1
|
IL-33 in autoimmunity; possible therapeutic target. Int Immunopharmacol 2022; 108:108887. [DOI: 10.1016/j.intimp.2022.108887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 12/17/2022]
|
2
|
Metabolic Reprogramming of Innate Immune Cells as a Possible Source of New Therapeutic Approaches in Autoimmunity. Cells 2022; 11:cells11101663. [PMID: 35626700 PMCID: PMC9140143 DOI: 10.3390/cells11101663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022] Open
Abstract
Immune cells undergo different metabolic pathways or immunometabolisms to interact with various antigens. Immunometabolism links immunological and metabolic processes and is critical for innate and adaptive immunity. Although metabolic reprogramming is necessary for cell differentiation and proliferation, it may mediate the imbalance of immune homeostasis, leading to the pathogenesis and development of some diseases, such as autoimmune diseases. Here, we discuss the effects of metabolic changes in autoimmune diseases, exerted by the leading actors of innate immunity, and their role in autoimmunity pathogenesis, suggesting many immunotherapeutic approaches.
Collapse
|
3
|
Fuhri Snethlage CM, Nieuwdorp M, van Raalte DH, Rampanelli E, Verchere BC, Hanssen NMJ. Auto-immunity and the gut microbiome in type 1 diabetes: Lessons from rodent and human studies. Best Pract Res Clin Endocrinol Metab 2021; 35:101544. [PMID: 33985913 DOI: 10.1016/j.beem.2021.101544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an auto-immune disease that destructs insulin-producing pancreatic beta-cells within the islets of Langerhans. The incidence of T1D has tripled over the last decades, while the pathophysiology of the disease is still largely unknown. Currently, there is no cure for T1D. The only treatment option consists of blood-glucose regulation with insulin injections and intensive monitoring of blood glucose levels. In recent years, perturbations in the ecosystem of the gut microbiome also referred to as dysbiosis, have gained interest as a possible contributing factor in the development of T1D. Changes in the microbiome seem to occur before the onset of T1D associated auto-antibodies. Furthermore, rodent studies demonstrate that administering antibiotics at a young age may accelerate the onset of T1D. This review provides an overview of the research performed on the epidemiology, pathophysiology, interventions, and possible treatment options in the field of the gut microbiome and T1D.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Max Nieuwdorp
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Daniël H van Raalte
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands; Amsterdam Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUMC, the Netherlands
| | - Elena Rampanelli
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Bruce C Verchere
- BC Children's Hospital Research Institute, Pathology & Laboratory Medicine and Surgery, Vancouver, Canada
| | - Nordin M J Hanssen
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands.
| |
Collapse
|
4
|
Abstract
Virus infections have been linked to the induction of autoimmunity and disease development in human type 1 diabetes. Experimental models have been instrumental in deciphering processes leading to break of immunological tolerance and type 1 diabetes development. Animal models have also been useful for proof-of-concept studies and for preclinical testing of new therapeutic interventions. This chapter describes two robust and clinically relevant mouse models for virus-induced type 1 diabetes; acceleration of disease onset in prediabetic nonobese diabetic (NOD) mice following Coxsackievirus infection and diabetes induction by lymphocytic choriomeningitis virus (LCMV) infection of transgenic mice expressing viral neo-antigens under control of the rat insulin promoter (RIP).
Collapse
Affiliation(s)
| | - Malin Flodström-Tullberg
- The Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
5
|
Magrone T, Magrone M, Russo MA, Jirillo E. Recent Advances on the Anti-Inflammatory and Antioxidant Properties of Red Grape Polyphenols: In Vitro and In Vivo Studies. Antioxidants (Basel) 2019; 9:E35. [PMID: 31906123 PMCID: PMC7022464 DOI: 10.3390/antiox9010035] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/20/2022] Open
Abstract
In this review, special emphasis will be placed on red grape polyphenols for their antioxidant and anti-inflammatory activities. Therefore, their capacity to inhibit major pathways responsible for activation of oxidative systems and expression and release of proinflammatory cytokines and chemokines will be discussed. Furthermore, regulation of immune cells by polyphenols will be illustrated with special reference to the activation of T regulatory cells which support a tolerogenic pathway at intestinal level. Additionally, the effects of red grape polyphenols will be analyzed in obesity, as a low-grade systemic inflammation. Also, possible modifications of inflammatory bowel disease biomarkers and clinical course have been studied upon polyphenol administration, either in animal models or in clinical trials. Moreover, the ability of polyphenols to cross the blood-brain barrier has been exploited to investigate their neuroprotective properties. In cancer, polyphenols seem to exert several beneficial effects, even if conflicting data are reported about their influence on T regulatory cells. Finally, the effects of polyphenols have been evaluated in experimental models of allergy and autoimmune diseases. Conclusively, red grape polyphenols are endowed with a great antioxidant and anti-inflammatory potential but some issues, such as polyphenol bioavailability, activity of metabolites, and interaction with microbiota, deserve deeper studies.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, 70124 Bari, Italy; (M.M.); (E.J.)
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, 70124 Bari, Italy; (M.M.); (E.J.)
| | - Matteo Antonio Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, 00166 Rome, Italy;
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, 70124 Bari, Italy; (M.M.); (E.J.)
| |
Collapse
|
6
|
Jansson L, Carlsson PO. Pancreatic Blood Flow with Special Emphasis on Blood Perfusion of the Islets of Langerhans. Compr Physiol 2019; 9:799-837. [PMID: 30892693 DOI: 10.1002/cphy.c160050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pancreatic islets are more richly vascularized than the exocrine pancreas, and possess a 5- to 10-fold higher basal and stimulated blood flow, which is separately regulated. This is reflected in the vascular anatomy of the pancreas where islets have separate arterioles. There is also an insulo-acinar portal system, where numerous venules connect each islet to the acinar capillaries. Both islets and acini possess strong metabolic regulation of their blood perfusion. Of particular importance, especially in the islets, is adenosine and ATP/ADP. Basal and stimulated blood flow is modified by local endothelial mediators, the nervous system as well as gastrointestinal hormones. Normally the responses to the nervous system, especially the parasympathetic and sympathetic nerves, are fairly similar in endocrine and exocrine parts. The islets seem to be more sensitive to the effects of endothelial mediators, especially nitric oxide, which is a permissive factor to maintain the high basal islet blood flow. The gastrointestinal hormones with pancreatic effects mainly influence the exocrine pancreatic blood flow, whereas islets are less affected. A notable exception is incretin hormones and adipokines, which preferentially affect islet vasculature. Islet hormones can influence both exocrine and endocrine blood vessels, and these complex effects are discussed. Secondary changes in pancreatic and islet blood flow occur during several conditions. To what extent changes in blood perfusion may affect the pathogenesis of pancreatic diseases is discussed. Both type 2 diabetes mellitus and acute pancreatitis are conditions where we think there is evidence that blood flow may contribute to disease manifestations. © 2019 American Physiological Society. Compr Physiol 9:799-837, 2019.
Collapse
Affiliation(s)
- Leif Jansson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden
| | - Per-Ola Carlsson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden.,Uppsala University, Department of Medical Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Vonberg AD, Acevedo-Calado M, Cox AR, Pietropaolo SL, Gianani R, Lundy SK, Pietropaolo M. CD19+IgM+ cells demonstrate enhanced therapeutic efficacy in type 1 diabetes mellitus. JCI Insight 2018; 3:99860. [PMID: 30518692 DOI: 10.1172/jci.insight.99860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
We describe a protective effect on autoimmune diabetes and reduced destructive insulitis in NOD.scid recipients following splenocyte injections from diabetic NOD donors and sorted CD19+ cells compared with NOD.scid recipients receiving splenocytes alone. This protective effect was age specific (only CD19+ cells from young NOD donors exerted this effect; P < 0.001). We found that the CD19+IgM+ cell is the primary subpopulation of B cells that delayed transfer of diabetes mediated by diabetogenic T cells from NOD mice (P = 0.002). Removal of IgM+ cells from the CD19+ pool did not result in protection. Notably, protection conferred by CD19+IgM+ cotransfers were not dependent on the presence of Tregs, as their depletion did not affect their ability to delay onset of diabetes. Blockade of IL-10 with neutralizing antibodies at the time of CD19+ cell cotransfers also abrogated the therapeutic effect, suggesting that IL-10 secretion was an important component of protection. These results were strengthened by ex vivo incubation of CD19+ cells with IL-5, resulting in enhanced proliferation and IL-10 production and equivalently delayed diabetes progression (P = 0.0005). The potential to expand CD19+IgM+ cells, especially in response to IL-5 stimulation or by pharmacologic agents, may be a new therapeutic option for type 1 diabetes.
Collapse
Affiliation(s)
- Andrew D Vonberg
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Maria Acevedo-Calado
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Aaron R Cox
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Susan L Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Roberto Gianani
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Steven K Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Massimo Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| |
Collapse
|
8
|
Pavlovic S, Petrovic I, Jovicic N, Ljujic B, Miletic Kovacevic M, Arsenijevic N, Lukic ML. IL-33 Prevents MLD-STZ Induction of Diabetes and Attenuate Insulitis in Prediabetic NOD Mice. Front Immunol 2018; 9:2646. [PMID: 30498495 PMCID: PMC6249384 DOI: 10.3389/fimmu.2018.02646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease caused by the immune-mediated destruction of pancreatic β-cells. Prevention of type 1 diabetes requires early intervention in the autoimmune process against beta-cells of the pancreatic islets of Langerhans, which is believed to result from disordered immunoregulation. CD4+Foxp3+ regulatory T cells (Tregs) participate as one of the most important cell types in limiting the autoimmune process. The aim of this study was to investigate the effect of exogenous IL-33 in multiple low dose streptozotocin (MLD-STZ) induced diabetes and to delineate its role in the induction of protective Tregs in an autoimmune attack. C57BL/6 mice were treated i. p. with five doses of 40 mg/kg STZ and 0.4 μg rIL-33 four times, starting from day 0, 6, or 12 every second day from the day of disease induction. 16 weeks old NOD mice were treated with 6 injections of 0.4 μg/mouse IL-33 (every second day). Glycemia and glycosuria were measured and histological parameters in pancreatic islets were evaluated at the end of experiments. Cellular make up of the pancreatic lymph nodes and islets were evaluated by flow cytometry. IL-33 given simultaneously with the application of STZ completely prevented the development of hyperglycemia, glycosuria and profoundly attenuated mononuclear cell infiltration. IL-33 treatment was accompanied by higher number of IL-13 and IL-5 producing CD4+ T cells and increased presence of ST2+Foxp3+ regulatory T cells in pancreatic lymph nodes and islets. Elimination of Tregs abrogated protective effect of IL-33. We provide evidence that exogenous IL-33 completely prevents the development of T cell mediated inflammation in pancreatic islets and consecutive development of diabetes in C57BL/6 mice by facilitating the induction Treg cells. To extend this finding for possible relevance in spontaneous diabetes, we showed that IL-33 attenuate insulitis in prediabetic NOD mice.
Collapse
Affiliation(s)
- Sladjana Pavlovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Ivica Petrovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Miletic Kovacevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L. Lukic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
9
|
Cimpean AM, Lalošević D, Lalošević V, Banović P, Raica M, Mederle OA. Disodium Cromolyn and Anti-podoplanin Antibodies Strongly Inhibit Growth of BHK 21/C13-derived Fibrosarcoma in a Chick Embryo Chorioallantoic Membrane Model. In Vivo 2018; 32:791-798. [PMID: 29936460 PMCID: PMC6117765 DOI: 10.21873/invivo.11309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022]
Abstract
AIM To characterize baby hamster kidney fibroblast (BHK 21/C13) cells and test the effects of antibodies against podoplanin and disodium cromolyn on BHK 21/C13 cell line-derived tumors grown on chick embryo chorioallantoic membrane (CAM). MATERIAL AND METHODS BHK 21/C13 cell-derived fibrosarcomas developed in hamsters were implanted on CAM and treated with anti-podoplanin antibodies and disodium cromolyn. BHK 21/C13 cell immunophenotype was assessed. RESULTS Fibrosarcoma cells were positive for vimentin, CD117, smooth muscle actin, vascular endothelial growth factor epidermal growth factor receptor, homebox prospero gene 1 and negative for platelet-derived growth factor B, neuron-specific enolase, S100, CD34, Ewing sarcoma and podoplanin. CAM-grown fibrosarcomas were highly sensitive to disodium cromolyn and anti-podoplanin antibodies. CONCLUSION Immunophenotyping BHK 21/C13 cells and their response to drugs represent the first step in revealing cell line utility and a reliable tool for experimental cancer research.
Collapse
Affiliation(s)
- Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Dusan Lalošević
- Department of Histology and Embryology, Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Vesna Lalošević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Pavle Banović
- Department of Histology and Embryology, Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ovidiu Alexandru Mederle
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
10
|
Medina A, Parween S, Ullsten S, Vishnu N, Siu YT, Quach M, Bennet H, Balhuizen A, Åkesson L, Wierup N, Carlsson PO, Ahlgren U, Lernmark Å, Fex M. Early deficits in insulin secretion, beta cell mass and islet blood perfusion precede onset of autoimmune type 1 diabetes in BioBreeding rats. Diabetologia 2018; 61:896-905. [PMID: 29209740 PMCID: PMC6448977 DOI: 10.1007/s00125-017-4512-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/18/2017] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Genetic studies show coupling of genes affecting beta cell function to type 1 diabetes, but hitherto no studies on whether beta cell dysfunction could precede insulitis and clinical onset of type 1 diabetes are available. METHODS We used 40-day-old BioBreeding (BB) DRLyp/Lyp rats (a model of spontaneous autoimmune type 1 diabetes) and diabetes-resistant DRLyp/+ and DR+/+ littermates (controls) to investigate beta cell function in vivo, and insulin and glucagon secretion in vitro. Beta cell mass was assessed by optical projection tomography (OPT) and morphometry. Additionally, measurements of intra-islet blood flow were performed using microsphere injections. We also assessed immune cell infiltration, cytokine expression in islets (by immunohistochemistry and qPCR), as well as islet Glut2 expression and ATP/ADP ratio to determine effects on glucose uptake and metabolism in beta cells. RESULTS DRLyp/Lyp rats were normoglycaemic and without traces of immune cell infiltrates. However, IVGTTs revealed a significant decrease in the acute insulin response to glucose compared with control rats (1685.3 ± 121.3 vs 633.3 ± 148.7; p < 0.0001). In agreement, insulin secretion was severely perturbed in isolated islets, and both first- and second-phase insulin release were lowered compared with control rats, while glucagon secretion was similar in both groups. Interestingly, after 5-7 days of culture of islets from DRLyp/Lyp rats in normal media, glucose-stimulated insulin secretion (GSIS) was improved; although, a significant decrease in GSIS was still evident compared with islets from control rats at this time (7393.9 ± 1593.7 vs 4416.8 ± 1230.5 pg islet-1 h-1; p < 0.0001). Compared with controls, OPT of whole pancreas from DRLyp/Lyp rats revealed significant reductions in medium (4.1 × 109 ± 9.5 × 107 vs 3.8 × 109 ± 5.8 × 107 μm3; p = 0.044) and small sized islets (1.6 × 109 ± 5.1 × 107 vs 1.4 × 109 ± 4.5 × 107 μm3; p = 0.035). Finally, we found lower intra-islet blood perfusion in vivo (113.1 ± 16.8 vs 76.9 ± 11.8 μl min-1 [g pancreas]-1; p = 0.023) and alterations in the beta cell ATP/ADP ratio in DRLyp/Lyp rats vs control rats. CONCLUSIONS/INTERPRETATION The present study identifies a deterioration of beta cell function and mass, and intra-islet blood flow that precedes insulitis and diabetes development in animals prone to autoimmune type 1 diabetes. These underlying changes in islet function may be previously unrecognised factors of importance in type 1 diabetes development.
Collapse
Affiliation(s)
- Anya Medina
- Lund University Diabetes Centre, Clinical Research Centre, Skåne University Hospital (SUS), Jan Waldentrömsgata 35, SE-20502, Malmö, Sweden.
| | - Saba Parween
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Sara Ullsten
- Medical Cell Biology, Uppsala Biomedical Centre, Uppsala, Sweden
| | - Neelanjan Vishnu
- Lund University Diabetes Centre, Clinical Research Centre, Skåne University Hospital (SUS), Jan Waldentrömsgata 35, SE-20502, Malmö, Sweden
| | - Yuk Ting Siu
- Lund University Diabetes Centre, Clinical Research Centre, Skåne University Hospital (SUS), Jan Waldentrömsgata 35, SE-20502, Malmö, Sweden
| | - My Quach
- Medical Cell Biology, Uppsala Biomedical Centre, Uppsala, Sweden
| | - Hedvig Bennet
- Lund University Diabetes Centre, Clinical Research Centre, Skåne University Hospital (SUS), Jan Waldentrömsgata 35, SE-20502, Malmö, Sweden
| | - Alexander Balhuizen
- Lund University Diabetes Centre, Clinical Research Centre, Skåne University Hospital (SUS), Jan Waldentrömsgata 35, SE-20502, Malmö, Sweden
| | - Lina Åkesson
- Lund University Diabetes Centre, Clinical Research Centre, Skåne University Hospital (SUS), Jan Waldentrömsgata 35, SE-20502, Malmö, Sweden
| | - Nils Wierup
- Lund University Diabetes Centre, Clinical Research Centre, Skåne University Hospital (SUS), Jan Waldentrömsgata 35, SE-20502, Malmö, Sweden
| | - Per Ola Carlsson
- Medical Cell Biology, Uppsala Biomedical Centre, Uppsala, Sweden
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Åke Lernmark
- Lund University Diabetes Centre, Clinical Research Centre, Skåne University Hospital (SUS), Jan Waldentrömsgata 35, SE-20502, Malmö, Sweden
| | - Malin Fex
- Lund University Diabetes Centre, Clinical Research Centre, Skåne University Hospital (SUS), Jan Waldentrömsgata 35, SE-20502, Malmö, Sweden
| |
Collapse
|
11
|
Oliveira ALDB, Monteiro VVS, Navegantes-Lima KC, Reis JF, Gomes RDS, Rodrigues DVS, Gaspar SLDF, Monteiro MC. Resveratrol Role in Autoimmune Disease-A Mini-Review. Nutrients 2017; 9:nu9121306. [PMID: 29194364 PMCID: PMC5748756 DOI: 10.3390/nu9121306] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/20/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases are still considered to be pressing concerns due the fact that they are leaders in death and disability causes worldwide. Resveratrol is a polyphenol derived from a variety of foods and beverages, including red grapes and red wine. Anti-inflammatory, antioxidant, and antiaging properties of resveratrol have been reported, and in some animal and human studies this compound reduced and ameliorated the progression of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, psoriasis, inflammatory bowel disease, and type 1 diabetes mellitus. Thus, this review aims to summarize and critically analyze the role of resveratrol in the modulation of several organ-specific or systemic autoimmune diseases.
Collapse
Affiliation(s)
- Ana Lígia de Brito Oliveira
- Pharmaceutical Science Post-Graduation Program, Neuroscience and Cellular Biology Post Graduation Program, Faculty of Pharmacy, Federal University of Pará, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Valter Vinicius Silva Monteiro
- School of Pharmacy, Health Science Institute, Federal University of Pará/UFPA, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Kely Campos Navegantes-Lima
- Pharmaceutical Science Post-Graduation Program, Neuroscience and Cellular Biology Post Graduation Program, Faculty of Pharmacy, Federal University of Pará, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Jordano Ferreira Reis
- School of Pharmacy, Health Science Institute, Federal University of Pará/UFPA, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Rafaelli de Souza Gomes
- Pharmaceutical Science Post-Graduation Program, Neuroscience and Cellular Biology Post Graduation Program, Faculty of Pharmacy, Federal University of Pará, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Dávila Valentina Silva Rodrigues
- School of Pharmacy, Health Science Institute, Federal University of Pará/UFPA, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Silvia Letícia de França Gaspar
- School of Pharmacy, Health Science Institute, Federal University of Pará/UFPA, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Marta Chagas Monteiro
- Pharmaceutical Science Post-Graduation Program, Neuroscience and Cellular Biology Post Graduation Program, Faculty of Pharmacy, Federal University of Pará, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| |
Collapse
|
12
|
Lehmann C, Fisher NB, Tugwell B, Szczesniak A, Kelly M, Zhou J. Experimental cannabidiol treatment reduces early pancreatic inflammation in type 1 diabetes. Clin Hemorheol Microcirc 2017; 64:655-662. [PMID: 27767974 DOI: 10.3233/ch-168021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Destruction of the insulin-producing beta cells in type 1 diabetes (T1D) is induced by invasion of immune cells causing pancreatic inflammation. Cannabidiol (CBD), a phytocannabinoid, derived from the plant, Cannabis sativa, was shown to lower the incidence of diabetes in non-obese diabetic (NOD) mice, an animal model of spontaneous T1D development. OBJECTIVE The goal of this study was to investigate the impact of experimental CBD treatment on early pancreatic inflammation in T1D by intravital microscopy (IVM) in NOD mice. METHODS Seven-week-old female NOD mice were prophylactically administered daily 5 mg/kg CBD or control vehicle i.p. five times weekly for ten weeks. Animals underwent IVM following confirmation of T1D diagnosis by blood glucose testing. Leukocyte activation and functional capillary density (FCD) were quantified via IVM. RESULTS CBD-treated NOD mice developed T1D later and showed significantly reduced leukocyte activation and increased FCD in the pancreatic microcirculation. CONCLUSIONS Experimental CBD treatment reduced markers of inflammation in the microcirculation of the pancreas studied by intravital microscopy.
Collapse
Affiliation(s)
- Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | | | - Barna Tugwell
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Anna Szczesniak
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Mel Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J Transl Med 2017; 15:36. [PMID: 28202039 PMCID: PMC5312441 DOI: 10.1186/s12967-017-1141-8] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/03/2017] [Indexed: 12/16/2022] Open
Abstract
Macrophages and neutrophils are key components involved in the regulation of numerous chronic inflammatory diseases, infectious disorders, and especially certain autoimmune disease. However, little is known regarding the contribution of these cells to the pathogenesis of autoimmune disorders. Recent studies have aimed to clarify certain important factors affecting the immunogenicity of these cells, including the type and dose of antigen, the microenvironment of the cell-antigen encounter, and the number, subset, and phenotype of these cells, which can prevent or induce autoimmune responses. This review highlights the role of macrophage subsets and neutrophils in injured tissues, supporting their cooperation during the pathogenesis of certain autoimmune diseases.
Collapse
|
14
|
Lehmann C, Fisher NB, Tugwell B, Zhou J. An intravital microscopy model to study early pancreatic inflammation in type 1 diabetes in NOD mice. INTRAVITAL 2016; 5:e1215789. [PMID: 28243521 DOI: 10.1080/21659087.2016.1215789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
Intravital microscopy (IVM) of the pancreas has been proven to be an invaluable tool in pancreatitis, transplantation and ischemia/reperfusion research. Also in type 1 diabetes (T1D) pancreatic IVM offers unique advantages for the elucidation of the disease process. Female non-obese diabetic (NOD) mice develop T1D spontaneously by 40 weeks of age. Our goal was to establish an IVM-based method to study early pancreatic inflammation in NOD mice, which can be used to screen novel medications to prevent or delay T1D in future studies. This included evaluation of leukocyte-endothelial interactions as well as disturbances of capillary perfusion in the pancreatic microcirculation.
Collapse
Affiliation(s)
- Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada; Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | | | - Barna Tugwell
- Department of Medicine, Dalhousie University , Halifax, NS, Canada
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
15
|
Pileggi GS, Clemencio AD, Malardo T, Antonini SR, Bonato VLD, Rios WM, Silva CL. New strategy for testing efficacy of immunotherapeutic compounds for diabetes in vitro. BMC Biotechnol 2016; 16:40. [PMID: 27165305 PMCID: PMC4862051 DOI: 10.1186/s12896-016-0270-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/04/2016] [Indexed: 01/02/2023] Open
Abstract
Background The valuable role of immunotherapy in treating autoimmune diseases is increasingly recognized by those involved in the research and clinical application of new biopharmaceuticals products. However, many aspects related to the mechanisms of immune-modulated therapies remain to be elucidated in order to explore fully the emerging opportunities. The non-obese diabetic NOD mouse develops insulin-dependent diabetes mellitus spontaneously as a consequence of an autoimmune process in the presence of pathogenic CD4+ T cells that typically exhibit Th17 cell phenotypes. The change of a Th17 phenotype into a pattern of regulatory T cells (Treg) is extremely important in controlling autoimmune diseases. Heat shock proteins (HSPs) are stress-induced proteins with immunoregulatory properties. In the current study, the capacity of Hsp65 and Hsp70 mycobacterial HSPs and a constructed DNA encoded Hsp65 (DNAhsp65) to transform the pattern of the immune response from Th17 into Treg cells has been studied in vitro using co-cultures of antigen presenting cells (APCs) and T cells in NOD mice. Results Cells harvested from NOD mice and cultured for 48 h (without immunoregulatory compounds) presented with Th1/Th17 patterns and secretions of IL-6, IFN-γ, IL-10 and IL-17 cytokines. The cultured cells from the non-diabetic BALB/C mice exhibited a Th1 pattern and the production of IL 6 and IFN-γ secretions. An up-regulation was observed in the supernatants from the co-cultures of NOD cells that were stimulated with DNAhsp65, Hsp65 or Hsp70 through increased levels of IL-10 secretion and the suppression of IL-6, IFN-γ and IL-17 production. In addition, immunoregulation was demonstrated through IL-17 suppression in the co-culture stimulated by the specific insulin antigen. Moreover, an increase of immunoregulatory compounds were observed in the co-culture through the expression of CD11b+CD86+ activation markers on APCs, as well as the frequency of Treg cells expressing CD4+CD3+ and CD4+CD25hi. Conclusions The in vitro observation of Th17 cells differentiating into Tregs in NOD mice could raise the hypothesis that the immune regulatory activity of HSPs could be an efficient strategy for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Gecilmara Salviato Pileggi
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo (USP), Av. Bandeirantes, 3900, 7 Floor, 14049-900, Ribeirão Preto, SP, Brazil.
| | - Aline Dayana Clemencio
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo (USP), Av. Bandeirantes, 3900, 7 Floor, 14049-900, Ribeirão Preto, SP, Brazil
| | - Thiago Malardo
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Sonir R Antonini
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo (USP), Av. Bandeirantes, 3900, 7 Floor, 14049-900, Ribeirão Preto, SP, Brazil
| | - Vania Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Wendy Martin Rios
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Celio L Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|