1
|
Kotrys AV, Durham TJ, Guo XA, Vantaku VR, Parangi S, Mootha VK. Single-cell analysis reveals context-dependent, cell-level selection of mtDNA. Nature 2024; 629:458-466. [PMID: 38658765 PMCID: PMC11078733 DOI: 10.1038/s41586-024-07332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Heteroplasmy occurs when wild-type and mutant mitochondrial DNA (mtDNA) molecules co-exist in single cells1. Heteroplasmy levels change dynamically in development, disease and ageing2,3, but it is unclear whether these shifts are caused by selection or drift, and whether they occur at the level of cells or intracellularly. Here we investigate heteroplasmy dynamics in dividing cells by combining precise mtDNA base editing (DdCBE)4 with a new method, SCI-LITE (single-cell combinatorial indexing leveraged to interrogate targeted expression), which tracks single-cell heteroplasmy with ultra-high throughput. We engineered cells to have synonymous or nonsynonymous complex I mtDNA mutations and found that cell populations in standard culture conditions purge nonsynonymous mtDNA variants, whereas synonymous variants are maintained. This suggests that selection dominates over simple drift in shaping population heteroplasmy. We simultaneously tracked single-cell mtDNA heteroplasmy and ancestry, and found that, although the population heteroplasmy shifts, the heteroplasmy of individual cell lineages remains stable, arguing that selection acts at the level of cell fitness in dividing cells. Using these insights, we show that we can force cells to accumulate high levels of truncating complex I mtDNA heteroplasmy by placing them in environments where loss of biochemical complex I activity has been reported to benefit cell fitness. We conclude that in dividing cells, a given nonsynonymous mtDNA heteroplasmy can be harmful, neutral or even beneficial to cell fitness, but that the 'sign' of the effect is wholly dependent on the environment.
Collapse
Affiliation(s)
- Anna V Kotrys
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Timothy J Durham
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaoyan A Guo
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Venkata R Vantaku
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Soh KT, Tario JD, Muirhead KA, Wallace PK. Probing cell proliferation: Considerations for dye selection. Methods Cell Biol 2024; 186:1-24. [PMID: 38705595 DOI: 10.1016/bs.mcb.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Broadly speaking, cell tracking dyes are fluorescent compounds that bind stably to components on or within the cells so the fate of the labeled cells can be followed. Their staining should be bright and homogeneous without affecting cell function. For purposes of monitoring cell proliferation, each time a cell divides the intensity of cell tracking dye should diminish equally between daughter cells. These dyes can be grouped into two different classes. Protein reactive dyes label cells by reacting covalently but non-selectively with intracellular proteins. Carboxyfluorescein diacetate succinimidyl ester (CFSE) is the prototypic general protein label. Membrane intercalating dyes label cells by partitioning non-selectively and non-covalently within the plasma membrane. The PKH membrane dyes are examples of lipophilic compounds whose chemistry allows for their retention within biological membranes without affecting cellular growth, viability, or proliferation when used properly. Here we provide considerations based for labeling cell lines and peripheral blood mononuclear cells using both classes of dyes. Examples from optimization experiments are presented along with critical aspects of the staining procedures to help mitigate common risks. Of note, we present data where a logarithmically growing cell line is labeled with both a protein dye and a membrane tracking dye to compare dye loss rates over 6days. We found that dual stained cells paralleled dye loss of the corresponding single stained cells. The decrease in fluorescence intensity by protein reactive dyes, however, was more rapid than that with the membrane reactive dyes, indicating the presence of additional division-independent dye loss.
Collapse
Affiliation(s)
- Kah Teong Soh
- Agenus, Inc., Lexington, MA, United States; Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Joseph D Tario
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | | | - Paul K Wallace
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States; SciGro, Inc., Middleton, WI, United States.
| |
Collapse
|
3
|
Jyoti TP, Chandel S, Singh R. Flow cytometry: Aspects and application in plant and biological science. JOURNAL OF BIOPHOTONICS 2024; 17:e202300423. [PMID: 38010848 DOI: 10.1002/jbio.202300423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Flow cytometry is a potent method that enables the quick and concurrent investigation of several characteristics of single cells in solution. Photodiodes or photomultiplier tubes are employed to detect the dispersed and fluorescent light signals that are produced by the laser beam as it passes through the cells. Photodetectors transform the light signals produced by the laser into electrical impulses. A computer then analyses these electrical impulses to identify and measure the various cell populations depending on their fluorescence or light scattering characteristics. Based on their fluorescence or light scattering properties, cell populations can be examined and/or isolated. This review covers the basic principle, components, working and specific biological applications of flow cytometry, including studies on plant, cell and molecular biology and methods employed for data processing and interpretation as well as the potential future relevance of this methodology in light of retrospective analysis and recent advancements in flow cytometry.
Collapse
Affiliation(s)
- Thakur Prava Jyoti
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
4
|
Tario JD, Soh KT, Wallace PK, Muirhead KA. Monitoring Cell Proliferation by Dye Dilution: Considerations for Panel Design. Methods Mol Biol 2024; 2779:159-216. [PMID: 38526787 DOI: 10.1007/978-1-0716-3738-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
High dimensional studies that include proliferation dyes face two inherent challenges in panel design. First, the more rounds of cell division to be monitored based on dye dilution, the greater the starting intensity of the labeled parent cells must be in order to distinguish highly divided daughter cells from background autofluorescence. Second, the greater their starting intensity, the more difficult it becomes to avoid spillover of proliferation dye signal into adjacent spectral channels, with resulting limitations on the use of other fluorochromes and ability to resolve dim signals of interest. In the third and fourth editions of this series, we described the similarities and differences between protein-reactive and membrane-intercalating dyes used for general cell tracking, provided detailed protocols for optimized labeling with each dye type, and summarized characteristics to be tested by the supplier and/or user when validating either dye type for use as a proliferation dye. In this fifth edition, we review: (a) Fundamental assumptions and critical controls for dye dilution proliferation assays; (b) Methods to evaluate the effect of labeling on cell growth rate and test the fidelity with which dye dilution reports cell division; and. (c) Factors that determine how many daughter generations can be accurately included in proliferation modeling. We also provide an expanded section on spectral characterization, using data collected for three protein-reactive dyes (CellTrace™ Violet, CellTrace™ CFSE, and CellTrace™ Far Red) and three membrane-intercalating dyes (PKH67, PKH26, and CellVue® Claret) on three different cytometers to illustrate typical decisions and trade-offs required during multicolor panel design. Lastly, we include methods and controls for assessing regulatory T cell potency, a functional assay that incorporates the "know your dye" and "know your cytometer" principles described herein.
Collapse
Affiliation(s)
- Joseph D Tario
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kah Teong Soh
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Agenus, Inc., Lexington, MA, USA
| | - Paul K Wallace
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- SciGro, Inc., Sedona, AZ, USA
| | | |
Collapse
|
5
|
Shokouhi AR, Chen Y, Yoh HZ, Brenker J, Alan T, Murayama T, Suu K, Morikawa Y, Voelcker NH, Elnathan R. Engineering Efficient CAR-T Cells via Electroactive Nanoinjection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304122. [PMID: 37434421 DOI: 10.1002/adma.202304122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising cell-based immunotherapy approach for treating blood disorders and cancers, but genetically engineering CAR-T cells is challenging due to primary T cells' sensitivity to conventional gene delivery approaches. The current viral-based method can typically involve significant operating costs and biosafety hurdles, while bulk electroporation (BEP) can lead to poor cell viability and functionality. Here, a non-viral electroactive nanoinjection (ENI) platform is developed to efficiently negotiate the plasma membrane of primary human T cells via vertically configured electroactive nanotubes, enabling efficient delivery (68.7%) and expression (43.3%) of CAR genes in the T cells, with minimal cellular perturbation (>90% cell viability). Compared to conventional BEP, the ENI platform achieves an almost threefold higher CAR transfection efficiency, indicated by the significantly higher reporter GFP expression (43.3% compared to 16.3%). By co-culturing with target lymphoma Raji cells, the ENI-transfected CAR-T cells' ability to effectively suppress lymphoma cell growth (86.9% cytotoxicity) is proved. Taken together, the results demonstrate the platform's remarkable capacity to generate functional and effective anti-lymphoma CAR-T cells. Given the growing potential of cell-based immunotherapies, such a platform holds great promise for ex vivo cell engineering, especially in CAR-T cell therapy.
Collapse
Affiliation(s)
- Ali-Reza Shokouhi
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Hao Zhe Yoh
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Jason Brenker
- Dynamic Micro Devices (DMD) Lab, Department of Mechanical & Aerospace Engineering, Monash University, 17 College Walk, Clayton, VIC, 3168, Australia
| | - Tuncay Alan
- Dynamic Micro Devices (DMD) Lab, Department of Mechanical & Aerospace Engineering, Monash University, 17 College Walk, Clayton, VIC, 3168, Australia
| | - Takahide Murayama
- Institute of Semiconductor and Electronics Technologies ULVAC Inc., 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Koukou Suu
- Institute of Semiconductor and Electronics Technologies ULVAC Inc., 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Yasuhiro Morikawa
- Institute of Semiconductor and Electronics Technologies ULVAC Inc., 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia
| | - Roey Elnathan
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, VIC, 3216, Australia
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, Waurn Ponds, VIC, 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong Waurn Ponds Campus, Melbourne, VIC, 3216, Australia
| |
Collapse
|
6
|
Furuta A, Coleman M, Casares R, Seepersaud R, Orvis A, Brokaw A, Quach P, Nguyen S, Sweeney E, Sharma K, Wallen G, Sanghavi R, Mateos-Gil J, Cuerva JM, Millán A, Rajagopal L. CD1 and iNKT cells mediate immune responses against the GBS hemolytic lipid toxin induced by a non-toxic analog. PLoS Pathog 2023; 19:e1011490. [PMID: 37384812 DOI: 10.1371/journal.ppat.1011490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Although hemolytic lipids have been discovered from many human pathogens including Group B Streptococcus (GBS), strategies that neutralize their function are lacking. GBS is a leading cause of pregnancy-associated neonatal infections, and adult GBS infections are on the rise. The GBS hemolytic lipid toxin or granadaene, is cytotoxic to many immune cells including T and B cells. We previously showed that mice immunized with a synthetic nontoxic analog of granadaene known as R-P4 had reduced bacterial dissemination during systemic infection. However, mechanisms important for R-P4 mediated immune protection was not understood. Here, we show that immune serum from R-P4-immunized mice facilitate GBS opsonophagocytic killing and protect naïve mice from GBS infection. Further, CD4+ T cells isolated from R-P4-immunized mice proliferated in response to R-P4 stimulation in a CD1d- and iNKT cell-dependent manner. Consistent with these observations, R-P4 immunized mice lacking CD1d or CD1d-restricted iNKT cells exhibit elevated bacterial burden. Additionally, adoptive transfer of iNKT cells from R-P4 vaccinated mice significantly reduced GBS dissemination compared to adjuvant controls. Finally, maternal R-P4 vaccination provided protection against ascending GBS infection during pregnancy. These findings are relevant in the development of therapeutic strategies targeting lipid cytotoxins.
Collapse
Affiliation(s)
- Anna Furuta
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Michelle Coleman
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Raquel Casares
- Department of Organic Chemistry, University of Granada, Granada, Spain
| | - Ravin Seepersaud
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Austyn Orvis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Alyssa Brokaw
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Phoenicia Quach
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Shayla Nguyen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Erin Sweeney
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Kavita Sharma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Grace Wallen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Rhea Sanghavi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Jaime Mateos-Gil
- Department of Organic Chemistry, University of Granada, Granada, Spain
| | | | - Alba Millán
- Department of Organic Chemistry, University of Granada, Granada, Spain
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
7
|
Tippalagama R, Chihab LY, Kearns K, Lewis S, Panda S, Willemsen L, Burel JG, Lindestam Arlehamn CS. Antigen-specificity measurements are the key to understanding T cell responses. Front Immunol 2023; 14:1127470. [PMID: 37122719 PMCID: PMC10140422 DOI: 10.3389/fimmu.2023.1127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Antigen-specific T cells play a central role in the adaptive immune response and come in a wide range of phenotypes. T cell receptors (TCRs) mediate the antigen-specificities found in T cells. Importantly, high-throughput TCR sequencing provides a fingerprint which allows tracking of specific T cells and their clonal expansion in response to particular antigens. As a result, many studies have leveraged TCR sequencing in an attempt to elucidate the role of antigen-specific T cells in various contexts. Here, we discuss the published approaches to studying antigen-specific T cells and their specific TCR repertoire. Further, we discuss how these methods have been applied to study the TCR repertoire in various diseases in order to characterize the antigen-specific T cells involved in the immune control of disease.
Collapse
|
8
|
Ramezani M, Mirzaeian L, Ghezelayagh Z, Ghezelayagh Z, Ghorbanian MT. Comparing the mesenchymal stem cells proliferation rate with different labeling assessments. THE NUCLEUS 2023. [DOI: 10.1007/s13237-022-00415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
9
|
Mishra HK. Clinical Applications of Flow Cytometry in Cancer Immunotherapies: From Diagnosis to Treatments. Methods Mol Biol 2022; 2593:93-112. [PMID: 36513926 DOI: 10.1007/978-1-0716-2811-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The scope of flow cytometry is rapidly expanding in the diagnosis of various cancers, and it is being used routinely as an aid in classifying leukemias and lymphomas. There are several applications of flow cytometry to enumerate tumorigenic anomalies in patients. The unusual distribution of cells in various locations, their DNA content, cell proliferation rate, dysregulated expression of several surface receptors, and expression of tumor antigens are some examples that can be characterized by using different flow cytometry-based techniques. For instance, the differential diagnosis between chronic lymphocytic leukemia (CLL) and various other mature B-cell neoplasms can be made by immunophenotyping in combination with absolute counting of numerous cellular subsets or by enumerating their percent distributions. Flow cytometry has several advantages over conventional techniques which include the ability to acquire a multiparametric data in a relatively shorter time and facilitate the comparative analysis of specific cellular subsets in an efficient manner.In addition to diagnosis, there are several other applications of flow cytometry in the management of various cancers which include treatment monitoring or even selecting a personalized precision-based immunotherapy in synch with advanced genetic tests to increase the chances of favorable prognosis and complete remission. The detection of chimeric antigen receptors (CARs) on various engineered effector cells can also be determined along with their specificity in engaging the targets. Furthermore, the assessment of numerous immunological parameters, their effector functions and potencies including the proliferation dynamics, cytokine secretion profiles, and activation efficiencies can also be measured before starting immunotherapies in patients.This chapter is a brief overview of flow cytometry applications in the diagnosis and treatment strategies of various cancers.
Collapse
|
10
|
Van Delen M, Janssens I, Dams A, Roosens L, Ogunjimi B, Berneman ZN, Derdelinckx J, Cools N. Tolerogenic Dendritic Cells Induce Apoptosis-Independent T Cell Hyporesponsiveness of SARS-CoV-2-Specific T Cells in an Antigen-Specific Manner. Int J Mol Sci 2022; 23:15201. [PMID: 36499533 PMCID: PMC9740551 DOI: 10.3390/ijms232315201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Although the global pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, there are currently no specific and highly efficient drugs for COVID-19 available, particularly in severe cases. Recent findings demonstrate that severe COVID-19 disease that requires hospitalization is associated with the hyperactivation of CD4+ and CD8+ T cell subsets. In this study, we aimed to counteract this high inflammatory state by inducing T-cell hyporesponsiveness in a SARS-CoV-2-specific manner using tolerogenic dendritic cells (tolDC). In vitro-activated SARS-CoV-2-specific T cells were isolated and stimulated with SARS-CoV-2 peptide-loaded monocyte-derived tolDC or with SARS-CoV-2 peptide-loaded conventional (conv) DC. We demonstrate a significant decrease in the number of interferon (IFN)-γ spot-forming cells when SARS-CoV-2-specific T cells were stimulated with tolDC as compared to stimulation with convDC. Importantly, this IFN-γ downmodulation in SARS-CoV-2-specific T cells was antigen-specific, since T cells retain their capacity to respond to an unrelated antigen and are not mediated by T cell deletion. Altogether, we have demonstrated that SARS-CoV-2 peptide-pulsed tolDC induces SARS-CoV-2-specific T cell hyporesponsiveness in an antigen-specific manner as compared to stimulation with SARS-CoV-2-specific convDC. These observations underline the clinical potential of tolDC to correct the immunological imbalance in the critically ill.
Collapse
Affiliation(s)
- Mats Van Delen
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Ibo Janssens
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Amber Dams
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Laurence Roosens
- Laboratory of Clinical Biology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Benson Ogunjimi
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), VAXINFECTIO, University of Antwerp, 2610 Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, 2650 Edegem, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), VAXINFECTIO, University of Antwerp, 2610 Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
| | - Zwi N. Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Judith Derdelinckx
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
11
|
Alonzo M, El Khoury R, Nagiah N, Thakur V, Chattopadhyay M, Joddar B. 3D Biofabrication of a Cardiac Tissue Construct for Sustained Longevity and Function. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21800-21813. [PMID: 35533308 PMCID: PMC9238347 DOI: 10.1021/acsami.1c23883] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this study, we developed three-dimensional (3D) printed annular ring-like scaffolds of hydrogel (gelatin-alginate) constructs encapsulated with a mixture of human cardiac AC16 cardiomyocytes (CMs), fibroblasts (CFs), and microvascular endothelial cells (ECs) as cardiac organoid models in preparation for investigating the role of microgravity in cardiovascular disease initiation and development. We studied the mechanical properties of the acellular scaffolds and confirmed their cell compatibility as well as heterocellular coupling for cardiac tissue engineering. Rheological analysis performed on the acellular scaffolds showed the scaffolds to be elastogenic with elastic modulus within the range of a native in vivo heart tissue. The microstructural and physicochemical properties of the scaffolds analyzed through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy-attenuated total reflectance (ATR-FTIR) confirmed the mechanical and functional stability of the scaffolds for long-term use in in vitro cell culture studies. HL-1 cardiomyocytes bioprinted in these hydrogel scaffolds exhibited contractile functions over a sustained period of culture. Cell mixtures containing CMs, CFs, and ECs encapsulated within the 3D printed hydrogel scaffolds exhibited a significant increase in viability and proliferation over 21 days, as shown by flow cytometry analysis. Moreover, via the expression of specific cardiac biomarkers, cardiac-specific cell functionality was confirmed. Our study depicted the heterocellular cardiac cell interactions, which is extremely important for the maintenance of normal physiology of the cardiac wall in vivo and significantly increased over a period of 21 days in in vitro. This 3D bioprinted "cardiac organoid" model can be adopted to simulate cardiac environments in which cellular crosstalk in diseased pathologies like cardiac atrophy can be studied in vitro and can further be used for drug cytotoxicity screening or underlying disease mechanisms.
Collapse
Affiliation(s)
- Matthew Alonzo
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Raven El Khoury
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Naveen Nagiah
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Vikram Thakur
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, Texas 79905, United States
| | - Munmun Chattopadhyay
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, Texas 79905, United States
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
12
|
Lemieszek MB, Findlay SD, Siegers GM. CellTrace™ Violet Flow Cytometric Assay to Assess Cell Proliferation. Methods Mol Biol 2022; 2508:101-114. [PMID: 35737236 DOI: 10.1007/978-1-0716-2376-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CellTrace™ Violet (CTV) is a powerful tool for tracking cell proliferation by permanently binding cellular proteins and rendering the cell fluorescent. After cell division, each daughter cell contains half of the parent cell's fluorescence, enabling quantification of proliferation via flow cytometry. This method enables monitoring of several generations of cell division and tracking of different cell populations in co-culture. Here we describe the use of CellTrace™ Violet in different cell types, and we share important observations we made during protocol optimization.
Collapse
Affiliation(s)
- Marina B Lemieszek
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Scott D Findlay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
13
|
A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing. Nat Commun 2021; 12:6512. [PMID: 34764240 PMCID: PMC8586238 DOI: 10.1038/s41467-021-26788-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Recent studies have reported that genome editing by CRISPR–Cas9 induces a DNA damage response mediated by p53 in primary cells hampering their growth. This could lead to a selection of cells with pre-existing p53 mutations. In this study, employing an integrated computational and experimental framework, we systematically investigated the possibility of selection of additional cancer driver mutations during CRISPR-Cas9 gene editing. We first confirm the previous findings of the selection for pre-existing p53 mutations by CRISPR-Cas9. We next demonstrate that similar to p53, wildtype KRAS may also hamper the growth of Cas9-edited cells, potentially conferring a selective advantage to pre-existing KRAS-mutant cells. These selective effects are widespread, extending across cell-types and methods of CRISPR-Cas9 delivery and the strength of selection depends on the sgRNA sequence and the gene being edited. The selection for pre-existing p53 or KRAS mutations may confound CRISPR-Cas9 screens in cancer cells and more importantly, calls for monitoring patients undergoing CRISPR-Cas9-based editing for clinical therapeutics for pre-existing p53 and KRAS mutations. CRISPR-Cas9 gene editing can induce a p53 mediated damage response. Here the authors investigate the possibility of selection of pre-existing cancer driver mutations during CRISPR-Cas9 knockout based gene editing and identify KRAS mutants that may confer a selected advantage to edited cells.
Collapse
|
14
|
Moita D, Nunes-Cabaço H, Mendes AM, Prudêncio M. A guide to investigating immune responses elicited by whole-sporozoite pre-erythrocytic vaccines against malaria. FEBS J 2021; 289:3335-3359. [PMID: 33993649 DOI: 10.1111/febs.16016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/19/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
In the last few decades, considerable efforts have been made toward the development of efficient vaccines against malaria. Whole-sporozoite (Wsp) vaccines, which induce efficient immune responses against the pre-erythrocytic (PE) stages (sporozoites and liver forms) of Plasmodium parasites, the causative agents of malaria, are among the most promising immunization strategies tested until present. Several Wsp PE vaccination approaches are currently under evaluation in the clinic, including radiation- or genetically-attenuated Plasmodium sporozoites, live parasites combined with chemoprophylaxis, or genetically modified rodent Plasmodium parasites. In addition to the assessment of their protective efficacy, clinical trials of Wsp PE vaccine candidates inevitably involve the thorough investigation of the immune responses elicited by vaccination, as well as the identification of correlates of protection. Here, we review the main methodologies employed to dissect the humoral and cellular immune responses observed in the context of Wsp PE vaccine clinical trials and discuss future strategies to further deepen the knowledge generated by these studies, providing a toolbox for the in-depth analysis of vaccine-induced immunogenicity.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - António M Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
15
|
Edwards ESJ, Bosco JJ, Ojaimi S, O'Hehir RE, van Zelm MC. Beyond monogenetic rare variants: tackling the low rate of genetic diagnoses in predominantly antibody deficiency. Cell Mol Immunol 2021; 18:588-603. [PMID: 32801365 PMCID: PMC8027216 DOI: 10.1038/s41423-020-00520-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Predominantly antibody deficiency (PAD) is the most prevalent form of primary immunodeficiency, and is characterized by broad clinical, immunological and genetic heterogeneity. Utilizing the current gold standard of whole exome sequencing for diagnosis, pathogenic gene variants are only identified in less than 20% of patients. While elucidation of the causal genes underlying PAD has provided many insights into the cellular and molecular mechanisms underpinning disease pathogenesis, many other genes may remain as yet undefined to enable definitive diagnosis, prognostic monitoring and targeted therapy of patients. Considering that many patients display a relatively late onset of disease presentation in their 2nd or 3rd decade of life, it is questionable whether a single genetic lesion underlies disease in all patients. Potentially, combined effects of other gene variants and/or non-genetic factors, including specific infections can drive disease presentation. In this review, we define (1) the clinical and immunological variability of PAD, (2) consider how genetic defects identified in PAD have given insight into B-cell immunobiology, (3) address recent technological advances in genomics and the challenges associated with identifying causal variants, and (4) discuss how functional validation of variants of unknown significance could potentially be translated into increased diagnostic rates, improved prognostic monitoring and personalized medicine for PAD patients. A multidisciplinary approach will be the key to curtailing the early mortality and high morbidity rates in this immune disorder.
Collapse
Affiliation(s)
- Emily S J Edwards
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Samar Ojaimi
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Monash Health, Clayton, VIC, Australia
- Department of Allergy and Immunology, Monash Health, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Ludwik KA, Sandusky ZM, Wright EB, Lannigan DA. FACS protocol for direct comparison of cell populations isolated from mice. STAR Protoc 2021; 2:100270. [PMID: 33490986 PMCID: PMC7811174 DOI: 10.1016/j.xpro.2020.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
A FACS protocol is described that eliminates isolation and staining artifacts to allow accurate comparison between cell populations isolated from organs obtained from disparate mouse groups. This protocol was validated by characterizing the estrogen receptor positive cells within the mammary gland of transgenic mice with different genotypes at different stages of the estrous cycle. We include protocols necessary to batch stage animals within the cycle to proceed directly to FACS, which provides optimal RNA yields for RNA-seq. For complete details on the use and execution of this protocol, please refer to Ludwik et al. (2020).
Collapse
Affiliation(s)
- Katarzyna A Ludwik
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Zachary M Sandusky
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Eric B Wright
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Deborah A Lannigan
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
17
|
Di Blasi D, Claessen I, Turksma AW, van Beek J, Ten Brinke A. Guidelines for analysis of low-frequency antigen-specific T cell results: Dye-based proliferation assay vs 3H-thymidine incorporation. J Immunol Methods 2020; 487:112907. [PMID: 33152332 DOI: 10.1016/j.jim.2020.112907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
It is generally recognized that dysregulation of the immune system plays a critical role in many diseases, including autoimmune diseases and cancer. T cells play a crucial role in maintaining self-tolerance, while loss of immune tolerance and T cell activation can lead to severe inflammation and tissue damage. T cell responses have a key role in the effectiveness of vaccination strategies and immunomodulating therapies. Immunomonitoring methods have the ability to elucidate immunological processes, monitor the development of disease and assess therapeutic effects. In this respect, it is of particular interest to evaluate antigen (Ag)-specific T cells by determining their frequency, type and functionality in cellular assays. Nevertheless, Ag-specific T cells are detected infrequently in most diseases using current techniques. Many efforts have been made to develop more sensitive, reproducible, and reliable methods for Ag-specific T cell detection. It has been found that analysis of cellular proliferation can be a useful tool to determine the presence and frequency of Ag-specific T cell and to provides insight into modulation of the T cell response by a specific antigen or therapy. However, the selection of a cut-off value for a positive response and therefore a more accurate interpretation of the data, continues to be a major concern. Here, we provide guidelines to select a proper cut-off for monitoring of Ag-specific CD4+ T cell responses. In vitro Ag-stimulation has been assessed with two methods; a dye-based proliferation assay and 3H-thymidine-based assay. Two cut-off approaches are compared; mean and variance of control wells, and the stimulation index. By evaluating the proliferative response to the in vitro Ag-stimulation using these two methods, we demonstrate the importance of taking into consideration the variability of the control wells to distinguish a positive from a false positive response.
Collapse
Affiliation(s)
- Daniela Di Blasi
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, AMC, Amsterdam, the Netherlands.
| | - Iris Claessen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, AMC, Amsterdam, the Netherlands; Sanquin Diagnostics B.V., Amsterdam, the Netherlands
| | | | - Josine van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, the Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, AMC, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Halabi EA, Arasa J, Püntener S, Collado-Diaz V, Halin C, Rivera-Fuentes P. Dual-Activatable Cell Tracker for Controlled and Prolonged Single-Cell Labeling. ACS Chem Biol 2020; 15:1613-1620. [PMID: 32298071 PMCID: PMC7309267 DOI: 10.1021/acschembio.0c00208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cell
trackers are fluorescent chemical tools that facilitate imaging
and tracking cells within live organisms. Despite their versatility,
these dyes lack specificity, tend to leak outside of the cell, and
stain neighboring cells. Here, we report a dual-activatable cell tracker
for increased spatial and temporal staining control, especially for
single-cell tracking. This probe overcomes the typical problems of
current cell trackers: off-target staining, high background signal,
and leakage from the intracellular medium. Staining with this dye
is not cytotoxic, and it can be used in sensitive primary cells. Moreover,
this dye is resistant to harsh fixation and permeabilization conditions
and allows for multiwavelength studies with confocal microscopy and
fluorescence-activated cell sorting. Using this cell tracker, we performed in vivo homing experiments in mice with primary splenocytes
and tracked a single cell in a heterogeneous, multicellular culture
environment for over 20 h. These experiments, in addition to comparative
proliferation studies with other cell trackers, demonstrated that
the signal from this dye is retained in cells for over 72 h after
photoactivation. We envision that this type of probes will facilitate
the analysis of single-cell behavior and migration in cell culture
and in vivo experiments.
Collapse
Affiliation(s)
- Elias A. Halabi
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Jorge Arasa
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Salome Püntener
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
- Institute of Chemical Sciences and Engineering, EPF Lausanne, 1015, Lausanne, Switzerland
| | | | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Pablo Rivera-Fuentes
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
- Institute of Chemical Sciences and Engineering, EPF Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
19
|
Thiam LG, Aniweh Y, Quansah EB, Donkor JK, Gwira TM, Kusi KA, Niang M, Awandare GA. Cell trace far-red is a suitable erythrocyte dye for multi-color Plasmodium falciparum invasion phenotyping assays. Exp Biol Med (Maywood) 2020; 245:11-20. [PMID: 31903776 PMCID: PMC6987746 DOI: 10.1177/1535370219897393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum erythrocyte invasion phenotyping assays are a very useful tool for assessing parasite diversity and virulence, and for characterizing the formation of ligand–receptor interactions. However, such assays need to be highly sensitive and reproducible, and the selection of labeling dyes for differentiating donor and acceptor erythrocytes is a critical factor. We investigated the suitability of cell trace far-red (CTFR) as a dye for P. falciparum invasion phenotyping assays. Using the dyes carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and dichloro dimethyl acridin one succinimidyl ester (DDAO-SE) as comparators, we used a dye-dilution approach to assess the limitations and specific staining procedures for the applicability of CTFR in P. falciparum invasion phenotyping assays. Our data show that CTFR effectively labels acceptor erythrocytes and provides a stable fluorescent intensity at relatively low concentrations. CTFR also yielded a higher fluorescence intensity relative to DDAO-SE and with a more stable fluorescence intensity over time. Furthermore, CTFR did not affect merozoites invasion of erythrocytes and was not toxic to the parasite’s intraerythrocytic development. Additionally, CTFR offers flexibility in the choice of combinations with several other DNA dyes, which broaden its usage for P. falciparum erythrocyte invasion assays, considering a wider range of flow cytometers with various laser settings.
Collapse
Affiliation(s)
- Laty G Thiam
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| | - Evelyn B Quansah
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| | - Jacob K Donkor
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| | - Theresa M Gwira
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| | - Kwadwo A Kusi
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
- Department of Immunology, Noguchi Memorial Institute for Medical
Research, University of Ghana, P. O. Box LG 581, Legon, Accra
| | - Makhtar Niang
- Unité d’Immunologie, Institut Pasteur de Dakar, Dakar 220,
Senegal
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| |
Collapse
|
20
|
Chen Y, Aslanoglou S, Gervinskas G, Abdelmaksoud H, Voelcker NH, Elnathan R. Cellular Deformations Induced by Conical Silicon Nanowire Arrays Facilitate Gene Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904819. [PMID: 31599099 DOI: 10.1002/smll.201904819] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Engineered cell-nanostructured interfaces generated by vertically aligned silicon nanowire (SiNW) arrays have become a promising platform for orchestrating cell behavior, function, and fate. However, the underlying mechanism in SiNW-mediated intracellular access and delivery is still poorly understood. This study demonstrates the development of a gene delivery platform based on conical SiNW arrays for mechanical cell transfection, assisted by centrifugal force, for both adherent and nonadherent cells in vitro. Cells form focal adhesions on SiNWs within 6 h, and maintain high viability and motility. Such a functional and dynamic cell-SiNW interface features conformational changes in the plasma membrane and in some cases the nucleus, promoting both direct penetration and endocytosis; this synergistically facilitates SiNW-mediated delivery of nucleic acids into immortalized cell lines, and into difficult-to-transfect primary immune T cells without pre-activation. Moreover, transfected cells retrieved from SiNWs retain the capacity to proliferate-crucial to future biomedical applications. The results indicate that SiNW-mediated intracellular delivery holds great promise for developing increasingly sophisticated investigative and therapeutic tools.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Stella Aslanoglou
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Gediminas Gervinskas
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, 15 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Hazem Abdelmaksoud
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
- INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| |
Collapse
|
21
|
Rawat A, Arora K, Shandilya J, Vignesh P, Suri D, Kaur G, Rikhi R, Joshi V, Das J, Mathew B, Singh S. Flow Cytometry for Diagnosis of Primary Immune Deficiencies-A Tertiary Center Experience From North India. Front Immunol 2019; 10:2111. [PMID: 31572360 PMCID: PMC6749021 DOI: 10.3389/fimmu.2019.02111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/21/2019] [Indexed: 11/13/2022] Open
Abstract
Flow cytometry has emerged as a useful technology that has facilitated our understanding of the human immune system. Primary immune deficiency disorders (PIDDs) are a heterogeneous group of inherited disorders affecting the immune system. More than 350 genes causing various PIDDs have been identified. While the initial suspicion and recognition of PIDDs is clinical, laboratory tools such as flow cytometry and genetic sequencing are essential for confirmation and categorization. Genetic sequencing, however, are prohibitively expensive and not readily available in resource constrained settings. Flow cytometry remains a simple, yet powerful, tool for multi-parametric analysis of cells. While it is confirmatory of diagnosis in certain conditions, in others it helps in narrowing the list of putative genes to be analyzed. The utility of flow cytometry in diagnosis of PIDDs can be divided into four major categories: (a) Enumeration of lymphocyte subsets in peripheral blood. (b) Detection of intracellular signaling molecules, transcription factors, and cytokines. (c) Functional assessment of adaptive and innate immune cells (e.g., T cell function in severe combined immune deficiency and natural killer cell function in familial hemophagocytic lymphohistiocytosis). (d) Evaluation of normal biological processes (e.g., class switching in B cells by B cell immunophenotyping). This review focuses on use of flow cytometry in disease-specific diagnosis of PIDDs in the context of a developing country.
Collapse
Affiliation(s)
- Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanika Arora
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jitendra Shandilya
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Gurjit Kaur
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rashmi Rikhi
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vibhu Joshi
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jhumki Das
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Babu Mathew
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
22
|
Podszywalow-Bartnicka P, Kominek A, Wolczyk M, Kolba MD, Swatler J, Piwocka K. Characteristics of live parameters of the HS-5 human bone marrow stromal cell line cocultured with the leukemia cells in hypoxia, for the studies of leukemia-stroma cross-talk. Cytometry A 2018; 93:929-940. [PMID: 30247803 DOI: 10.1002/cyto.a.23580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
The unique bone marrow microenvironment is created by stromal cells and such physical conditions as hypoxia. Both hypoxia and interactions with stromal cells have a significant impact on the biology of leukemia cells, changing their sensitivity to antileukemic therapies. Thus, it is crucial to introduce biological systems, which enable the investigation of leukemia-stroma cross-talk and verification of novel therapies effectiveness under such bone marrow niche-mimicking conditions. Here, we have established an experimental setup based on the hypoxic co-culture of stromal cells with different cell lines derived from various leukemia patients. Flow cytometry enables simultaneous fluorescent tracking of viable cells and analysis of fundamental cellular processes, also to monitor the basal vital state of cells in the hypoxic co-culture. This is critically important, as the stromal cells deliver a big variability of signals to protect leukemia cells and provide drug resistance. Therefore, keeping stromal cells at the healthy state is crucial during experimental procedures. In the proposed studies, viability, apoptosis, proliferation, ROS production, and mitochondrial membrane potential were monitored in both cell types, which were separated on the basis of the fluorescence of a cell tracker. We have shown that the proposed hypoxic co-culture conditions do not affect basal live parameters of stromal cells, indicating the relevance of proposed model. Finally, we utilized this experimental setup to monitor the stroma-mediated protection of leukemia cells from the imatinib-induced cell death, which contributes to the leukemia progression and development of therapy resistance. Altogether, we recommend such flow cytometric strategy as an elementary screen of the vital state of stromal cells, which should be performed when using the co-culture hypoxic models. The proposed approach can also be broadly used for other studies of the leukemia-stroma cross-talk and of the part played by the leukemic microenvironment in drug screening studies.
Collapse
Affiliation(s)
| | - Agata Kominek
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Wolczyk
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta D Kolba
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Julian Swatler
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|