1
|
Alanazi AZ, Alhazzani K, Mostafa AM, Barker J, Ibrahim H, El-Wekil MM, Ali AMBH. A Novel Carbon Dot-Bromothymol Blue System for Ratiometric Colorimetric-Fluorometric Sensing of Glutathione in Urine: A Smartphone-Compatible Approach. J Fluoresc 2024:10.1007/s10895-024-04008-w. [PMID: 39465483 DOI: 10.1007/s10895-024-04008-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
This study presents a novel dual-modal approach for glutathione (GSH) detection using blue and yellow dual-emission carbon dots (BY-CDs) and bromothymol blue (BTB) at pH 8.0. The method employs both colorimetric and fluorometric detection modes, offering a new perspective on GSH quantification. BTB's blue coloration induces selective fluorescence quenching of the CDs' 610 nm emission peak, with minimal effect on the 445 nm peak. Upon GSH addition, the quinonoid structure (blue color) of BTB transforms to its benzenoid form (yellow color). This transformation triggers fluorescence restoration at 610 nm and significant quenching at 445 nm, enabling ratiometric fluorescence analysis (F610/F445). Concurrently, colorimetric detection is also ratiometric, based on measuring the ratio between the emerging yellow color peak (435 nm) and the decreasing blue color peak (618 nm) (A435/A618). The state-of-the-art aspect of this detection method lies in the strategic choice of dual-emission CDs and a dye with distinct absorption spectra that closely match the emission spectra of the CDs. This unique combination allows for dual detection with opposite responses in the two detection modes, enhancing selectivity and reliability. The probe was thoroughly characterized, and its detection mechanism was elucidated using various spectroscopic techniques. The method shows excellent linearity, a broad detection range, and low detection limits for both fluorometry (0.02 - 10.0 μM, 5.88 nM) and colorimetry (1.0 - 35.0 μM, 301.25 nM). Additionally, a smartphone-based platform was developed for colorimetric GSH determination, enhancing the method's potential for on-site analysis. The assay's practicality was validated through successful application to human urine samples, yielding excellent recovery values (97.33% to 99.13%).
Collapse
Affiliation(s)
- Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aya M Mostafa
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston-Upon-Thames, London, KT1 2EE, UK
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - James Barker
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston-Upon-Thames, London, KT1 2EE, UK
| | - Hossieny Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- School of Biotechnology, Badr University in Assiut, Assiut, 2014101, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
2
|
He W, Li X, Wu G. Dietary glycine supplementation enhances syntheses of creatine and glutathione by tissues of hybrid striped bass (Morone saxatilis ♀ × Morone chrysops ♂) fed soybean meal-based diets. J Anim Sci Biotechnol 2024; 15:67. [PMID: 38720393 PMCID: PMC11080189 DOI: 10.1186/s40104-024-01024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND We recently reported that supplementing glycine to soybean meal-based diets is necessary for the optimum growth of 5- to 40-g (Phase-I) and 110- to 240-g (Phase-II) hybrid striped bass (HSB), as well as their intestinal health. Although glycine serves as an essential substrate for syntheses of creatine and glutathione (GSH) in mammals (e.g., pigs), little is known about these metabolic pathways or their nutritional regulation in fish. This study tested the hypothesis that glycine supplementation enhances the activities of creatine- and GSH-forming enzymes as well as creatine and GSH availabilities in tissues of hybrid striped bass (HSB; Morone saxatilis♀ × Morone chrysops♂). METHODS Phase-I and Phase-II HSB were fed a soybean meal-based diet supplemented with 0%, 1%, or 2% glycine for 8 weeks. At the end of the 56-d feeding, tissues (liver, intestine, skeletal muscle, kidneys, and pancreas) were collected for biochemical analyses. RESULTS In contrast to terrestrial mammals and birds, creatine synthesis occurred primarily in skeletal muscle from all HSB. The liver was most active in GSH synthesis among the HSB tissues studied. In Phase-I HSB, supplementation with 1% or 2% glycine increased (P < 0.05) concentrations of intramuscular creatine (15%-19%) and hepatic GSH (8%-11%), while reducing (P < 0.05) hepatic GSH sulfide (GSSG)/GSH ratios by 14%-15%, compared with the 0-glycine group; there were no differences (P > 0.05) in these variables between the 1% and 2% glycine groups. In Phase-II HSB, supplementation with 1% and 2% glycine increased (P < 0.05) concentrations of creatine and GSH in the muscle (15%-27%) and liver (11%-20%) in a dose-dependent manner, with reduced ratios of hepatic GSSG/GSH in the 1% or 2% glycine group. In all HSB, supplementation with 1% and 2% glycine dose-dependently increased (P < 0.05) activities of intramuscular arginine:glycine amidinotransferase (22%-41%) and hepatic γ-glutamylcysteine synthetase (17%-37%), with elevated activities of intramuscular guanidinoacetate methyltransferase and hepatic GSH synthetase and GSH reductase in the 1% or 2% glycine group. Glycine supplementation also increased (P < 0.05) concentrations of creatine and activities of its synthetic enzymes in tail kidneys and pancreas, and concentrations of GSH and activities of its synthetic enzymes in the proximal intestine. CONCLUSIONS Skeletal muscle and liver are the major organs for creatine and GSH syntheses in HSB, respectively. Dietary glycine intake regulates creatine and GSH syntheses by both Phase-I and Phase-II HSB in a tissue-specific manner. Based on the metabolic data, glycine is a conditionally essential amino acid for the growing fish.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Xinyu Li
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Jonnalagadda R, Rathinam S, Nagappan K, Chandrasekar V. Green HPLC Method for Simultaneous Analysis of Three Natural Antioxidants by Analytical Quality by Design. J AOAC Int 2024; 107:14-21. [PMID: 37701979 DOI: 10.1093/jaoacint/qsad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/29/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Glutathione, silybin, and curcumin are well-known potential antioxidants that are recommended as adjuvant therapy in cancer treatment. OBJECTIVE Based on the principles of Analytical Quality by Design (AQbD) and green analytical chemistry, a simple, robust, and environmentally benign HPLC method for the simultaneous estimation of glutathione, silybin, and curcumin in bulk and formulation was performed. METHOD Elution was achieved by an Agilent Eclipse XDB C18 (150 mm × 4.6 mm id, 3.5 μm) column using a gradient mobile phase composed of ethanol-water pH 6.7 (with 0.1%, v/v orthophosphoric acid) and 1.07 mL/min flow rate with PDA detection at 215 nm. Critical method variables were identified by risk assessment using an Ishikawa diagram, and multivariate optimization of the experimental conditions for the HPLC technique was accomplished by central composite design using design of experiments (DoE) software. RESULTS The separation was achieved within 15 min, where the retention time of glutathione, silybin, and curcumin were 3.3, 4.9, and 7.3 min, respectively. The standard curve was linear in the range of 3.75-26.25 µg/mL for glutathione, 62.50-437.50 µg/mL for silybin, and 12.5-87.50 µg/mL for curcumin. The developed method was validated as per ICH guidelines Q2 (R1), and all the parameters are within specified limits. CONCLUSIONS The proposed method is simple, precise, and robust, which can be employed for routine analysis and also concluded to be a greener approach according to AGREE, Green Analytical Procedure Index, and analytical eco-scale tools. HIGHLIGHTS The chosen antioxidants were evaluated for the very first time simultaneously using the chromatographic technique in bulk and dosage forms employing green solvents. The peak purity of all three compounds was studied using a PDA detector. Wastage was reduced in terms of time, cost, and solvents by employing AQbD elements and tools. Complete application of environmentally sustainable safe solvents were employed.
Collapse
Affiliation(s)
- Ramya Jonnalagadda
- Sri Ramachandra Institute of Higher Education and Research (DU), Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Chennai, Tamil Nadu 600116, India
| | - Seetharaman Rathinam
- SRM College of Pharmacy, SRM Institute of Science and Technology, Department of Pharmaceutical Analysis, Kattankulathur, Tamil Nadu 603203, India
| | - Krishnaveni Nagappan
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Department of Pharmaceutical Analysis, Ooty, The Nilgiris, Tamil Nadu 643001, India
| | - Vinodhini Chandrasekar
- Sri Ramachandra Institute of Higher Education and Research (DU), Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Chennai, Tamil Nadu 600116, India
| |
Collapse
|
4
|
He W, Posey EA, Steele CC, Savell JW, Bazer FW, Wu G. Dietary glycine supplementation enhances glutathione availability in tissues of pigs with intrauterine growth restriction. J Anim Sci 2024; 102:skae025. [PMID: 38271555 PMCID: PMC10873787 DOI: 10.1093/jas/skae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
This study tested the hypothesis that dietary supplementation with glycine enhances the synthesis and concentrations of glutathione (GSH, a major antioxidant) in tissues of pigs with intrauterine growth restriction (IUGR). At weaning (21 d of age), IUGR pigs and litter mates with normal birth weights (NBW) were assigned randomly to one of two groups, representing supplementation with 1% glycine or 1.19% l-alanine (isonitrogenous control) to a corn- and soybean meal-based diet. Blood and other tissues were obtained from the pigs within 1 wk after the feeding trial ended at 188 d of age to determine GSH, oxidized GSH (GSSG), and activities of GSH-metabolic enzymes. Results indicated that concentrations of GSH + GSSG or GSH in plasma, liver, and jejunum (P < 0.001) and concentrations of GSH in longissimus lumborum and gastrocnemius muscles (P < 0.05) were lower in IUGR pigs than in NBW pigs. In contrast, IUGR increased GSSG/GSH ratios (an indicator of oxidative stress) in plasma (P < 0.001), jejunum (P < 0.001), both muscles (P < 0.05), and pancreas (P = 0.001), while decreasing activities of γ-glutamylcysteine synthetase and GSH synthetase in liver (P < 0.001) and jejunum (P < 0.01); and GSH reductase in jejunum (P < 0.01), longissimus lumborum muscle (P < 0.01), gastrocnemius muscle (P < 0.05), and pancreas (P < 0.01). In addition, IUGR pigs had greater (P < 0.001) concentrations of thiobarbituric acid reactive substances (TBARS; an indicator of lipid peroxidation) in plasma, jejunum, muscles, and pancreas than NBW pigs. Compared with isonitrogenous controls, dietary glycine supplementation increased concentrations of GSH plus GSSG and GSH in plasma (P < 0.01), liver (P < 0.001), jejunum (P < 0.001), longissimus lumborum muscle (P = 0.001), and gastrocnemius muscle (P < 0.05); activities of GSH-synthetic enzymes in liver (P < 0.01) and jejunum (P < 0.05), while reducing GSSG/GSH ratios in plasma (P < 0.001), jejunum (P < 0.001), longissimus lumborum muscle (P < 0.001), gastrocnemius muscle (P = 0.01), pancreas (P < 0.05), and kidneys (P < 0.01). Concentrations of GSH plus GSSG, GSH, and GSSG/GSH ratios in kidneys were not affected (P > 0.05) by IUGR. Furthermore, glycine supplementation reduced (P < 0.001) TBARS concentrations in plasma, jejunum, muscles, and pancreas. Collectively, IUGR reduced GSH availability and induced oxidative stress in pig tissues, and these abnormalities were prevented by dietary glycine supplementation in a tissue-specific manner.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Erin A Posey
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Chandler C Steele
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Jeffrey W Savell
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Li P, Wu G. Analysis of Gizzerosine in Foodstuffs by HPLC Involving Pre-column Derivatization with o-Phthaldialdehyde. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:237-250. [PMID: 38625532 DOI: 10.1007/978-3-031-54192-6_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Gizzerosine [2-amino-9-(4-imidazolyl)-7-azanonanoic acid] is a toxic amino acid formed from histamine and lysine at high temperatures, and may be present in foodstuffs (e.g., fishmeal and meat-bone meal) for animals including cats and dogs. Here we developed a simple, rapid, sensitive, specific, and automated method for the analysis of gizzerosine in foodstuffs by high-performance liquid chromatography (HPLC) involving pre-column derivatization with o-phthaldialdehyde (OPA) in the presence of N-acetylcysteine (instead of the usual 2-mercaptoethanol or ethanethiol reagent). OPA reacted immediately (within 1 min) with gizzerosine in an autosampler at room temperatures (e.g., 20-25 °C), and their derivative was directly injected into the HPLC column. The highly fluorescent gizzerosine-OPA derivative was well separated from the OPA derivatives of all natural amino acids known to be present in physiological fluids (e.g., plasma), proteins and foodstuffs, and was detected at an excitation wavelength of 340 nm and an emission wavelength of 450 nm. The total time for chromatographic separation (including column regeneration) was 20 min per sample rather than 40 min and longer in previous HPLC methods. The detection limit for gizzerosine was at least 6 pmol/ml in an assay solution (HPLC vial) or at least 0.09 pmol per injection into the HPLC column. The analysis of gizzerosine was linear between 1 and 100 pmol per injection. When gizzerosine was extracted from foodstuffs, its detection limit was at least 875 pmol/g foodstuff or at least 0.21 mg/kg foodstuff. Our routine HPLC technique does not require any cleanup of samples or the OPA derivatization products (including the OPA-gizzerosine adduct), and is applicable for the analysis of gizzerosine in both foodstuffs and animal tissues.
Collapse
Affiliation(s)
- Peng Li
- North American Renderers Association, Alexandria, VA, 22314, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77845, USA.
| |
Collapse
|
6
|
Tekwe CD, Luan Y, Meininger CJ, Bazer FW, Wu G. Dietary supplementation with L-leucine reduces nitric oxide synthesis by endothelial cells of rats. Exp Biol Med (Maywood) 2023; 248:1537-1549. [PMID: 37837386 PMCID: PMC10676130 DOI: 10.1177/15353702231199078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/21/2023] [Indexed: 10/16/2023] Open
Abstract
This study tested the hypothesis that elevated L-leucine concentrations in plasma reduce nitric oxide (NO) synthesis by endothelial cells (ECs) and affect adiposity in obese rats. Beginning at four weeks of age, male Sprague-Dawley rats were fed a casein-based low-fat (LF) or high-fat (HF) diet for 15 weeks. Thereafter, rats in the LF and HF groups were assigned randomly into one of two subgroups (n = 8/subgroup) and received drinking water containing either 1.02% L-alanine (isonitrogenous control) or 1.5% L-leucine for 12 weeks. The energy expenditure of the rats was determined at weeks 0, 6, and 11 of the supplementation period. At the end of the study, an oral glucose tolerance test was performed on all the rats immediately before being euthanized for the collection of tissues. HF feeding reduced (P < 0.001) NO synthesis in ECs by 21% and whole-body insulin sensitivity by 19% but increased (P < 0.001) glutamine:fructose-6-phosphate transaminase (GFAT) activity in ECs by 42%. Oral administration of L-leucine decreased (P < 0.05) NO synthesis in ECs by 14%, increased (P < 0.05) GFAT activity in ECs by 35%, and reduced (P < 0.05) whole-body insulin sensitivity by 14% in rats fed the LF diet but had no effect (P > 0.05) on these variables in rats fed the HF diet. L-Leucine supplementation did not affect (P > 0.05) weight gain, tissue masses (including white adipose tissue, brown adipose tissue, and skeletal muscle), or antioxidative capacity (indicated by ratios of glutathione/glutathione disulfide) in LF- or HF-fed rats and did not worsen (P > 0.05) adiposity, whole-body insulin sensitivity, or metabolic profiles in the plasma of obese rats. These results indicate that high concentrations of L-leucine promote glucosamine synthesis and impair NO production by ECs, possibly contributing to an increased risk of cardiovascular disease in diet-induced obese rats.
Collapse
Affiliation(s)
- Carmen D Tekwe
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN 47403, USA
| | - Yuanyuan Luan
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN 47403, USA
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M University, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
- Department of Medical Physiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Functional Molecules of Intestinal Mucosal Products and Peptones in Animal Nutrition and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:263-277. [PMID: 34807446 DOI: 10.1007/978-3-030-85686-1_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is growing interest in the use of intestinal mucosal products and peptones (partial protein hydrolysates) to enhance the food intake, growth, development, and health of animals. The mucosa of the small intestine consists of the epithelium, the lamina propria, and the muscularis mucosa. The diverse population of cells (epithelial, immune, endocrine, neuronal, vascular, and elastic cells) in the intestinal mucosa contains not only high-quality food protein (e.g., collagen) but also a wide array of low-, medium-, and high-molecular-weight functional molecules with enormous nutritional, physiological, and immunological importance. Available evidence shows that intestinal mucosal products and peptones provide functional substances, including growth factors, enzymes, hormones, large peptides, small peptides, antimicrobials, cytokines, bioamines, regulators of nutrient metabolism, unique amino acids (e.g., taurine and 4-hydroxyproline), and other bioactive substances (e.g., creatine and glutathione). Therefore, dietary supplementation with intestinal mucosal products and peptones can cost-effectively improve feed intake, immunity, health (the intestine and the whole body), well-being, wound healing, growth performance, and feed efficiency in livestock, poultry, fish, and crustaceans. In feeding practices, an inclusion level of an intestinal mucosal product or a mucosal peptone product at up to 5% (as-fed basis) is appropriate in the diets of these animals, as well as companion and zoo animals.
Collapse
|
8
|
Fluorometric Optimized Determination of Total Glutathione in Erythrocytes. SEPARATIONS 2021. [DOI: 10.3390/separations8060083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glutathione is a tripeptide natural product characterized by a non-canonical peptide bond with an amide moiety linking the nitrogen of cysteine to the γ-carboxyl of glutamate, and is found ubiquitously in nature, in animals, plants and microorganisms. One of the most abundant biological matrices is represented by erythrocytes, being glutathione the only sulfur-containing mechanism for the red blood cell oxidative protection. Several analytical methods for glutathione determination from different samples are described in the literature and most of these methods are based on the use of high-performance liquid chromatography. HPLC equipment is not available in all the biochemical laboratories, and, moreover, displays lot of economic and ecological limitations, including organic solvent consumption and time-consuming analysis. Here, an organic-free high-throughput fluorometric methodology for the analysis of total glutathione in erythrocytes is reported, avoiding the use of time-consuming and not-sustainable techniques.
Collapse
|
9
|
Yuan L, Guo W, Fu Y, Zhang Z, Wang P, Wang J. A rapid colorimetric method for determining glutathione based on the reaction between cobalt oxyhydroxide nanosheets and 3,3′,5,5′-Tetramethylbenzidine. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Liu D, Xu J, Cao Y, Qi Y, Yang K, Wei X, Xu Y, Fan M. Effect of glutathione‐enriched inactive dry yeast on color, phenolic compounds, and antioxidant activity of kiwi wine. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dan Liu
- College of Food Science and Engineering Northwest A & F University Yangling China
| | - Junnan Xu
- College of Food Science and Engineering Northwest A & F University Yangling China
| | - Youfang Cao
- College of Food Science and Engineering Northwest A & F University Yangling China
| | - Yiman Qi
- College of Food Science and Engineering Northwest A & F University Yangling China
| | - Kun Yang
- College of Food Science and Engineering Northwest A & F University Yangling China
| | - Xinyuan Wei
- College of Food Science and Engineering Northwest A & F University Yangling China
| | - Yinhu Xu
- Angel Yeast Co., Ltd Yichang China
| | - Mingtao Fan
- College of Food Science and Engineering Northwest A & F University Yangling China
| |
Collapse
|
11
|
Tekwe CD, Yao K, Lei J, Li X, Gupta A, Luan Y, Meininger CJ, Bazer FW, Wu G. Oral administration of α-ketoglutarate enhances nitric oxide synthesis by endothelial cells and whole-body insulin sensitivity in diet-induced obese rats. Exp Biol Med (Maywood) 2019; 244:1081-1088. [PMID: 31357871 DOI: 10.1177/1535370219865229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Obesity is a risk factor for many chronic diseases, including hypertension, type-2 diabetes, and cancer. Interestingly, concentrations of branched-chain amino acids (BCAAs) in plasma are commonly associated with endothelial dysfunction in humans and animals with obesity. Because L-leucine inhibits nitric oxide synthesis by endothelial cells (EC), we hypothesized that dietary supplementation with AKG (a substrate for BCAA transaminase) may stimulate BCAA catabolism in the small intestine and extra-intestinal tissues, thereby reducing the circulating concentrations of BCAAs and increasing nitric oxide synthesis by endothelial cells. Beginning at four weeks of age, male Sprague-Dawley rats were fed a low-fat or a high-fat diet for 15 weeks. At 19 weeks of age, lean or obese rats continued to be fed for 12 weeks their respective diets and received drinking water containing 0 or 1% AKG ( n = 8/group). At 31 weeks of age, the rats were euthanized to obtain tissues. Food intake did not differ ( P > 0.05) between rats supplemented with or without AKG. Oral administration of AKG (250 mg/kg BW per day) reduced ( P < 0.05) concentrations of BCAAs, glucose, ammonia, and triacylglycerols in plasma, adiposity, and glutamine:fructose-6-phosphate transaminase activity in endothelial cells, and enhanced ( P < 0.05) concentrations of the reduced form of glutathione in tissues, nitric oxide synthesis by endothelial cells, and whole-body insulin sensitivity (indicated by oral glucose tolerance test) in both low-fat and high-fat rats. AKG administration reduced ( P < 0.05) white adipose tissue weights of rats in the low-fat and high-fat groups. These novel results indicate that AKG can reduce adiposity and increase nitric oxide production by endothelial cells in diet-induced obese rats. Impact statement Obesity is associated with elevated concentrations of branched-chain amino acids, including L-leucine. L-Leucine inhibits the synthesis of nitric oxide from L-arginine by endothelial cells, contributing to impairments in angiogenesis, blood flow, and vascular dysfunction, as well as insulin resistance. Reduction in the circulating levels of branched-chain amino acids through dietary supplementation with α-ketoglutarate to promote their transamination in the small intestine and other tissues can restore nitric oxide synthesis in the vasculature and reduce the weights of white adipose tissues, thereby improving metabolic profiles and whole-body insulin sensitivity (indicated by oral glucose tolerance test) in diet-induced obese rats. Our findings provide a simple and effective nutritional means to alleviate metabolic syndrome in obese subjects. This is highly significant to combat the current obesity epidemic and associated health problems in humans worldwide.
Collapse
Affiliation(s)
- Carmen D Tekwe
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.,Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Kang Yao
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Jian Lei
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Xilong Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Anand Gupta
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Yuanyuan Luan
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.,Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843, USA
| |
Collapse
|
12
|
Dai Z, Sun S, Chen H, Liu M, Zhang L, Wu Z, Li J, Wu G. Analysis of Tryptophan and Its Metabolites by High-Performance Liquid Chromatography. Methods Mol Biol 2019; 2030:131-142. [PMID: 31347115 DOI: 10.1007/978-1-4939-9639-1_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tryptophan is a nutritionally essential amino acid for both humans and animals. Besides acting as a building block for protein synthesis, tryptophan (Trp) and its metabolites are crucial for maintaining neurological function, immunity, and homeostasis in the body. To uncover the regulatory role of Trp and its metabolites in cell nutrition, metabolism and physiology, various analytical methods, including high-performance liquid chromatography (HPLC), have been developed to determine key Trp metabolites. Here we describe a rapid and sensitive method for the simultaneous analysis of Trp and its metabolites along with other amino acids by HPLC involving in-line pre-column derivatization with o-phthaldialdehyde (OPA) and dual-channel fluorescence detection. OPA reacts very rapidly (within 1 min) with Trp, 5-hydroxytryptophan, 5-hydroxytryptamine, and tryptamine at room temperature (e.g., 20-25 °C) in an autosampler. Their derivatives are immediately injected into the HPLC column without the need for extraction. Trp metabolites that cannot react with OPA but are fluorescent can be detected by setting the excitation and emission wavelengths of the fluorescence detector in another detection channel. The autosampler is programmed to mix Trp and its metabolites with OPA for 1 min to generate highly fluorescent derivatives for HPLC separation and detection (Channel A, excitation = 270 nm and emission = 350 nm; Channel B, excitation = 340 nm and emission = 450 nm). The detection limit for Trp and its metabolites is 30 pmol/mL or 150 fmol/injection. The total time for chromatographic separation (including column regeneration) is 55 min for each sample. Our HPLC method can be used for the analysis of amino acids (including Trp) in alkaline protein hydrolysates and of Trp and its metabolites in biological samples.
Collapse
Affiliation(s)
- Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Shiqiang Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hui Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Moyan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lianhua Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ju Li
- Henan Yinfa Animal Husbandry Co., Xinzheng, Henan, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
13
|
Glutathionylation: a regulatory role of glutathione in physiological processes. Arh Hig Rada Toksikol 2018; 69:1-24. [DOI: 10.2478/aiht-2018-69-2966] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/01/2018] [Indexed: 12/18/2022] Open
Abstract
Abstract
Glutathione (γ-glutamyl-cysteinyl-glycine) is an intracellular thiol molecule and a potent antioxidant that participates in the toxic metabolism phase II biotransformation of xenobiotics. It can bind to a variety of proteins in a process known as glutathionylation. Protein glutathionylation is now recognised as one of important posttranslational regulatory mechanisms in cell and tissue physiology. Direct and indirect regulatory roles in physiological processes include glutathionylation of major transcriptional factors, eicosanoids, cytokines, and nitric oxide (NO). This review looks into these regulatory mechanisms through examples of glutathione regulation in apoptosis, vascularisation, metabolic processes, mitochondrial integrity, immune system, and neural physiology. The focus is on the physiological roles of glutathione beyond biotransformational metabolism.
Collapse
|