1
|
Use of tandem affinity-buffer exchange chromatography online with native mass spectrometry for optimizing overexpression and purification of recombinant proteins. Methods Enzymol 2021; 659:37-70. [PMID: 34752295 DOI: 10.1016/bs.mie.2021.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purification of recombinant proteins typically entails overexpression in heterologous systems and subsequent chromatography-based isolation. While denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis is routinely used to screen a variety of overexpression conditions (e.g., host, medium, inducer concentration, post-induction temperature and/or incubation time) and to assess the purity of the final product, its limitations, including aberrant protein migration due to compositional eccentricities or incomplete denaturation, often preclude firm conclusions regarding the extent of overexpression and/or purification. Therefore, we recently reported an automated liquid chromatography-mass spectrometry-based strategy that couples immobilized metal affinity chromatography (IMAC) with size exclusion-based online buffer exchange (OBE) and native mass spectrometry (nMS) to directly analyze cell lysates for the presence of target proteins. IMAC-OBE-nMS can be used to assess whether target proteins (1) are overexpressed in soluble form, (2) bind and elute from an IMAC resin, (3) oligomerize, and (4) have the expected mass. Here, we use four poly-His-tagged proteins to demonstrate the potential of IMAC-OBE-nMS for expedient optimization of overexpression and purification conditions for recombinant protein production.
Collapse
|
2
|
Busch F, VanAernum ZL, Lai SM, Gopalan V, Wysocki VH. Analysis of Tagged Proteins Using Tandem Affinity-Buffer Exchange Chromatography Online with Native Mass Spectrometry. Biochemistry 2021; 60:1876-1884. [PMID: 34100589 PMCID: PMC9080447 DOI: 10.1021/acs.biochem.1c00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein overexpression and purification are critical for in vitro structure-function characterization studies. However, some proteins are difficult to express in heterologous systems due to host-related (e.g., codon usage, translation rate) and/or protein-specific (e.g., toxicity, aggregation) challenges. Therefore, it is often necessary to test multiple overexpression and purification conditions to maximize the yield of functional protein, particularly for resource-heavy downstream applications (e.g., biocatalysts, tertiary structure determination, biotherapeutics). Here, we describe an automatable liquid chromatography-mass spectrometry-based method for direct analysis of target proteins in cell lysates. This approach is facilitated by coupling immobilized metal affinity chromatography (IMAC), which leverages engineered poly-histidine tags in proteins of interest, with size exclusion-based online buffer exchange (OBE) and native mass spectrometry (nMS). While we illustrate a proof of concept here using relatively straightforward examples, the use of IMAC-OBE-nMS to optimize conditions for large-scale protein production may become invaluable for expediting structural biology and biotherapeutic initiatives.
Collapse
Affiliation(s)
- Florian Busch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210 USA
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics, The Ohio State University, Columbus, OH 43210 USA
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210 USA
| | - Stella M. Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210 USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210 USA
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
3
|
Liu Y, Westover KD. Rapid assessment of DCLK1 inhibitors using a peptide substrate mobility shift assay. STAR Protoc 2021; 2:100587. [PMID: 34159321 PMCID: PMC8203847 DOI: 10.1016/j.xpro.2021.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Peptide mobility shift assays provide a sensitive measure of kinase enzymatic activity and can be used to evaluate kinase inhibitors. Herein, we describe a protocol adapted for rapid assessment of doublecortin-like kinase inhibitors. Advantages include rapid iterations of therapeutic compound assessment and the ability to characterize kinase mutations, such as drug-resistant mutants for biological rescue experiments, on kinase activity. For complete details on the use and execution of this protocol, please refer to Liu et al. (2020). A peptide substrate mobility shift assay (MSA) measures DCLK1 kinase activity The MSA platform can generate enzyme kinetics data The MSA enables sensitive rank ordering of DCLK1 kinase inhibitors The assay is compatible with a 384-well format
Collapse
Affiliation(s)
- Yan Liu
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.,Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Kenneth D Westover
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.,Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Bozóki B, Mótyán JA, Hoffka G, Waugh DS, Tőzsér J. Specificity Studies of the Venezuelan Equine Encephalitis Virus Non-Structural Protein 2 Protease Using Recombinant Fluorescent Substrates. Int J Mol Sci 2020; 21:E7686. [PMID: 33081394 PMCID: PMC7593941 DOI: 10.3390/ijms21207686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
The non-structural protein 2 (nsP2) of alphavirus Venezuelan equine encephalitis virus (VEEV) is a cysteine protease that is responsible for processing of the viral non-structural polyprotein and is an important drug target owing to the clinical relevance of VEEV. In this study we designed two recombinant VEEV nsP2 constructs to study the effects of an N-terminal extension on the protease activity and to investigate the specificity of the elongated enzyme in vitro. The N-terminal extension was found to have no substantial effect on the protease activity. The amino acid preferences of the VEEV nsP2 protease were investigated on substrates representing wild-type and P5, P4, P2, P1, P1', and P2' variants of Semliki forest virus nsP1/nsP2 cleavage site, using a His6-MBP-mEYFP recombinant substrate-based protease assay which has been adapted for a 96-well plate-based format. The structural basis of enzyme specificity was also investigated in silico by analyzing a modeled structure of VEEV nsP2 complexed with oligopeptide substrate. To our knowledge, in vitro screening of P1' amino acid preferences of VEEV nsP2 protease remains undetermined to date, thus, our results may provide valuable information for studies and inhibitor design of different alphaviruses or other Group IV viruses.
Collapse
Affiliation(s)
- Beáta Bozóki
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
| | - Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA;
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
| |
Collapse
|
5
|
Hogan M, Bahta M, Tsuji K, Nguyen TX, Cherry S, Lountos GT, Tropea JE, Zhao BM, Zhao XZ, Waugh DS, Burke TR, Ulrich RG. Targeting Protein-Protein Interactions of Tyrosine Phosphatases with Microarrayed Fragment Libraries Displayed on Phosphopeptide Substrate Scaffolds. ACS COMBINATORIAL SCIENCE 2019; 21:158-170. [PMID: 30629404 PMCID: PMC8132114 DOI: 10.1021/acscombsci.8b00122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemical library screening approaches that focus exclusively on catalytic events may overlook unique effects of protein-protein interactions that can be exploited for development of specific inhibitors. Phosphotyrosyl (pTyr) residues embedded in peptide motifs comprise minimal recognition elements that determine the substrate specificity of protein tyrosine phosphatases (PTPases). We incorporated aminooxy-containing amino acid residues into a 7-residue epidermal growth factor receptor (EGFR) derived phosphotyrosine-containing peptide and subjected the peptides to solution-phase oxime diversification by reacting with aldehyde-bearing druglike functionalities. The pTyr residue remained unmodified. The resulting derivatized peptide library was printed in microarrays on nitrocellulose-coated glass surfaces for assessment of PTPase catalytic activity or on gold monolayers for analysis of kinetic interactions by surface plasmon resonance (SPR). Focusing on amino acid positions and chemical features, we first analyzed dephosphorylation of the peptide pTyr residues within the microarrayed library by the human dual-specificity phosphatases (DUSP) DUSP14 and DUSP22, as well as by PTPases from poxviruses (VH1) and Yersinia pestis (YopH). In order to identify the highest affinity oxime motifs, the binding interactions of the most active derivatized phosphopeptides were examined by SPR using noncatalytic PTPase mutants. On the basis of high-affinity oxime fragments identified by the two-step catalytic and SPR-based microarray screens, low-molecular-weight nonphosphate-containing peptides were designed to inhibit PTP catalysis at low micromolar concentrations.
Collapse
Affiliation(s)
- Megan Hogan
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Medhanit Bahta
- Chemical Biology Laboratory, Center for Cancer Research, National Institutes of Health, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Institutes of Health, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Trung X. Nguyen
- Chemical Biology Laboratory, Center for Cancer Research, National Institutes of Health, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Scott Cherry
- Macromolecular Crystallography Laboratory, National Cancer Institute, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - George T. Lountos
- Macromolecular Crystallography Laboratory, National Cancer Institute, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joseph E. Tropea
- Macromolecular Crystallography Laboratory, National Cancer Institute, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Bryan M. Zhao
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Institutes of Health, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, National Cancer Institute, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Institutes of Health, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Robert G. Ulrich
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| |
Collapse
|
6
|
Dual column approach for the purification of zinc finger proteins by immobilized metal affinity chromatography. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Carter MS, Zhang X, Huang H, Bouvier JT, Francisco BS, Vetting MW, Al-Obaidi N, Bonanno JB, Ghosh A, Zallot RG, Andersen HM, Almo SC, Gerlt JA. Functional assignment of multiple catabolic pathways for D-apiose. Nat Chem Biol 2018; 14:696-705. [PMID: 29867142 DOI: 10.1038/s41589-018-0067-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/29/2018] [Indexed: 11/09/2022]
Abstract
Colocation of the genes encoding ABC, TRAP, and TCT transport systems and catabolic pathways for the transported ligand provides a strategy for discovering novel microbial enzymes and pathways. We screened solute-binding proteins (SBPs) for ABC transport systems and identified three that bind D-apiose, a branched pentose in the cell walls of higher plants. Guided by sequence similarity networks (SSNs) and genome neighborhood networks (GNNs), the identities of the SBPs enabled the discovery of four catabolic pathways for D-apiose with eleven previously unknown reactions. The new enzymes include D-apionate oxidoisomerase, which catalyzes hydroxymethyl group migration, as well as 3-oxo-isoapionate-4-phosphate decarboxylase and 3-oxo-isoapionate-4-phosphate transcarboxylase/hydrolase, which are RuBisCO-like proteins (RLPs). The web tools for generating SSNs and GNNs are publicly accessible ( http://efi.igb.illinois.edu/efi-est/ ), so similar 'genomic enzymology' strategies for discovering novel pathways can be used by the community.
Collapse
Affiliation(s)
- Michael S Carter
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xinshuai Zhang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hua Huang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jason T Bouvier
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brian San Francisco
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nawar Al-Obaidi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rémi G Zallot
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Harvey M Andersen
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John A Gerlt
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
8
|
Bozóki B, Gazda L, Tóth F, Miczi M, Mótyán JA, Tőzsér J. A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening. Anal Biochem 2017; 540-541:52-63. [PMID: 29122614 DOI: 10.1016/j.ab.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 11/25/2022]
Abstract
In connection with the intensive investigation of proteases, several methods have been developed for analysis of the substrate specificity. Due to the great number of proteases and the expected target molecules to be analyzed, time- and cost-efficient high-throughput screening (HTS) methods are preferred. Here we describe the development and application of a separation-based HTS-compatible fluorescent protease assay, which is based on the use of recombinant fusion proteins as substrates of proteases. The protein substrates used in this assay consists of N-terminal (hexahistidine and maltose binding protein) fusion tags, cleavage sequences of the tobacco etch virus (TEV) and HIV-1 proteases, and a C-terminal fluorescent protein (mApple or mTurquoise2). The assay is based on the fluorimetric detection of the fluorescent proteins, which are released from the magnetic bead-attached substrates by the proteolytic cleavage. The protease assay has been applied for activity measurements of TEV and HIV-1 proteases to test the suitability of the system for enzyme kinetic measurements, inhibition studies, and determination of pH optimum. We also found that denatured fluorescent proteins can be renatured after SDS-PAGE of denaturing conditions, but showed differences in their renaturation abilities. After in-gel renaturation both substrates and cleavage products can be identified by in-gel UV detection.
Collapse
Affiliation(s)
- Beáta Bozóki
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Biotechnological Analytical Department, Gedeon Richter Plc, 19-21, Gyömrői Rd., Budapest H-1103, Hungary.
| | - Lívia Gazda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Ferenc Tóth
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Márió Miczi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
9
|
Abstract
Rapid advances in bioengineering and biotechnology over the past three decades have greatly facilitated the production of recombinant proteins in Escherichia coli. Affinity-based methods that employ protein or peptide based tags for protein purification have been instrumental in this progress. Yet insolubility of recombinant proteins in E. coli remains a persistent problem. One way around this problem is to fuse an aggregation-prone protein to a highly soluble partner. E. coli maltose-binding protein (MBP) is widely acknowledged as a highly effective solubilizing agent. In this chapter, we describe how to construct either a His6- or a dual His6-MBP tagged fusion protein by Gateway® recombinational cloning and how to evaluate their yield and solubility. We also describe a simple and rapid procedure to test the solubility of proteins after removing their N-terminal fusion tags by tobacco etch virus (TEV) protease digestion. The choice of whether to use a His6 tag or a His6-MBP tag can be made on the basis of this solubility test.
Collapse
|
10
|
Abstract
Maltose-Binding Protein (MBP) is one of the most popular fusion partners being used for producing recombinant proteins in bacterial cells. MBP allows the use of a simple capture affinity step on Amylose-Agarose or Dextrin-Sepharose columns, resulting in a protein that is often 70-90 % pure in a single step. In addition to protein isolation applications, MBP provides a high degree of translation, and facilitates the proper folding and solubility of the target protein. This paper describes efficient procedures for isolating highly purified MBP target proteins. Special attention is given to considerations for downstream applications such as structural determination studies, protein activity assays, and assessing the chemical characteristics of the target protein.
Collapse
Affiliation(s)
- Mario Lebendiker
- Protein Expression and Purification Facilities, The Wolfson Centre for Applied Structural Biology, The Edmond J.Safra Campus, Jerusalem, 91904, Israel.
| | - Tsafi Danieli
- Protein Expression and Purification Facilities, The Wolfson Centre for Applied Structural Biology, The Edmond J.Safra Campus, Jerusalem, 91904, Israel
| |
Collapse
|
11
|
Abstract
Although affinity tags are highly effective tools for the expression and purification of recombinant proteins, they generally need to be removed prior to structural and functional studies. This chapter describes a simple method for overproducing a soluble form of a stable variant of tobacco etch virus (TEV) protease in Escherichia coli and a protocol for purifying it to homogeneity so that it can be used as a reagent for removing affinity tags from recombinant proteins by site-specific endoproteolysis. Further, we cleave a model substrate protein (MBP-NusG) in vitro using the purified TEV protease to illustrate a protease cleavage protocol that can be employed for simple pilot experiments and large-scale protein preparations.
Collapse
|
12
|
Zhang M, Martin JL, Kumar M, Khairallah RJ, de Tombe PP. Rapid large-scale purification of myofilament proteins using a cleavable His6-tag. Am J Physiol Heart Circ Physiol 2015; 309:H1509-15. [PMID: 26386113 PMCID: PMC4666967 DOI: 10.1152/ajpheart.00598.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022]
Abstract
With the advent of high-throughput DNA sequencing, the number of identified cardiomyopathy-causing mutations has increased tremendously. As the majority of these mutations affect myofilament proteins, there is a need to understand their functional consequence on contraction. Permeabilized myofilament preparations coupled with protein exchange protocols are a common method for examining into contractile mechanics. However, producing large quantities of myofilament proteins can be time consuming and requires different approaches for each protein of interest. In the present study, we describe a unified automated method to produce troponin C, troponin T, and troponin I as well as myosin light chain 2 fused to a His6-tag followed by a tobacco etch virus (TEV) protease site. TEV protease has the advantage of a relaxed P1' cleavage site specificity, allowing for no residues left after proteolysis and preservation of the native sequence of the protein of interest. After expression in Esherichia coli, cells were lysed by sonication in imidazole-containing buffer. The His6-tagged protein was then purified using a HisTrap nickel metal affinity column, and the His6-tag was removed by His6-TEV protease digestion for 4 h at 30°C. The protease was then removed using a HisTrap column, and complex assembly was performed via column-assisted sequential desalting. This mostly automated method allows for the purification of protein in 1 day and can be adapted to most soluble proteins. It has the advantage of greatly increasing yield while reducing the time and cost of purification. Therefore, production and purification of mutant proteins can be accelerated and functional data collected in a faster, less expensive manner.
Collapse
Affiliation(s)
- Mengjie Zhang
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois
| | - Jody L Martin
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois
| | - Mohit Kumar
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois
| | - Ramzi J Khairallah
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois
| | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois
| |
Collapse
|
13
|
Discovery of small molecule inhibitors of MyD88-dependent signaling pathways using a computational screen. Sci Rep 2015; 5:14246. [PMID: 26381092 PMCID: PMC4585646 DOI: 10.1038/srep14246] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/21/2015] [Indexed: 01/09/2023] Open
Abstract
In this study, we used high-throughput computational screening to discover drug-like inhibitors of the host MyD88 protein-protein signaling interaction implicated in the potentially lethal immune response associated with Staphylococcal enterotoxins. We built a protein-protein dimeric docking model of the Toll-interleukin receptor (TIR)-domain of MyD88 and identified a binding site for docking small molecules. Computational screening of 5 million drug-like compounds led to testing of 30 small molecules; one of these molecules inhibits the TIR-TIR domain interaction and attenuates pro-inflammatory cytokine production in human primary cell cultures. Compounds chemically similar to this hit from the PubChem database were observed to be more potent with improved drug-like properties. Most of these 2nd generation compounds inhibit Staphylococcal enterotoxin B (SEB)-induced TNF-α, IFN-γ, IL-6, and IL-1β production at 2–10 μM in human primary cells. Biochemical analysis and a cell-based reporter assay revealed that the most promising compound, T6167923, disrupts MyD88 homodimeric formation, which is critical for its signaling function. Furthermore, we observed that administration of a single dose of T6167923 completely protects mice from lethal SEB-induced toxic shock. In summary, our in silico approach has identified anti-inflammatory inhibitors against in vitro and in vivo toxin exposure with promise to treat other MyD88-related pro-inflammatory diseases.
Collapse
|
14
|
Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases. PLoS One 2015; 10:e0134984. [PMID: 26302245 PMCID: PMC4547750 DOI: 10.1371/journal.pone.0134984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/13/2015] [Indexed: 12/19/2022] Open
Abstract
Protein tyrosine phosphatases dephosphorylate tyrosine residues of proteins, whereas, dual specificity phosphatases (DUSPs) are a subgroup of protein tyrosine phosphatases that dephosphorylate not only Tyr(P) residue, but also the Ser(P) and Thr(P) residues of proteins. The DUSPs are linked to the regulation of many cellular functions and signaling pathways. Though many cellular targets of DUSPs are known, the relationship between catalytic activity and substrate specificity is poorly defined. We investigated the interactions of peptide substrates with select DUSPs of four types: MAP kinases (DUSP1 and DUSP7), atypical (DUSP3, DUSP14, DUSP22 and DUSP27), viral (variola VH1), and Cdc25 (A-C). Phosphatase recognition sites were experimentally determined by measuring dephosphorylation of 6,218 microarrayed Tyr(P) peptides representing confirmed and theoretical phosphorylation motifs from the cellular proteome. A broad continuum of dephosphorylation was observed across the microarrayed peptide substrates for all phosphatases, suggesting a complex relationship between substrate sequence recognition and optimal activity. Further analysis of peptide dephosphorylation by hierarchical clustering indicated that DUSPs could be organized by substrate sequence motifs, and peptide-specificities by phylogenetic relationships among the catalytic domains. The most highly dephosphorylated peptides represented proteins from 29 cell-signaling pathways, greatly expanding the list of potential targets of DUSPs. These newly identified DUSP substrates will be important for examining structure-activity relationships with physiologically relevant targets.
Collapse
|
15
|
Escherichia coli BL21(DE3) chromosome-based controlled intracellular processing system for fusion protein separation. J Microbiol Methods 2015; 114:35-7. [DOI: 10.1016/j.mimet.2015.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 11/17/2022]
|
16
|
Miles LA, Brennen WN, Rudin CM, Poirier JT. Seneca Valley Virus 3Cpro Substrate Optimization Yields Efficient Substrates for Use in Peptide-Prodrug Therapy. PLoS One 2015; 10:e0129103. [PMID: 26069962 PMCID: PMC4466507 DOI: 10.1371/journal.pone.0129103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/04/2015] [Indexed: 01/13/2023] Open
Abstract
The oncolytic picornavirus Seneca Valley Virus (SVV-001) demonstrates anti-tumor activity in models of small cell lung cancer (SCLC), but may ultimately need to be combined with cytotoxic therapies to improve responses observed in patients. Combining SVV-001 virotherapy with a peptide prodrug activated by the viral protease 3Cpro is a novel strategy that may increase the therapeutic potential of SVV-001. Using recombinant SVV-001 3Cpro, we measured cleavage kinetics of predicted SVV-001 3Cpro substrates. An efficient substrate, L/VP4 (kcat/KM = 1932 ± 183 M(-1)s(-1)), was further optimized by a P2' N→P substitution yielding L/VP4.1 (kcat/KM = 17446 ± 2203 M(-1)s(-1)). We also determined essential substrate amino acids by sequential N-terminal deletion and substitution of amino acids found in other picornavirus genera. A peptide corresponding to the L/VP4.1 substrate was selectively cleaved by SVV-001 3Cpro in vitro and was stable in human plasma. These data define an optimized peptide substrate for SVV-001 3Cpro, with direct implications for anti-cancer therapeutic development.
Collapse
Affiliation(s)
- Linde A. Miles
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - W. Nathaniel Brennen
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Charles M. Rudin
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - John T. Poirier
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
17
|
Quantifying domain-ligand affinities and specificities by high-throughput holdup assay. Nat Methods 2015; 12:787-93. [PMID: 26053890 PMCID: PMC4521981 DOI: 10.1038/nmeth.3438] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/19/2015] [Indexed: 12/21/2022]
Abstract
Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this aim, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to a thousand domain-motif equilibrium binding affinities per day. Extracts of overexpressed domains are incubated with peptide-coated resins and subjected to filtration. Binding affinities are deduced from microfluidic capillary electrophoresis of flow-throughs. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from Human Papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human PDZome. We obtained exquisite sequence-dependent binding profiles, describing quantitatively the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has a wide potential for quantifying the specificities of interactomes.
Collapse
|
18
|
Abstract
Insolubility of recombinant proteins in Escherichia coli is a major impediment to their production for structural and functional studies. One way around this problem is to fuse an aggregation-prone protein to a highly soluble partner. E. coli maltose-binding protein (MBP) is widely recognized as a premier solubilizing agent. In this chapter, we describe how to construct dual His6-MBP-tagged fusion proteins by Gateway(®) recombinational cloning and how to predict their yield and solubility. We also describe a simple and rapid procedure to test the ability of a His6-MBP fusion protein to bind to Ni-NTA resin and to be digested by tobacco etch virus (TEV) protease, along with a method to assess the solubility of the target protein after it has been separated from His6-MBP.
Collapse
|
19
|
Zhang W, Blackman LM, Hardham AR. Transient fusion and selective secretion of vesicle proteins in Phytophthora nicotianae zoospores. PeerJ 2013; 1:e221. [PMID: 24392285 PMCID: PMC3869178 DOI: 10.7717/peerj.221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/13/2013] [Indexed: 12/25/2022] Open
Abstract
Secretion of pathogen proteins is crucial for the establishment of disease in animals and plants. Typically, early interactions between host and pathogen trigger regulated secretion of pathogenicity factors that function in pathogen adhesion and host penetration. During the onset of plant infection by spores of the Oomycete, Phytophthora nicotianae, proteins are secreted from three types of cortical vesicles. Following induction of spore encystment, two vesicle types undergo full fusion, releasing their entire contents onto the cell surface. However, the third vesicle type, so-called large peripheral vesicles, selectively secretes a small Sushi domain-containing protein, PnCcp, while retaining a large glycoprotein, PnLpv, before moving away from the plasma membrane. Selective secretion of PnCcp is associated with its compartmentalization within the vesicle periphery. Pharmacological inhibition of dynamin function, purportedly in vesicle fission, by dynasore treatment provides evidence that selective secretion of PnCcp requires transient fusion of the large peripheral vesicles. This is the first report of selective protein secretion via transient fusion outside mammalian cells. Selective secretion is likely to be an important aspect of plant infection by this destructive pathogen.
Collapse
Affiliation(s)
- Weiwei Zhang
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University , Canberra, ACT , Australia
| | - Leila M Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University , Canberra, ACT , Australia
| | - Adrienne R Hardham
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University , Canberra, ACT , Australia
| |
Collapse
|
20
|
Ye W, Liu M, Ma Y, Yang J, Wang H, Wang X, Wang J, Wang X. Improvement of Vitreoscilla hemoglobin function by Bacillus licheformis glutamate-specific endopeptidase treatment. Protein Expr Purif 2012; 86:21-6. [PMID: 22963793 DOI: 10.1016/j.pep.2012.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
Vitreoscilla hemoglobin (VHb) was widely used in metabolic engineering to improve oxygen utilization in the low oxygen environment. It is sometimes necessary to remove affinity tags because they may impede functions of target proteins. Here we report an efficient method employing Glutamate-specific endopeptidase from Bacillus licheformis (GSE-BL) to perform the cleavage between VHb and His-tag. The optimal length of GSE-BL treatment was 15min. Results of SDS-PAGE and western blot demonstrated that the His-tag of VHb-His(6) was nearly completely removed, the purity of VHb was enhanced from 74% to 99.5%, and the yield of tagless VHb from VHb-His(6) was 92.2%. Results of CO difference spectrum suggested that tagless VHb was more prone to bind to CO compared with VHb-His(6). It was observed that tagless VHb displayed higher catalase activity than VHb-His(6). The enhancement of welan gum yield was more significant by addition of tagless VHb compared with addition of VHb-His(6). This method can be utilized to mass-produce tagless VHb, thus widening the application of VHb in various industries.
Collapse
Affiliation(s)
- Wei Ye
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Insights into glycogen metabolism in chemolithoautotrophic bacteria from distinctive kinetic and regulatory properties of ADP-glucose pyrophosphorylase from Nitrosomonas europaea. J Bacteriol 2012; 194:6056-65. [PMID: 22961847 DOI: 10.1128/jb.00810-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrosomonas europaea is a chemolithoautotroph that obtains energy by oxidizing ammonia in the presence of oxygen and fixes CO(2) via the Benson-Calvin cycle. Despite its environmental and evolutionary importance, very little is known about the regulation and metabolism of glycogen, a source of carbon and energy storage. Here, we cloned and heterologously expressed the genes coding for two major putative enzymes of the glycogen synthetic pathway in N. europaea, ADP-glucose pyrophosphorylase and glycogen synthase. In other bacteria, ADP-glucose pyrophosphorylase catalyzes the regulatory step of the synthetic pathway and glycogen synthase elongates the polymer. In starch synthesis in plants, homologous enzymes play similar roles. We purified to homogeneity the recombinant ADP-glucose pyrophosphorylase from N. europaea and characterized its kinetic, regulatory, and oligomeric properties. The enzyme was allosterically activated by pyruvate, oxaloacetate, and phosphoenolpyruvate and inhibited by AMP. It had a broad thermal and pH stability and used different divalent metal ions as cofactors. Depending on the cofactor, the enzyme was able to accept different nucleotides and sugar phosphates as alternative substrates. However, characterization of the recombinant glycogen synthase showed that only ADP-Glc elongates the polysaccharide, indicating that ATP and glucose-1-phosphate are the physiological substrates of the ADP-glucose pyrophosphorylase. The distinctive properties with respect to selectivity for substrates and activators of the ADP-glucose pyrophosphorylase were in good agreement with the metabolic routes operating in N. europaea, indicating an evolutionary adaptation. These unique properties place the enzyme in a category of its own within the family, highlighting the unique regulation in these organisms.
Collapse
|
22
|
Noguère C, Larsson AM, Guyot JC, Bignon C. Fractional factorial approach combining 4 Escherichia coli strains, 3 culture media, 3 expression temperatures and 5 N-terminal fusion tags for screening the soluble expression of recombinant proteins. Protein Expr Purif 2012; 84:204-13. [DOI: 10.1016/j.pep.2012.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 05/30/2012] [Indexed: 11/24/2022]
|
23
|
Li Q, Chen AS, Gayen S, Kang C. Expression and purification of the p75 neurotrophin receptor transmembrane domain using a ketosteroid isomerase tag. Microb Cell Fact 2012; 11:45. [PMID: 22510322 PMCID: PMC3447675 DOI: 10.1186/1475-2859-11-45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/11/2012] [Indexed: 12/29/2022] Open
Abstract
Background Receptors with a single transmembrane (TM) domain are essential for the signal transduction across the cell membrane. NMR spectroscopy is a powerful tool to study structure of the single TM domain. The expression and purification of a TM domain in Escherichia coli (E.coli) is challenging due to its small molecular weight. Although ketosteroid isomerase (KSI) is a commonly used affinity tag for expression and purification of short peptides, KSI tag needs to be removed with the toxic reagent cyanogen bromide (CNBr). Result The purification of the TM domain of p75 neurotrophin receptor using a KSI tag with the introduction of a thrombin cleavage site is described herein. The recombinant fusion protein was refolded into micelles and was cleaved with thrombin. Studies showed that purified protein could be used for structural study using NMR spectroscopy. Conclusions These results provide another strategy for obtaining a single TM domain for structural studies without using toxic chemical digestion or acid to remove the fusion tag. The purified TM domain of p75 neurotrophin receptor will be useful for structural studies.
Collapse
Affiliation(s)
- Qingxin Li
- Agency for Science, Technology and Research, Nanos, Singapore
| | | | | | | |
Collapse
|
24
|
Sun W, Xie J, Lin H, Mi S, Li Z, Hua F, Hu Z. A combined strategy improves the solubility of aggregation-prone single-chain variable fragment antibodies. Protein Expr Purif 2012; 83:21-9. [PMID: 22387083 DOI: 10.1016/j.pep.2012.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 02/03/2023]
Abstract
Recombinant single-chain variable fragment (scFv) antibodies have wide applications in the areas of biotechnology and medicine. However, there is currently no universal expression-purification system for generating different soluble scFvs. In this study, A15 and E34, two genes coding scFvs against human IL-17A, were fused with N-terminal signal peptide sequences pelB or STII, or with highly hydrophilic tags Trx, NusA, or MBP, respectively. These constructs were expressed in Escherichia coli. We found that the scFvs fused with either NusA or MBP showed a higher solubility than fused with signal peptides or Trx. The scFvs were aggregated when the NusA or MBP was removed by thrombin. Interestingly, we observed a reduction of precipitation when the fusion proteins were expressed in Origami B(DE3)pLysS cells but not in BL21(DE3)pLysS. Because cleaving the tags resulted in the aggregation of scFvs, several solubility-enhancing additives were added in the digestion buffer and only L-arginine (Arg) or Tween20 promoted the solubility. After an affinity chromatography, the scFvs were separated from the tags with the purity up to 90%. The final yield of scFvs from the scFv-MBP system was approximately 8.9 mg/L of culture medium and 1.5 mg/g of wet weight cells, which was 1.6-fold higher than the yield from the scFv-NusA system. The obtained scFvs exhibited normal binding affinities and activities after endotoxin removal. In conclusion, we describe a strategy combining the fusion tags, the Escherichia coli with oxidizing bacterial cytoplasm, and the solubility-enhancing additives for expressing and purifying the soluble and functional scFvs.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Young CL, Britton ZT, Robinson AS. Recombinant protein expression and purification: A comprehensive review of affinity tags and microbial applications. Biotechnol J 2012; 7:620-34. [DOI: 10.1002/biot.201100155] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 12/27/2022]
|
26
|
Szczesny RJ, Obriot H, Paczkowska A, Jedrzejczak R, Dmochowska A, Bartnik E, Formstecher P, Polakowska R, Stepien PP. Down-regulation of human RNA/DNA helicase SUV3 induces apoptosis by a caspase- and AIF-dependent pathway. Biol Cell 2012; 99:323-32. [PMID: 17352692 DOI: 10.1042/bc20060108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND INFORMATION The nuclear gene hSUV3 (human SUV3) encodes an ATP-dependent DNA/RNA helicase. In the yeast Saccharomyces cerevisiae the orthologous Suv3 protein is localized in mitochondria, and is a subunit of the degradosome complex which regulates RNA surveillance and turnover. In contrast, the functions of human SUV3 are not known to date. RESULTS In the present study, we show that a fraction of human SUV3 helicase is localized in the nucleus. Using small interfering RNA gene silencing in HeLa cells, we demonstrate that down-regulation of hSUV3 results in cell cycle perturbations and in apoptosis, which is both AIF- and caspase-dependent, and proceeds with the induction of p53. CONCLUSIONS In addition to its mitochondrial localization, human SUV3 plays an important role in the nucleus and is probably involved in chromatin maintenance.
Collapse
Affiliation(s)
- Roman J Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jedrzejczak R, Wang J, Dauter M, Szczesny RJ, Stepien PP, Dauter Z. Human Suv3 protein reveals unique features among SF2 helicases. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:988-96. [PMID: 22101826 PMCID: PMC3211972 DOI: 10.1107/s0907444911040248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/29/2011] [Indexed: 01/12/2023]
Abstract
Suv3 is a helicase that is involved in efficient turnover and surveillance of RNA in eukaryotes. In vitro studies show that human Suv3 (hSuv3) in complex with human polynucleotide phosphorylase has RNA degradosome activity. The enzyme is mainly localized in mitochondria, but small fractions are found in cell nuclei. Here, two X-ray crystallographic structures of human Suv3 in complex with AMPPNP, a nonhydrolysable analog of ATP, and with a short five-nucleotide strand of RNA are presented at resolutions of 2.08 and 2.9 Å, respectively. The structure of the enzyme is very similar in the two complexes and consists of four domains. Two RecA-like domains form the tandem typical of all helicases from the SF2 superfamily which together with the C-terminal all-helical domain makes a ring structure through which the nucleotide strand threads. The mostly helical N-terminal domain is positioned externally with respect to the core of the enzyme. Most of the typical helicase motifs are present in hSuv3, but the protein shows certain unique characteristics, suggesting that Suv3 enzymes may constitute a separate subfamily of helicases.
Collapse
Affiliation(s)
- Robert Jedrzejczak
- Synchrotron Radiation Research Section, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Jiawei Wang
- Basic Research Program, SAIC-Frederick Inc., Argonne National Laboratory, Argonne, IL 60439, USA
- Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Miroslawa Dauter
- Basic Research Program, SAIC-Frederick Inc., Argonne National Laboratory, Argonne, IL 60439, USA
| | - Roman J. Szczesny
- Department of Genetics and Biotechnology, Warsaw University, Pawinskiego 5A, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Piotr P. Stepien
- Department of Genetics and Biotechnology, Warsaw University, Pawinskiego 5A, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
28
|
An overview of enzymatic reagents for the removal of affinity tags. Protein Expr Purif 2011; 80:283-93. [PMID: 21871965 PMCID: PMC3195948 DOI: 10.1016/j.pep.2011.08.005] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/20/2022]
Abstract
Although they are often exploited to facilitate the expression and purification of recombinant proteins, every affinity tag, whether large or small, has the potential to interfere with the structure and function of its fusion partner. For this reason, reliable methods for removing affinity tags are needed. Only enzymes have the requisite specificity to be generally useful reagents for this purpose. In this review, the advantages and disadvantages of some commonly used endo- and exoproteases are discussed in light of the latest information.
Collapse
|
29
|
Bahta M, Burke TR. Oxime-based click chemistry in the development of 3-isoxazolecarboxylic acid containing inhibitors of Yersinia pestis protein tyrosine phosphatase, YopH. ChemMedChem 2011; 6:1363-70. [PMID: 21671403 PMCID: PMC3734799 DOI: 10.1002/cmdc.201100200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/17/2011] [Indexed: 12/28/2022]
Abstract
The pathogenicity of Yersinia pestis relies on several effector proteins including YopH, a protein tyrosine phosphatase (PTP). We previously screened a library of analogues based on the ubiquitous PTP substrate para-nitrophenylphosphate (pNPP) and found that incorporation of a 3-phenyl substituent to give 6-nitro-[1,1'-biphenyl]-3-yldihydrogen phosphate (1) enhanced affinity. Herein we report the conversion of 1 from a substrate into an inhibitor by replacing the hydrolysable phosphoryl group with a 3-isoxazolecarboxylic acid moiety and by introduction of an aminooxy group and subsequent diversification using oxime-based click chemistry. This approach led to the identification of non-promiscuous bidentate YopH inhibitors with affinity in the low micromolar range.
Collapse
Affiliation(s)
- Medhanit Bahta
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, P.O. Box, Bldg. 376 Boyles St., Frederick, MD 21702
| | - Terrence R. Burke
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, P.O. Box, Bldg. 376 Boyles St., Frederick, MD 21702
| |
Collapse
|
30
|
Bahta M, Lountos GT, Dyas B, Kim SE, Ulrich RG, Waugh DS, Burke TR. Utilization of nitrophenylphosphates and oxime-based ligation for the development of nanomolar affinity inhibitors of the Yersinia pestis outer protein H (YopH) phosphatase. J Med Chem 2011; 54:2933-43. [PMID: 21443195 PMCID: PMC3085962 DOI: 10.1021/jm200022g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our current study reports the first K(M) optimization of a library of nitrophenylphosphate-containing substrates for generating an inhibitor lead against the Yersinia pestis outer protein phosphatase (YopH). A high activity substrate identified by this method (K(M) = 80 μM) was converted from a substrate into an inhibitor by replacement of its phosphate group with difluoromethylphosphonic acid and by attachment of an aminooxy handle for further structural optimization by oxime ligation. A cocrystal structure of this aminooxy-containing platform in complex with YopH allowed the identification of a conserved water molecule proximal to the aminooxy group that was subsequently employed for the design of furanyl-based oxime derivatives. By this process, a potent (IC(50) = 190 nM) and nonpromiscuous inhibitor was developed with good YopH selectivity relative to a panel of phosphatases. The inhibitor showed significant inhibition of intracellular Y. pestis replication at a noncytotoxic concentration. The current work presents general approaches to PTP inhibitor development that may be useful beyond YopH.
Collapse
Affiliation(s)
- Medhanit Bahta
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NCI-Frederick, Frederick, MD 21702, U.S.A
| | - George T. Lountos
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NCI-Frederick, Frederick, MD 21702, U.S.A
| | - Beverly Dyas
- Laboratory of Molecular Immunology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, U.S.A
| | - Sung-Eun Kim
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NCI-Frederick, Frederick, MD 21702, U.S.A
| | - Robert G. Ulrich
- Laboratory of Molecular Immunology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, U.S.A
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NCI-Frederick, Frederick, MD 21702, U.S.A
| | - Terrence R. Burke
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NCI-Frederick, Frederick, MD 21702, U.S.A
| |
Collapse
|
31
|
Sun P, Austin BP, Tözsér J, Waugh DS. Structural determinants of tobacco vein mottling virus protease substrate specificity. Protein Sci 2011; 19:2240-51. [PMID: 20862670 DOI: 10.1002/pro.506] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-Å resolution. As observed in several crystal structures of TEV protease, the C-terminus (∼20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by ∼10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1' position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters k(cat) and K(m) for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.
Collapse
Affiliation(s)
- Ping Sun
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | | | | | | |
Collapse
|
32
|
Lantez V, Dalle K, Charrel R, Baronti C, Canard B, Coutard B. Comparative production analysis of three phlebovirus nucleoproteins under denaturing or non-denaturing conditions for crystallographic studies. PLoS Negl Trop Dis 2011; 5:e936. [PMID: 21245924 PMCID: PMC3014985 DOI: 10.1371/journal.pntd.0000936] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/04/2010] [Indexed: 12/04/2022] Open
Abstract
Nucleoproteins (NPs) encapsidate the Phlebovirus genomic (-)RNA. Upon recombinant expression, NPs tend to form heterogeneous oligomers impeding characterization of the encapsidation process through crystallographic studies. To overcome this problem, we set up a standard protocol in which production under both non-denaturing and denaturing/refolding conditions can be investigated and compared. The protocol was applied for three phlebovirus NPs, allowing an optimized production strategy for each of them. Remarkably, the Rift Valley fever virus NP was purified as a trimer under native conditions and yielded protein crystals whereas the refolded version could be purified as a dimer. Yields of trimeric Toscana virus NP were higher from denaturing than from native condition and lead to crystals. The production of Sandfly Fever Sicilian virus NP failed in both protocols. The comparative protocols described here should help in rationally choosing between denaturing or non-denaturing conditions, which would finally result in the most appropriate and relevant oligomerized protein species. The structure of the Rift Valley fever virus NP has been recently published using a refolded monomeric protein and we believe that the process we devised will contribute to shed light in the genome encapsidation process, a key stage in the viral life cycle. Phleboviruses have a worldwide distribution and are usually represented by their prototype Rift Valley fever virus that can have a great impact on health and economy in Africa. The genome of phleboviruses is a segmented negative strand RNA that is encapsidated by the nucleoprotein. The structure of the monomeric nucleoprotein has been recently published but it's not sufficient to decipher a convincing mechanism for the nucleoprotein oligomerization. In order to understand this key step in the virus life cycle, the purification of oligomers homogeneous in size would be a key step to launch structural studies. To that aim, a procedure relying on recombinant protein production in both denaturing and non-denaturing conditions was applied to three phlebovirus nucleoproteins. Although the best production pipeline differs for each protein, pure and homogeneous solutions of Rift Valley fever virus and Toscana virus nucleoproteins were successfully obtained. Both proteins, behaving as apparent trimers in solution, lead to protein crystallization, a starting point to understand the genome encapsidation through structural studies.
Collapse
Affiliation(s)
- Violaine Lantez
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 Centre National de la Recherche Scientifique, Université de la Méditerranée and Université de Provence, Marseille, France
| | - Karen Dalle
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 Centre National de la Recherche Scientifique, Université de la Méditerranée and Université de Provence, Marseille, France
| | - Rémi Charrel
- Unité des Virus Emergents, UMR 190, Aix-Marseille Université and Institut de Recherche pour le Développement, Marseille, France
| | - Cécile Baronti
- Unité des Virus Emergents, UMR 190, Aix-Marseille Université and Institut de Recherche pour le Développement, Marseille, France
| | - Bruno Canard
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 Centre National de la Recherche Scientifique, Université de la Méditerranée and Université de Provence, Marseille, France
| | - Bruno Coutard
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 Centre National de la Recherche Scientifique, Université de la Méditerranée and Université de Provence, Marseille, France
- * E-mail:
| |
Collapse
|
33
|
Abstract
Maltose-binding protein (MBP) is one of the most popular fusion partners being used for producing recombinant proteins in bacterial cells. MBP allows one to use a simple capture affinity step on amylose-agarose columns, resulting in a protein that is often 70-90% pure. In addition to protein-isolation applications, MBP provides a high degree of translation and facilitates the proper folding and solubility of the target protein. This chapter describes efficient procedures for isolating highly purified MBP-target proteins. Special attention is given to considerations for downstream applications such as structural determination studies, protein activity assays, and assessing the chemical characteristics of the target protein.
Collapse
Affiliation(s)
- Mario Lebendiker
- Protein Expression and Purification Facility, The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
34
|
Sun P, Tropea JE, Waugh DS. Enhancing the solubility of recombinant proteins in Escherichia coli by using hexahistidine-tagged maltose-binding protein as a fusion partner. Methods Mol Biol 2011; 705:259-274. [PMID: 21125392 DOI: 10.1007/978-1-61737-967-3_16] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the field of biotechnology, fusing recombinant proteins to highly soluble partners is a common practice for overcoming aggregation in Escherichia coli. E. coli maltose-binding protein (MBP) has been recognized as one of the most effective solubilizing agents, having frequently been observed to improve the yield, enhance the solubility, and promote the proper folding of its fusion partners. The use of a dual hexahistidine-maltose-binding protein affinity tag (His(6)-MBP) has the additional advantage of allowing the fusion protein to be purified by immobilized metal affinity chromatography (IMAC) instead of or in addition to amylose affinity chromatography. This chapter describes a generic method for the overproduction of combinatorially tagged His(6)-MBP fusion proteins in E. coli, with particular emphasis on the use of recombinational cloning to construct expression vectors. In addition, simple methods for evaluating the solubility of the fusion protein and the passenger protein after it is cleaved from the dual His(6)-MBP tag are presented.
Collapse
Affiliation(s)
- Ping Sun
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | | | | |
Collapse
|
35
|
Li Z, Leung W, Yon A, Nguyen J, Perez VC, Vu J, Giang W, Luong LT, Phan T, Salazar KA, Gomez SR, Au C, Xiang F, Thomas DW, Franz AH, Lin-Cereghino J, Lin-Cereghino GP. Secretion and proteolysis of heterologous proteins fused to the Escherichia coli maltose binding protein in Pichia pastoris. Protein Expr Purif 2010; 72:113-24. [PMID: 20230898 PMCID: PMC2860017 DOI: 10.1016/j.pep.2010.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 11/19/2022]
Abstract
The Escherichia coli maltose binding protein (MBP) has been utilized as a translational fusion partner to improve the expression of foreign proteins made in E. coli. When located N-terminal to its cargo protein, MBP increases the solubility of intracellular proteins and improves the export of secreted proteins in bacterial systems. We initially explored whether MBP would have the same effect in the methylotrophic yeast Pichia pastoris, a popular eukaryotic host for heterologous protein expression. When MBP was fused as an N-terminal partner to several C-terminal cargo proteins expressed in this yeast, proteolysis occurred between the two peptides, and MBP reached the extracellular region unattached to its cargo. However, in two of three instances, the cargo protein reached the extracellular region as well, and its initial attachment to MBP enhanced its secretion from the cell. Extensive mutagenesis of the spacer region between MBP and its C-terminal cargo protein could not inhibit the cleavage although it did cause changes in the protease target sites in the fusion proteins, as determined by mass spectrometry. Taken together, these results suggested that an uncharacterized P. pastoris protease attacked at different locations in the region C-terminal of the MBP domain, including the spacer and cargo regions, but the MBP domain could still act to enhance the secretion of certain cargo proteins.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Chemistry, University of the Pacific, Stockton, California 95211
| | - Wilson Leung
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Amy Yon
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - John Nguyen
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Vincent C. Perez
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Jane Vu
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - William Giang
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Linda T. Luong
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Tracy Phan
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Katherine A. Salazar
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Seth R. Gomez
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Colin Au
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Fan Xiang
- Shimadzu Biotech Corporation, 7060 Koll Center Parkway, Suite 328, Pleasanton, California 94566
| | - David W. Thomas
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211
| | - Andreas H. Franz
- Department of Chemistry, University of the Pacific, Stockton, California 95211
| | - Joan Lin-Cereghino
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Geoff P. Lin-Cereghino
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| |
Collapse
|
36
|
DMR1 (CCM1/YGR150C) of Saccharomyces cerevisiae encodes an RNA-binding protein from the pentatricopeptide repeat family required for the maintenance of the mitochondrial 15S ribosomal RNA. Genetics 2010; 184:959-73. [PMID: 20124025 DOI: 10.1534/genetics.110.113969] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins form the largest known RNA-binding protein family and are found in all eukaryotes, being particularly abundant in higher plants. PPR proteins localize mostly in mitochondria and chloroplasts, where they modulate organellar genome expression on the post-transcriptional level. The Saccharomyces cerevisiae DMR1 (CCM1, YGR150C) encodes a PPR protein that localizes to mitochondria. Deletion of DMR1 results in a complete and irreversible loss of respiratory capacity and loss of wild-type mtDNA by conversion to rho(-)/rho(0) petites, regardless of the presence of introns in mtDNA. The phenotype of the dmr1Delta mitochondria is characterized by fragmentation of the small subunit mitochondrial rRNA (15S rRNA), that can be reversed by wild-type Dmr1p. Other mitochondrial transcripts, including the large subunit mitochondrial rRNA (21S rRNA), are not affected by the lack of Dmr1p. The purified Dmr1 protein specifically binds to different regions of 15S rRNA in vitro, consistent with the deletion phenotype. Dmr1p is therefore the first yeast PPR protein, which has an rRNA target and is probably involved in the biogenesis of mitochondrial ribosomes and translation.
Collapse
|
37
|
Lountos GT, Tropea JE, Cherry S, Waugh DS. Overproduction, purification and structure determination of human dual-specificity phosphatase 14. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:1013-20. [PMID: 19770498 DOI: 10.1107/s0907444909023762] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 06/22/2009] [Indexed: 12/31/2022]
Abstract
Dual-specificity phosphatases (DUSPs) are enzymes that participate in the regulation of biological processes such as cell growth, differentiation, transcription and metabolism. A number of DUSPs are able to dephosphorylate phosphorylated serine, threonine and tyrosine residues on mitogen-activated protein kinases (MAPKs) and thus are also classified as MAPK phosphatases (MKPs). As an increasing number of DUSPs are being identified and characterized, there is a growing need to understand their biological activities at the molecular level. There is also significant interest in identifying DUSPs that could be potential targets for drugs that modulate MAPK-dependent signaling and immune responses, which have been implicated in a variety of maladies including cancer, infectious diseases and inflammatory disorders. Here, the overproduction, purification and crystal structure at 1.88 A resolution of human dual-specificity phosphatase 14, DUSP14 (MKP6), are reported. This structural information should accelerate the study of DUSP14 at the molecular level and may also accelerate the discovery and development of novel therapeutic agents.
Collapse
Affiliation(s)
- George T Lountos
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
38
|
Diaz Z, Xavier KB, Miller ST. The crystal structure of the Escherichia coli autoinducer-2 processing protein LsrF. PLoS One 2009; 4:e6820. [PMID: 19714241 PMCID: PMC2728841 DOI: 10.1371/journal.pone.0006820] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 07/28/2009] [Indexed: 01/16/2023] Open
Abstract
Many bacteria produce and respond to the quorum sensing signal autoinducer-2 (AI-2). Escherichia coli and Salmonella typhimurium are among the species with the lsr operon, an operon containing AI-2 transport and processing genes that are up regulated in response to AI-2. One of the Lsr proteins, LsrF, has been implicated in processing the phosphorylated form of AI-2. Here, we present the structure of LsrF, unliganded and in complex with two phospho-AI-2 analogues, ribose-5-phosphate and ribulose-5-phosphate. The crystal structure shows that LsrF is a decamer of (alphabeta)(8)-barrels that exhibit a previously unseen N-terminal domain swap and have high structural homology with aldolases that process phosphorylated sugars. Ligand binding sites and key catalytic residues are structurally conserved, strongly implicating LsrF as a class I aldolase.
Collapse
Affiliation(s)
- Zamia Diaz
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Karina B. Xavier
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Estação Agronómica Nacional, Oeiras, Portugal
| | - Stephen T. Miller
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Lountos GT, Austin BP, Nallamsetty S, Waugh DS. Atomic resolution structure of the cytoplasmic domain of Yersinia pestis YscU, a regulatory switch involved in type III secretion. Protein Sci 2009; 18:467-74. [PMID: 19165725 DOI: 10.1002/pro.56] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Crystal structures of cleaved and uncleaved forms of the YscU cytoplasmic domain, an essential component of the type III secretion system (T3SS) in Yersinia pestis, have been solved by single-wavelength anomolous dispersion and refined with X-ray diffraction data extending up to atomic resolution (1.13 A). These crystallographic studies provide structural insights into the conformational changes induced upon auto-cleavage of the cytoplasmic domain of YscU. The structures indicate that the cleaved fragments remain bound to each other. The conserved NPTH sequence that contains the site of the N263-P264 peptide bond cleavage is found on a beta-turn which, upon cleavage, undergoes a major reorientation of the loop away from the catalytic N263, resulting in altered electrostatic surface features at the site of cleavage. Additionally, a significant conformational change was observed in the N-terminal linker regions of the cleaved and noncleaved forms of YscU which may correspond to the molecular switch that influences substrate specificity. The YscU structures determined here also are in good agreement with the auto-cleavage mechanism described for the flagellar homolog FlhB and E. coli EscU.
Collapse
Affiliation(s)
- George T Lountos
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
40
|
Lountos GT, Tropea JE, Zhang D, Jobson AG, Pommier Y, Shoemaker RH, Waugh DS. Crystal structure of checkpoint kinase 2 in complex with NSC 109555, a potent and selective inhibitor. Protein Sci 2009; 18:92-100. [PMID: 19177354 DOI: 10.1002/pro.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Checkpoint kinase 2 (Chk2), a ser/thr kinase involved in the ATM-Chk2 checkpoint pathway, is activated by genomic instability and DNA damage and results in either arrest of the cell cycle to allow DNA repair to occur or apoptosis if the DNA damage is severe. Drugs that specifically target Chk2 could be beneficial when administered in combination with current DNA-damaging agents used in cancer therapy. Recently, a novel inhibitor of Chk2, NSC 109555, was identified that exhibited high potency (IC(50) = 240 nM) and selectivity. This compound represents a new chemotype and lead for the development of novel Chk2 inhibitors that could be used as therapeutic agents for the treatment of cancer. To facilitate the discovery of new analogs of NSC 109555 with even greater potency and selectivity, we have solved the crystal structure of this inhibitor in complex with the catalytic domain of Chk2. The structure confirms that the compound is an ATP-competitive inhibitor, as the electron density clearly reveals that it occupies the ATP-binding pocket. However, the mode of inhibition differs from that of the previously studied structure of Chk2 in complex with debromohymenialdisine, a compound that inhibits both Chk1 and Chk2. A unique hydrophobic pocket in Chk2, located very close to the bound inhibitor, presents an opportunity for the rational design of compounds with higher binding affinity and greater selectivity.
Collapse
Affiliation(s)
- George T Lountos
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, P. O. Box B, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Structure of the C-terminal domain of transcription factor IIB from Trypanosoma brucei. Proc Natl Acad Sci U S A 2009; 106:13242-7. [PMID: 19666603 DOI: 10.1073/pnas.0904309106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In trypanosomes, the production of mRNA relies on the synthesis of the spliced leader (SL) RNA. Expression of the SL RNA is initiated at the only known RNA polymerase II promoter in these parasites. In the pathogenic trypanosome, Trypanosoma brucei, transcription factor IIB (tTFIIB) is essential for SL RNA gene transcription and cell viability, but has a highly divergent primary sequence in comparison to TFIIB in well-studied eukaryotes. Here we describe the 2.3 A resolution structure of the C-terminal domain of tTFIIB (tTFIIB(C)). The tTFIIB(C) structure consists of 2 closely packed helical modules followed by a C-terminal extension of 32 aa. Using the structure as a guide, alanine substitutions of basic residues in regions analogous to functionally important regions of the well-studied eukaryotic TFIIB support conservation of a general mechanism of TFIIB function in eukaryotes. Strikingly, tTFIIB(C) contains additional loops and helices, and, in contrast to the highly basic DNA binding surface of human TFIIB, contains a neutral surface in the corresponding region. These attributes probably mediate trypanosome-specific interactions and have implications for the apparent bidirectional transcription by RNA polymerase II in protein-encoding gene expression in these organisms.
Collapse
|
42
|
Abstract
This chapter describes a simple method for overproducing a soluble form of the tobacco etch virus (TEV) protease in Escherichia coli and purifying it to homogeneity so that it may be used as a reagent for removing affinity tags from recombinant proteins by site-specific endoproteolysis. The protease is initially produced as a fusion to the C-terminus of E. coli maltose binding protein (MBP), which causes it to accumulate in a soluble and active form rather than in inclusion bodies. The fusion protein subsequently cleaves itself in vivo to remove the MBP moiety, yielding a soluble TEV protease catalytic domain with an N-terminal polyhistidine tag. The His-tagged TEV protease can be purified in two steps using immobilized metal affinity chromatography (IMAC) followed by gel filtration. An S219V mutation in the protease reduces its rate of autolysis by approximately 100-fold and also gives rise to an enzyme with greater catalytic efficiency than the wild-type protease.
Collapse
Affiliation(s)
- Joseph E Tropea
- National Cancer Institute at Frederick, Macromolecular Crystallography Laboratory, Center for Cancer Research, Frederick, MD, USA
| | | | | |
Collapse
|
43
|
Hexahistidine-tagged maltose-binding protein as a fusion partner for the production of soluble recombinant proteins in Escherichia coli. Methods Mol Biol 2009; 498:157-72. [PMID: 18988025 DOI: 10.1007/978-1-59745-196-3_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Insolubility of recombinant proteins in Escherichia coli is a major impediment to their production for structural and functional studies. One way to circumvent this problem is to fuse an aggregation-prone protein to a highly soluble partner. E. coli maltose-binding protein (MBP) has emerged as one of the most effective solubilizing agents. In this chapter, we describe how to construct combinatorially-tagged His(6)MBP fusion proteins by recombinational cloning and how to evaluate their yield and solubility. We also describe a procedure to determine how efficiently a His(6)MBP fusion protein is cleaved by tobacco etch virus (TEV) protease in E. coli and a method to assess the solubility of the target protein after it has been separated from His(6)MBP.
Collapse
|
44
|
Shin JH, Heo GY, Kelman Z. The Methanothermobacter thermautotrophicus MCM helicase is active as a hexameric ring. J Biol Chem 2008; 284:540-546. [PMID: 19001412 DOI: 10.1074/jbc.m806803200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The minichromosome maintenance (MCM) complex is thought to function as the replicative helicase in archaea and eukarya. The structure of the single MCM protein homologue from the archaeon Methanothermobacter thermautotrophicus is not yet clear, and hexameric, heptameric, octameric, and dodecameric structures, open rings, and filamentous structures have been reported. Using a combination of biochemical and structural analysis, it is shown here that the M. thermautotrophicus MCM helicase is active as a hexamer.
Collapse
Affiliation(s)
- Jae-Ho Shin
- Division of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Kyungpook National University, 1370 Sankyuk-Dong, Daegu 702-701, Republic of Korea and the University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, Rockville, Maryland 20850
| | - Gun-Young Heo
- Division of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Kyungpook National University, 1370 Sankyuk-Dong, Daegu 702-701, Republic of Korea and the University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, Rockville, Maryland 20850
| | - Zvi Kelman
- Division of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Kyungpook National University, 1370 Sankyuk-Dong, Daegu 702-701, Republic of Korea and the University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, Rockville, Maryland 20850.
| |
Collapse
|
45
|
Zhang D, Tözsér J, Waugh DS. Molecular cloning, overproduction, purification and biochemical characterization of the p39 nsp2 protease domains encoded by three alphaviruses. Protein Expr Purif 2008; 64:89-97. [PMID: 19013248 DOI: 10.1016/j.pep.2008.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 11/25/2022]
Abstract
Alphaviruses cause serious diseases that pose a potential health threat to both humans and livestock. The nonstructural protein 2 (nsp2) encoded by alphaviruses is a multifunctional enzyme that is essential for viral replication and maturation. Its 39-kDa C-terminal domain (nsp2pro) is a cysteine protease that is responsible for cleaving a viral polyprotein at three sites to generate nonstructural proteins 1, 2, 3 and 4. In the present study, we evaluated nsp2pro domains from the following three sources as reagents for site-specific cleavage of fusion proteins: Venezuelan Equine Encephalitis Virus (VEEV), Semliki Forest Virus (SFV) and Sindbis Virus (SIN). All three alphavirus proteases cleaved model fusion protein substrates with high specificity but they were much less efficient enzymes than potyviral proteases from tobacco etch virus (TEV) and tobacco vein mottling virus (TVMV). Oligopeptide substrates were also cleaved with very low efficiency by the alphavirus proteases. We conclude that, in general, alphavirus nsp2pro proteases are not very useful tools for the removal of affinity tags from recombinant proteins although they do remain promising therapeutic targets for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Di Zhang
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
46
|
Goulding AM, Rahimi Y, Shrestha S, Deo SK. Dual Function Labeling of Biomolecules Based on DsRed-Monomer. Bioconjug Chem 2008; 19:2113-9. [DOI: 10.1021/bc800147k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A. M. Goulding
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Y. Rahimi
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - S. Shrestha
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - S. K. Deo
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202
| |
Collapse
|
47
|
Green fluorescent protein and factorial approach: An effective partnership for screening the soluble expression of recombinant proteins in Escherichia coli. Protein Expr Purif 2008; 61:184-90. [DOI: 10.1016/j.pep.2008.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/22/2008] [Accepted: 05/27/2008] [Indexed: 11/17/2022]
|
48
|
Davis J, Wang J, Tropea JE, Zhang D, Dauter Z, Waugh DS, Wlodawer A. Novel fold of VirA, a type III secretion system effector protein from Shigella flexneri. Protein Sci 2008; 17:2167-73. [PMID: 18787201 DOI: 10.1110/ps.037978.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
VirA, a secreted effector protein from Shigella sp., has been shown to be necessary for its virulence. It was also reported that VirA might be related to papain-like cysteine proteases and cleave alpha-tubulin, thus facilitating intracellular spreading. We have now determined the crystal structure of VirA at 3.0 A resolution. The shape of the molecule resembles the letter "V," with the residues in the N-terminal third of the 45-kDa molecule (some of which are disordered) forming one clearly identifiable domain, and the remainder of the molecule completing the V-like structure. The fold of VirA is unique and does not resemble that of any known protein, including papain, although its N-terminal domain is topologically similar to cysteine protease inhibitors such as stefin B. Analysis of the sequence conservation between VirA and its Escherichia coli homologs EspG and EspG2 did not result in identification of any putative protease-like active site, leaving open a possibility that the biological function of VirA in Shigella virulence may not involve direct proteolytic activity.
Collapse
Affiliation(s)
- Jamaine Davis
- Protein Structure Section, Macromolecular Crystallography Laboratory, NCI, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Coseno M, Martin G, Berger C, Gilmartin G, Keller W, Doublié S. Crystal structure of the 25 kDa subunit of human cleavage factor Im. Nucleic Acids Res 2008; 36:3474-83. [PMID: 18445629 PMCID: PMC2425470 DOI: 10.1093/nar/gkn079] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cleavage factor Im is an essential component of the pre-messenger RNA 3′-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein–protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic α/β/α fold and a conserved catalytic sequence or Nudix box. We present here the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Å, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3′-end processing.
Collapse
Affiliation(s)
- Molly Coseno
- Department of Microbiology and Department of Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
50
|
In vivo and in vitro approaches for studying the yeast mitochondrial RNA degradosome complex. Methods Enzymol 2008; 447:463-88. [PMID: 19161856 DOI: 10.1016/s0076-6879(08)02222-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mitochondrial degradosome (mtEXO) of S. cerevisiae is the main exoribonuclease of yeast mitochondria. It is involved in many pathways of mitochondrial RNA metabolism, including RNA degradation, surveillance, and processing, and its activity is essential for mitochondrial gene function. The mitochondrial degradosome is a very simple example of a 3' to 5'-exoribonucleolytic complex. It is composed of only two subunits: Dss1p, which is an RNR (RNase II-like) family exoribonuclease, and Suv3p, which is a DExH/D-box RNA helicase. The two subunits form a tight complex and their activities are highly interdependent, with the RNase activity greatly enhanced in the presence of the helicase subunit, and the helicase activity entirely dependent on the presence of the ribonuclease subunit. In this chapter, we present methods for studying the function of the yeast mitochondrial degradosome in vivo, through the analysis of degradosome-deficient mutant yeast strains, and in vitro, through heterologous expression in E. coli and purification of the degradosome subunits and reconstitution of a functional complex. We provide the protocols for studying ribonuclease, ATPase, and helicase activities and for measuring the RNA binding capacity of the complex and its subunits.
Collapse
|