downregulations of CDK1, CDK2, and CDK4 as a result of treatment. In addition, all tissues were examined for changes in protein content, which further elucidated the impact of hypothyroidism on the fetal liver by the observation of a marked increase in protein content in the methimazole-treated group. Finally, the heart and liver were histologically examined for evidence of cellular hyperplasia and hypertrophy by measuring average nuclei density and size in each tissue, with the results showing a significant decrease in average nuclei size in the liver of hypothyroid fetuses. CONCLUSIONS Collectively, these findings indicate the occurrence of organ-specific disruptions in cell cycle progression as a result of in utero hypothyroidism, which may explain the long term and widespread effects of hypothyroidism on fetal development.
Collapse
Affiliation(s)
- Alyssa A Smith
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47906, USA
| | - Alexa Vesey
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47906, USA
| | - Caden Helfrich
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47906, USA
| | - J Alex Pasternak
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
31
|
Lohberger B, Barna S, Glänzer D, Eck N, Leithner A, Georg D. DNA-PKcs Inhibition Sensitizes Human Chondrosarcoma Cells to Carbon Ion Irradiation via Cell Cycle Arrest and Telomere Capping Disruption. Int J Mol Sci 2024; 25:6179. [PMID: 38892366 PMCID: PMC11173223 DOI: 10.3390/ijms25116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
In order to overcome the resistance to radiotherapy in human chondrosarcoma cells, the prevention from efficient DNA repair with a combined treatment with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) inhibitor AZD7648 was explored for carbon ion (C-ion) as well as reference photon (X-ray) irradiation (IR) using gene expression analysis, flow cytometry, protein phosphorylation, and telomere length shortening. Proliferation markers and cell cycle distribution changed significantly after combined treatment, revealing a prominent G2/M arrest. The expression of the G2/M checkpoint genes cyclin B, CDK1, and WEE1 was significantly reduced by IR alone and the combined treatment. While IR alone showed no effects, additional AZD7648 treatment resulted in a dose-dependent reduction in AKT phosphorylation and an increase in Chk2 phosphorylation. Twenty-four hours after IR, the key genes of DNA repair mechanisms were reduced by the combined treatment, which led to impaired DNA repair and increased radiosensitivity. A time-dependent shortening of telomere length was observed in both cell lines after combined treatment with AZD7648 and 8 Gy X-ray/C-ion IR. Our data suggest that the inhibition of DNA-PKcs may increase sensitivity to X-rays and C-ion IR by impairing its functional role in DNA repair mechanisms and telomere end protection.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5-7, 8036 Graz, Austria; (D.G.); (N.E.); (A.L.)
| | - Sandra Barna
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (S.B.); (D.G.)
- MedAustron-Ion Therapy Center, Viktor-Kaplan Strasse 2, 2700 Wiener Neustadt, Austria
| | - Dietmar Glänzer
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5-7, 8036 Graz, Austria; (D.G.); (N.E.); (A.L.)
| | - Nicole Eck
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5-7, 8036 Graz, Austria; (D.G.); (N.E.); (A.L.)
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5-7, 8036 Graz, Austria; (D.G.); (N.E.); (A.L.)
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (S.B.); (D.G.)
- MedAustron-Ion Therapy Center, Viktor-Kaplan Strasse 2, 2700 Wiener Neustadt, Austria
| |
Collapse
|
32
|
Han L, Xiang X, Fu Y, Wei S, Zhang C, Li L, Liu Y, Lv H, Shan B, Zhao L. Periplcymarin targets glycolysis and mitochondrial oxidative phosphorylation of esophageal squamous cell carcinoma: Implication in anti-cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155539. [PMID: 38522311 DOI: 10.1016/j.phymed.2024.155539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/28/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is the predominant histological subtype of esophageal cancer (EC) in China, and demonstrates varying levels of resistance to multiple chemotherapeutic agents. Our previous studies have proved that periplocin (CPP), derived from the extract of cortex periplocae, exhibiting the capacity to hinder proliferation and induce apoptosis in ESCC cells. Several studies have identified additional anti-cancer constituents in the extract of cortex periplocae, named periplcymarin (PPM), sharing similar compound structure with CPP. Nevertheless, the inhibitory effects of PPM on ESCC and their underlying mechanisms remain to be further elucidated. PURPOSE The aim of this study was to investigate function of PPM inhibiting the growth of ESCC in vivo and in vitro and to explore its underlying mechanism, providing the potential anti-tumor drug for ESCC. METHODS Initially, a comparative analysis was conducted on the inhibitory activity of three naturally compounds obtained from the extract of cortex periplocae on ESCC cells. Among these compounds, PPM was chosen for subsequent investigation owing to its comparatively structure and anti-tumor activity simultaneously. Subsequently, a series of biological functional experiments were carried out to assess the impact of PPM on the proliferation, apoptosis and cell cycle arrest of ESCC cells in vitro. In order to elucidate the molecular mechanism of PPM, various methodologies were employed, including bioinformatics analyses and mechanistic experiments such as high-performance liquid chromatography combined with mass spectrometry (HPLC-MS), cell glycolysis pressure and mitochondrial pressure test. Additionally, the anti-tumor effects of PPM on ESCC cells and potential toxic side effects were evaluated in vivo using the nude mice xenograft assay. RESULTS Our study revealed that PPM possesses the ability to impede the proliferation of ESCC cells, induce apoptosis, and arrest the cell cycle of ESCC cells in the G2/M phase in vitro. Mechanistically, PPM exerted its effects by modulating glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), as confirmed by glycolysis pressure and mitochondrial pressure tests. Moreover, rescue assays demonstrated that PPM inhibits glycolysis and OXPHOS in ESCC cells through the PI3K/AKT and MAPK/ERK signaling pathways. Additionally, we substantiated that PPM effectively suppresses the growth of ESCC cells in vivo, with only modest potential toxic side effects. CONCLUSION Our study provides novel evidence that PPM has the potential to simultaneously target glycolysis and mitochondrial OXPHOS in ESCC cells. This finding highlights the need for further investigation into PPM as a promising therapeutic agent that targets the tumor glucose metabolism pathway in ESCC.
Collapse
Affiliation(s)
- Lujuan Han
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Department of Pathogenic Biology, Hebei Medical University, Zhongshan Road 361, Shijiazhuang, 050017, PR China
| | - Xiaohan Xiang
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China
| | - Yuhui Fu
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China
| | - Sisi Wei
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China
| | - Cong Zhang
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China
| | - Lei Li
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China
| | - Yueping Liu
- Department of Pathology, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China
| | - Huilai Lv
- Department of Thoracic Surgery, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China
| | - Baoen Shan
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China.
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China.
| |
Collapse
|
33
|
Chowdhury SP, Solley SC, Polishchuk E, Bacal J, Conrad JE, Gardner BM, Acosta-Alvear D, Zappa F. Baseline unfolded protein response signaling adjusts the timing of the mammalian cell cycle. Mol Biol Cell 2024; 35:br12. [PMID: 38656789 PMCID: PMC11238080 DOI: 10.1091/mbc.e23-11-0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
The endoplasmic reticulum (ER) is a single-copy organelle that cannot be generated de novo, suggesting coordination between the mechanisms overseeing ER integrity and those controlling the cell cycle to maintain organelle inheritance. The Unfolded Protein Response (UPR) is a conserved signaling network that regulates ER homeostasis. Here, we show that pharmacological and genetic inhibition of the UPR sensors IRE1, ATF6, and PERK in unstressed cells delays the cell cycle, with PERK inhibition showing the most penetrant effect, which was associated with a slowdown of the G1-to-S/G2 transition. Treatment with the small molecule ISRIB to bypass the effects of PERK-dependent phosphorylation of the translation initiation factor eIF2α had no such effect, suggesting that cell cycle timing depends on PERK's kinase activity but is independent of eIF2α phosphorylation. Using complementary light and electron microscopy and flow cytometry-based analyses, we also demonstrate that the ER enlarges before mitosis. Together, our results suggest coordination between UPR signaling and the cell cycle to maintain ER physiology during cell division.
Collapse
Affiliation(s)
- Soham P. Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Sabrina C. Solley
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Julien Bacal
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Julia E. Conrad
- Altos Labs Bay Area Institute of Science, Altos Labs, Redwood City, CA 94065
| | - Brooke M. Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Diego Acosta-Alvear
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Francesca Zappa
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|
34
|
Das S, Manna A, Majumdar O, Dhara L. M- O-M mediated denaturation resistant P2 tetramer on the infected erythrocyte surface of malaria parasite imports serum fatty acids. iScience 2024; 27:109760. [PMID: 38726364 PMCID: PMC11079477 DOI: 10.1016/j.isci.2024.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
In Plasmodium falciparum, DNA replication, and asynchronous nuclear divisions precede cytokinesis during intraerythrocytic schizogony. Regulation of nuclear division through the import of serum components was largely unknown. At the trophozoite stage, P. falciparum ribosomal protein P2 (PfP2) is exported to the infected erythrocyte (IE) cytosol and the surface as a denaturation-resistant tetramer. The inaccessibility of the IE surface exposed PfP2 to its bona fide ligand led to the arrest of nuclear division. Here, we show that at the onset of schizogony, denaturation-resistant PfP2 tetramer on the IE surface imports fatty acids (FAs). Blockage of import reversibly arrested parasite schizogony. In 11Met-O-Met11 mediated denaturation resistant PfP2 tetramer, the 12/53Cys-Cys12/53 redox switch regulates the binding and release of FAs based on oxidized/reduced state of disulfide linkages. This mechanistic insight of FAs import through PfP2 tetramer reveals a unique regulation of nuclear division at the onset of schizogony.
Collapse
Affiliation(s)
- Sudipta Das
- Division of infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Anwesa Manna
- Division of infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Oindrila Majumdar
- Division of infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Lena Dhara
- Division of infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
35
|
Xu Y, Jiao Y, Liu C, Miao R, Liu C, Wang Y, Ma C, Liu J. R-loop and diseases: the cell cycle matters. Mol Cancer 2024; 23:84. [PMID: 38678239 PMCID: PMC11055327 DOI: 10.1186/s12943-024-02000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
The cell cycle is a crucial biological process that is involved in cell growth, development, and reproduction. It can be divided into G1, S, G2, and M phases, and each period is closely regulated to ensure the production of two similar daughter cells with the same genetic material. However, many obstacles influence the cell cycle, including the R-loop that is formed throughout this process. R-loop is a triple-stranded structure, composed of an RNA: DNA hybrid and a single DNA strand, which is ubiquitous in organisms from bacteria to mammals. The existence of the R-loop has important significance for the regulation of various physiological processes. However, aberrant accumulation of R-loop due to its limited resolving ability will be detrimental for cells. For example, DNA damage and genomic instability, caused by the R-loop, can activate checkpoints in the cell cycle, which in turn induce cell cycle arrest and cell death. At present, a growing number of factors have been proven to prevent or eliminate the accumulation of R-loop thereby avoiding DNA damage and mutations. Therefore, we need to gain detailed insight into the R-loop resolution factors at different stages of the cell cycle. In this review, we review the current knowledge of factors that play a role in resolving the R-loop at different stages of the cell cycle, as well as how mutations of these factors lead to the onset and progression of diseases.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yue Jiao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chengbin Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Rui Miao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunyan Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yilong Wang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunming Ma
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Jiao Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
36
|
Polinski JM, Castellano KR, Buckley KM, Bodnar AG. Genomic signatures of exceptional longevity and negligible aging in the long-lived red sea urchin. Cell Rep 2024; 43:114021. [PMID: 38564335 DOI: 10.1016/j.celrep.2024.114021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The red sea urchin (Mesocentrotus franciscanus) is one of the Earth's longest-living animals, reported to live more than 100 years with indeterminate growth, life-long reproduction, and no increase in mortality rate with age. To understand the genetic underpinnings of longevity and negligible aging, we constructed a chromosome-level assembly of the red sea urchin genome and compared it to that of short-lived sea urchin species. Genome-wide syntenic alignments identified chromosome rearrangements that distinguish short- and long-lived species. Expanded gene families in long-lived species play a role in innate immunity, sensory nervous system, and genome stability. An integrated network of genes under positive selection in the red sea urchin was involved in genomic regulation, mRNA fidelity, protein homeostasis, and mitochondrial function. Our results implicated known longevity genes in sea urchin longevity but also revealed distinct molecular signatures that may promote long-term maintenance of tissue homeostasis, disease resistance, and negligible aging.
Collapse
Affiliation(s)
| | | | | | - Andrea G Bodnar
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA.
| |
Collapse
|
37
|
Li Y, He R, Qin X, Zhu Q, Ma L, Liang X. Transcriptome analysis during 4-vinylcyclohexene diepoxide exposure-induced premature ovarian insufficiency in mice. PeerJ 2024; 12:e17251. [PMID: 38646488 PMCID: PMC11032656 DOI: 10.7717/peerj.17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
The occupational chemical 4-Vinylcyclohexene diepoxide (VCD) is a reproductively toxic environmental pollutant that causes follicular failure, leading to premature ovarian insufficiency (POI), which significantly impacts a woman's physical health and fertility. Investigating VCD's pathogenic mechanisms can offer insights for the prevention of ovarian impairment and the treatment of POI. This study established a mouse model of POI through intraperitoneal injection of VCD into female C57BL/6 mice for 15 days. The results were then compared with those of the control group, including a comparison of phenotypic characteristics and transcriptome differences, at two time points: day 15 and day 30. Through a comprehensive analysis of differentially expressed genes (DEGs), key genes were identified and validated some using RT-PCR. The results revealed significant impacts on sex hormone levels, follicle number, and the estrous cycle in VCD-induced POI mice on both day 15 and day 30. The DEGs and enrichment results obtained on day 15 were not as significant as those obtained on day 30. The results of this study provide a preliminary indication that steroid hormone synthesis, DNA damage repair, and impaired oocyte mitosis are pivotal in VCD-mediated ovarian dysfunction. This dysfunction may have been caused by VCD damage to the primordial follicular pool, impairing follicular development and aggravating ovarian damage over time, making it gradually difficult for the ovaries to perform their normal functions.
Collapse
Affiliation(s)
- Yi Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Ruifen He
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Qin
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Qinying Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Liangjian Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolei Liang
- Gansu Provincial Clinical Research Center for Gynecological Oncology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
38
|
Zhong Y, Wang G, Yang S, Zhang Y, Wang X. The role of DNA damage in neural stem cells ageing. J Cell Physiol 2024; 239:e31187. [PMID: 38219047 DOI: 10.1002/jcp.31187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024]
Abstract
Neural stem cells (NSCs) are pluripotent stem cells with the potential to differentiate into a variety of nerve cells. NSCs are susceptible to both intracellular and extracellular insults, thus causing DNA damage. Extracellular insults include ultraviolet, ionizing radiation, base analogs, modifiers, alkyl agents and others, while intracellular factors include Reactive oxygen species (ROS) radicals produced by mitochondria, mismatches that occur during DNA replication, deamination of bases, loss of bases, and more. When encountered with DNA damage, cells typically employ three coping strategies: DNA repair, damage tolerance, and apoptosis. NSCs, like many other stem cells, have the ability to divide, differentiate, and repair DNA damage to prevent mutations from being passed down to the next generation. However, when DNA damage accumulates over time, it will lead to a series of alterations in the metabolism of cells, which will cause cellular ageing. The ageing and exhaustion of neural stem cell will have serious effects on the body, such as neurodegenerative diseases. The purpose of this review is to examine the processes by which DNA damage leads to NSCs ageing and the mechanisms of DNA repair in NSCs.
Collapse
Affiliation(s)
- Yiming Zhong
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangming Wang
- School of Medicine, Postdoctoral Station of Clinical Medicine, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xianli Wang
- School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Mustafa M, Abbas K, Alam M, Ahmad W, Moinuddin, Usmani N, Siddiqui SA, Habib S. Molecular pathways and therapeutic targets linked to triple-negative breast cancer (TNBC). Mol Cell Biochem 2024; 479:895-913. [PMID: 37247161 DOI: 10.1007/s11010-023-04772-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Cancer is a group of diseases characterized by uncontrolled cellular growth, abnormal morphology, and altered proliferation. Cancerous cells lose their ability to act as anchors, allowing them to spread throughout the body and infiltrate nearby cells, tissues, and organs. If these cells are not identified and treated promptly, they will likely spread. Around 70% of female breast cancers are caused by a mutation in the BRCA gene, specifically BRCA1. The absence of progesterone, oestrogen and HER2 receptors (human epidermal growth factor) distinguishes the TNBC subtype of breast cancer. There were approximately 6,85,000 deaths worldwide and 2.3 million new breast cancer cases in women in 2020. Breast cancer is the most common cancer globally, affecting 7.8 million people at the end of 2020. Compared to other cancer types, breast cancer causes more women to lose disability-adjusted life years (DALYs). Worldwide, women can develop breast cancer at any age after puberty, but rates increase with age. The maintenance of mammary stem cell stemness is disrupted in TNBC, governed by signalling cascades controlling healthy mammary gland growth and development. Interpreting these essential cascades may facilitate an in-depth understanding of TNBC cancer and the search for an appropriate therapeutic target. Its treatment remains challenging because it lacks specific receptors, which renders hormone therapy and medications ineffective. In addition to radiotherapy, numerous recognized chemotherapeutic medicines are available as inhibitors of signalling pathways, while others are currently undergoing clinical trials. This article summarizes the vital druggable targets, therapeutic approaches, and strategies associated with TNBC.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Kashif Abbas
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Waleem Ahmad
- Department of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Moinuddin
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Nazura Usmani
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Shahid Ali Siddiqui
- Department of Radiotherapy, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
40
|
Wu D, Sun JKL, Chow KHM. Neuronal cell cycle reentry events in the aging brain are more prevalent in neurodegeneration and lead to cellular senescence. PLoS Biol 2024; 22:e3002559. [PMID: 38652714 PMCID: PMC11037540 DOI: 10.1371/journal.pbio.3002559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024] Open
Abstract
Increasing evidence indicates that terminally differentiated neurons in the brain may recommit to a cell cycle-like process during neuronal aging and under disease conditions. Because of the rare existence and random localization of these cells in the brain, their molecular profiles and disease-specific heterogeneities remain unclear. Through a bioinformatics approach that allows integrated analyses of multiple single-nucleus transcriptome datasets from human brain samples, these rare cell populations were identified and selected for further characterization. Our analyses indicated that these cell cycle-related events occur predominantly in excitatory neurons and that cellular senescence is likely their immediate terminal fate. Quantitatively, the number of cell cycle re-engaging and senescent neurons decreased during the normal brain aging process, but in the context of late-onset Alzheimer's disease (AD), these cells accumulate instead. Transcriptomic profiling of these cells suggested that disease-specific differences were predominantly tied to the early stage of the senescence process, revealing that these cells presented more proinflammatory, metabolically deregulated, and pathology-associated signatures in disease-affected brains. Similarly, these general features of cell cycle re-engaging neurons were also observed in a subpopulation of dopaminergic neurons identified in the Parkinson's disease (PD)-Lewy body dementia (LBD) model. An extended analysis conducted in a mouse model of brain aging further validated the ability of this bioinformatics approach to determine the robust relationship between the cell cycle and senescence processes in neurons in this cross-species setting.
Collapse
Affiliation(s)
- Deng Wu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
41
|
Dohle E, Parkhoo K, Bennardo F, Schmeinck L, Sader R, Ghanaati S. Immunomodulation of Cancer Cells Using Autologous Blood Concentrates as a Patient-Specific Cell Culture System: A Comparative Study on Osteosarcoma and Fibrosarcoma Cell Lines. Bioengineering (Basel) 2024; 11:303. [PMID: 38671725 PMCID: PMC11048113 DOI: 10.3390/bioengineering11040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The understanding that tumor cells might evade immunity through various mutations and the potential of an augmented immune system to eliminate abnormal cells led to the idea of utilizing platelet-rich fibrin (PRF), a blood concentrate containing the body's immune elements as an adjunctive therapy for localized tumors. This study is the first that evaluated the effect of PRF generated with different relative centrifugal forces (RCFs) on osteoblastic and fibroblastic tumor cell lines MG63 and HT1080 with regard to cell viability, cytokine and growth factor release, and the gene expression of factors related to the cell cycle and apoptosis. Our findings could demonstrate decreased cell proliferation of MG63 and HT1080 when treated indirectly with PRF compared to cell cultures without PRF. This effect was more distinct when the cells were treated with low-RCF PRF, where higher concentrations of growth factors and cytokines with reduced RCFs can be found. Similar patterns were observed when assessing the regulation of gene expression related to the cell cycle and apoptosis in both MG63 and HT1080 cells treated with PRF. Despite variations, there was a consistent trend of an up-regulation of tumor-suppressive genes and a down-regulation of anti-apoptotic genes in both cell types following treatment with high- and, particularly, low-RCF PRF formulations.
Collapse
Affiliation(s)
- Eva Dohle
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (K.P.); (L.S.); (R.S.); (S.G.)
| | - Kamelia Parkhoo
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (K.P.); (L.S.); (R.S.); (S.G.)
| | - Francesco Bennardo
- School of Dentistry, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Lena Schmeinck
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (K.P.); (L.S.); (R.S.); (S.G.)
| | - Robert Sader
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (K.P.); (L.S.); (R.S.); (S.G.)
| | - Shahram Ghanaati
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (K.P.); (L.S.); (R.S.); (S.G.)
| |
Collapse
|
42
|
Zhu N, Li Y, Xu M. Beneficial Effects of Small-Molecule Oligopeptides Isolated from Panax Ginseng C. A. Meyer on Cellular Fates in Oxidative Stress-Induced Damaged Human Umbilical Vein Endothelial Cells and PC-12. Int J Mol Sci 2024; 25:2906. [PMID: 38474153 DOI: 10.3390/ijms25052906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Cell fate instability is a crucial characteristic of aging and appears to contribute to various age-related pathologies. Exploring the connection between bioactive substances and cell fate stability may offer valuable insights into longevity. Therefore, the objective of this study was to investigate the potential beneficial effects of ginseng oligopeptides (GOPs) isolated from Panax ginseng C. A. Meyer at the cellular level. Disruption of homeostasis of human umbilical vein endothelial cells (HUVECs) and PC-12 was achieved by culturing them in the growth medium supplemented with 200 µM of H2O2, and 25, 50, and 100 µg/mL GOPs for 4 h. Then, they were cultured in a H2O2-free growth medium containing different concentration of GOPs. We found that GOP administration retards the oxidative stress-induced cell instability in HUVECs by increasing cell viability, inhibiting the cell cycle arrest, enhancing telomerase (TE) activity, suppressing oxidative stress and an inflammatory attack, and protecting mitochondrial function. Furthermore, we hypothesized that GOPs may promote mitochondrial biosynthesis by upregulating PGC-1α expression. Similarly, GOPs positively regulated cell stability in PC-12; notably, the protective effect of GOPs on PC-12 mainly occurred through the inhibition of autophagic cell death of neuronal cells, while the protective effect on mitochondria was weak. In conclusion, it is evident that GOPs demonstrate potential beneficial effects in maintaining cell fate stability, thereby potentially contributing to an enhanced health span and overall well-being.
Collapse
Affiliation(s)
- Na Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- College of Public Health, Inner Mongolia Medical University, Hohhot 010059, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
43
|
de Oliveira AL, Miranda RG, Dorta DJ. Recreational MDMA doses do not elicit hepatotoxicity in HepG2 spheroids under normo- and hyperthermia. Toxicology 2024; 503:153761. [PMID: 38401800 DOI: 10.1016/j.tox.2024.153761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
MDMA (3,4-methylenedioxymethamphetamine), an entactogen with empathogenic and prosocial effects, is widely used in music festivals and other festive settings. High MDMA doses have been associated with drug-induced liver injury and cases of hyperthermia. Although the latter condition is thought to increase MDMA hepatotoxicity, this correlation remains poorly explored for recreational MDMA doses. On the other hand, the fact that MDMA acts to extinguish fear and to reconsolidate memory could be explored as an adjunct to psychotherapy during treatment of neuropsychiatric disorders such as post-traumatic stress disorder. In this context, assessing MDMA toxicity is relevant, and tridimensional cell culture has emerged as an alternative to animal models in toxicity assessment. Herein, we have used HepG2 spheroids to evaluate MDMA-induced hepatotoxicity at recreational doses, under normo- or hyperthermia. The MTT reduction assay did not evidence significantly reduced cell viability. Moreover, MDMA did not increase reactive oxygen species production, deplete the mitochondrial membrane potential, arrest the cell cycle, or induce apoptotic cell death. These findings support further pre-clinical investigation of MDMA safety from the perspective of both harm reduction and therapy given that non-abusive recreational and therapeutic doses overlap.
Collapse
Affiliation(s)
- Arthur L de Oliveira
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Raul G Miranda
- School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Daniel J Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil.
| |
Collapse
|
44
|
Ali M, Wani SUD, Dey T, Sridhar SB, Qadrie ZL. A common molecular and cellular pathway in developing Alzheimer and cancer. Biochem Biophys Rep 2024; 37:101625. [PMID: 38225990 PMCID: PMC10788207 DOI: 10.1016/j.bbrep.2023.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024] Open
Abstract
Globally cancer and Alzheimer's disease (AD) are two major diseases and still, there is no clearly defined molecular mechanism. There is an opposite relation between cancer and AD which are the proportion of emerging cancer was importantly slower in AD patients, whereas slow emerging AD in patients with cancer. In cancer, regulation of cell mechanisms is interrupted by an increase in cell survival and proliferation, while on the contrary, AD is related to augmented neuronal death, that may be either produced by or associated with amyloid-β (Aβ) and tau deposition. Stated that the probability that disruption of mechanisms takes part in the regulation of cell survival/death and might be implicated in both diseases. The mechanism of actions such as DNA-methylation, genetic polymorphisms, or another mechanism of actions that induce alteration in the action of drugs with significant roles in resolving the finding to repair and live or die might take part in the pathogenesis of these two ailments. The functions of miRNA, p53, Pin1, the Wnt signaling pathway, PI3 KINASE/Akt/mTOR signaling pathway GRK2 signaling pathway, and the pathophysiological role of oxidative stress are presented in this review as potential candidates which hypothetically describe inverse relations between cancer and AD. Innovative materials almost mutual mechanisms in the aetiology of cancer and AD advocates novel treatment approaches. Among these treatment strategies, the most promising use treatment such as tyrosine kinase inhibitor, nilotinib, protein kinase C, and bexarotene.
Collapse
Affiliation(s)
- Mohammad Ali
- Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G Nagar, Nagamagala, Bellur, Karnataka, 571418, India
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore, 560049, India
| | - Shahid Ud Din Wani
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, 190006, India
| | - Tathagata Dey
- Department of Pharmaceutical Chemistry, East Point College of Pharmacy, Bangalore, 560049, India
| | - Sathvik B. Sridhar
- Department of Clinical Pharmacy and Pharmacology, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates
| | | |
Collapse
|
45
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
46
|
Ou Y, Wang M, Xu Q, Sun B, Jia Y. Small molecule agents for triple negative breast cancer: Current status and future prospects. Transl Oncol 2024; 41:101893. [PMID: 38290250 PMCID: PMC10840364 DOI: 10.1016/j.tranon.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis. The number of cases increased by 2.26 million in 2020, making it the most commonly diagnosed cancer type in the world. TNBCs lack hormone receptor (HR) and human epidermal growth factor 2 (HER2), which limits treatment options. Currently, paclitaxel-based drugs combined with other chemotherapeutics remain the main treatment for TNBC. There is currently no consensus on the best therapeutic regimen for TNBC. However, there have been successful clinical trials exploring large-molecule monoclonal antibodies, small-molecule targeted drugs, and novel antibody-drug conjugate (ADC). Although monoclonal antibodies have produced clinical success, their large molecular weight can limit therapeutic benefits. It is worth noting that in the past 30 years, the FDA has approved small molecule drugs for HER2-positive breast cancers. The lack of effective targets and the occurrence of drug resistance pose significant challenges in the treatment of TNBC. To improve the prognosis of TNBC, it is crucial to search for effective targets and to overcome drug resistance. This review examines the clinical efficacy, adverse effects, resistance mechanisms, and potential solutions of targeted small molecule drugs in both monotherapies and combination therapies. New therapeutic targets, including nuclear export protein 1 (XPO1) and hedgehog (Hh), are emerging as potential options for researchers and become integrated into clinical trials for TNBC. Additionally, there is growing interest in the potential of targeted protein degradation chimeras (PROTACs), degraders of rogue proteins, as a future therapy direction. This review provides potentially valuable insights with clinical implications.
Collapse
Affiliation(s)
- Yan Ou
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mengchao Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qian Xu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Binxu Sun
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
47
|
Turcu-Stiolica A, Udristoiu I, Subtirelu MS, Gheorman V, Aldea M, Dumitrescu EA, Volovat SR, Median DM, Lungulescu CV. Digging in real-word electronic database for assessing CDK 4/6 inhibitors adherence in breast cancer patients from Romania. Front Pharmacol 2024; 15:1345482. [PMID: 38464732 PMCID: PMC10920324 DOI: 10.3389/fphar.2024.1345482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: It is imperative for patients to respect the prescribed treatments to achieve the anticipated clinical outcomes, including the outpatients receiving oral anti-cancer drugs such as selective cyclin-dependent kinase 4/6 inhibitors (CDK 4/6i). With the introduction of three CDK 4/6i drugs in the Romanian pharmaceutical market in 2018, our study aimed to evaluate medication adherence and the influencing factors among patients undergoing treatment with palbociclib, ribociclib, or abemaciclib for advanced or metastatic breast cancer. Methods: Medication adherence was assessed using the Proportion of Days Covered (PDC) method, and Spearman correlation analysis was conducted to explore the relationships between adherence, age, gender, and follow-up duration. Results: The study enrolled 330 breast cancer patients, with an average follow-up period of 14.6 ± 12.5 months for palbociclib, 10.6 ± 7.1 months for ribociclib, and 8.6 ± 6.4 months for abemaciclib-treated patients. A small proportion of patients demonstrated non-adherence: 12.8% for palbociclib, 14.6% for ribociclib, and 14.7% for abemaciclib. Among patients receiving palbociclib, there was no significant correlation between adherence, age (rho = 0.07, p = 0.35), or gender (rho = -0.144, p = 0.054). However, a significant correlation was found with the duration of follow-up (rho = -0.304, p < 0.0001). Similar results were observed for patients receiving ribociclib or abemaciclib. Most patients received combination therapy with letrozole (46%) and exemestane (13%) for palbociclib, letrozole (48%) and fulvestrant (19%) for ribociclib, and fulvestrant (39%) and letrozole (27%) for abemaciclib, Discussion: High adherence rates were observed among patients treated with CDK 4/6i drugs, with no significant differences noted among the three drugs in this class. However, the collected patient data was limited, lacking information on adverse reactions that could potentially lead to treatment discontinuation, as determined by the oncologist's decision not to prescribe. Consequently, a comprehensive understanding of all factors contributing to the low adherence levels is hindered.
Collapse
Affiliation(s)
- Adina Turcu-Stiolica
- Pharmacoeconomics Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ion Udristoiu
- Psychiatry Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Victor Gheorman
- Psychiatry Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Madalina Aldea
- Psychiatry Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Simona Ruxandra Volovat
- Department of Medical Oncology, University of Medicine and Pharmacy Grigore T. Popa Iasi, Iasi, Romania
| | - Dragos Mircea Median
- Gynecologic Oncology Department, Filantropia Clinical Hospital Bucharest, Bucharest, Romania
| | | |
Collapse
|
48
|
Cicirò Y, Ragusa D, Sala A. Expression of the checkpoint kinase BUB1 is a predictor of response to cancer therapies. Sci Rep 2024; 14:4461. [PMID: 38396175 PMCID: PMC10891059 DOI: 10.1038/s41598-024-55080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
The identification of clinically-relevant biomarkers is of upmost importance for the management of cancer, from diagnosis to treatment choices. We performed a pan-cancer analysis of the mitotic checkpoint budding uninhibited by benzimidazole 1 gene BUB1, in the attempt to ascertain its diagnostic and prognostic values, specifically in the context of drug response. BUB1 was found to be overexpressed in the majority of cancers, and particularly elevated in clinically aggressive molecular subtypes. Its expression was correlated with clinico-phenotypic features, notably tumour staging, size, invasion, hypoxia, and stemness. In terms of prognostic value, the expression of BUB1 bore differential clinical outcomes depending on the treatment administered in TCGA cancer cohorts, suggesting sensitivity or resistance, depending on the expression levels. We also integrated in vitro drug sensitivity data from public projects based on correlation between drug efficacy and BUB1 expression to produce a list of candidate compounds with differential responses according to BUB1 levels. Gene Ontology enrichment analyses revealed that BUB1 overexpression in cancer is associated with biological processes related to mitosis and chromosome segregation machinery, reflecting the mechanisms of action of drugs with a differential effect based on BUB1 expression.
Collapse
Affiliation(s)
- Ylenia Cicirò
- Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge, UB8 3PH, UK
| | - Denise Ragusa
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Uxbridge, UB8 3PH, UK.
| | - Arturo Sala
- Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
49
|
Zheng L, Lu J, Kong DL. Expression of cyclin-dependent kinase 9 is positively correlated with the autophagy level in colon cancer. World J Gastrointest Oncol 2024; 16:314-330. [PMID: 38425408 PMCID: PMC10900151 DOI: 10.4251/wjgo.v16.i2.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase 9 (CDK9) expression and autophagy in colorectal cancer (CRC) tissues has not been widely studied. CDK9, a key regulator of transcription, may influence the occurrence and progression of CRC. The expression of autophagy-related genes BECN1 and drug resistance factor ABCG2 may also play a role in CRC. Under normal physiological conditions, autophagy can inhibit tumorigenesis, but once a tumor forms, autophagy may promote tumor growth. Therefore, understanding the relationship between autophagy and cancer, particularly how autophagy promotes tumor growth after its formation, is a key motivation for this research. AIM To investigate the relationship between CDK9 expression and autophagy in CRC, assess differences in autophagy between left and right colon cancer, and analyze the associations of autophagy-related genes with clinical features and prognosis. METHODS We collected tumor tissues and paracarcinoma tissues from colon cancer patients with liver metastasis to observe the level of autophagy in tissues with high levels of CDK9 and low levels of CDK9. We also collected primary tissue from left and right colon cancer patients with liver metastasis to compare the autophagy levels and the expression of BECN1 and ABCG2 in the tumor and paracarcinoma tissues. RESULTS The incidence of autophagy and the expression of BECN1 and ABCG2 were different in left and right colon cancer, and autophagy might be involved in the occurrence of chemotherapy resistance. Further analysis of the relationship between the expression of autophagy-related genes CDK9, ABCG2, and BECN1 and the clinical features and prognosis of colorectal cancer showed that the high expression of CDK9 indicated a poor prognosis in colorectal cancer. CONCLUSION This study laid the foundation for further research on the combination of CDK9 inhibitors and autophagy inhibitors in the treatment of patients with CRC.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy of Tianjin, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jia Lu
- Department of Infection Management, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy of Tianjin, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Da-Lu Kong
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy of Tianjin, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| |
Collapse
|
50
|
Pham AT, Mani M, Wang X, Vafabakhsh R. Multiscale biophysical analysis of nucleolus disassembly during mitosis. Proc Natl Acad Sci U S A 2024; 121:e2312250121. [PMID: 38285946 PMCID: PMC10861868 DOI: 10.1073/pnas.2312250121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024] Open
Abstract
During cell division, precise and regulated distribution of cellular material between daughter cells is a critical step and is governed by complex biochemical and biophysical mechanisms. To achieve this, membraneless organelles and condensates often require complete disassembly during mitosis. The biophysical principles governing the disassembly of condensates remain poorly understood. Here, we used a physical biology approach to study how physical and material properties of the nucleolus, a prominent nuclear membraneless organelle in eukaryotic cells, change during mitosis and across different scales. We found that nucleolus disassembly proceeds continuously through two distinct phases with a slow and reversible preparatory phase followed by a rapid irreversible phase that was concurrent with the nuclear envelope breakdown. We measured microscopic properties of nucleolar material including effective diffusion rates and binding affinities as well as key macroscopic properties of surface tension and bending rigidity. By incorporating these measurements into the framework of critical phenomena, we found evidence that near mitosis surface tension displays a power-law behavior as a function of biochemically modulated interaction strength. This two-step disassembly mechanism maintains structural and functional stability of nucleolus while enabling its rapid and efficient disassembly in response to cell cycle cues.
Collapse
Affiliation(s)
- An T. Pham
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
| | - Madhav Mani
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL60208
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL60208
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL60208
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
| |
Collapse
|