1
|
Webi E, Abkallo HM, Obiero G, Ndegwa P, Xie S, Zhao S, Nene V, Steinaa L. Genome Editing in Apicomplexan Parasites: Current Status, Challenges, and Future Possibilities. CRISPR J 2024; 7:310-326. [PMID: 39387255 DOI: 10.1089/crispr.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) technology has revolutionized genome editing across various biological systems, including the Apicomplexa phylum. This review describes the status, challenges, and applications of CRISPR-Cas9 editing technology in apicomplexan parasites, such as Plasmodium, Toxoplasma, Theileria, Babesia, and Cryptosporidium. The discussion encompasses successfully implemented CRISPR-Cas9-based techniques in these parasites, highlighting the achieved milestones, from precise gene modifications to genome-wide screening. In addition, the review addresses the challenges hampering efficient genome editing, including the parasites' complex life cycles, multiple intracellular stages, and the lack of robust genetic tools. It further explores the ethical and policy considerations surrounding genome editing and the future perspectives of CRISPR-Cas applications in apicomplexan parasites.
Collapse
Affiliation(s)
- Ethel Webi
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Hussein M Abkallo
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Paul Ndegwa
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P. R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P. R. China
| | - Vishvanath Nene
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Lucilla Steinaa
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
2
|
Hussein NI, Molina AH, Sunga GM, Amit M, Lei YL, Zhao X, Hartgerink JD, Sikora AG, Young S. Localized intratumoral delivery of immunomodulators for oral cancer and oral potentially malignant disorders. Oral Oncol 2024; 158:106986. [PMID: 39137489 DOI: 10.1016/j.oraloncology.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Immunotherapy has developed into an important modality of modern cancer treatment. Unfortunately, checkpoint inhibitor immunotherapies are currently delivered systemically and require frequent administration, which can result in toxicity and severe, sometimes fatal, adverse events. Localized delivery of immunomodulators for oral cancer and oral potentially malignant disorders offers the promise of maximum therapeutic potential and reduced systemic adverse effects. This review will discuss the limitations of current standard-of-care systemic therapies and highlight research advances in localized, intratumoral delivery platforms for immunotherapy for oral cancer and oral potentially malignant disorders.
Collapse
Affiliation(s)
- Nourhan I Hussein
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA
| | - Andrea H Molina
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA
| | - Gemalene M Sunga
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA; Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Yu Leo Lei
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Xiao Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Jeffrey D Hartgerink
- Department of Chemistry and Department of Bioengineering, Rice University, 6500 Main St, BRC-319, Houston, TX 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA.
| |
Collapse
|
3
|
Göttig L, Schreiner S. E4orf1: The triple agent of adenovirus - Unraveling its roles in oncogenesis, infectious obesity and immune responses in virus replication and vector therapy. Tumour Virus Res 2024; 17:200277. [PMID: 38428735 PMCID: PMC10937242 DOI: 10.1016/j.tvr.2024.200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
Human Adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous sub-types that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating cellular pathways such as PI3K-Akt-mTOR, Ras, the immune response and further HAdV replication stages than previously anticipated. In this review, we aim to explore the structure, molecular mechanisms, and biological functions of E4orf1, shedding light on its potentially multifaceted roles during HAdV infection, including metabolic diseases and oncogenesis. Furthermore, we discuss the role of functional E4orf1 in biotechnological applications such as Adenovirus (AdV) vaccine vectors and oncolytic AdV. By dissecting the intricate relationships between HAdV types and E4orf1 proteins, this review provides valuable insights into viral pathogenesis and points to promising areas of future research.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover, Germany; Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Huayamares SG, Loughrey D, Kim H, Dahlman JE, Sorscher EJ. Nucleic acid-based drugs for patients with solid tumours. Nat Rev Clin Oncol 2024; 21:407-427. [PMID: 38589512 DOI: 10.1038/s41571-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
The treatment of patients with advanced-stage solid tumours typically involves a multimodality approach (including surgery, chemotherapy, radiotherapy, targeted therapy and/or immunotherapy), which is often ultimately ineffective. Nucleic acid-based drugs, either as monotherapies or in combination with standard-of-care therapies, are rapidly emerging as novel treatments capable of generating responses in otherwise refractory tumours. These therapies include those using viral vectors (also referred to as gene therapies), several of which have now been approved by regulatory agencies, and nanoparticles containing mRNAs and a range of other nucleotides. In this Review, we describe the development and clinical activity of viral and non-viral nucleic acid-based treatments, including their mechanisms of action, tolerability and available efficacy data from patients with solid tumours. We also describe the effects of the tumour microenvironment on drug delivery for both systemically administered and locally administered agents. Finally, we discuss important trends resulting from ongoing clinical trials and preclinical testing, and manufacturing and/or stability considerations that are expected to underpin the next generation of nucleic acid agents for patients with solid tumours.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric J Sorscher
- Emory University School of Medicine, Atlanta, GA, USA.
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Scarsella L, Ehrke-Schulz E, Paulussen M, Thal SC, Ehrhardt A, Aydin M. Advances of Recombinant Adenoviral Vectors in Preclinical and Clinical Applications. Viruses 2024; 16:377. [PMID: 38543743 PMCID: PMC10974029 DOI: 10.3390/v16030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 05/23/2024] Open
Abstract
Adenoviruses (Ad) have the potential to induce severe infections in vulnerable patient groups. Therefore, understanding Ad biology and antiviral processes is important to comprehend the signaling cascades during an infection and to initiate appropriate diagnostic and therapeutic interventions. In addition, Ad vector-based vaccines have revealed significant potential in generating robust immune protection and recombinant Ad vectors facilitate efficient gene transfer to treat genetic diseases and are used as oncolytic viruses to treat cancer. Continuous improvements in gene delivery capacity, coupled with advancements in production methods, have enabled widespread application in cancer therapy, vaccine development, and gene therapy on a large scale. This review provides a comprehensive overview of the virus biology, and several aspects of recombinant Ad vectors, as well as the development of Ad vector, are discussed. Moreover, we focus on those Ads that were used in preclinical and clinical applications including regenerative medicine, vaccine development, genome engineering, treatment of genetic diseases, and virotherapy in tumor treatment.
Collapse
Affiliation(s)
- Luca Scarsella
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Michael Paulussen
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
| | - Serge C. Thal
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Malik Aydin
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| |
Collapse
|
6
|
Sayedahmed EE, Elshafie NO, dos Santos AP, Jagannath C, Sambhara S, Mittal SK. Development of NP-Based Universal Vaccine for Influenza A Viruses. Vaccines (Basel) 2024; 12:157. [PMID: 38400140 PMCID: PMC10892571 DOI: 10.3390/vaccines12020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The nucleoprotein (NP) is a vital target for the heterosubtypic immunity of CD8+ cytotoxic T lymphocytes (CTLs) due to its conservation among influenza virus subtypes. To further enhance the T cell immunity of NP, autophagy-inducing peptide C5 (AIP-C5) from the CFP10 protein of Mycobacterium tuberculosis was used. Mice were immunized intranasally (i.n.) with human adenoviral vectors, HAd-C5-NP(H7N9) or HAd-NP(H7N9), expressing NP of an H7N9 influenza virus with or without the AIP-C5, respectively. Both vaccines developed similar levels of NP-specific systemic and mucosal antibody titers; however, there was a significantly higher number of NP-specific CD8 T cells secreting interferon-gamma (IFN-γ) in the HAd-C5-NP(H7N9) group than in the HAd-NP(H7N9) group. The HAd-C5-NP(H7N9) vaccine provided better protection following the challenge with A/Puerto Rico/8/1934(H1N1), A/Hong Kong/1/68(H3N2), A/chukkar/MN/14951-7/1998(H5N2), A/goose/Nebraska/17097/2011(H7N9), or A/Hong Kong/1073/1999(H9N2) influenza viruses compared to the HAd-NP(H7N9) group. The autophagy transcriptomic gene analysis of the HAd-C5-NP(H7N9) group revealed the upregulation of some genes involved in the positive regulation of the autophagy process. The results support further exploring the use of NP and AIP-C5 for developing a universal influenza vaccine for pandemic preparedness.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| | - Nelly O. Elshafie
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| | - Andrea P. dos Santos
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX 77030, USA;
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| |
Collapse
|
7
|
Liang Y, Xu Q, Gao Q. Advancing CAR-based immunotherapies in solid tumors: CAR- macrophages and neutrophils. Front Immunol 2023; 14:1291619. [PMID: 38090576 PMCID: PMC10715261 DOI: 10.3389/fimmu.2023.1291619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Macrophages and neutrophils are the main components of the innate immune system and play important roles in promoting angiogenesis, extracellular matrix remodeling, cancer cell proliferation, and metastasis in the tumor microenvironment (TME). They can also be harnessed to mediate cytotoxic tumor killing effects and orchestrate effective anti-tumor immune responses with proper stimulation and modification. Therefore, macrophages and neutrophils have strong potential in cancer immunotherapy. In this review, we briefly outlined the applications of macrophages or neutrophils in adoptive cell therapies, and focused on chimeric antigen receptor (CAR)-engineered macrophages (CAR-Ms) and neutrophils (CAR-Ns). We summarized the construction strategies, the preclinical and clinical studies of CAR-Ms and CAR-Ns. In the end, we briefly discussed the limitations and challenges of CAR-Ms and CAR-Ns, as well as future research directions to extend their applications in treating solid tumors.
Collapse
Affiliation(s)
- Yanling Liang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Qumiao Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Qianqian Gao
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
8
|
Sayedahmed EE, Elshafie NO, Zhang G, Mohammed SI, Sambhara S, Mittal SK. Enhancement of mucosal innate and adaptive immunity following intranasal immunization of mice with a bovine adenoviral vector. Front Immunol 2023; 14:1305937. [PMID: 38077380 PMCID: PMC10702558 DOI: 10.3389/fimmu.2023.1305937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Nonhuman adenoviral (AdV) gene delivery platforms have significant value due to their ability to elude preexisting AdV vector immunity in most individuals. Previously, we have demonstrated that intranasal (IN) immunization of mice with BAd-H5HA, a bovine AdV type 3 (BAdV3) vector expressing H5N1 influenza virus hemagglutinin (HA), resulted in enhanced humoral and cell-mediated immune responses. The BAd-H5HA IN immunization resulted in complete protection following the challenge with an antigenically distinct H5N1 virus compared to the mouse group similarly immunized with HAd-H5HA, a human AdV type 5 (HAdV5) vector expressing HA. Methods Here, we attempted to determine the activation of innate immune responses in the lungs of mice inoculated intranasally with BAd-H5HA compared to the HAd-H5HA-inoculated group. Results RNA-Seq analyses of the lung tissues revealed differential expression (DE) of genes involved in innate and adaptive immunity in animals immunized with BAd-H5HA. The top ten enhanced genes were verified by RT-PCR. Consistently, there were transient increases in the levels of cytokines (IL-1α, IL-1β, IL-5, TNF- α, LIF, IL-17, G-CSF, MIP-1β, MCP-1, MIP-2, and GM-CSF) and toll-like receptors in the lungs of the group inoculated with BAdV vectors compared to that of the HAdV vector group. Conclusion These results demonstrate that the BAdV vectors induce enhanced innate and adaptive immunity-related factors compared to HAdV vectors in mice. Thus, the BAdV vector platform could be an excellent gene delivery system for recombinant vaccines and cancer immunotherapy.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Nelly O. Elshafie
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Sulma I. Mohammed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
9
|
Sayedahmed EE, Araújo MV, Silva-Pereira TT, Chothe SK, Elkashif A, Alhashimi M, Wang WC, Santos AP, Nair MS, Gontu A, Nissly R, Francisco de Souza Filho A, Tavares MS, Ayupe MC, Salgado CL, Donizetti de Oliveira Candido É, Leal Oliveira DB, Durigon EL, Heinemann MB, Morais da Fonseca D, Jagannath C, Sá Guimarães AM, Kuchipudi SV, Mittal SK. Impact of an autophagy-inducing peptide on immunogenicity and protection efficacy of an adenovirus-vectored SARS-CoV-2 vaccine. Mol Ther Methods Clin Dev 2023; 30:194-207. [PMID: 37502665 PMCID: PMC10299838 DOI: 10.1016/j.omtm.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Because of continual generation of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is critical to design the next generation of vaccines to combat the threat posed by SARS-CoV-2 variants. We developed human adenovirus (HAd) vector-based vaccines (HAd-Spike/C5 and HAd-Spike) that express the whole Spike (S) protein of SARS-CoV-2 with or without autophagy-inducing peptide C5 (AIP-C5), respectively. Mice or golden Syrian hamsters immunized intranasally (i.n.) with HAd-Spike/C5 induced similar levels of S-specific humoral immune responses and significantly higher levels of S-specific cell-mediated immune (CMI) responses compared with HAd-Spike vaccinated groups. These results indicated that inclusion of AIP-C5 induced enhanced S-specific CMI responses and similar levels of virus-neutralizing titers against SARS-CoV-2 variants. To investigate the protection efficacy, golden Syrian hamsters immunized i.n. either with HAd-Spike/C5 or HAd-Spike were challenged with SARS-CoV-2. The lungs and nasal turbinates were collected 3, 5, 7, and 14 days post challenge. Significant reductions in morbidity, virus titers, and lung histopathological scores were observed in immunized groups compared with the mock- or empty vector-inoculated groups. Overall, slightly better protection was seen in the HAd-Spike/C5 group compared with the HAd-Spike group.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Marcelo Valdemir Araújo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Butantan Institute, São Paulo, Brazil
| | - Taiana Tainá Silva-Pereira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Shubhada K. Chothe
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Ahmed Elkashif
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Wen-Chien Wang
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Andrea P. Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Meera Surendran Nair
- Department of Veterinary and Biomedical Sciences, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Abhinay Gontu
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Ruth Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | | | - Mariana Silva Tavares
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marina Caçador Ayupe
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Caio Loureiro Salgado
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Edison Luiz Durigon
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Ana Marcia Sá Guimarães
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Suresh V. Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
10
|
Chavda VP, Bezbaruah R, Valu D, Patel B, Kumar A, Prasad S, Kakoti BB, Kaushik A, Jesawadawala M. Adenoviral Vector-Based Vaccine Platform for COVID-19: Current Status. Vaccines (Basel) 2023; 11:432. [PMID: 36851309 PMCID: PMC9965371 DOI: 10.3390/vaccines11020432] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus disease (COVID-19) breakout had an unimaginable worldwide effect in the 21st century, claiming millions of lives and putting a huge burden on the global economy. The potential developments in vaccine technologies following the determination of the genetic sequence of SARS-CoV-2 and the increasing global efforts to bring potential vaccines and therapeutics into the market for emergency use have provided a small bright spot to this tragic event. Several intriguing vaccine candidates have been developed using recombinant technology, genetic engineering, and other vaccine development technologies. In the last decade, a vast amount of the vaccine development process has diversified towards the usage of viral vector-based vaccines. The immune response elicited by such vaccines is comparatively higher than other approved vaccine candidates that require a booster dose to provide sufficient immune protection. The non-replicating adenoviral vectors are promising vaccine carriers for infectious diseases due to better yield, cGMP-friendly manufacturing processes, safety, better efficacy, manageable shipping, and storage procedures. As of April 2022, the WHO has approved a total of 10 vaccines around the world for COVID-19 (33 vaccines approved by at least one country), among which three candidates are adenoviral vector-based vaccines. This review sheds light on the developmental summary of all the adenoviral vector-based vaccines that are under emergency use authorization (EUA) or in the different stages of development for COVID-19 management.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Disha Valu
- Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bindra Patel
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Anup Kumar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Sanjay Prasad
- Cell and Gene Therapy Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, USA
| | - Mariya Jesawadawala
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
11
|
Marquez-Martinez S, Vijayan A, Khan S, Zahn R. Cell entry and innate sensing shape adaptive immune responses to adenovirus-based vaccines. Curr Opin Immunol 2023; 80:102282. [PMID: 36716578 DOI: 10.1016/j.coi.2023.102282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/30/2023]
Abstract
Nonreplicating adenovirus-based vectors have been successfully implemented as prophylactic vaccines against infectious viral diseases and induce protective cellular and humoral responses. Differences in the mechanisms of cellular entry or endosomal escape of these vectors contribute to differences in innate immune sensing between adenovirus species. Innate immune responses to adenovirus-based vaccines, such as interferon signaling, have been reported to affect the development of adaptive responses in preclinical studies, although limited data are available in humans. Understanding the mechanisms of these early events is critical for the development of vaccines that elicit effective and durable adaptive immune responses while maintaining an acceptable reactogenicity profile.
Collapse
Affiliation(s)
- Sonia Marquez-Martinez
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands.
| | - Aneesh Vijayan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Selina Khan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Roland Zahn
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| |
Collapse
|
12
|
Wang WC, Sayedahmed EE, Mittal SK. Significance of Preexisting Vector Immunity and Activation of Innate Responses for Adenoviral Vector-Based Therapy. Viruses 2022; 14:v14122727. [PMID: 36560730 PMCID: PMC9787786 DOI: 10.3390/v14122727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
An adenoviral (AdV)-based vector system is a promising platform for vaccine development and gene therapy applications. Administration of an AdV vector elicits robust innate immunity, leading to the development of humoral and cellular immune responses against the vector and the transgene antigen, if applicable. The use of high doses (1011-1013 virus particles) of an AdV vector, especially for gene therapy applications, could lead to vector toxicity due to excessive levels of innate immune responses, vector interactions with blood factors, or high levels of vector transduction in the liver and spleen. Additionally, the high prevalence of AdV infections in humans or the first inoculation with the AdV vector result in the development of vector-specific immune responses, popularly known as preexisting vector immunity. It significantly reduces the vector efficiency following the use of an AdV vector that is prone to preexisting vector immunity. Several approaches have been developed to overcome this problem. The utilization of rare human AdV types or nonhuman AdVs is the primary strategy to evade preexisting vector immunity. The use of heterologous viral vectors, capsid modification, and vector encapsulation are alternative methods to evade vector immunity. The vectors can be optimized for clinical applications with comprehensive knowledge of AdV vector immunity, toxicity, and circumvention strategies.
Collapse
|
13
|
Jt S, M H, Wam B, Ac B, Sa N. Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective. J Mol Med (Berl) 2022; 100:875-901. [PMID: 35606652 PMCID: PMC9126699 DOI: 10.1007/s00109-022-02208-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Abstract Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, systemic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20–42-42 as promising platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regulatory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines. Key messages First-generation HAd-5 vectors are widely used in cardiovascular gene therapy. HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function. Novel HAd vectors may represent promising transgene carriers for systemic delivery. Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes. National regulatory health agencies have issued guidance on GMP for GTMPs.
Collapse
Affiliation(s)
- Schwartze Jt
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| | - Havenga M
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bakker Wam
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bradshaw Ac
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Nicklin Sa
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
14
|
MicroRNA as a Potential Biomarker and Treatment Strategy for Ischemia-Reperfusion Injury. Int J Genomics 2021; 2021:9098145. [PMID: 34845433 PMCID: PMC8627352 DOI: 10.1155/2021/9098145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is a progressive injury that aggravates the pathological state when the organ tissue restores blood supply after a certain period of ischemia, including the myocardial, brain, liver, kidney, and intestinal. With growing evidence that microRNAs (miRNAs) play an important role as posttranscription gene silencing mediators in many I/R injury, in this review, we highlight the microRNAs that are related to I/R injury and their regulatory molecular pathways. In addition, we discussed the potential role of miRNA as a biomarker and its role as a target in I/R injury treatment. Developing miRNAs are not without its challenges, but prudent design combined with existing clinical treatments will result in more effective therapies for I/R injury. This review is aimed at providing new research results obtained in this research field. It is hoped that new research on this topic will not only generate new insights into the pathophysiology of miRNA in I/R injury but also can provide a basis for the clinical application of miRNA in I/R.
Collapse
|
15
|
Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology 2021; 10:e1345. [PMID: 34667600 PMCID: PMC8510854 DOI: 10.1002/cti2.1345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.
Collapse
Affiliation(s)
- Ahmed Elkashif
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Marwa Alhashimi
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Ekramy E Sayedahmed
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | | | - Suresh K Mittal
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
16
|
Khan A, Sayedahmed EE, Singh VK, Mishra A, Dorta-Estremera S, Nookala S, Canaday DH, Chen M, Wang J, Sastry KJ, Mittal SK, Jagannath C. A recombinant bovine adenoviral mucosal vaccine expressing mycobacterial antigen-85B generates robust protection against tuberculosis in mice. Cell Rep Med 2021; 2:100372. [PMID: 34467249 PMCID: PMC8385328 DOI: 10.1016/j.xcrm.2021.100372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/16/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Although the BCG vaccine offers partial protection, tuberculosis remains a leading cause of infectious disease death, killing ∼1.5 million people annually. We developed mucosal vaccines expressing the autophagy-inducing peptide C5 and mycobacterial Ag85B-p25 epitope using replication-defective human adenovirus (HAdv85C5) and bovine adenovirus (BAdv85C5) vectors. BAdv85C5-infected dendritic cells (DCs) expressed a robust transcriptome of genes regulating antigen processing compared to HAdv85C5-infected DCs. BAdv85C5-infected DCs showed enhanced galectin-3/8 and autophagy-dependent in vitro Ag85B-p25 epitope presentation to CD4 T cells. BCG-vaccinated mice were intranasally boosted using HAdv85C5 or BAdv85C5 followed by infection using aerosolized Mycobacterium tuberculosis (Mtb). BAdv85C5 protected mice against tuberculosis both as a booster after BCG vaccine (>1.4-log10 reduction in Mtb lung burden) and as a single intranasal dose (>0.5-log10 reduction). Protection was associated with robust CD4 and CD8 effector (TEM), central memory (TCM), and CD103+/CD69+ lung-resident memory (TRM) T cell expansion, revealing BAdv85C5 as a promising mucosal vaccine for tuberculosis.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology and Purdue Institute of Inflammation, Immunology, and Infectious Disease, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| | | | - Sita Nookala
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - David H. Canaday
- Department of Medicine, Case Western Reserve University and Cleveland Veterans Affairs, Cleveland, OH, USA
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, and Department of Surgery, Weill Cornell Medical College, Houston, TX, USA
| | - K. Jagannadha Sastry
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology and Purdue Institute of Inflammation, Immunology, and Infectious Disease, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| |
Collapse
|
17
|
Arnone CM, Polito VA, Mastronuzzi A, Carai A, Diomedi FC, Antonucci L, Petrilli LL, Vinci M, Ferrari F, Salviato E, Scarsella M, De Stefanis C, Weber G, Quintarelli C, De Angelis B, Brenner MK, Gottschalk S, Hoyos V, Locatelli F, Caruana I, Del Bufalo F. Oncolytic adenovirus and gene therapy with EphA2-BiTE for the treatment of pediatric high-grade gliomas. J Immunother Cancer 2021; 9:e001930. [PMID: 33963009 PMCID: PMC8108682 DOI: 10.1136/jitc-2020-001930] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Pediatric high-grade gliomas (pHGGs) are among the most common and incurable malignant neoplasms of childhood. Despite aggressive, multimodal treatment, the outcome of children with high-grade gliomas has not significantly improved over the past decades, prompting the development of innovative approaches. METHODS To develop an effective treatment, we aimed at improving the suboptimal antitumor efficacy of oncolytic adenoviruses (OAs) by testing the combination with a gene-therapy approach using a bispecific T-cell engager (BiTE) directed towards the erythropoietin-producing human hepatocellular carcinoma A2 receptor (EphA2), conveyed by a replication-incompetent adenoviral vector (EphA2 adenovirus (EAd)). The combinatorial approach was tested in vitro, in vivo and thoroughly characterized at a molecular level. RESULTS After confirming the relevance of EphA2 as target in pHGGs, documenting a significant correlation with worse clinical outcome of the patients, we showed that the proposed strategy provides significant EphA2-BiTE amplification and enhanced tumor cell apoptosis, on coculture with T cells. Moreover, T-cell activation through an agonistic anti-CD28 antibody further increased the activation/proliferation profiles and functional response against infected tumor cells, inducing eradication of highly resistant, primary pHGG cells. The gene-expression analysis of tumor cells and T cells, after coculture, revealed the importance of both EphA2-BiTE and costimulation in the proposed system. These in vitro observations translated into significant tumor control in vivo, in both subcutaneous and a more challenging orthotopic model. CONCLUSIONS The combination of OA and EphA2-BiTE gene therapy strongly enhances the antitumor activity of OA, inducing the eradication of highly resistant tumor cells, thus supporting the clinical translation of the approach.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/metabolism
- Adenoviridae/pathogenicity
- Animals
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/metabolism
- Apoptosis
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/therapy
- Brain Neoplasms/virology
- Cell Line, Tumor
- Coculture Techniques
- Cytotoxicity, Immunologic
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Therapy
- Genetic Vectors
- Glioma/genetics
- Glioma/metabolism
- Glioma/therapy
- Glioma/virology
- Humans
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Grading
- Oncolytic Virotherapy
- Oncolytic Viruses/genetics
- Oncolytic Viruses/metabolism
- Oncolytic Viruses/pathogenicity
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Claudia Manuela Arnone
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Vinicia Assunta Polito
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Laura Antonucci
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lucia Lisa Petrilli
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Ferrari
- The FIRC Institute of Molecular Oncology, IFOM, Milano, Italy
- Institute of Molecular Genetics National Research Council, Pavia, Italy
| | - Elisa Salviato
- The FIRC Institute of Molecular Oncology, IFOM, Milano, Italy
| | - Marco Scarsella
- Flow Cytometry and Histology Core Facilities, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cristiano De Stefanis
- Flow Cytometry and Histology Core Facilities, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gerrit Weber
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Malcolm K Brenner
- Baylor College of Medicine Center for Cell and Gene Therapy, Houston, Texas, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Valentina Hoyos
- Baylor College of Medicine Center for Cell and Gene Therapy, Houston, Texas, USA
| | - Franco Locatelli
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Pediatrics, Sapienza University of Rome, Roma, Italy
| | - Ignazio Caruana
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Del Bufalo
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
18
|
Status epilepticus induced Gadd45b is required for augmented dentate neurogenesis. Stem Cell Res 2020; 49:102102. [PMID: 33279798 DOI: 10.1016/j.scr.2020.102102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
In animal models with temporal lobe epilepsy (TLE), the status epilepticus (SE) leads to a dramatic increase in number of newly born neuron in the subgranular zone (SGZ) of dentate gyrus. How the SE confers a modulation in the dentate neurogenesis is mostly unknown. Gadd45b is involved in epigenetic gene activation by DNA demethylation. This study was performed to present a novel mechanism underling SE-induced dentate neurogenesis. A transient induction (12 hrs to 3 days) of Gadd45b was observed in dentate gyrus of mice after pilocarpine-induced SE. Labeling the dividing cells with BrdU, we next found that the induction of Gadd45b was required to increase the rate of cell proliferation in the dentate gyrus at 7 and 14 days after SE. Afterward, the DNA methylation levels for candidate growth factor genes critical for the adult neurogenesis were assayed with Sequenom MassARRAY Analyzer. The results indicated that Gadd45b was necessary for SE-induced DNA demethylation of specific promoters and expression of corresponding genes in the dentate gyrus, including brain-derived neurotrophic factor (BDNF) and fibroblast growth factor-2 (FGF-2). Using Timm staining, we further suggested that SE-induced Gadd45b might contribute to the subsequent mossy fiber sprouting (MFS) in the chronically epileptic hippocampus via epigenetic regulation of dentate neurogenesis at early stage after SE. Together, Gadd45b links pilocarpine-induced SE to epigenetic DNA modification of secreted factors in the dentate gyrus, leading to extrinsic modulation on the neurogenesis.
Collapse
|
19
|
Chen Y, Wu Z, Zhu X, Zhang M, Zang X, Li X, Xu Y. OCT4B-190 protects against ischemic stroke by modulating GSK-3β/HDAC6. Exp Neurol 2019; 316:52-62. [DOI: 10.1016/j.expneurol.2019.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023]
|