1
|
Obrecht M, Zurbruegg S, Accart N, Lambert C, Doelemeyer A, Ledermann B, Beckmann N. Magnetic resonance imaging and ultrasound elastography in the context of preclinical pharmacological research: significance for the 3R principles. Front Pharmacol 2023; 14:1177421. [PMID: 37448960 PMCID: PMC10337591 DOI: 10.3389/fphar.2023.1177421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The 3Rs principles-reduction, refinement, replacement-are at the core of preclinical research within drug discovery, which still relies to a great extent on the availability of models of disease in animals. Minimizing their distress, reducing their number as well as searching for means to replace them in experimental studies are constant objectives in this area. Due to its non-invasive character in vivo imaging supports these efforts by enabling repeated longitudinal assessments in each animal which serves as its own control, thereby enabling to reduce considerably the animal utilization in the experiments. The repetitive monitoring of pathology progression and the effects of therapy becomes feasible by assessment of quantitative biomarkers. Moreover, imaging has translational prospects by facilitating the comparison of studies performed in small rodents and humans. Also, learnings from the clinic may be potentially back-translated to preclinical settings and therefore contribute to refining animal investigations. By concentrating on activities around the application of magnetic resonance imaging (MRI) and ultrasound elastography to small rodent models of disease, we aim to illustrate how in vivo imaging contributes primarily to reduction and refinement in the context of pharmacological research.
Collapse
Affiliation(s)
- Michael Obrecht
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefan Zurbruegg
- Neurosciences Department, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nathalie Accart
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christian Lambert
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Arno Doelemeyer
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Birgit Ledermann
- 3Rs Leader, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicolau Beckmann
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
2
|
Chakraborty N, Gautam A, Muhie S, Miller SA, Meyerhoff J, Sowe B, Jett M, Hammamieh R. Potential roles of polyunsaturated fatty acid-enriched diets in modulating social stress-like features. J Nutr Biochem 2023; 116:109309. [PMID: 36871836 DOI: 10.1016/j.jnutbio.2023.109309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
Fish oil or its major constituents, namely omega-3 poly-unsaturated fatty acid (n3-PUFA), are popular supplements to improve neurogenesis, neuroprotection, and overall brain functions. Our objective was to probe the implications of fat enriched diet with variable PUFAs supplements in ameliorating social stress (SS). We fed mice on either of the three diet types, namely the n-3 PUFA-enriched diet (ERD, n3:n6= 7:1), a balanced diet (BLD, n3:n6= 1:1) or a standard lab diet (STD, n3:n6= 1:6). With respect to the gross fat contents, the customized special diets, namely ERD and BLD were extreme diet, not reflecting the typical human dietary composition. Aggressor-exposed SS (Agg-E SS) model triggered behavioral deficiencies that lingered for 6 weeks (6w) post-stress in mice on STD. ERD and BLD elevated bodyweights but potentially helped in building the behavioral resilience to SS. STD adversely affected the gene networks of brain transcriptomics associated with the cell mortality, energy homeostasis and neurodevelopment disorder. Diverging from the ERD's influences on these networks, BLD showed potential long-term benefits in combatting Agg-E SS. The gene networks linked to cell mortality and energy homeostasis, and their subfamilies, such as cerebral disorder and obesity remained at the baseline level of Agg-E SS mice on BLD 6w post-stress. Moreover, neurodevelopment disorder network and its subfamilies like behavioral deficits remained inhibited in the cohort fed on BLD 6w post Agg-E SS.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Seid Muhie
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Geneva Foundation, Silver Spring, Maryland, USA
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - James Meyerhoff
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Geneva Foundation, Silver Spring, Maryland, USA
| | - Bintu Sowe
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Geneva Foundation, Silver Spring, Maryland, USA
| | - Marti Jett
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
3
|
Keaton SA, Arnetz J, Jamil H, Dhalimi A, Stemmer PM, Ruden DM, Yamin J, Achtyes E, Smart L, Brundin L, Arnetz BB. IL-10: A possible immunobiological component of positive mental health in refugees. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2021; 8:100097. [PMID: 35757662 PMCID: PMC9216633 DOI: 10.1016/j.cpnec.2021.100097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/23/2023] Open
Abstract
Objective As the number of refugees continues to rise, there is growing concern about the impact from trauma exposures on their mental health. However, there is a limited understanding of possible biological mechanisms contributing to the substantial inter-individual differences in trauma-related outcomes, especially as it relates to positive mental health. Only sparse work has focused on the biology of positive mental health, including energy and sleep, in trauma-exposed persons. In this study, we analyzed cytokines in blood from newly arrived refugees with differential trauma exposures in relationship to self-reported energy, as a key marker of positive mental health. Methods Within the first month of arrival in the USA, 64 refugees from Iraq and Syria were interviewed. Refugees completed the clinical DSM-IV PTSD-Checklist Civilian Version (PCL-C), the Beck Anxiety Inventory (BAI), and the Hospital Anxiety and Depression Scale (HADS). Ten psychiatrically healthy non-refugee persons were used as healthy controls to compare levels of cytokines. Blood samples were collected at the time of the interview and subsequently analyzed for IL-1β, IL-6, IL-8, IL-10, and TNF-α concentrations. Results Energy correlated positively with current concentration ability and sleep quality, and negatively with stress, PCL-C, BAI and HADS scores (Spearman correlations, all p<0.05). Refugees had lower levels of IL-10 compared to controls (p<0.05). IL-10 levels in refugees correlated with higher energy levels (p<0.01). Conclusions Results suggest that self-reported energy is a key component of positive mental health in newly arrived traumatized refugees. Additionally, the anti-inflammatory cytokine IL-10 could be a marker of, or causally associated with positive mental health. A better understanding of the balance between pro- and anti-inflammatory states in highly traumatized individuals has the potential to create more targeted and effective treatments with implications for long-term health outcomes.
Collapse
Affiliation(s)
- Sarah A. Keaton
- Department of Physiology, Michigan State University, East Lansing, MI, USA
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Judy Arnetz
- Department of Family Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Hikmet Jamil
- Department of Family Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Abir Dhalimi
- Department of Family Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Paul M. Stemmer
- Institute of Environmental Health Science, Wayne State University, Detroit, MI, USA
| | - Douglas M. Ruden
- Institute of Environmental Health Science, Wayne State University, Detroit, MI, USA
| | - Jolin Yamin
- Institute of Environmental Health Science, Wayne State University, Detroit, MI, USA
| | - Eric Achtyes
- Pine Rest Christian Mental Health, Grand Rapids, MI, USA
- Division of Psychiatry & Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - LeAnn Smart
- Pine Rest Christian Mental Health, Grand Rapids, MI, USA
| | - Lena Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
- Division of Psychiatry & Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Bengt B. Arnetz
- Department of Family Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
4
|
Abstract
Posttraumatic stress disorder (PTSD) is a complex mental disorder afflicting approximately 7% of the population. The diverse number of traumatic events and the wide array of symptom combinations leading to PTSD diagnosis contribute substantial heterogeneity to studies of the disorder. Genomic and complimentary-omic investigations have rapidly increased our understanding of the heritable risk for PTSD. In this review, we emphasize the contributions of genome-wide association, epigenome-wide association, transcriptomic, and neuroimaging studies to our understanding of PTSD etiology. We also discuss the shared risk between PTSD and other complex traits derived from studies of causal inference, co-expression, and brain morphological similarities. The investigations completed so far converge on stark contrasts in PTSD risk between sexes, partially attributed to sex-specific prevalence of traumatic experiences with high conditional risk of PTSD. To further understand PTSD biology, future studies should focus on detecting risk for PTSD while accounting for substantial cohort-level heterogeneity (e.g. civilian v. combat-exposed PTSD cases or PTSD risk among cases exposed to specific traumas), expanding ancestral diversity among study cohorts, and remaining cognizant of how these data influence social stigma associated with certain traumatic events among underrepresented minorities and/or high-risk populations.
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veterans Administration Connecticut Healthcare System, West Haven, CT, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veterans Administration Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
5
|
Kim BK, Fonda JR, Hauger RL, Pinna G, Anderson GM, Valovski IT, Rasmusson AM. Composite contributions of cerebrospinal fluid GABAergic neurosteroids, neuropeptide Y and interleukin-6 to PTSD symptom severity in men with PTSD. Neurobiol Stress 2020; 12:100220. [PMID: 32435669 PMCID: PMC7231970 DOI: 10.1016/j.ynstr.2020.100220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
Given that multiple neurobiological systems, as well as components within these systems are impacted by stress, and may interact in additive, compensatory and synergistic ways to promote or mitigate PTSD risk, severity, and recovery, we thought that it would be important to consider the collective, as well as separate effects of these neurobiological systems on PTSD risk. With this goal in mind, we conducted a proof-of-concept study utilizing cerebrospinal fluid (CSF) collected from unmedicated, tobacco- and illicit substance-free men with PTSD (n = 13) and trauma-exposed healthy controls (TC) (n = 17). Thirteen neurobiological factors thought to contribute to PTSD risk or severity based on previous studies were assayed. As the small but typical sample size of this lumbar puncture study limited the number of factors that could be considered in a hierarchical regression model, we included only those five factors with at least a moderate correlation (Spearman rho > 0.30) with total Clinician-Administered PTSD Scale (CAPS-IV) scores, and that did not violate multicollinearity criteria. Three of the five factors meeting these criteria—CSF allopregnanolone and pregnanolone (Allo + PA: equipotent GABAergic metabolites of progesterone), neuropeptide Y (NPY), and interleukin-6 (IL-6)—were found to account for over 75% of the variance in the CAPS-IV scores (R2 = 0.766, F = 8.75, p = 0.007). CSF Allo + PA levels were negatively associated with PTSD severity (β = −0.523, p = 0.02) and accounted for 47% of the variance in CAPS-IV scores. CSF NPY was positively associated with PTSD severity (β = 0.410, p = 0.04) and accounted for 14.7% of the CAPS-IV variance. There was a trend for a positive association between PTSD severity and CSF IL-6 levels, which accounted for 15.3% of the variance in PTSD severity (β = 0.423, p = 0.05). Z-scores were then computed for each of the three predictive factors and used to depict the varying relative degrees to which each contributed to PTSD severity at the individual PTSD patient level. This first of its kind, proof-of-concept study bears replication in larger samples. However, it highlights the collective effects of dysregulated neurobiological systems on PTSD symptom severity and the heterogeneity of potential biological treatment targets across individual PTSD patients—thus supporting the need for precision medicine approaches to treatment development and prescribing in PTSD.
Collapse
Key Words
- 3α-HSD, 3α-hydroxysteroid dehydrogenase
- Allo + PA, sum of allopregnanolone and pregnanolone
- EIA, enzyme immunoassay
- GC-MS, gas chromatography-mass spectrometry
- HPLC, high pressure liquid chromatography
- LP, lumbar puncture
- PE, prolonged exposure therapy
- PFC, prefrontal cortex
- RIA, radioimmunoassay
- TC, trauma-exposed control
Collapse
Affiliation(s)
- Byung Kil Kim
- VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA
| | - Jennifer R Fonda
- VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA.,Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), 150 South Huntington Ave., Boston, MA, 02130, USA.,Boston University School of Medicine, 72 E. Concord Street, Boston, MA, 02118, USA
| | - Richard L Hauger
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,Center for Behavior Genetics of Aging, Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Graziano Pinna
- The Psychiatric Institute, College of Medicine, University of Illinois at Chicago, 1601 W Taylor St. MC912 Chicago, IL, 60612, USA
| | - George M Anderson
- Child Study Center and Department of Laboratory Medicine, Yale University School of Medicine S. Frontage Rd. New Haven, CT, 06519, USA
| | - Ivan T Valovski
- VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA.,Harvard Medical School, 25 Shattuck St. Boston, MA, 02115, USA
| | - Ann M Rasmusson
- VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA.,Boston University School of Medicine, 72 E. Concord Street, Boston, MA, 02118, USA.,VA National Center for PTSD Women's Health Science Division, 150 South Huntington Ave., Boston, MA, 02130, USA
| |
Collapse
|
6
|
Borgmann-Winter KE, Wang K, Bandyopadhyay S, Torshizi AD, Blair IA, Hahn CG. The proteome and its dynamics: A missing piece for integrative multi-omics in schizophrenia. Schizophr Res 2020; 217:148-161. [PMID: 31416743 PMCID: PMC7500806 DOI: 10.1016/j.schres.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023]
Abstract
The complex and heterogeneous pathophysiology of schizophrenia can be deconstructed by integration of large-scale datasets encompassing genes through behavioral phenotypes. Genome-wide datasets are now available for genetic, epigenetic and transcriptomic variations in schizophrenia, which are then analyzed by newly devised systems biology algorithms. A missing piece, however, is the inclusion of information on the proteome and its dynamics in schizophrenia. Proteomics has lagged behind omics of the genome, transcriptome and epigenome since analytic platforms were relatively less robust for proteins. There has been remarkable progress, however, in the instrumentation of liquid chromatography (LC) and mass spectrometry (MS) (LCMS), experimental paradigms and bioinformatics of the proteome. Here, we present a summary of methodological innovations of recent years in MS based proteomics and the power of new generation proteomics, review proteomics studies that have been conducted in schizophrenia to date, and propose how such data can be analyzed and integrated with other omics results. The function of a protein is determined by multiple molecular properties, i.e., subcellular localization, posttranslational modification (PTMs) and protein-protein interactions (PPIs). Incorporation of these properties poses additional challenges in proteomics and their integration with other omics; yet is a critical next step to close the loop of multi-omics integration. In sum, the recent advent of high-throughput proteome characterization technologies and novel mathematical approaches enable us to incorporate functional properties of the proteome to offer a comprehensive multi-omics based understanding of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Karin E Borgmann-Winter
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America; Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Sabyasachi Bandyopadhyay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America
| | - Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America.
| |
Collapse
|
7
|
Somvanshi PR, Mellon SH, Flory JD, Abu-Amara D, Wolkowitz OM, Yehuda R, Jett M, Hood L, Marmar C, Doyle FJ. Mechanistic inferences on metabolic dysfunction in posttraumatic stress disorder from an integrated model and multiomic analysis: role of glucocorticoid receptor sensitivity. Am J Physiol Endocrinol Metab 2019; 317:E879-E898. [PMID: 31322414 PMCID: PMC6879860 DOI: 10.1152/ajpendo.00065.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 02/08/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with neuroendocrine alterations and metabolic abnormalities; however, how metabolism is affected by neuroendocrine disturbances is unclear. The data from combat-exposed veterans with PTSD show increased glycolysis to lactate flux, reduced TCA cycle flux, impaired amino acid and lipid metabolism, insulin resistance, inflammation, and hypersensitive hypothalamic-pituitary-adrenal (HPA) axis. To analyze whether the co-occurrence of multiple metabolic abnormalities is independent or arises from an underlying regulatory defect, we employed a systems biological approach using an integrated mathematical model and multiomic analysis. The models for hepatic metabolism, HPA axis, inflammation, and regulatory signaling were integrated to perform metabolic control analysis (MCA) with respect to the observations from our clinical data. We combined the metabolomics, neuroendocrine, clinical laboratory, and cytokine data from combat-exposed veterans with and without PTSD to characterize the differences in regulatory effects. MCA revealed mechanistic association of the HPA axis and inflammation with metabolic dysfunction consistent with PTSD. This was supported by the data using correlational and causal analysis that revealed significant associations between cortisol suppression, high-sensitivity C-reactive protein, homeostatic model assessment of insulin resistance, γ-glutamyltransferase, hypoxanthine, and several metabolites. Causal mediation analysis indicates that the effects of enhanced glucocorticoid receptor sensitivity (GRS) on glycolytic pathway, gluconeogenic and branched-chain amino acids, triglycerides, and hepatic function are jointly mediated by inflammation, insulin resistance, oxidative stress, and energy deficit. Our analysis suggests that the interventions to normalize GRS and inflammation may help to manage features of metabolic dysfunction in PTSD.
Collapse
Affiliation(s)
- Pramod R Somvanshi
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Synthia H Mellon
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, California
| | - Janine D Flory
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Duna Abu-Amara
- Department of Psychiatry, New York Langone Medical School, New York, New York
| | - Owen M Wolkowitz
- Department of Psychiatry, University of California, San Francisco, California
| | - Rachel Yehuda
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marti Jett
- Integrative Systems Biology, US Army Medical Research and Materiel Command, US Army Center for Environmental Health Research, Fort Detrick, Frederick, Maryland
| | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington
| | - Charles Marmar
- Department of Psychiatry, New York Langone Medical School, New York, New York
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
8
|
Okhovatian F, Rezaei Tavirani M, Rostami-Nejad M, Rezaei Tavirani S. Protein-Protein Interaction Network Analysis Revealed a New Prospective of Posttraumatic Stress Disorder. Galen Med J 2018; 7:e1137. [PMID: 34466439 PMCID: PMC8344167 DOI: 10.22086/gmj.v0i0.1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/25/2018] [Accepted: 05/08/2018] [Indexed: 11/30/2022] Open
Abstract
Background Posttraumatic stress disorder (PTSD) is known by a number of mental disorders, including recurring memories of trauma, mental appalling, and escaping of sign that make them recall the trauma in question. Clinical interviews serve as the main diagnostic tool for PTSD. With respect to treatment, either pharmacotherapy or psychotherapy or a combination of both is used as a therapeutic method for PTSD. In this study, a number of crucial genes related to PTSD, which can be considered as biomarker candidates, were represented. Materials and Methods The genes related to PTSD were extracted from the STRING database and organized in a protein-protein interaction network with the help of Cytoscape software version 3.6.0. The network was analyzed, and the important genes were introduced based on central indices. The biological processes related to the crucial genes were enriched via gene ontology using ClueGO. Results From a total of 100 genes, 63 genes were extracted that formed the main connected component, and of these, 12 crucial genes-POMC, BDNF, FOS, NR3C1, CRH, IL6, NPS, HTR1A, NPY, CREB1, CRHR1, and TAC1-were introduced. Biological processes were classified into the regulation of corticosterone, regulation of behavior, response to fungus, multicellular organism response to stress, and associative learning. Conclusion The introduced 12 crucial genes can be used as a biomarker panel related to PTSD and can be considered as a diagnostic reagent or drug target; however, more investigations are needed to use these genes as biomarkers.
Collapse
Affiliation(s)
- Farshad Okhovatian
- Physiotherapy Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Gautam A, Kumar R, Chakraborty N, Muhie S, Hoke A, Hammamieh R, Jett M. Altered fecal microbiota composition in all male aggressor-exposed rodent model simulating features of post-traumatic stress disorder. J Neurosci Res 2018; 96:1311-1323. [PMID: 29633335 DOI: 10.1002/jnr.24229] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022]
Abstract
The bidirectional role of gut-brain axis that integrates the gut and central nervous system activities has recently been investigated. We studied "cage-within-cage resident-intruder" all-male model, where subject male mice (C57BL/6J) are exposed to aggressor mice (SJL albino), and gut microbiota-derived metabolites were identified in plasma after 10 days of exposure. We assessed 16S ribosomal RNA gene from fecal samples collected daily from these mice during the 10-day study. Alpha diversity using Chao indices indicated no change in diversity in aggressor-exposed samples. The abundance profile showed the top phyla were Firmicutes and Bacteroidetes, Tenericutes, Verrucomicrobia, Actinobacteria and Proteobacteria, respectively. The phyla Firmicutes and Bacteroidetes are vulnerable to PTSD-eliciting stress and the Firmicutes/Bacteroidetes ratio increases with stress. Principal coordinate analysis showed the control and aggressor-exposed samples cluster separately where samples from early time points (day 1-3) clustered together and were distinct from late time points (day 4-9). The genus-based analysis revealed all control time points clustered together and aggressor-exposed samples had multiple clusters. The decrease in proportion of Firmicutes after aggressor exposure persisted throughout the study. The proportion of Verrucomicrobia immediately decreased and was significantly shifted at most of the later time points. The genus Oscillospira, Lactobacillus, Akkermansia and Anaeroplasma are the top four genera that differed between control and stressor-exposed mice. The data showed immediate effect on microbiome composition during a 10 day time period of stress exposure. Studying the longitudinal effects of a stressor is an important step toward an improved mechanistic understanding of the microbiome dynamics.
Collapse
Affiliation(s)
- Aarti Gautam
- US Army Center for Environmental Health Research, Fort Detrick, MD, USA
| | - Raina Kumar
- US Army Center for Environmental Health Research, Fort Detrick, MD, USA.,Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nabarun Chakraborty
- US Army Center for Environmental Health Research, Fort Detrick, MD, USA.,The Geneva Foundation, Fort Detrick, MD, USA
| | - Seid Muhie
- US Army Center for Environmental Health Research, Fort Detrick, MD, USA.,The Geneva Foundation, Fort Detrick, MD, USA
| | - Allison Hoke
- US Army Center for Environmental Health Research, Fort Detrick, MD, USA.,The Oak Ridge Institute for Science and Education, Fort Detrick, MD, USA
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research, Fort Detrick, MD, USA
| | - Marti Jett
- US Army Center for Environmental Health Research, Fort Detrick, MD, USA
| |
Collapse
|
10
|
Arcidiacono S, Soares JW, Philip Karl J, Chrisey L, Dancy CPTBCR, Goodson M, Gregory F, Hammamieh R, Loughnane NK, Kokoska R, Riddle CAPTM, Whitaker K, Racicot K. The current state and future direction of DoD gut microbiome research: a summary of the first DoD gut microbiome informational meeting. Stand Genomic Sci 2018. [PMCID: PMC5861724 DOI: 10.1186/s40793-018-0308-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The gut microbiome is increasingly recognized as integral to human health, and is emerging as a mediator of human physical and cognitive performance. This has led to the recognition that US Department of Defense (DoD) research supporting a healthy and resilient gut microbiome will be critical to optimizing the health and performance of future Warfighters. To facilitate knowledge dissemination and collaboration, identify resource capabilities and gaps, and maximize the positive impact of gut microbiome research on the Warfighter, DoD partners in microbiome research participated in a 2-day informational meeting co-hosted by the Natick Soldier Research, Engineering and Development Center (NSRDEC) and the US Army Research Institute of Environmental Medicine (USARIEM) on 16–17 November 2015. Attendee presentations and discussions demonstrated that multiple DoD organizations are actively advancing gut microbiome research. Common areas of research included the influence of military-relevant stressors on interactions between the microbiome and Warfighter biology, manipulation of the microbiome to influence Warfighter health, and use of the microbiome as a biomarker of Warfighter health status. Although resources and capabilities are available, they vary across laboratories and it was determined that centralizing certain DoD capabilities could accelerate progress. More significantly, the meeting created a foundation for a coordinated gut microbiome and nutrition research program aligning key DoD partners in the area of microbiome research. This report details the presentations and discussions presented during the 1st DoD Gut Microbiome Informational Meeting.
Collapse
|