1
|
Messing S, Widmeyer SRT, Denson JP, Mehalko J, Wall VE, Drew M, Snead K, Hong M, Grose C, Esposito D, Gillette W. Improved production of class I phosphatidylinositol 4,5-bisphosphate 3-kinase. Protein Expr Purif 2025; 225:106582. [PMID: 39173964 PMCID: PMC11421577 DOI: 10.1016/j.pep.2024.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Phosphatidylinositol 4,5-bisphosphate 3-kinases (PI3K) are a family of kinases whose activity affects pathways needed for basic cell functions. As a result, PI3K is one of the most mutated genes in all human cancers and serves as an ideal therapeutic target for cancer treatment. Expanding on work done by other groups we improved protein yield to produce stable and pure protein using a variety of modifications including improved solubility tag, novel expression modalities, and optimized purification protocol and buffer. By these means, we achieved a 40-fold increase in yield for p110α/p85α and a 3-fold increase in p110α. We also used these protocols to produce comparable constructs of the β and δ isoforms of PI3K. Increased yield enhanced the efficiency of our downstream high throughput drug discovery efforts on the PIK3 family of kinases.
Collapse
Affiliation(s)
- Simon Messing
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| | - Stephanie R T Widmeyer
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - John-Paul Denson
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jennifer Mehalko
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vanessa E Wall
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matthew Drew
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kelly Snead
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Min Hong
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Carissa Grose
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - William Gillette
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| |
Collapse
|
2
|
Chen A, Dong Y, Jiang H, Yang S, Zhang J, Wei D. Identification and analysis of the key genes for Escherichia coli heterologous protein expression by transcriptomic profiling. Mol Biol Rep 2024; 51:1074. [PMID: 39425817 DOI: 10.1007/s11033-024-10011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Escherichia coli is a frequently used host for heterologous protein expression, but its expression efficiency is hindered by several limitations, such as formation of inclusion bodies and proteolytic degradation. METHODS AND RESULTS In this study, we employed high-density fermentation of heterologous protein production in a 5-L bioreactor, resulting in a yield 2.25 times higher than that of the control group. Transcriptional analysis was conducted at three time points after induction for 0 h, 4 h, and 12 h, revealing 420, 301, and 570 upregulated differentially expressed genes, as well as 424, 202, and 525 downregulated genes, respectively. By conducting enrichment analysis, we constructed strains that relieved without iron limitation, exhibiting a 36% increase in biomass and a 32% increase in protein expression. Furthermore, no overflow metabolism of acetic acid was detected during the protein expression process when utilizing chemostat culture, which indicated that the utilization efficiency of glucose was significantly enhanced without iron limitation. CONCLUSIONS This study presents a novel approach to better comprehend the mechanism of high-yield production of heterologous proteins in Escherichia coli.
Collapse
Affiliation(s)
- Anxiang Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuguo Dong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Huaigu Jiang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shengli Yang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
3
|
Pérez-Valero Á, Magadán-Corpas P, Dulak K, Matera A, Ye S, Huszcza E, Popłoński J, Villar CJ, Lombó F. Identification of a polyphenol O-methyltransferase with broad substrate flexibility in Streptomyces albidoflavus J1074. Microb Cell Fact 2024; 23:265. [PMID: 39369216 PMCID: PMC11453095 DOI: 10.1186/s12934-024-02541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
Flavonoids are a large and important group of phytochemicals with a great variety of bioactivities. The addition of methyl groups during biosynthesis of flavonoids and other polyphenols enhances their bioactivities and increases their stability. In a previous study of our research group, we detected a novel flavonoid O-methyltransferase activity in Streptomyces albidoflavus J1074, which led to the heterologous biosynthesis of homohesperetin from hesperetin in feeding cultures. In this study, we identify the O-methyltransferase responsible for the generation of this methylated flavonoid through the construction of a knockout mutant of the gene XNR_0417, which was selected after a blast analysis using the sequence of a caffeic acid 3'-O-methyltransferase from Zea mays against the genome of S. albidoflavus J1074. This mutant strain, S. albidoflavus ∆XNR_0417, was no longer able to produce homohesperetin after hesperetin feeding. Subsequently, we carried out a genetic complementation of the mutant strain in order to confirm that the enzyme encoded by XNR_0417 is responsible for the observed O-methyltransferase activity. This new strain, S. albidoflavus SP43-XNR_0417, was able to produce not only homohesperetin from hesperetin, but also different mono-, di-, tri- and tetra-methylated derivatives on other flavanones, flavones and stilbenes, revealing a broad substrate flexibility. Additionally, in vitro experiments were conducted using the purified enzyme on the substrates previously tested in vivo, demonstrating doubtless the capability of XNR_0417 to generate various methylated derivatives.
Collapse
Affiliation(s)
- Álvaro Pérez-Valero
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Patricia Magadán-Corpas
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Kinga Dulak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Agata Matera
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Suhui Ye
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Claudio J Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain.
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain.
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain.
| |
Collapse
|
4
|
da Silva Nonato N, Nunes LS, da Silveira Martins AW, Pinhal D, Domingues WB, Bellido-Quispe DK, Remião MH, Campos VF. miRNA heterologous production in bacteria: A systematic review focusing on the choice of plasmid features and bacterial/prokaryotic microfactory. Plasmid 2024; 131-132:102731. [PMID: 39349126 DOI: 10.1016/j.plasmid.2024.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Bacteria, the primary microorganisms used for industrial molecule production, do not naturally generate miRNAs. This study aims to systematically review current literature on miRNA expression systems in bacteria and address three key questions: (1) Which microorganism is most efficient for heterologous miRNA production? (2) What essential elements should be included in a plasmid construction to optimize miRNA expression? (3) Which commercial plasmid is most used for miRNA expression? Initially, 832 studies were identified across three databases, with fifteen included in this review. Three species-Escherichia coli, Salmonella typhimurium, and Rhodovulum sulfidophilum-were found as host organisms for recombinant miRNA expression. A total of 78 miRNAs were identified, out of which 75 were produced in E. coli, one in R. sulfidophilum (miR-29b), and two in S. typhimurium (mi-INHA and miRNA CCL22). Among gram-negative bacteria, R. sulfidophilum emerged as an efficient platform for heterologous production, thanks to features like nucleic acid secretion, RNase non-secretion, and seawater cultivation capability. However, E. coli remains the widely recognized model for large-scale miRNA production in biotechnology market. Regarding plasmids for miRNA expression in bacteria, those with an lpp promoter and multiple cloning sites appear to be the most suitable due to their robust expression cassette. The reengineering of recombinant constructs holds potential, as improvements in construct characteristics maximize the expression of desired molecules. The utilization of recombinant bacteria as platforms for producing new molecules is a widely used approach, with a focus on miRNAs expression for therapeutic contexts.
Collapse
Affiliation(s)
- Nyelson da Silva Nonato
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Leandro Silva Nunes
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amanda Weege da Silveira Martins
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular, Instituto de Biociências de Botucatu, Departamento de Genética, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Dionet Keny Bellido-Quispe
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mariana Härter Remião
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
5
|
Beaumont LP, Mehalko J, Johnson A, Wall VE, Esposito D. Unexpected tobacco etch virus (TEV) protease cleavage of recombinant human proteins. Protein Expr Purif 2024; 220:106488. [PMID: 38679188 PMCID: PMC11129917 DOI: 10.1016/j.pep.2024.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
The tobacco etch virus (TEV) protease is a commonly used reagent for removal of solubility and purification tags from recombinant proteins and is cited as being highly specific for its canonical cleavage site. Flexibility in some amino acids within this recognition sequence has been described in the literature but researchers generally assume few native human proteins will carry off-target sequences for TEV cleavage. We report here the aberrant cleavage of three human proteins with non-canonical TEV protease cleavage sites and identify broader sequence specificity rules that can be used to predict unwanted cleavage of recombinant proteins. Using these rules, 456 human proteins were identified that could be substrates for unwanted TEV protease cleavage.
Collapse
Affiliation(s)
- Lauren P Beaumont
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jennifer Mehalko
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Adam Johnson
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vanessa E Wall
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
6
|
Smith M, Hernández JS, Messing S, Ramakrishnan N, Higgins B, Mehalko J, Perkins S, Wall VE, Grose C, Frank PH, Cregger J, Le PV, Johnson A, Sherekar M, Pagonis M, Drew M, Hong M, Widmeyer SRT, Denson JP, Snead K, Poon I, Waybright T, Champagne A, Esposito D, Jones J, Taylor T, Gillette W. Producing recombinant proteins in Vibrio natriegens. Microb Cell Fact 2024; 23:208. [PMID: 39049057 PMCID: PMC11267860 DOI: 10.1186/s12934-024-02455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/08/2024] [Indexed: 07/27/2024] Open
Abstract
The diversity of chemical and structural attributes of proteins makes it inherently difficult to produce a wide range of proteins in a single recombinant protein production system. The nature of the target proteins themselves, along with cost, ease of use, and speed, are typically cited as major factors to consider in production. Despite a wide variety of alternative expression systems, most recombinant proteins for research and therapeutics are produced in a limited number of systems: Escherichia coli, yeast, insect cells, and the mammalian cell lines HEK293 and CHO. Recent interest in Vibrio natriegens as a new bacterial recombinant protein expression host is due in part to its short doubling time of ≤ 10 min but also stems from the promise of compatibility with techniques and genetic systems developed for E. coli. We successfully incorporated V. natriegens as an additional bacterial expression system for recombinant protein production and report improvements to published protocols as well as new protocols that expand the versatility of the system. While not all proteins benefit from production in V. natriegens, we successfully produced several proteins that were difficult or impossible to produce in E. coli. We also show that in some cases, the increased yield is due to higher levels of properly folded protein. Additionally, we were able to adapt our enhanced isotope incorporation methods for use with V. natriegens. Taken together, these observations and improvements allowed production of proteins for structural biology, biochemistry, assay development, and structure-based drug design in V. natriegens that were impossible and/or unaffordable to produce in E. coli.
Collapse
Affiliation(s)
- Matthew Smith
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - José Sánchez Hernández
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Simon Messing
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nitya Ramakrishnan
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Brianna Higgins
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jennifer Mehalko
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Shelley Perkins
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vanessa E Wall
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Carissa Grose
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Peter H Frank
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Julia Cregger
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Phuong Vi Le
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Adam Johnson
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Mukul Sherekar
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Morgan Pagonis
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matt Drew
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Min Hong
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Stephanie R T Widmeyer
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - John-Paul Denson
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kelly Snead
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ivy Poon
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Timothy Waybright
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Allison Champagne
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jane Jones
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Troy Taylor
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - William Gillette
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
7
|
Cornilescu G, Bindu L, Sternicki L, Chao FA, Gillette WK, Fer N, Colombus J, Castillo J, Bonilla PA, Van QN, Larsen E, Hong M, Burgan W, Turbyville T, Nissley DV, Liu M, Quinn R, Jean-Francois FL. Natural Product Graveoline Modulates Kirsten Rat Sarcoma Viral Oncogene Homologue (KRAS) Membrane Association: Insights from Advanced Spectroscopic Studies. ACS Pharmacol Transl Sci 2024; 7:1983-1995. [PMID: 39022364 PMCID: PMC11249638 DOI: 10.1021/acsptsci.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
The KRAS gene plays a pivotal role in numerous cancers by encoding a GTPase that upon association with the plasma membrane activates the MAPK pathway, promoting cellular proliferation. In our study, we investigated small molecules that disrupt KRAS's membrane interaction, hypothesizing that such disruption could in turn inhibit mutant RAS signaling. Native mass spectrometry screening of KRAS-FMe identified compounds with a preference for interacting with the hypervariable region (HVR), and surface plasmon resonance (SPR) further refined our selection to graveoline as a compound exhibiting preferential HVR binding. Subsequent nuclear magnetic resonance (NMR) analysis showed that graveoline's interaction with KRAS depends on C-terminal O-methylation. Moreover, our findings revealed multiple interaction sites, suggesting weak engagement with the KRAS G domain. Using nanodiscs as a membrane mimetic, further characterization through NMR and Förster resonance energy transfer (FRET) studies demonstrated graveoline's ability to perturb KRAS membrane interaction in a biochemical setting. Our biophysical approach sheds light on the intricate molecular mechanisms underlying KRAS-ligand interactions, providing valuable insights into understanding the KRAS-associated pathophysiology. These findings contribute to the translational aspect of our study, offering potential avenues for further research targeting KRAS membrane association with the potential to lead to a new class of RAS therapeutics.
Collapse
Affiliation(s)
- Gabriel Cornilescu
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Lakshman Bindu
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Louise Sternicki
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Fa-An Chao
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - William K. Gillette
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Nicole Fer
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - John Colombus
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Jean Castillo
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Pedro Andrade Bonilla
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Que N. Van
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Erik Larsen
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Min Hong
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - William Burgan
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Thomas Turbyville
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Dwight V. Nissley
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Miaomiao Liu
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Ronald Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Frantz L. Jean-Francois
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| |
Collapse
|
8
|
Zhao H, Syed AM, Khalid MM, Nguyen A, Ciling A, Wu D, Yau WM, Srinivasan S, Esposito D, Doudna J, Piszczek G, Ott M, Schuck P. Assembly of SARS-CoV-2 nucleocapsid protein with nucleic acid. Nucleic Acids Res 2024; 52:6647-6661. [PMID: 38587193 PMCID: PMC11194069 DOI: 10.1093/nar/gkae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-)protein into ribonucleoprotein particles (RNPs), 38 ± 10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to ancestral and mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining nucleocapsid protein variants in a viral assembly assay. We find that nucleic acid-bound N-protein dimers oligomerize via a recently described protein-protein interface presented by a transient helix in its long disordered linker region between NTD and CTD. The resulting hexameric complexes are stabilized by multivalent protein-nucleic acid interactions that establish crosslinks between dimeric subunits. Assemblies are stabilized by the dimeric CTD of N-protein offering more than one binding site for stem-loop RNA. Our study suggests a model for RNP assembly where N-protein scaffolding at high density on viral RNA is followed by cooperative multimerization through protein-protein interactions in the disordered linker.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdullah M Syed
- Gladstone Institutes, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alison Ciling
- Gladstone Institutes, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanjana Srinivasan
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer A Doudna
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- HHMI, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
- Center for Biomedical Engineering Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Frank PH, Hong M, Higgins B, Perkins S, Taylor T, Wall VE, Drew M, Waybright T, Gillette W, Esposito D, Messing S. Adapting recombinant bacterial alkaline phosphatase for nucleotide exchange of small GTPases. Protein Expr Purif 2024; 218:106446. [PMID: 38395209 PMCID: PMC11000209 DOI: 10.1016/j.pep.2024.106446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/05/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
The small GTPase Rat sarcoma virus proteins (RAS) are key regulators of cell growth and involved in 20-30% of cancers. RAS switches between its active state and inactive state via exchange of GTP (active) and GDP (inactive). Therefore, to study active protein, it needs to undergo nucleotide exchange to a non-hydrolysable GTP analog. Calf intestine alkaline phosphatase bound to agarose beads (CIP-agarose) is regularly used in a nucleotide exchange protocol to replace GDP with a non-hydrolysable analog. Due to pandemic supply problems and product shortages, we found the need for an alternative to this commercially available product. Here we describe how we generated a bacterial alkaline phosphatase (BAP) with an affinity tag bound to an agarose bead. This BAP completely exchanges the nucleotide in our samples, thereby demonstrating an alternative to the commercially available product using generally available laboratory equipment.
Collapse
Affiliation(s)
- Peter H Frank
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Min Hong
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Brianna Higgins
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Shelley Perkins
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vanessa E Wall
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matthew Drew
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Timothy Waybright
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - William Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
10
|
D’Ippolito R, Rabara D, Blanco MA, Alberico E, Drew MR, Ramakrishnan N, Sontan D, Widmeyer SRT, Scheidemantle GM, Messing S, Turner D, Arkin M, Maciag AE, Stephen AG, Esposito D, McCormick F, Nissley DV, DeHart CJ. A Top-Down Proteomic Assay to Evaluate KRAS4B-Compound Engagement. Anal Chem 2024; 96:5223-5231. [PMID: 38498381 PMCID: PMC10993199 DOI: 10.1021/acs.analchem.3c05626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Development of new targeted inhibitors for oncogenic KRAS mutants may benefit from insight into how a given mutation influences the accessibility of protein residues and how compounds interact with mutant or wild-type KRAS proteins. Targeted proteomic analysis, a key validation step in the KRAS inhibitor development process, typically involves both intact mass- and peptide-based methods to confirm compound localization or quantify binding. However, these methods may not always provide a clear picture of the compound binding affinity for KRAS, how specific the compound is to the target KRAS residue, and how experimental conditions may impact these factors. To address this, we have developed a novel top-down proteomic assay to evaluate in vitro KRAS4B-compound engagement while assessing relative quantitation in parallel. We present two applications to demonstrate the capabilities of our assay: maleimide-biotin labeling of a KRAS4BG12D cysteine mutant panel and treatment of three KRAS4B proteins (WT, G12C, and G13C) with small molecule compounds. Our results show the time- or concentration-dependence of KRAS4B-compound engagement in context of the intact protein molecule while directly mapping the compound binding site.
Collapse
Affiliation(s)
- Robert
A. D’Ippolito
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Dana Rabara
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Maria Abreu Blanco
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Emily Alberico
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Matthew R. Drew
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Nitya Ramakrishnan
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Dara Sontan
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Stephanie R. T. Widmeyer
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Grace M. Scheidemantle
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Simon Messing
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - David Turner
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Michelle Arkin
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94143, United States
- Small
Molecule Discovery Center, University of
California, San Francisco, California 94143, United States
| | - Anna E. Maciag
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Andrew G. Stephen
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Dominic Esposito
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Frank McCormick
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California, San
Francisco, California 94158, United States
| | - Dwight V. Nissley
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Caroline J. DeHart
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| |
Collapse
|
11
|
Shan CQ, Liu QC, Li J, Liu E, Li C, Yu HM, Jiang GT, Liu Y, Tian J. Expression of chicken epidermal growth factor (cEGF) in Escherichia coli regulates the microflora structure of the duodenum to improve growth performance and intestinal morphogenesis in broilers. Br Poult Sci 2024; 65:179-190. [PMID: 38372614 DOI: 10.1080/00071668.2024.2308274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/22/2023] [Indexed: 02/20/2024]
Abstract
1. A study used gene synthesis to obtain the functional domains of chicken epidermal growth factor (cEGF) and examined their impact on broiler growth performance, small intestinal morphology, digestive enzyme activities in the intestinal contents and the structure of duodenal microflora.2. The pET-32a-cEGF recombinant expression vector was constructed. The specific band at 26 KDa was shown by SDS-PAGE analysis and WB results. The purified protein content was shown to be 1687 μg/ml by assay.3. A total of 180 healthy, one-day-old Arbor Acres male, white-feathered broilers were randomly divided into three dietary treatment groups (six replicate pens, 10 birds per replicate): A control diet (ND); cEGF diet (cEGF), control supplemented with 250 mg/kg cEGF and the control diet (CD) supplemented with 250 mg/kg chlortetracycline.4. The results showed that feeding the cEGF and CD diet reduced FCR of broilers aged 1-21 d, average daily feed intake (ADFI) at 22-42 d, and the FCR in the whole period (1-42 d; p < 0.05). Compared with the ND group, the cEGF diet increased duodenal α-amylase and alkaline phosphatase activities in the 1-21 d, duodenal lipase, alkaline phosphatase, and ileal alkaline phosphatase activities in the post-period and increased villus height in the duodenum and ileum (p < 0.05). In addition, the ACE and Chao1 index for the birds fed cEGF were higher than the ND group (p < 0.05). At the phyla level, Firmicutes and Proteobacteria were dominant in all groups. At the genus level, the dominant genus was Lactobacillus. The LEfSe analysis showed that the cEGF group was enriched by 11 species including Brevibacillus, Eisenbergiella, Cloacibacterium, Butyricoccus spp.5. The addition of 250 mg/kg cEGF to the diet can increase growth performance by improving intestinal development and digestive enzyme activity, which may be related to the duodenal intestinal microflora. Therefore, cEGF is an effective alternative to antibiotics in broiler farming.
Collapse
Affiliation(s)
- C Q Shan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Q C Liu
- Dalian Sanyi Bioengineering Research Institute, Dalian Pharmaceutical Sanyi Drugs Co Ltd, Dalian, Liaoning, China
| | - J Li
- Dalian Sanyi Bioengineering Research Institute, Dalian Pharmaceutical Sanyi Drugs Co Ltd, Dalian, Liaoning, China
| | - E Liu
- Research Quality Control Centre, Jiangsu Sanyi Bioengineering Co Ltd, Xuzhou, Jiangsu, China
| | - C Li
- Research Quality Control Centre, Jiangsu Sanyi Bioengineering Co Ltd, Xuzhou, Jiangsu, China
| | - H M Yu
- Dalian Sanyi Bioengineering Research Institute, Dalian Pharmaceutical Sanyi Drugs Co Ltd, Dalian, Liaoning, China
| | - G T Jiang
- Dalian Sanyi Bioengineering Research Institute, Dalian Pharmaceutical Sanyi Drugs Co Ltd, Dalian, Liaoning, China
| | - Y Liu
- Dalian Sanyi Bioengineering Research Institute, Dalian Pharmaceutical Sanyi Drugs Co Ltd, Dalian, Liaoning, China
| | - J Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
12
|
Shrestha R, Carpenter TS, Van QN, Agamasu C, Tonelli M, Aydin F, Chen D, Gulten G, Glosli JN, López CA, Oppelstrup T, Neale C, Gnanakaran S, Gillette WK, Ingólfsson HI, Lightstone FC, Stephen AG, Streitz FH, Nissley DV, Turbyville TJ. Membrane lipids drive formation of KRAS4b-RAF1 RBDCRD nanoclusters on the membrane. Commun Biol 2024; 7:242. [PMID: 38418613 PMCID: PMC10902389 DOI: 10.1038/s42003-024-05916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
The oncogene RAS, extensively studied for decades, presents persistent gaps in understanding, hindering the development of effective therapeutic strategies due to a lack of precise details on how RAS initiates MAPK signaling with RAF effector proteins at the plasma membrane. Recent advances in X-ray crystallography, cryo-EM, and super-resolution fluorescence microscopy offer structural and spatial insights, yet the molecular mechanisms involving protein-protein and protein-lipid interactions in RAS-mediated signaling require further characterization. This study utilizes single-molecule experimental techniques, nuclear magnetic resonance spectroscopy, and the computational Machine-Learned Modeling Infrastructure (MuMMI) to examine KRAS4b and RAF1 on a biologically relevant lipid bilayer. MuMMI captures long-timescale events while preserving detailed atomic descriptions, providing testable models for experimental validation. Both in vitro and computational studies reveal that RBDCRD binding alters KRAS lateral diffusion on the lipid bilayer, increasing cluster size and decreasing diffusion. RAS and membrane binding cause hydrophobic residues in the CRD region to penetrate the bilayer, stabilizing complexes through β-strand elongation. These cooperative interactions among lipids, KRAS4b, and RAF1 are proposed as essential for forming nanoclusters, potentially a critical step in MAP kinase signal activation.
Collapse
Affiliation(s)
- Rebika Shrestha
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Timothy S Carpenter
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Que N Van
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Constance Agamasu
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Fikret Aydin
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - De Chen
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Gulcin Gulten
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - James N Glosli
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Tomas Oppelstrup
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Chris Neale
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - William K Gillette
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Helgi I Ingólfsson
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Felice C Lightstone
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Andrew G Stephen
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Frederick H Streitz
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Dwight V Nissley
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Thomas J Turbyville
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA.
| |
Collapse
|
13
|
Whitley MJ, Tran TH, Rigby M, Yi M, Dharmaiah S, Waybright TJ, Ramakrishnan N, Perkins S, Taylor T, Messing S, Esposito D, Nissley DV, McCormick F, Stephen AG, Turbyville T, Cornilescu G, Simanshu DK. Comparative analysis of KRAS4a and KRAS4b splice variants reveals distinctive structural and functional properties. SCIENCE ADVANCES 2024; 10:eadj4137. [PMID: 38354232 DOI: 10.1126/sciadv.adj4137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
KRAS, the most frequently mutated oncogene in human cancer, produces two isoforms, KRAS4a and KRAS4b, through alternative splicing. These isoforms differ in exon 4, which encodes the final 15 residues of the G-domain and hypervariable regions (HVRs), vital for trafficking and membrane localization. While KRAS4b has been extensively studied, KRAS4a has been largely overlooked. Our multidisciplinary study compared the structural and functional characteristics of KRAS4a and KRAS4b, revealing distinct structural properties and thermal stability. Position 151 influences KRAS4a's thermal stability, while position 153 affects binding to RAF1 CRD protein. Nuclear magnetic resonance analysis identified localized structural differences near sequence variations and provided a solution-state conformational ensemble. Notably, KRAS4a exhibits substantial transcript abundance in bile ducts, liver, and stomach, with transcript levels approaching KRAS4b in the colon and rectum. Functional disparities were observed in full-length KRAS variants, highlighting the impact of HVR variations on interaction with trafficking proteins and downstream effectors like RAF and PI3K within cells.
Collapse
Affiliation(s)
- Matthew J Whitley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Megan Rigby
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ming Yi
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Timothy J Waybright
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nitya Ramakrishnan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shelley Perkins
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, USA
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Thomas Turbyville
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gabriel Cornilescu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
14
|
Sharma AK, Pei J, Yang Y, Dyba M, Smith B, Rabara D, Larsen EK, Lightstone FC, Esposito D, Stephen AG, Wang B, Beltran PJ, Wallace E, Nissley DV, McCormick F, Maciag AE. Revealing the mechanism of action of a first-in-class covalent inhibitor of KRASG12C (ON) and other functional properties of oncogenic KRAS by 31P NMR. J Biol Chem 2024; 300:105650. [PMID: 38237681 PMCID: PMC10877953 DOI: 10.1016/j.jbc.2024.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024] Open
Abstract
Individual oncogenic KRAS mutants confer distinct differences in biochemical properties and signaling for reasons that are not well understood. KRAS activity is closely coupled to protein dynamics and is regulated through two interconverting conformations: state 1 (inactive, effector binding deficient) and state 2 (active, effector binding enabled). Here, we use 31P NMR to delineate the differences in state 1 and state 2 populations present in WT and common KRAS oncogenic mutants (G12C, G12D, G12V, G13D, and Q61L) bound to its natural substrate GTP or a commonly used nonhydrolyzable analog GppNHp (guanosine-5'-[(β,γ)-imido] triphosphate). Our results show that GppNHp-bound proteins exhibit significant state 1 population, whereas GTP-bound KRAS is primarily (90% or more) in state 2 conformation. This observation suggests that the predominance of state 1 shown here and in other studies is related to GppNHp and is most likely nonexistent in cells. We characterize the impact of this differential conformational equilibrium of oncogenic KRAS on RAF1 kinase effector RAS-binding domain and intrinsic hydrolysis. Through a KRAS G12C drug discovery, we have identified a novel small-molecule inhibitor, BBO-8956, which is effective against both GDP- and GTP-bound KRAS G12C. We show that binding of this inhibitor significantly perturbs state 1-state 2 equilibrium and induces an inactive state 1 conformation in GTP-bound KRAS G12C. In the presence of BBO-8956, RAF1-RAS-binding domain is unable to induce a signaling competent state 2 conformation within the ternary complex, demonstrating the mechanism of action for this novel and active-conformation inhibitor.
Collapse
Affiliation(s)
- Alok K Sharma
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA.
| | - Jun Pei
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Yue Yang
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Marcin Dyba
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Brian Smith
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Dana Rabara
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Erik K Larsen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Felice C Lightstone
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Bin Wang
- BridgeBio Oncology Therapeutics, BridgeBio Pharma, Inc, Palo Alto, California, USA
| | - Pedro J Beltran
- BridgeBio Oncology Therapeutics, BridgeBio Pharma, Inc, Palo Alto, California, USA
| | - Eli Wallace
- BridgeBio Oncology Therapeutics, BridgeBio Pharma, Inc, Palo Alto, California, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA; BridgeBio Oncology Therapeutics, BridgeBio Pharma, Inc, Palo Alto, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Anna E Maciag
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA.
| |
Collapse
|
15
|
Rabara D, Stephen AG. Measurement of KRAS-GTPase Activity. Methods Mol Biol 2024; 2797:91-102. [PMID: 38570454 DOI: 10.1007/978-1-0716-3822-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Oncogenic mutations in KRAS typically impact the GAP-mediated and intrinsic GTP hydrolysis activity resulting in elevated levels of cellular KRAS-GTP. The development of biochemical assays for GTPase activity provides an opportunity to quantitatively measure the impact of these mutations on GTP hydrolysis. Here we describe a biochemical assay that measures the release of free phosphate upon hydrolysis of the GTP nucleotide and allows the measurement of intrinsic or GAP-stimulated GTP hydrolysis by KRAS. This assay can be used to measure GTPase activity under single turnover conditions.
Collapse
Affiliation(s)
- Dana Rabara
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
16
|
Taylor T, Gillette W. Production of Isotopically Labeled KRAS4b. Methods Mol Biol 2024; 2797:23-34. [PMID: 38570450 DOI: 10.1007/978-1-0716-3822-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Isotopically labelled proteins are important reagents in structural biology as well as in targeted drug development. The field continues to advance with complex multi-isotope labeling. We have combined our experience in high-level soluble KRAS4b expression with protocols for isotope incorporation, to achieve reliable and efficient approaches for several labeling strategies. Typical experiments achieve nearly 100% 15N incorporation, with yields in the range of 1.3-24.6 mg/L (median = 6.4 mg/L, n = 53). Improvements in the growth parameters in the presence of deuterium reduce the standard time of fermentation from 5 days to 3 days by modifying the medium used during the weaning process. The methods described are compatible with multi-isotope labeling and site-specific labeling.
Collapse
Affiliation(s)
- Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - William Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
17
|
Alexander P, Stephen AG. Affinity Measurement of Non-covalent Interactions of the Covalent KRAS G12C GDP Inhibitor MRTX849 to RAS Isoforms Using Surface Plasmon Resonance. Methods Mol Biol 2024; 2797:103-114. [PMID: 38570455 DOI: 10.1007/978-1-0716-3822-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Surface plasmon resonance (SPR) is an optical effect at an electron-rich surface that enables affinity measurements of biomolecules in real time. It is label free and versatile, not limited to proteins, nucleic acids, and small molecules. SPR is a widely accepted method to measure not only affinity of molecular interactions but also association and dissociation rates of such interactions. In this chapter, we describe a general method to measure the affinity of a small molecule drug, MRTX849, to GDP bound HRAS, KRAS, and NRAS.
Collapse
Affiliation(s)
- Patrick Alexander
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
18
|
Larsen EK, Abreu-Blanco M, Rabara D, Stephen AG. KRAS4b:RAF-1 Homogenous Time-Resolved Fluorescence Resonance Energy Transfer Assay for Drug Discovery. Methods Mol Biol 2024; 2797:159-175. [PMID: 38570459 DOI: 10.1007/978-1-0716-3822-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Homogenous time-resolved FRET (HTRF) assays have become one of the most popular tools for pharmaceutical drug screening efforts over the last two decades. Large Stokes shifts and long fluorescent lifetimes of lanthanide chelates lead to robust signal to noise, as well as decreased false positive rates compared to traditional assay techniques. In this chapter, we describe an HTRF protein-protein interaction (PPI) assay for the KRAS4b G-domain in the GppNHp-bound state and the RAF-1-RBD currently used for drug screens. Application of this assay contributes to the identification of lead compounds targeting the GTP-bound active state of K-RAS.
Collapse
Affiliation(s)
- Erik K Larsen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Maria Abreu-Blanco
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dana Rabara
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
19
|
D'Ippolito RA, Scheidemantle GM, Rabara D, Abreu Blanco M, Ramakrishnan N, Widmeyer SRT, Messing S, Turner D, Maciag AE, Stephen AG, Esposito D, McCormick F, Nissley DV, DeHart CJ. Determining KRAS4B-Targeting Compound Specificity by Top-Down Mass Spectrometry. Methods Mol Biol 2024; 2823:291-310. [PMID: 39052227 DOI: 10.1007/978-1-0716-3922-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We present a novel method to determine engagement and specificity of KRAS4B-targeting compounds in vitro. By employing top-down mass spectrometry (MS), which analyzes intact and modified protein molecules (proteoforms), we can directly visualize and confidently characterize each KRAS4B species within compound-treated samples. Moreover, by employing targeted MS2 fragmentation, we can precisely localize each compound molecule to a specific residue on a given KRAS4B proteoform. This method allows us to comprehensively evaluate compound specificity, clearly detect nonspecific binding events, and determine the order and frequency with which they occur. We provide two proof-of-concept examples of our method employing publicly available compounds, along with detailed protocols for sample preparation, top-down MS data acquisition, targeted proteoform MS2 fragmentation, and analysis of the resulting data. Our results demonstrate the concentration dependence of KRAS4B-compound engagement and highlight the ability of top-down MS to directly map compound binding location(s) without disrupting the KRAS4B primary structure. Our hope is that this novel method may help accelerate the identification of new successful targeted inhibitors for KRAS4B and other RAS isoforms.
Collapse
Affiliation(s)
- Robert A D'Ippolito
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Grace M Scheidemantle
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dana Rabara
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maria Abreu Blanco
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nitya Ramakrishnan
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stephanie R T Widmeyer
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simon Messing
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - David Turner
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anna E Maciag
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrew G Stephen
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dominic Esposito
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Caroline J DeHart
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
20
|
Zhao H, Syed AM, Khalid MM, Nguyen A, Ciling A, Wu D, Yau WM, Srinivasan S, Esposito D, Doudna JA, Piszczek G, Ott M, Schuck P. Assembly reactions of SARS-CoV-2 nucleocapsid protein with nucleic acid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568361. [PMID: 38045338 PMCID: PMC10690241 DOI: 10.1101/2023.11.22.568361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-) protein into ribonucleoprotein particles (RNPs), 38±10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining mutant proteins in a viral assembly assay. We find that nucleic acid-bound N-protein dimers oligomerize via a recently described protein-protein interface presented by a transient helix in its long disordered linker region between NTD and CTD. The resulting hexameric complexes are stabilized by multi-valent protein-nucleic acid interactions that establish crosslinks between dimeric subunits. Assemblies are stabilized by the dimeric CTD of N-protein offering more than one binding site for stem-loop RNA. Our study suggests a model for RNP assembly where N-protein scaffolding at high density on viral RNA is followed by cooperative multimerization through protein-protein interactions in the disordered linker.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Abdullah M. Syed
- Gladstone Institutes, San Francisco, CA 94158
- Innovative Genomics Institute, University of California, Berkeley, CA 94720
| | | | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Alison Ciling
- Gladstone Institutes, San Francisco, CA 94158
- Innovative Genomics Institute, University of California, Berkeley, CA 94720
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sanjana Srinivasan
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jennifer A. Doudna
- Gladstone Institutes, San Francisco, CA 94158
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- HHMI, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158
- Department of Medicine, University of California, San Francisco, CA 94143
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
- Center for Biomedical Engineering Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
21
|
Cuevas-Navarro A, Wagner M, Van R, Swain M, Mo S, Columbus J, Allison MR, Cheng A, Messing S, Turbyville TJ, Simanshu DK, Sale MJ, McCormick F, Stephen AG, Castel P. RAS-dependent RAF-MAPK hyperactivation by pathogenic RIT1 is a therapeutic target in Noonan syndrome-associated cardiac hypertrophy. SCIENCE ADVANCES 2023; 9:eadf4766. [PMID: 37450595 PMCID: PMC10348673 DOI: 10.1126/sciadv.adf4766] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
RIT1 is a RAS guanosine triphosphatase (GTPase) that regulates different aspects of signal transduction and is mutated in lung cancer, leukemia, and in the germline of individuals with Noonan syndrome. Pathogenic RIT1 proteins promote mitogen-activated protein kinase (MAPK) hyperactivation; however, this mechanism remains poorly understood. Here, we show that RAF kinases are direct effectors of membrane-bound mutant RIT1 necessary for MAPK activation. We identify critical residues in RIT1 that facilitate interaction with membrane lipids and show that these are necessary for association with RAF kinases and MAPK activation. Although mutant RIT1 binds to RAF kinases directly, it fails to activate MAPK signaling in the absence of classical RAS proteins. Consistent with aberrant RAF/MAPK activation as a driver of disease, we show that pathway inhibition alleviates cardiac hypertrophy in a mouse model of RIT1 mutant Noonan syndrome. These data shed light on the function of pathogenic RIT1 and identify avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Antonio Cuevas-Navarro
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Morgan Wagner
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Richard Van
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monalisa Swain
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Stephanie Mo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - John Columbus
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Madeline R. Allison
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alice Cheng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Thomas J. Turbyville
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Matthew J. Sale
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew G. Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
22
|
Chao FA, Chan AH, Dharmaiah S, Schwieters CD, Tran TH, Taylor T, Ramakrishnan N, Esposito D, Nissley DV, McCormick F, Simanshu DK, Cornilescu G. Reduced dynamic complexity allows structure elucidation of an excited state of KRAS G13D. Commun Biol 2023; 6:594. [PMID: 37268708 DOI: 10.1038/s42003-023-04960-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
Localized dynamics of RAS, including regions distal to the nucleotide-binding site, is of high interest for elucidating the mechanisms by which RAS proteins interact with effectors and regulators and for designing inhibitors. Among several oncogenic mutants, methyl relaxation dispersion experiments reveal highly synchronized conformational dynamics in the active (GMPPNP-bound) KRASG13D, which suggests an exchange between two conformational states in solution. Methyl and 31P NMR spectra of active KRASG13D in solution confirm a two-state ensemble interconverting on the millisecond timescale, with a major Pγ atom peak corresponding to the dominant State 1 conformation and a secondary peak indicating an intermediate state different from the known State 2 conformation recognized by RAS effectors. High-resolution crystal structures of active KRASG13D and KRASG13D-RAF1 RBD complex provide snapshots of the State 1 and 2 conformations, respectively. We use residual dipolar couplings to solve and cross-validate the structure of the intermediate state of active KRASG13D, showing a conformation distinct from those of States 1 and 2 outside the known flexible switch regions. The dynamic coupling between the conformational exchange in the effector lobe and the breathing motion in the allosteric lobe is further validated by a secondary mutation in the allosteric lobe, which affects the conformational population equilibrium.
Collapse
Affiliation(s)
- Fa-An Chao
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA.
| | - Albert H Chan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Charles D Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Building 12A, 20892-5624, Bethesda, MD, USA
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Nitya Ramakrishnan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA.
| | - Gabriel Cornilescu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA.
| |
Collapse
|
23
|
Lopez J, Bonsor DA, Sale MJ, Urisman A, Mehalko JL, Cabanski-Dunning M, Castel P, Simanshu DK, McCormick F. The Ribosomal S6 Kinase 2 (RSK2)-SPRED2 complex regulates phosphorylation of RSK substrates and MAPK signaling. J Biol Chem 2023:104789. [PMID: 37149146 DOI: 10.1016/j.jbc.2023.104789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023] Open
Abstract
Sprouty-related EVH-1 domain-containing (SPRED) proteins are a family of proteins that negatively regulate the RAS-MAPK pathway, which is involved in the regulation of the mitogenic response and cell proliferation. However, the mechanism by which these proteins affect RAS-MAPK signaling has not been fully elucidated. Patients with mutations in SPRED give rise to unique disease phenotypes, thus we hypothesized that distinct interactions across SPRED proteins may account for alternative nodes of regulation. To characterize the SPRED interactome and evaluate how members of the SPRED family function through unique binding partners, here we performed affinity purification mass spectrometry. We identified 90-kDa ribosomal S6 kinase 2 (RSK2) as a specific interactor of SPRED2, but not SPRED1 or SPRED3. We identified that the N-terminal kinase domain of RSK2 mediates interaction between amino acids 123-201 of SPRED2. Using X-ray crystallography, we determined the structure of the SPRED2-RSK2 complex and identified the SPRED2 motif, F145A, as critical for interaction. Additionally, we found that formation of this interaction is regulated by MAPK signaling events. We also find that that this interaction between SPRED2 and RSK2 has functional consequences, whereby knockdown of SPRED2 resulted in increased phosphorylation of RSK substrates, YB1 and CREB. Furthermore, SPRED2 knockdown hindered phospho-RSK membrane and nuclear subcellular localization. Lastly, we report that disruption of the SPRED2-RSK complex has effects on RAS-MAPK signaling dynamics. Overall, our analysis reveals that members of the SPRED family have unique protein binding partners and describes the molecular and functional determinants of SPRED2-RSK2 complex dynamics.
Collapse
Affiliation(s)
- Jocelyne Lopez
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA
| | - Daniel A Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Matthew J Sale
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA
| | - Anatoly Urisman
- Department of Pathology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jennifer L Mehalko
- Protein Expression Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702, United States
| | - Miranda Cabanski-Dunning
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University, 450 E 29(th) Street, New York, NY 10016, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
GAP positions catalytic H-Ras residue Q61 for GTP hydrolysis in molecular dynamics simulations, complicating chemical rescue of Ras deactivation. Comput Biol Chem 2023; 104:107835. [PMID: 36893567 DOI: 10.1016/j.compbiolchem.2023.107835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
Functional interaction of Ras signaling proteins with upstream, negative regulatory GTPase activating proteins (GAPs) represents a crucial step in cellular decision making related to growth and survival. Key components of the catalytic transition state for Ras deactivation by GAP-accelerated hydrolysis of Ras-bound guanosine triphosphate (GTP) are thought to include an arginine residue from the GAP (the arginine finger), a glutamine residue from Ras (Q61), and a water molecule that is likely coordinated by Q61 to engage in nucleophilic attack on GTP. Here, we use in-vitro fluorescence experiments to show that 0.1-100 mM concentrations of free arginine, imidazole, and other small nitrogenous molecule fail to accelerate GTP hydrolysis, even in the presence of the catalytic domain of a mutant GAP lacking its arginine finger (R1276A NF1). This result is surprising given that imidazole can chemically rescue enzyme activity in arginine-to-alanine mutant protein tyrosine kinases (PTKs) that share many active site components with Ras/GAP complexes. Complementary all-atom molecular dynamics (MD) simulations reveal that an arginine finger GAP mutant still functions to enhance Ras Q61-GTP interaction, though less extensively than wild-type GAP. This increased Q61-GTP proximity may promote more frequent fluctuations into configurations that enable GTP hydrolysis as a component of the mechanism by which GAPs accelerate Ras deactivation in the face of arginine finger mutations. The failure of small molecule analogs of arginine to chemically rescue catalytic deactivation of Ras is consistent with the idea that the influence of the GAP goes beyond the simple provision of its arginine finger. However, the failure of chemical rescue in the presence of R1276A NF1 suggests that the GAPs arginine finger is either unsusceptible to rescue due to exquisite positioning or that it is involved in complex multivalent interactions. Therefore, in the context of oncogenic Ras proteins with mutations at codons 12 or 13 that inhibit arginine finger penetration toward GTP, drug-based chemical rescue of GTP hydrolysis may have bifunctional chemical/geometric requirements that are more difficult to satisfy than those that result from arginine-to-alanine mutations in other enzymes for which chemical rescue has been demonstrated.
Collapse
|
25
|
Nguyen K, López CA, Neale C, Van QN, Carpenter TS, Di Natale F, Travers T, Tran TH, Chan AH, Bhatia H, Frank PH, Tonelli M, Zhang X, Gulten G, Reddy T, Burns V, Oppelstrup T, Hengartner N, Simanshu DK, Bremer PT, Chen D, Glosli JN, Shrestha R, Turbyville T, Streitz FH, Nissley DV, Ingólfsson HI, Stephen AG, Lightstone FC, Gnanakaran S. Exploring CRD mobility during RAS/RAF engagement at the membrane. Biophys J 2022; 121:3630-3650. [PMID: 35778842 PMCID: PMC9617161 DOI: 10.1016/j.bpj.2022.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
During the activation of mitogen-activated protein kinase (MAPK) signaling, the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF bind to active RAS at the plasma membrane. The orientation of RAS at the membrane may be critical for formation of the RAS-RBDCRD complex and subsequent signaling. To explore how RAS membrane orientation relates to the protein dynamics within the RAS-RBDCRD complex, we perform multiscale coarse-grained and all-atom molecular dynamics (MD) simulations of KRAS4b bound to the RBD and CRD domains of RAF-1, both in solution and anchored to a model plasma membrane. Solution MD simulations describe dynamic KRAS4b-CRD conformations, suggesting that the CRD has sufficient flexibility in this environment to substantially change its binding interface with KRAS4b. In contrast, when the ternary complex is anchored to the membrane, the mobility of the CRD relative to KRAS4b is restricted, resulting in fewer distinct KRAS4b-CRD conformations. These simulations implicate membrane orientations of the ternary complex that are consistent with NMR measurements. While a crystal structure-like conformation is observed in both solution and membrane simulations, a particular intermolecular rearrangement of the ternary complex is observed only when it is anchored to the membrane. This configuration emerges when the CRD hydrophobic loops are inserted into the membrane and helices α3-5 of KRAS4b are solvent exposed. This membrane-specific configuration is stabilized by KRAS4b-CRD contacts that are not observed in the crystal structure. These results suggest modulatory interplay between the CRD and plasma membrane that correlate with RAS/RAF complex structure and dynamics, and potentially influence subsequent steps in the activation of MAPK signaling.
Collapse
Affiliation(s)
- Kien Nguyen
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Chris Neale
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Que N Van
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Timothy S Carpenter
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Francesco Di Natale
- Applications, Simulations, and Quality, Lawrence Livermore National Laboratory, Livermore, California
| | | | - Timothy H Tran
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Albert H Chan
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Harsh Bhatia
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California
| | - Peter H Frank
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin
| | - Xiaohua Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Gulcin Gulten
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Tyler Reddy
- CCS-7, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Violetta Burns
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Tomas Oppelstrup
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Nick Hengartner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Dhirendra K Simanshu
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Peer-Timo Bremer
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California
| | - De Chen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - James N Glosli
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Rebika Shrestha
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Thomas Turbyville
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Frederick H Streitz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Dwight V Nissley
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Helgi I Ingólfsson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Andrew G Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Felice C Lightstone
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico.
| |
Collapse
|
26
|
Bonsor DA, Alexander P, Snead K, Hartig N, Drew M, Messing S, Finci LI, Nissley DV, McCormick F, Esposito D, Rodriguez-Viciana P, Stephen AG, Simanshu DK. Structure of the SHOC2-MRAS-PP1C complex provides insights into RAF activation and Noonan syndrome. Nat Struct Mol Biol 2022; 29:966-977. [PMID: 36175670 PMCID: PMC10365013 DOI: 10.1038/s41594-022-00841-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Abstract
SHOC2 acts as a strong synthetic lethal interactor with MEK inhibitors in multiple KRAS cancer cell lines. SHOC2 forms a heterotrimeric complex with MRAS and PP1C that is essential for regulating RAF and MAPK-pathway activation by dephosphorylating a specific phosphoserine on RAF kinases. Here we present the high-resolution crystal structure of the SHOC2-MRAS-PP1C (SMP) complex and apo-SHOC2. Our structures reveal that SHOC2, MRAS, and PP1C form a stable ternary complex in which all three proteins synergistically interact with each other. Our results show that dephosphorylation of RAF substrates by PP1C is enhanced upon interacting with SHOC2 and MRAS. The SMP complex forms only when MRAS is in an active state and is dependent on SHOC2 functioning as a scaffolding protein in the complex by bringing PP1C and MRAS together. Our results provide structural insights into the role of the SMP complex in RAF activation and how mutations found in Noonan syndrome enhance complex formation, and reveal new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Daniel A Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Patrick Alexander
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kelly Snead
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nicole Hartig
- UCL Cancer Institute, University College London, London, UK
| | - Matthew Drew
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lorenzo I Finci
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
27
|
Fu Y, da Fonseca Rezende e Mello J, Fleming BD, Renn A, Chen CZ, Hu X, Xu M, Gorshkov K, Hanson Q, Zheng W, Lee EM, Perera L, Petrovich R, Pradhan M, Eastman RT, Itkin Z, Stanley TB, Hsu A, Dandey V, Sharma K, Gillette W, Taylor T, Ramakrishnan N, Perkins S, Esposito D, Oh E, Susumu K, Wolak M, Ferrer M, Hall MD, Borgnia MJ, Simeonov A. A humanized nanobody phage display library yields potent binders of SARS CoV-2 spike. PLoS One 2022; 17:e0272364. [PMID: 35947606 PMCID: PMC9365158 DOI: 10.1371/journal.pone.0272364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/18/2022] [Indexed: 01/11/2023] Open
Abstract
Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ying Fu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Juliana da Fonseca Rezende e Mello
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Bryan D. Fleming
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Alex Renn
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Catherine Z. Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Quinlin Hanson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Emily M. Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Robert Petrovich
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Manisha Pradhan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Richard T. Eastman
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Thomas B. Stanley
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Allen Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Venkata Dandey
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Kedar Sharma
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - William Gillette
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Troy Taylor
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Nitya Ramakrishnan
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Shelley Perkins
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Eunkeu Oh
- Optical Sciences Division, Naval Research Laboratory, Washington, D.C., United States of America
| | - Kimihiro Susumu
- Optical Sciences Division, Naval Research Laboratory, Washington, D.C., United States of America
- Jacobs Corporation, Hanover, Maryland, United States of America
| | - Mason Wolak
- Optical Sciences Division, Naval Research Laboratory, Washington, D.C., United States of America
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
28
|
Sharma AK, Dyba M, Tonelli M, Smith B, Gillette WK, Esposito D, Nissley DV, McCormick F, Maciag AE. NMR 1H, 13C, 15N backbone resonance assignments of the T35S and oncogenic T35S/Q61L mutants of human KRAS4b in the active, GppNHp-bound conformation. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:1-8. [PMID: 34686998 PMCID: PMC9068649 DOI: 10.1007/s12104-021-10050-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
RAS proteins cycling between the active-form (GTP-bound) and inactive-form (GDP-bound) play a key role in cell signaling pathways that control cell survival, proliferation, and differentiation. Mutations at codon 12, 13, and 61 in RAS are known to attenuate its GTPase activity favoring the RAS active state and constitutively active downstream signaling. This hyperactivation accounts for various malignancies including pancreatic, lung, and colorectal cancers. Active KRAS is found to exist in equilibrium between two rapidly interconverting conformational states (State1-State2) in solution. Due to this dynamic feature of the protein, the 1H-15N correlation cross-peak signals of several amino acid (AA) residues of KRAS belonging to the flexible loop regions are absent from its 2D 1H-15N HSQC spectrum within and near physiological solution pH. A threonine to serine mutation at position 35 (T35S) shifts the interconverting equilibrium to State1 conformation and enables the emergence of such residues in the 2D 1H-15N HSQC spectrum due to gained conformational rigidity. We report here the 1HN, 15N, and 13C backbone resonance assignments for the 19.2 kDa (AA 1-169) protein constructs of KRAS-GppNHp harboring T35S mutation (KRAST35S/C118S-GppNHp) and of its oncogenic counterpart harboring the Q61L mutation (KRAST35S/Q61L/C118S-GppNHp) using heteronuclear, multidimensional NMR spectroscopy at 298 K. High resolution NMR data allowed the unambiguous assignments of 1H-15N correlation cross-peaks for all the residues except for Met1. Furthermore, 2D 1H-15N HSQC overlay of two proteins assisted in determination of Q61L mutation-induced chemical shift perturbations for select residues in the regions of P-loop, Switch-II, and helix α3.
Collapse
Affiliation(s)
- Alok K Sharma
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA.
- Leidos Biomedical Research, Inc., Post Office Box B, Frederick, MD, 21702, USA.
| | - Marcin Dyba
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brian Smith
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - William K Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Anna E Maciag
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| |
Collapse
|
29
|
Chao FA, Dharmaiah S, Taylor T, Messing S, Gillette W, Esposito D, Nissley DV, McCormick F, Byrd RA, Simanshu DK, Cornilescu G. Insights into the Cross Talk between Effector and Allosteric Lobes of KRAS from Methyl Conformational Dynamics. J Am Chem Soc 2022; 144:4196-4205. [PMID: 35213144 PMCID: PMC10430694 DOI: 10.1021/jacs.2c00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
KRAS is the most frequently mutated RAS protein in cancer patients, and it is estimated that about 20% of the cancer patients in the United States carried mutant RAS proteins. To accelerate therapeutic development, structures and dynamics of RAS proteins had been extensively studied by various biophysical techniques for decades. Although 31P NMR studies revealed population equilibrium of the two major states in the active GMPPNP-bound form, more complex conformational dynamics in RAS proteins and oncogenic mutants subtly modulate the interactions with their downstream effectors. We established a set of customized NMR relaxation dispersion techniques to efficiently and systematically examine the ms-μs conformational dynamics of RAS proteins. This method allowed us to observe varying synchronized motions that connect the effector and allosteric lobes in KRAS. We demonstrated the role of conformational dynamics of KRAS in controlling its interaction with the Ras-binding domain of the downstream effector RAF1, the first kinase in the MAPK pathway. This allows one to explain, as well as to predict, the altered binding affinities of various KRAS mutants, which was neither previously reported nor apparent from the structural perspective.
Collapse
Affiliation(s)
- Fa-An Chao
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - William Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, California 94158, United States
| | - R Andrew Byrd
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Gabriel Cornilescu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| |
Collapse
|
30
|
Fu Y, Mello JDFRE, Fleming BD, Renn A, Chen CZ, Hu X, Xu M, Gorshkov K, Hanson Q, Zheng W, Lee EM, Perera L, Petrovich R, Pradhan M, Eastman RT, Itkin Z, Stanley T, Hsu A, Dandey V, Gillette W, Taylor T, Ramakrishnan N, Perkins S, Esposito D, Oh E, Susumu K, Wolak M, Ferrer M, Hall MD, Borgnia MJ, Simeonov A. The humanized nanobody RBD-1-2G tolerates the spike N501Y mutation to neutralize SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34729560 DOI: 10.1101/2021.10.22.465476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants. One-Sentence Summary A cost-effective, high-throughput, adaptable pipeline capable of identifying effective humanized nanobodies against SARS-CoV-2.
Collapse
|
31
|
Use of tandem affinity-buffer exchange chromatography online with native mass spectrometry for optimizing overexpression and purification of recombinant proteins. Methods Enzymol 2021; 659:37-70. [PMID: 34752295 DOI: 10.1016/bs.mie.2021.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purification of recombinant proteins typically entails overexpression in heterologous systems and subsequent chromatography-based isolation. While denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis is routinely used to screen a variety of overexpression conditions (e.g., host, medium, inducer concentration, post-induction temperature and/or incubation time) and to assess the purity of the final product, its limitations, including aberrant protein migration due to compositional eccentricities or incomplete denaturation, often preclude firm conclusions regarding the extent of overexpression and/or purification. Therefore, we recently reported an automated liquid chromatography-mass spectrometry-based strategy that couples immobilized metal affinity chromatography (IMAC) with size exclusion-based online buffer exchange (OBE) and native mass spectrometry (nMS) to directly analyze cell lysates for the presence of target proteins. IMAC-OBE-nMS can be used to assess whether target proteins (1) are overexpressed in soluble form, (2) bind and elute from an IMAC resin, (3) oligomerize, and (4) have the expected mass. Here, we use four poly-His-tagged proteins to demonstrate the potential of IMAC-OBE-nMS for expedient optimization of overexpression and purification conditions for recombinant protein production.
Collapse
|
32
|
Aguilar Lucero D, Cantoia A, Ceccarelli EA, Rosano GL. Starting a new recombinant protein production project in Escherichia coli. Methods Enzymol 2021; 659:3-18. [PMID: 34752291 DOI: 10.1016/bs.mie.2021.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
One of the goals in recombinant protein production in Escherichia coli is to maximize productivity. High volumetric and specific yields can be reached after careful selection of expression strains and optimization of cultivation parameters. In this chapter, we review the many tools available to make the most out of this versatile microbial cell factory. Useful guidelines and options for troubleshooting production are presented.
Collapse
Affiliation(s)
- Dianela Aguilar Lucero
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Alejo Cantoia
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Eduardo A Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Germán L Rosano
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
33
|
Lan YJ, Tan SI, Cheng SY, Ting WW, Xue C, Lin TH, Cai MZ, Chen PT, Ng IS. Development of Escherichia coli Nissle 1917 derivative by CRISPR/Cas9 and application for gamma-aminobutyric acid (GABA) production in antibiotic-free system. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Sandomenico A, Sivaccumar JP, Ruvo M. Evolution of Escherichia coli Expression System in Producing Antibody Recombinant Fragments. Int J Mol Sci 2020; 21:ijms21176324. [PMID: 32878291 PMCID: PMC7504322 DOI: 10.3390/ijms21176324] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Antibodies and antibody-derived molecules are continuously developed as both therapeutic agents and key reagents for advanced diagnostic investigations. Their application in these fields has indeed greatly expanded the demand of these molecules and the need for their production in high yield and purity. While full-length antibodies require mammalian expression systems due to the occurrence of functionally and structurally important glycosylations, most antibody fragments and antibody-like molecules are non-glycosylated and can be more conveniently prepared in E. coli-based expression platforms. We propose here an updated survey of the most effective and appropriate methods of preparation of antibody fragments that exploit E. coli as an expression background and review the pros and cons of the different platforms available today. Around 250 references accompany and complete the review together with some lists of the most important new antibody-like molecules that are on the market or are being developed as new biotherapeutics or diagnostic agents.
Collapse
|
35
|
Gannam ZTK, Min K, Shillingford SR, Zhang L, Herrington J, Abriola L, Gareiss PC, Pantouris G, Tzouvelekis A, Kaminski N, Zhang X, Yu J, Jamali H, Ellman JA, Lolis E, Anderson KS, Bennett AM. An allosteric site on MKP5 reveals a strategy for small-molecule inhibition. Sci Signal 2020; 13:eaba3043. [PMID: 32843541 PMCID: PMC7569488 DOI: 10.1126/scisignal.aba3043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mitogen-activated protein kinase (MAPK) phosphatases (MKPs) have been considered "undruggable," but their position as regulators of the MAPKs makes them promising therapeutic targets. MKP5 has been suggested as a potential target for the treatment of dystrophic muscle disease. Here, we identified an inhibitor of MKP5 using a p38α MAPK-derived, phosphopeptide-based small-molecule screen. We solved the structure of MKP5 in complex with this inhibitor, which revealed a previously undescribed allosteric binding pocket. Binding of the inhibitor to this pocket collapsed the MKP5 active site and was predicted to limit MAPK binding. Treatment with the inhibitor recapitulated the phenotype of MKP5 deficiency, resulting in activation of p38 MAPK and JNK. We demonstrated that MKP5 was required for TGF-β1 signaling in muscle and that the inhibitor blocked TGF-β1-mediated Smad2 phosphorylation. TGF-β1 pathway antagonism has been proposed for the treatment of dystrophic muscle disease. Thus, allosteric inhibition of MKP5 represents a therapeutic strategy against dystrophic muscle disease.
Collapse
Affiliation(s)
- Zira T K Gannam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kisuk Min
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shanelle R Shillingford
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Lei Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James Herrington
- Yale Center for Molecular Discovery, Yale West Campus, West Haven, CT 06516, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale West Campus, West Haven, CT 06516, USA
| | - Peter C Gareiss
- Yale Center for Molecular Discovery, Yale West Campus, West Haven, CT 06516, USA
| | - Georgios Pantouris
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xinbo Zhang
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Physiology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Haya Jamali
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | | | - Elias Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
- Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
36
|
Travers T, López CA, Agamasu C, Hettige JJ, Messing S, García AE, Stephen AG, Gnanakaran S. Anionic Lipids Impact RAS-Binding Site Accessibility and Membrane Binding Affinity of CRAF RBD-CRD. Biophys J 2020; 119:525-538. [PMID: 32649863 PMCID: PMC7399501 DOI: 10.1016/j.bpj.2020.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 11/25/2022] Open
Abstract
CRAF activation requires binding to membrane-anchored and active GTP-bound RAS. Whereas its RAS-binding domain (RBD) contains the main binding interface to the RAS G domain, its cysteine-rich domain (CRD) is responsible for association to anionic lipid-rich membranes. Both RAF domains are connected by a short linker, and it remains unclear if the two domains act independently or if one domain can impact the function of the other. Here, we used a combination of coarse-grained and all-atom molecular dynamics simulations of a CRAF RBD-CRD construct to investigate the dynamics of the RBD when it is tethered to CRD that is anchored to a POPC:POPS model membrane. First, we show that the RBD positioning is very dynamic with a preferential localization near the membrane surface. Next, we show that membrane-localized RBD has its RAS-binding interface mostly inaccessible because of its proximity to the membrane. Several positively charged residues in this interface were identified from simulations as important for driving RBD association to the membrane. Surface plasmon resonance (SPR) measurements confirmed that mutations of these RBD residues reduced the liposome partitioning of RBD-CRD. Last, simulations indicated that the presence of RBD near the membrane led to a local enrichment of anionic lipids that could potentially enhance the membrane affinity of the entire RBD-CRD construct. This was supported by SPR measurements that showed stronger liposome partitioning of RBD-CRD relative to CRD alone. These findings thus suggest that the RBD and CRD have synergistic effects on their membrane dynamics, with CRD bringing RBD closer to the membrane that impacts its accessibility to RAS and with RBD causing local anionic lipid enrichment that enhances the overall affinity between the membrane and RBD-CRD. These mechanisms have potential implications on the order of events of the interactions between RAS and CRAF at the membrane.
Collapse
Affiliation(s)
- Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos, New Mexico; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos, New Mexico
| | - Constance Agamasu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Reseach, Inc., Frederick, Maryland
| | | | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Reseach, Inc., Frederick, Maryland
| | - Angel E García
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Reseach, Inc., Frederick, Maryland
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos, New Mexico.
| |
Collapse
|
37
|
Yan W, Markegard E, Dharmaiah S, Urisman A, Drew M, Esposito D, Scheffzek K, Nissley DV, McCormick F, Simanshu DK. Structural Insights into the SPRED1-Neurofibromin-KRAS Complex and Disruption of SPRED1-Neurofibromin Interaction by Oncogenic EGFR. Cell Rep 2020; 32:107909. [PMID: 32697994 PMCID: PMC7437355 DOI: 10.1016/j.celrep.2020.107909] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/25/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Sprouty-related, EVH1 domain-containing (SPRED) proteins negatively regulate RAS/mitogen-activated protein kinase (MAPK) signaling following growth factor stimulation. This inhibition of RAS is thought to occur primarily through SPRED1 binding and recruitment of neurofibromin, a RasGAP, to the plasma membrane. Here, we report the structure of neurofibromin (GTPase-activating protein [GAP]-related domain) complexed with SPRED1 (EVH1 domain) and KRAS. The structure provides insight into how the membrane targeting of neurofibromin by SPRED1 allows simultaneous interaction with activated KRAS. SPRED1 and NF1 loss-of-function mutations occur across multiple cancer types and developmental diseases. Analysis of the neurofibromin-SPRED1 interface provides a rationale for mutations observed in Legius syndrome and suggests why SPRED1 can bind to neurofibromin but no other RasGAPs. We show that oncogenic EGFR(L858R) signaling leads to the phosphorylation of SPRED1 on serine 105, disrupting the SPRED1-neurofibromin complex. The structural, biochemical, and biological results provide new mechanistic insights about how SPRED1 interacts with neurofibromin and regulates active KRAS levels in normal and pathologic conditions.
Collapse
Affiliation(s)
- Wupeng Yan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Evan Markegard
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Anatoly Urisman
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew Drew
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Klaus Scheffzek
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA.
| |
Collapse
|
38
|
Nelson AC, Turbyville TJ, Dharmaiah S, Rigby M, Yang R, Wang TY, Columbus J, Stephens R, Taylor T, Sciacca D, Onsongo G, Sarver A, Subramanian S, Nissley DV, Simanshu DK, Lou E. RAS internal tandem duplication disrupts GTPase-activating protein (GAP) binding to activate oncogenic signaling. J Biol Chem 2020; 295:9335-9348. [PMID: 32393580 PMCID: PMC7363148 DOI: 10.1074/jbc.ra119.011080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
The oncogene RAS is one of the most widely studied proteins in cancer biology, and mutant active RAS is a driver in many types of solid tumors and hematological malignancies. Yet the biological effects of different RAS mutations and the tissue-specific clinical implications are complex and nuanced. Here, we identified an internal tandem duplication (ITD) in the switch II domain of NRAS from a patient with extremely aggressive colorectal carcinoma. Results of whole-exome DNA sequencing of primary and metastatic tumors indicated that this mutation was present in all analyzed metastases and excluded the presence of any other clear oncogenic driver mutations. Biochemical analysis revealed increased interaction of the RAS ITD with Raf proto-oncogene Ser/Thr kinase (RAF), leading to increased phosphorylation of downstream MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK). The ITD prevented interaction with neurofibromin 1 (NF1)-GTPase-activating protein (GAP), providing a mechanism for sustained activity of the RAS ITD protein. We present the first crystal structures of NRAS and KRAS ITD at 1.65-1.75 Å resolution, respectively, providing insight into the physical interactions of this class of RAS variants with its regulatory and effector proteins. Our in-depth bedside-to-bench analysis uncovers the molecular mechanism underlying a case of highly aggressive colorectal cancer and illustrates the importance of robust biochemical and biophysical approaches in the implementation of individualized medicine.
Collapse
Affiliation(s)
- Andrew C Nelson
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas J Turbyville
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Megan Rigby
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Ting-You Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - John Columbus
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Robert Stephens
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Troy Taylor
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Drew Sciacca
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Getiria Onsongo
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anne Sarver
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Dwight V Nissley
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
39
|
Hayes LR, Duan L, Bowen K, Kalab P, Rothstein JD. C9orf72 arginine-rich dipeptide repeat proteins disrupt karyopherin-mediated nuclear import. eLife 2020; 9:e51685. [PMID: 32119645 PMCID: PMC7051184 DOI: 10.7554/elife.51685] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Disruption of nucleocytoplasmic transport is increasingly implicated in the pathogenesis of neurodegenerative diseases, including ALS caused by a C9orf72 hexanucleotide repeat expansion. However, the mechanism(s) remain unclear. Karyopherins, including importin β and its cargo adaptors, have been shown to co-precipitate with the C9orf72 arginine-containing dipeptide repeat proteins (R-DPRs), poly-glycine arginine (GR) and poly-proline arginine (PR), and are protective in genetic modifier screens. Here, we show that R-DPRs interact with importin β, disrupt its cargo loading, and inhibit nuclear import of importin β, importin α/β, and transportin cargoes in permeabilized mouse neurons and HeLa cells, in a manner that can be rescued by RNA. Although R-DPRs induce widespread protein aggregation in this in vitro system, transport disruption is not due to nucleocytoplasmic transport protein sequestration, nor blockade of the phenylalanine-glycine (FG)-rich nuclear pore complex. Our results support a model in which R-DPRs interfere with cargo loading on karyopherins.
Collapse
Affiliation(s)
- Lindsey R Hayes
- Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Lauren Duan
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins UniversityBaltimoreUnited States
| | - Kelly Bowen
- Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Jeffrey D Rothstein
- Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
40
|
Sherekar M, Han SW, Ghirlando R, Messing S, Drew M, Rabara D, Waybright T, Juneja P, O'Neill H, Stanley CB, Bhowmik D, Ramanathan A, Subramaniam S, Nissley DV, Gillette W, McCormick F, Esposito D. Biochemical and structural analyses reveal that the tumor suppressor neurofibromin (NF1) forms a high-affinity dimer. J Biol Chem 2020; 295:1105-1119. [PMID: 31836666 PMCID: PMC6983858 DOI: 10.1074/jbc.ra119.010934] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
Neurofibromin is a tumor suppressor encoded by the NF1 gene, which is mutated in Rasopathy disease neurofibromatosis type I. Defects in NF1 lead to aberrant signaling through the RAS-mitogen-activated protein kinase pathway due to disruption of the neurofibromin GTPase-activating function on RAS family small GTPases. Very little is known about the function of most of the neurofibromin protein; to date, biochemical and structural data exist only for its GAP domain and a region containing a Sec-PH motif. To better understand the role of this large protein, here we carried out a series of biochemical and biophysical experiments, including size-exclusion chromatography-multiangle light scattering (SEC-MALS), small-angle X-ray and neutron scattering, and analytical ultracentrifugation, indicating that full-length neurofibromin forms a high-affinity dimer. We observed that neurofibromin dimerization also occurs in human cells and likely has biological and clinical implications. Analysis of purified full-length and truncated neurofibromin variants by negative-stain EM revealed the overall architecture of the dimer and predicted the potential interactions that contribute to the dimer interface. We could reconstitute structures resembling high-affinity full-length dimers by mixing N- and C-terminal protein domains in vitro The reconstituted neurofibromin was capable of GTPase activation in vitro, and co-expression of the two domains in human cells effectively recapitulated the activity of full-length neurofibromin. Taken together, these results suggest how neurofibromin dimers might form and be stabilized within the cell.
Collapse
Affiliation(s)
- Mukul Sherekar
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Sae-Won Han
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Matthew Drew
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Dana Rabara
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Timothy Waybright
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Puneet Juneja
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia 30322
| | - Hugh O'Neill
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
| | | | | | | | - Sriram Subramaniam
- Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
- Department of Biochemistry, Life Sciences Center, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - William Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| |
Collapse
|
41
|
Drutovic D, Duan X, Li R, Kalab P, Solc P. RanGTP and importin β regulate meiosis I spindle assembly and function in mouse oocytes. EMBO J 2020; 39:e101689. [PMID: 31617608 PMCID: PMC6939199 DOI: 10.15252/embj.2019101689] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022] Open
Abstract
Homologous chromosome segregation during meiosis I (MI) in mammalian oocytes is carried out by the acentrosomal MI spindles. Whereas studies in human oocytes identified Ran GTPase as a crucial regulator of the MI spindle function, experiments in mouse oocytes questioned the generality of this notion. Here, we use live-cell imaging with fluorescent probes and Förster resonance energy transfer (FRET) biosensors to monitor the changes in Ran and importin β signaling induced by perturbations of Ran in mouse oocytes while examining the MI spindle dynamics. We show that unlike RanT24N employed in previous studies, a RanT24N, T42A double mutant inhibits RanGEF without perturbing cargo binding to importin β and disrupts MI spindle function in chromosome segregation. Roles of Ran and importin β in the coalescence of microtubule organizing centers (MTOCs) and MI spindle assembly are further supported by the use of the chemical inhibitor importazole, whose effects are partially rescued by the GTP hydrolysis-resistant RanQ69L mutant. These results indicate that RanGTP is essential for MI spindle assembly and function both in humans and mice.
Collapse
Affiliation(s)
- David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Xing Duan
- Department of Chemical and Biomolecular EngineeringWhiting School of EngineeringBaltimoreMDUSA
- Center for Cell DynamicsDepartment of Cell BiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Rong Li
- Department of Chemical and Biomolecular EngineeringWhiting School of EngineeringBaltimoreMDUSA
- Center for Cell DynamicsDepartment of Cell BiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Petr Kalab
- Department of Chemical and Biomolecular EngineeringWhiting School of EngineeringBaltimoreMDUSA
| | - Petr Solc
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| |
Collapse
|
42
|
Sherekar M, Han SW, Ghirlando R, Messing S, Drew M, Rabara D, Waybright T, Juneja P, O'Neill H, Stanley CB, Bhowmik D, Ramanathan A, Subramaniam S, Nissley DV, Gillette W, McCormick F, Esposito D. Biochemical and structural analyses reveal that the tumor suppressor neurofibromin (NF1) forms a high-affinity dimer. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49919-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
43
|
Dharmaiah S, Tran TH, Messing S, Agamasu C, Gillette WK, Yan W, Waybright T, Alexander P, Esposito D, Nissley DV, McCormick F, Stephen AG, Simanshu DK. Structures of N-terminally processed KRAS provide insight into the role of N-acetylation. Sci Rep 2019; 9:10512. [PMID: 31324887 PMCID: PMC6642148 DOI: 10.1038/s41598-019-46846-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/04/2019] [Indexed: 01/19/2023] Open
Abstract
Although post-translational modification of the C-terminus of RAS has been studied extensively, little is known about N-terminal processing. Mass spectrometric characterization of KRAS expressed in mammalian cells showed cleavage of the initiator methionine (iMet) and N-acetylation of the nascent N-terminus. Interestingly, structural studies on GDP- and GMPPNP-bound KRAS lacking the iMet and N-acetylation resulted in Mg2+-free structures of KRAS with flexible N-termini. In the Mg2+-free KRAS-GDP structure, the flexible N-terminus causes conformational changes in the interswitch region resulting in a fully open conformation of switch I. In the Mg2+-free KRAS-GMPPNP structure, the flexible N-terminus causes conformational changes around residue A59 resulting in the loss of Mg2+ and switch I in the inactive state 1 conformation. Structural studies on N-acetylated KRAS-GDP lacking the iMet revealed the presence of Mg2+ and a conformation of switch regions also observed in the structure of GDP-bound unprocessed KRAS with the iMet. In the absence of the iMet, the N-acetyl group interacts with the central beta-sheet and stabilizes the N-terminus and the switch regions. These results suggest there is crosstalk between the N-terminus and the Mg2+ binding site, and that N-acetylation plays an important role by stabilizing the N-terminus of RAS upon excision of the iMet.
Collapse
Affiliation(s)
- Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Constance Agamasu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - William K Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Wupeng Yan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Timothy Waybright
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Patrick Alexander
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
- Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA.
| |
Collapse
|
44
|
Agamasu C, Ghirlando R, Taylor T, Messing S, Tran TH, Bindu L, Tonelli M, Nissley DV, McCormick F, Stephen AG. KRAS Prenylation Is Required for Bivalent Binding with Calmodulin in a Nucleotide-Independent Manner. Biophys J 2019; 116:1049-1063. [PMID: 30846362 PMCID: PMC6428923 DOI: 10.1016/j.bpj.2019.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
Deregulation of KRAS4b signaling pathway has been implicated in 30% of all cancers. Membrane localization of KRAS4b is an essential step for the initiation of the downstream signaling cascades that guide various cellular mechanisms. KRAS4b plasma membrane (PM) binding is mediated by the insertion of a prenylated moiety that is attached to the terminal carboxy-methylated cysteine, in addition to electrostatic interactions of its positively charged hypervariable region with anionic lipids. Calmodulin (CaM) has been suggested to selectively bind KRAS4b to act as a negative regulator of the RAS/mitogen-activated protein kinase (MAPK) signaling pathway by displacing KRAS4b from the membrane. However, the mechanism by which CaM can recognize and displace KRAS4b from the membrane is not well understood. In this study, we employed biophysical and structural techniques to characterize this mechanism in detail. We show that KRAS4b prenylation is required for binding to CaM and that the hydrophobic pockets of CaM can accommodate the prenylated region of KRAS4b, which might represent a novel CaM-binding motif. Remarkably, prenylated KRAS4b forms a 2:1 stoichiometric complex with CaM in a nucleotide-independent manner. The interaction between prenylated KRAS4b and CaM is enthalpically driven, and electrostatic interactions also contribute to the formation of the complex. The prenylated KRAS4b terminal KSKTKC-farnesylation and carboxy-methylation is sufficient for binding and defines the minimal CaM-binding motif. This is the same region implicated in membrane and phosphodiesterase6-δ binding. Finally, we provide a structure-based docking model by which CaM binds to prenylated KRAS4b. Our data provide new insights into the KRAS4b-CaM interaction and suggest a possible mechanism whereby CaM can regulate KRAS4b membrane localization.
Collapse
Affiliation(s)
- Constance Agamasu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Lakshman Bindu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Marco Tonelli
- National Magnetic Resource Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Frank McCormick
- Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland.
| |
Collapse
|
45
|
Effect of DnaK/DnaJ/GrpE and DsbC Chaperons on Periplasmic Expression of Fab Antibody by E. coli SEC Pathway. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9637-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|