1
|
Zhang Y, Yang H. Quantification of Trophoblast Syncytialization by Fluorescent Membrane Labeling. Methods Mol Biol 2024; 2728:99-104. [PMID: 38019394 DOI: 10.1007/978-1-0716-3495-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Trophoblast fusion or syncytialization is a fundamental yet poorly understood process during placental development. Primary cultured cytotrophoblasts and human choriocarcinoma cell lines are commonly used to study trophoblast fusion mechanisms in vitro. Quantification of trophoblast fusion index is a key for the in vitro studies. In this chapter, we describe a new method to quantify fusion index, which is based on fluorescent labeling of the plasma membrane using Di-8-ANEPPS, a membrane potential dye. This method directly works on live cells, thereby is simple, economic, and reliable.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
2
|
Coria-Caballero V, Jaramillo-Narvaez MDLL, Leon-Verdin MG, Martinez F, Lazo-de-la-Vega-Monroy ML, Barbosa-Sabanero G. Desacylghrelin modulates GHS-R1 receptor expression and cell differentiation in placental BeWo cells. Mol Cell Endocrinol 2023; 577:112035. [PMID: 37506870 DOI: 10.1016/j.mce.2023.112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND and purpose: Ghrelin is the endogenous ligand of the growth hormone secretagogue receptor (GHS-R1). Ghrelin, and GHS-R1, may have a role in placental growth and function, and its unacylated form desacylghrelin (DAG) could be involved in fetal growth. Nevertheless, the effects of DAG on placental function, and the receptor involved in its actions, remain to be determined. We aimed to investigate the effect of DAG in placental BeWo cells viability, proliferation, differentiation, and GSH-R1 expression. METHODS BeWo cells, a human trophoblast cell line, was cultured with 3 nM DAG during 12, 24, 48, and 72 h. Cell viability, proliferation, differentiation (assessed by human Chorionic Gonadotropin quantification), and GSH-R1 expression were analyzed. To evaluate the mechanism of DAG effect on GSH-R1, 30 nM receptor antagonist ([D-Lys3]-GHRP-6) was added alone or in combination with 3 nM DAG during 12 h and 24 h. RESULTS DAG has no effect on cell proliferation or viability, but it has an inhibitory effect on cell differentiation. DAG had a stimulatory effect on GSH-R1 expression at 12 and 24 h (p = 0.029 and p = 0.025, respectively). On the contrary, culture with 48 h DAG inhibits GSH-R1 expression compared to the control (p = 0.005), while GSH-R1 antagonist inhibited the effect of DAG on GSH-R1 expression. DAG also reduces intracellular (p = 0.020) and secreted (p = 0.011) hCG concentration in BeWo cells. CONCLUSION DAG increases GHS-R1 expression, potentially mediated through GHS-R1 itself. DAG may also inhibit placental BeWo cell differentiation, suggesting a possible role of DAG in placental and fetal physiology.
Collapse
Affiliation(s)
- Vanessa Coria-Caballero
- Medical Sciences Department, Health Sciences Division, University of Guanajuato, Leon Campus, Mexico
| | | | - Ma Guadalupe Leon-Verdin
- Department of Engineering Physics, Division of Sciences and Engineering, University of Guanajuato, Leon Campus, Mexico
| | - Federico Martinez
- Biochemistry Department, Medicine Faculty, UNAM, Mexico City, Mexico
| | | | - Gloria Barbosa-Sabanero
- Medical Sciences Department, Health Sciences Division, University of Guanajuato, Leon Campus, Mexico.
| |
Collapse
|
3
|
Santiago MB, dos Santos VCO, Teixeira SC, Silva NBS, de Oliveira PF, Ozelin SD, Furtado RA, Tavares DC, Ambrósio SR, Veneziani RCS, Ferro EAV, Bastos JK, Martins CHG. Polyalthic Acid from Copaifera lucens Demonstrates Anticariogenic and Antiparasitic Properties for Safe Use. Pharmaceuticals (Basel) 2023; 16:1357. [PMID: 37895828 PMCID: PMC10610108 DOI: 10.3390/ph16101357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed at evaluating the potential of Copaifera lucens, specifically its oleoresin (CLO), extract (CECL), and the compound ent-polyalthic acid (PA), in combating caries and toxoplasmosis, while also assessing its toxicity. The study involved multiple assessments, including determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against cariogenic bacteria. CLO and PA exhibited MIC and MBC values ranging from 25 to 50 μg/mL, whereas CECL showed values equal to or exceeding 400 μg/mL. PA also displayed antibiofilm activity with minimum inhibitory concentration of biofilm (MICB50) values spanning from 62.5 to 1000 μg/mL. Moreover, PA effectively hindered the intracellular proliferation of Toxoplasma gondii at 64 μg/mL, even after 24 h without treatment. Toxicological evaluations included in vitro tests on V79 cells, where concentrations ranged from 78.1 to 1250 μg/mL of PA reduced colony formation. Additionally, using the Caenorhabditis elegans model, the lethal concentration (LC50) of PA was determined as 1000 μg/mL after 48 h of incubation. Notably, no significant differences in micronucleus induction and the NDI were observed in cultures treated with 10, 20, or 40 μg/mL of CLO. These findings underscore the safety profile of CLO and PA, highlighting their potential as alternative treatments for caries and toxoplasmosis.
Collapse
Affiliation(s)
- Mariana B. Santiago
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil; (M.B.S.); (V.C.O.d.S.); (N.B.S.S.)
| | - Vinicius Cristian O. dos Santos
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil; (M.B.S.); (V.C.O.d.S.); (N.B.S.S.)
| | - Samuel C. Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil; (S.C.T.); (E.A.V.F.)
| | - Nagela B. S. Silva
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil; (M.B.S.); (V.C.O.d.S.); (N.B.S.S.)
| | - Pollyanna F. de Oliveira
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404600, SP, Brazil; (P.F.d.O.); (S.D.O.); (R.A.F.); (D.C.T.); (S.R.A.); (R.C.S.V.)
| | - Saulo D. Ozelin
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404600, SP, Brazil; (P.F.d.O.); (S.D.O.); (R.A.F.); (D.C.T.); (S.R.A.); (R.C.S.V.)
| | - Ricardo A. Furtado
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404600, SP, Brazil; (P.F.d.O.); (S.D.O.); (R.A.F.); (D.C.T.); (S.R.A.); (R.C.S.V.)
| | - Denise C. Tavares
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404600, SP, Brazil; (P.F.d.O.); (S.D.O.); (R.A.F.); (D.C.T.); (S.R.A.); (R.C.S.V.)
| | - Sergio Ricardo Ambrósio
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404600, SP, Brazil; (P.F.d.O.); (S.D.O.); (R.A.F.); (D.C.T.); (S.R.A.); (R.C.S.V.)
| | - Rodrigo Cassio S. Veneziani
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404600, SP, Brazil; (P.F.d.O.); (S.D.O.); (R.A.F.); (D.C.T.); (S.R.A.); (R.C.S.V.)
| | - Eloisa Amália V. Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil; (S.C.T.); (E.A.V.F.)
| | - Jairo K. Bastos
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040900, SP, Brazil;
| | - Carlos Henrique G. Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil; (M.B.S.); (V.C.O.d.S.); (N.B.S.S.)
| |
Collapse
|
4
|
Valderrama JFN, Gil VC, Alzate B V, Tavera EA, Noreña E, Porras J, Quintana-Castillo JC, García L JJ, Molina P FJ, Ramos-Contreras C, Sanchez JB. Effects of polycyclic aromatic hydrocarbons on gestational hormone production in a placental cell line: Application of passive dosing to in vitro tests. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114090. [PMID: 36162350 DOI: 10.1016/j.ecoenv.2022.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Air pollution includes polycyclic aromatic hydrocarbons (PAHs), which have been correlated to endocrine disruptor pathways during early pregnancy. PAHs have been found in the placenta and cord blood, which may affect the hormones involved in placental development. We studied the effects of some airborne PAHs on beta human chorionic gonadotropin (β-hCG) and progesterone production by using a syncytial BeWo cell line as a placental model. PAH congeners were spiked in silicon rubber membrane (SRMs) and were then introduced into the cell medium by the passive dosing method to reach a freely dissolved concentration for BeWo cell exposure. Ultrahigh-performance liquid chromatography coupled with a diode array detector was used to analyze the PAHs, and electrochemiluminescence was used to test the hormone levels. Our results showed that passive dosing can deliver low levels of PAH congeners in the cell medium, which allowed us to calculate the individual release constants at equilibrium and to estimate their effects. Benzo[a]pyrene was released quickly from the SRMs to the cell medium, which can be attributed to its lipophilic properties. The PAHs were shown to decrease the β-hCG level in the short term and progesterone level in the long term, so they may serve as a pathway for endocrine disorder in trophoblastic cells. This approximation may explain observations of impaired endometrium receptivity and placental dysfunction, which enhance adverse pregnancy outcomes such as embryonic mortality and intrauterine growth restriction.
Collapse
Affiliation(s)
- Jhon Fredy Narváez Valderrama
- Grupo de Investigación Ingeniar, Facultad de Ciencias Básicas e Ingeniería, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia.
| | - Vanessa Correa Gil
- Grupo de Investigaciones Biomédicas UniRemington, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia
| | - Viviana Alzate B
- Grupo de Investigación Ingeniar, Facultad de Ciencias Básicas e Ingeniería, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia
| | - Edison Andrés Tavera
- Grupo de Investigación Ingeniar, Facultad de Ciencias Básicas e Ingeniería, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia
| | - Edgar Noreña
- Grupo de Investigaciones Biomédicas UniRemington, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia
| | - Jazmín Porras
- Grupo de Investigaciones Biomédicas UniRemington, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia
| | | | - Juan José García L
- Grupo de Investigación Ingeniar, Facultad de Ciencias Básicas e Ingeniería, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia
| | - Francisco José Molina P
- Grupo de Investigación en Gestión y Modelación Ambiental - GAIA, Facultad de Ingeniería, Universidad de Antioquia U.de.A, Calle 70 # 52-21, Medellín, Colombia
| | - Carlos Ramos-Contreras
- Grupo de Investigación en Gestión y Modelación Ambiental - GAIA, Facultad de Ingeniería, Universidad de Antioquia U.de.A, Calle 70 # 52-21, Medellín, Colombia
| | - Julio Bueno Sanchez
- Grupo de Reproducción, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| |
Collapse
|
5
|
Wang B, He Y, Zhang P, Huang Y, Xiang H. The function of nuclear hormone receptor 4A signaling in the human reproductive system: A review. J Obstet Gynaecol Res 2022; 48:1501-1512. [PMID: 35445497 DOI: 10.1111/jog.15264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/18/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
Abstract
AIM This review aims to summarize the research focused upon the functions of nuclear hormone receptor 4A (NR4A) in the human reproductive system. The research questions addressed are to decipher what role the NR4A subfamily plays in the regulation of the human reproductive system and effects upon fertility issues through regulation of the expression of the NR4A subfamily. METHODS The electronic database PubMed was searched for studies published before November 2021. Keywords included "NR4A," "trophoblast," "decidualization," "folliculogenesis," "estrogen," "pregnancy," "Leydig cells," "fertility," and "reproductive." Relevant references from retrieved manuscripts and review articles were also searched manually. RESULTS NR4A subfamily are involved in trophoblast differentiation, endometrial decidualization, embryo adhesion, secretion of related hormones, and regulation of spontaneous term labor. Besides, many studies have provided strong evidence that they play critical roles in spermatogenesis. Furthermore, Multiple mechanisms can affect the expression of NR4As. Broadly, NR4A family receptors affect the human reproductive system in multiple ways. CONCLUSIONS Further research is needed to specifically dissect the functions and regulatory mechanisms of these receptors and their pharmaceutical antagonists and agonists. The connection between the NR4A subfamily and a variety of reproductive disorders needs to be proven experimentally such that further examination of human tissue is required to assess the role of these receptors in human reproductive diseases.
Collapse
Affiliation(s)
- Boya Wang
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital of Anhui Medical, Anhui, China.,Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Anhui, China.,NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, Anhui, China
| | - Yingming He
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital of Anhui Medical, Anhui, China.,Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Anhui, China.,NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, Anhui, China
| | - Pin Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Anhui, China.,NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Yue Huang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Anhui, China.,NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Huifen Xiang
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital of Anhui Medical, Anhui, China.,Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Anhui, China.,NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| |
Collapse
|
6
|
Keogh A, Ferguson W, Nolder D, Doyle E, McEntagart N. Vertical Transmission of Trypanosoma Cruzi in a Non-Endemic Country: Histology of the Infected Placenta. Pediatr Dev Pathol 2021; 24:559-563. [PMID: 34369222 DOI: 10.1177/10935266211012192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chagas disease, once confined to rural Latin America is an increasing public health concern in non-endemic countries due to population movements. Here we present an unexpected finding of a placenta infected with T. cruzi from a Brazilian woman residing in Ireland. Histology of the placenta showed a lymphocytic chorioamnionitis with multinucleated giant cells (MNGCs) as well as cord vasculitis and funisitis. Amastigotes of trypanosomiasis were found in both cord and membranes. The placenta parenchyma, however, had no villitis or amastigotes and maturation was appropriate for gestation. To date, there have been few reported cases of vertical transmission in non-endemic countries. We discuss the histological findings and review the literature on potential modes of transmission from mother to fetus.
Collapse
Affiliation(s)
- Anna Keogh
- Department of Histopathology, Rotunda Hospital, Dublin, Ireland
| | - Wendy Ferguson
- Department of Neonatology, Rotunda Hospital, Dublin, Ireland
| | - Debbie Nolder
- Diagnostic Parasitology Laboratory, London School of Tropical Medicine and Hygiene, London, UK
| | - Emma Doyle
- Department of Histopathology, Rotunda Hospital, Dublin, Ireland
| | - Noel McEntagart
- Department of Histopathology, Rotunda Hospital, Dublin, Ireland
| |
Collapse
|
7
|
Johnson LJ, Azari S, Webb A, Zhang X, Gavrilin MA, Marshall JM, Rood K, Seveau S. Human Placental Trophoblasts Infected by Listeria monocytogenes Undergo a Pro-Inflammatory Switch Associated With Poor Pregnancy Outcomes. Front Immunol 2021; 12:709466. [PMID: 34367171 PMCID: PMC8346206 DOI: 10.3389/fimmu.2021.709466] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
The placenta controls the growth of the fetus and ensures its immune protection. Key to these functions, the syncytiotrophoblast (SYN) is a syncytium formed by fusion of underlying mononuclear trophoblasts. The SYN covers the placental surface and is bathed in maternal blood to mediate nutritional and waste exchanges between the mother and fetus. The bacterial pathogen Listeria monocytogenes breaches the trophoblast barrier and infects the placental/fetal unit resulting in poor pregnancy outcomes. In this work, we analyzed the L. monocytogenes intracellular lifecycle in primary human trophoblasts. In accordance with previous studies, we found that the SYN is 20-fold more resistant to infection compared to mononuclear trophoblasts, forming a protective barrier to infection at the maternal interface. We show for the first time that this is due to a significant reduction in L. monocytogenes uptake by the SYN rather than inhibition of the bacterial intracellular division or motility. We here report the first transcriptomic analysis of L. monocytogenes-infected trophoblasts (RNA sequencing). Pathway analysis showed that infection upregulated TLR2, NOD-like, and cytosolic DNA sensing pathways, as well as downstream pro-inflammatory circuitry (NF-κB, AP-1, IRF4, IRF7) leading to the production of mediators known to elicit the recruitment and activation of maternal leukocytes (IL8, IL6, TNFα, MIP-1). Signature genes associated with poor pregnancy outcomes were also upregulated upon infection. Measuring the release of 54 inflammatory mediators confirmed the transcriptomic data and revealed sustained production of tolerogenic factors (IL-27, IL-10, IL-1RA, TSLP) despite infection. Both the SYN and mononuclear trophoblasts produced cytokines, but surprisingly, some cytokines were predominantly produced by the SYN (IL-8, IL-6) or by non-fused trophoblasts (TNFα). Collectively, our data support that trophoblasts act as placental gatekeepers that limit and detect L. monocytogenes infection resulting in a pro-inflammatory response, which may contribute to the poor pregnancy outcomes if the pathogen persists.
Collapse
Affiliation(s)
- Lauren J Johnson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Siavash Azari
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Xiaoli Zhang
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, United States
| | - Mikhail A Gavrilin
- Pulmonary, Critical Care and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Joanna M Marshall
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Kara Rood
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The Ohio State University, Columbus, OH, United States
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Extracellularly Released Calreticulin Induced by Endoplasmic Reticulum Stress Impairs Syncytialization of Cytotrophoblast Model BeWo Cells. Cells 2021; 10:cells10061305. [PMID: 34073978 PMCID: PMC8225044 DOI: 10.3390/cells10061305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
The pregnancy-specific syndrome preeclampsia is a major cause of maternal mortality throughout the world. The initial insult resulting in the development of preeclampsia is inadequate trophoblast invasion, which may lead to reduced maternal perfusion of the placenta and placental dysfunction, such as insufficient trophoblast syncytialization. Endoplasmic reticulum (ER) stress has been implicated in the pathology of preeclampsia and serves as the major risk factor. Our previous studies suggested critical roles of calreticulin (CRT), which is an ER-resident stress response protein, in extravillous trophoblast invasion and cytotrophoblast syncytialization. Here, we studied the mechanism by which ER stress exposes the placenta to the risk of preeclampsia. We found that CRT was upregulated in the serum samples, but not in the placental specimens, from preeclamptic women. By using BeWo cells, an established model of cytotrophoblasts that syncytialize in the presence of forskolin, we demonstrated that thapsigargin-induced ER stress caused extracellular release of CRT from BeWo cells and that the extracellular CRT suppressed forskolin-induced release of β-human chorionic gonadotropin and altered subcellular localization of E-cadherin, which is a key adhesion molecule associated with syncytialization. Our results together provide evidence that induction of ER stress leads to extracellular CRT release, which may contribute to placental dysfunction by suppressing cytotrophoblast syncytialization.
Collapse
|
9
|
Campuzano M, Bueno-Sánchez J, Agudelo-Jaramillo B, Quintana-Castillo JC, Chaouat GC, Maldonado-Estrada JG. Glycan expression in chorionic villi from histocultures of women with early-onset preeclampsia: Immunomodulatory effects on peripheral natural killer cells. J Reprod Immunol 2020; 142:103212. [PMID: 33032074 DOI: 10.1016/j.jri.2020.103212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/05/2020] [Accepted: 09/20/2020] [Indexed: 12/01/2022]
Abstract
New evidence suggests that glycan expression in placental cells of women with invasive disorders of pregnancy differs from that in normal pregnant women. Hypothesizing that modifications of glycan expression could account for the course of preeclampsia, we established placental villous histocultures and compared glycan expression in women with preeclampsia with that in normal pregnant women and also in syncytialized BeWo cells, and we tested the effect of glycan expression on the functional phenotypes of circulating natural killer (NK) cells. Histocultures of third-trimester placentae from women with preeclampsia and full-term placentae from healthy pregnant women and BeWo choriocarcinoma cells were assessed for the expression of terminal glycans by lectin-binding assays. Circulating NK cells from nonpregnant healthy donors were tested in vitro for their cytotoxic activity and intracellular cytokine content. Histocultures from women with preeclampsia expressed significantly more mannose than did those from healthy pregnant women. Both histocultures and BeWo cells expressed terminal fucose, mannose, sialic acid, and N -acetylgalactosamine, although mean fluorescence intensity (MFI) expression was lower in choriocarcinoma cells than in cells from histocultures. Cocultures of circulating NK cells with K562 target cells resulted in a dose-dependent cytotoxicity effect, but the use of BeWo cells as target reduced cytotoxic activity; this reduction was not affected by syncytialization. Histocultures of placental villous tissue of women with preeclampsia expressed high levels of terminal mannose. We proposethat placental glycans may modulate the functional activity of circulating NK cells in the context of systemic inflammatory response in preeclampsia.
Collapse
Affiliation(s)
- Marisol Campuzano
- Reproduction Group, School of Medicine, University of Antioquia, Calle 70 # 52-21, 050010 Medellín, Colombia
| | - Julio Bueno-Sánchez
- Reproduction Group, School of Medicine, University of Antioquia, Calle 70 # 52-21, 050010 Medellín, Colombia; Department of Physiology, School of Medicine, University of Antioquia, Calle 70 # 52-21, 050010 Medellín, Colombia.
| | - Bernardo Agudelo-Jaramillo
- Department of Obstetrics and Gynecology, School of Medicine, University of Antioquia, Calle 70 # 52-21, 050010 Medellín, Colombia
| | - Juan C Quintana-Castillo
- School of Medicine, Universidad Cooperativa De Colombia, Sede Medellín, Calle 50 A N° 41-20, 050010 Medellín, Colombia
| | - Gerard C Chaouat
- INSERM U 976, Pavillon Bazin, Hôpital Saint-Louis, 75010 Paris, France
| | - Juan G Maldonado-Estrada
- OHVRI Research Group, College of Veterinary Medicine, Faculty of Agrarian Sciences, Calle 70 # 52-20, Universidad de Antioquia, 050010 Medellín, Colombia
| |
Collapse
|
10
|
Arumugasaamy N, Rock KD, Kuo CY, Bale TL, Fisher JP. Microphysiological systems of the placental barrier. Adv Drug Deliv Rev 2020; 161-162:161-175. [PMID: 32858104 DOI: 10.1016/j.addr.2020.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
Methods to evaluate maternal-fetal transport across the placental barrier have generally involved clinical observations after-the-fact, ex vivo perfused placenta studies, or in vitro Transwell assays. Given the ethical and technical limitations in these approaches, and the drive to understand fetal development through the lens of transport-induced injury, such as with the examples of thalidomide and Zika Virus, efforts to develop novel approaches to study these phenomena have expanded in recent years. Notably, within the past 10 years, placental barrier models have been developed using hydrogel, bioreactor, organ-on-a-chip, and bioprinting approaches. In this review, we discuss the biology of the placental barrier and endeavors to recapitulate this barrier in vitro using these approaches. We also provide analysis of current limitations to drug discovery in this context, and end with a future outlook.
Collapse
|
11
|
Ma Z, Sagrillo-Fagundes L, Mok S, Vaillancourt C, Moraes C. Mechanobiological regulation of placental trophoblast fusion and function through extracellular matrix rigidity. Sci Rep 2020; 10:5837. [PMID: 32246004 PMCID: PMC7125233 DOI: 10.1038/s41598-020-62659-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 01/13/2023] Open
Abstract
The syncytiotrophoblast is a multinucleated layer that plays a critical role in regulating functions of the human placenta during pregnancy. Maintaining the syncytiotrophoblast layer relies on ongoing fusion of mononuclear cytotrophoblasts throughout pregnancy, and errors in this fusion process are associated with complications such as preeclampsia. While biochemical factors are known to drive fusion, the role of disease-specific extracellular biophysical cues remains undefined. Since substrate mechanics play a crucial role in several diseases, and preeclampsia is associated with placental stiffening, we hypothesize that trophoblast fusion is mechanically regulated by substrate stiffness. We developed stiffness-tunable polyacrylamide substrate formulations that match the linear elasticity of placental tissue in normal and disease conditions, and evaluated trophoblast morphology, fusion, and function on these surfaces. Our results demonstrate that morphology, fusion, and hormone release is mechanically-regulated via myosin-II; optimal on substrates that match healthy placental tissue stiffness; and dysregulated on disease-like and supraphysiologically-stiff substrates. We further demonstrate that stiff regions in heterogeneous substrates provide dominant physical cues that inhibit fusion, suggesting that even focal tissue stiffening limits widespread trophoblast fusion and tissue function. These results confirm that mechanical microenvironmental cues influence fusion in the placenta, provide critical information needed to engineer better in vitro models for placental disease, and may ultimately be used to develop novel mechanically-mediated therapeutic strategies to resolve fusion-related disorders during pregnancy.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Lucas Sagrillo-Fagundes
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
- INRS-Centre Armand Frappier Santé Biotechnologie and Réseau Intersectoriel de Recherche en Santé de l'Université du Québec, Laval, QC, Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC, Canada
| | - Stephanie Mok
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Cathy Vaillancourt
- INRS-Centre Armand Frappier Santé Biotechnologie and Réseau Intersectoriel de Recherche en Santé de l'Université du Québec, Laval, QC, Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada.
- Department of Biological and Biomedical Engineering, McGill University, Montréal, QC, Canada.
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada.
| |
Collapse
|
12
|
Mansell E, Zareian N, Malouf C, Kapeni C, Brown N, Badie C, Baird D, Lane J, Ottersbach K, Blair A, Case CP. DNA damage signalling from the placenta to foetal blood as a potential mechanism for childhood leukaemia initiation. Sci Rep 2019; 9:4370. [PMID: 30867444 PMCID: PMC6416312 DOI: 10.1038/s41598-019-39552-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023] Open
Abstract
For many diseases with a foetal origin, the cause for the disease initiation remains unknown. Common childhood acute leukaemia is thought to be caused by two hits, the first in utero and the second in childhood in response to infection. The mechanism for the initial DNA damaging event are unknown. Here we have used in vitro, ex vivo and in vivo models to show that a placental barrier will respond to agents that are suspected of initiating childhood leukaemia by releasing factors that cause DNA damage in cord blood and bone marrow cells, including stem cells. We show that DNA damage caused by in utero exposure can reappear postnatally after an immune challenge. Furthermore, both foetal and postnatal DNA damage are prevented by prenatal exposure of the placenta to a mitochondrially-targeted antioxidant. We conclude that the placenta might contribute to the first hit towards leukaemia initiation by bystander-like signalling to foetal haematopoietic cells.
Collapse
Affiliation(s)
- Els Mansell
- School of Clinical Science, University of Bristol, Learning and Research Centre, Southmead Hospital, Bristol, UK.
| | - Nahid Zareian
- School of Clinical Science, University of Bristol, Learning and Research Centre, Southmead Hospital, Bristol, UK
| | - Camille Malouf
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh Bioquarter 5 Little France Drive, Edinburgh, UK
| | - Chrysa Kapeni
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh Bioquarter 5 Little France Drive, Edinburgh, UK
| | - Natalie Brown
- Cancer Mecanisms and Biomarkers, Department of Radiation Effects, Public Health England's Centre for Radiation, Chemical and Environmental Hazards (CRCE), Chilton, Didcot, Oxon, UK
| | - Christophe Badie
- Cancer Mecanisms and Biomarkers, Department of Radiation Effects, Public Health England's Centre for Radiation, Chemical and Environmental Hazards (CRCE), Chilton, Didcot, Oxon, UK
| | - Duncan Baird
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Jon Lane
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Katrin Ottersbach
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh Bioquarter 5 Little France Drive, Edinburgh, UK
| | - Allison Blair
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Filton, UK
| | - C Patrick Case
- School of Clinical Science, University of Bristol, Learning and Research Centre, Southmead Hospital, Bristol, UK
| |
Collapse
|
13
|
Zhang Y, Yang H. A simple and robust fluorescent labeling method to quantify trophoblast fusion. Placenta 2019; 77:16-18. [PMID: 30827351 DOI: 10.1016/j.placenta.2019.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/01/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
Trophoblast fusion into syncytiotrophoblasts is a specialized yet enigmatic cellular process, which is essential for placental development and function. To facilitate mechanistic understanding of this critical process, here we re-purposed a widely used fluorescent membrane potential dye, Di-8-ANEPPS, to stably label the plasma membrane of live BeWo trophoblast cells. Compared to the methods currently available to quantify trophoblast fusion, our new fluorescent labeling method is simple, economical, robust and versatile, enabling quick and accurate quantification of fusion index in living cells.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
14
|
Medina L, Castillo C, Liempi A, Herbach M, Cabrera G, Valenzuela L, Galanti N, de Los Angeles Curto M, Schijman AG, Kemmerling U. Differential infectivity of two Trypanosoma cruzi strains in placental cells and tissue. Acta Trop 2018; 186:35-40. [PMID: 30018029 DOI: 10.1016/j.actatropica.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/13/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022]
Abstract
Congenital Chagas disease, caused by Trypanosoma cruzi (T. cruzi), has become epidemiologically relevant. The probability of congenital transmission depends on the maternal and developing fetal/newborn immune responses, placental factors and importantly, the virulence of the parasite. It has been proposed, that different genotypes of T. cruzi and their associated pathogenicity, virulence and tissue tropism may play an important role in congenital infection. Since there is no laboratory or animal model that recapitulates the complexities of vertical transmission in humans, here we studied parasite infectivity in human placental explants (HPE) as well as in the human trophoblast-derived cell line BeWo of the Y(DTU II) and the VD (TcVI) T. cruzi strains; the latter was isolated from a human case of congenital infection. Our results show that the VD strain is more infective and pathogenic than the Y strain, as demonstrated by qPCR and cell counting as well as by histopathological analysis. The present study constitutes the first approach to study the relationship between parasite two parasite strains from different genotypes and the infection efficiency in human placenta.
Collapse
Affiliation(s)
- Lisvaneth Medina
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Ana Liempi
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Mathias Herbach
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Gonzalo Cabrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Lucía Valenzuela
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Norbel Galanti
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - María de Los Angeles Curto
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Buenos Aires, Argentina
| | - Alejandro G Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Buenos Aires, Argentina
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
15
|
Malhotra SS, Gupta SK. Relevance of the NR4A sub-family of nuclear orphan receptors in trophoblastic BeWo cell differentiation. Cell Mol Biol Lett 2017; 22:15. [PMID: 28808448 PMCID: PMC5550994 DOI: 10.1186/s11658-017-0046-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/31/2017] [Indexed: 12/25/2022] Open
Abstract
Nur-77, a member of the NR4A sub-family of nuclear orphan receptors, is downregulated in the placentae of pre-eclamptic women. Here, we investigate the relevance of Nor-1, Nurr-1 and Nur-77 in trophoblastic cell differentiation. Their transcript levels were found to be significantly upregulated in BeWo cells treated with forskolin. The maximum increase was observed after 2 h, with a second peak in the expression levels after 48 h. The expression of NR4A sub-family members was also found to be upregulated in BeWo cells after treatment with hCG and GnRH. A similar significant increase was observed at the respective protein levels after 2 and 48 h of treatment with forskolin, hCG or GnRH. Silencing Nor-1, Nurr-1 or Nur-77 individually did not show any effect on forskolin-, hCG- and/or GnRH-mediated BeWo cell fusion and/or hCG secretion. After silencing any one member of the NR4A sub-family, an increase in the transcript levels of the other sub-family members was observed, indicating a compensatory effect due to their functional redundancy. Simultaneously silencing all three NR4A sub-family members significantly downregulated forskolin- and hCG-mediated BeWo cell fusion and/or hCG secretion. However, a considerable amount of cell death occurred after forskolin or hCG treatment as compared to the control siRNA-transfected cells. These results suggest that the NR4A sub-family of nuclear orphan receptors has a role in trophoblastic cell differentiation.
Collapse
Affiliation(s)
- Sudha Saryu Malhotra
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, -110 067 India
| | - Satish Kumar Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, -110 067 India
| |
Collapse
|
16
|
Cao B, Macones C, Mysorekar IU. ATG16L1 governs placental infection risk and preterm birth in mice and women. JCI Insight 2016; 1:e86654. [PMID: 28018968 PMCID: PMC5161251 DOI: 10.1172/jci.insight.86654] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The placenta is a barrier against maternal-fetal transmission of pathogens. Placental infections can cause several adverse pregnancy outcomes, including preterm birth (PTB). Yet, we have limited knowledge regarding the mechanisms the placenta uses to control infections. Here, we show that autophagy, a cellular recycling pathway important for host defense against pathogens, and the autophagy gene Atg16L1 play a key role in placental defense and are negatively associated with PTB in pregnant women. First, we demonstrate that placentas from women who delivered preterm exhibit reduced autophagy activity and are associated with higher infection indicators. Second, we identify the cellular location of the autophagy activity as being in syncytial trophoblasts. Third, we demonstrate that higher levels of autophagy and ATG16L1 in human trophoblasts were associated with increased resistance to infection. Accordingly, loss of autophagy or ATG16L1 impaired trophoblast antibacterial defenses. Fourth, we show that Atg16l1-deficient mice gave birth prematurely upon an inflammatory stimulus and their placentas were significantly less able to withstand infection. Finally, global induction of autophagy in both mouse placentas and human trophoblasts increased infection resistance. Our study has significant implications for understanding the etiology of placental infections and prematurity and developing strategies to mitigate placental infection-induced PTB.
Collapse
Affiliation(s)
- Bin Cao
- Department of Obstetrics and Gynecology and
| | | | - Indira U Mysorekar
- Department of Obstetrics and Gynecology and.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
17
|
Droguett D, Carrillo I, Castillo C, Gómez F, Negrete M, Liempi A, Muñoz L, Galanti N, Maya JD, Kemmerling U. Trypanosoma cruzi induces cellular proliferation in the trophoblastic cell line BeWo. Exp Parasitol 2016; 173:9-17. [PMID: 27939813 DOI: 10.1016/j.exppara.2016.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022]
Abstract
Congenital transmission of Trypanosoma cruzi (T. cruzi) is partially responsible for the progressive globalization of Chagas disease. During congenital transmission the parasite must cross the placental barrier where the trophoblast, a continuous renewing epithelium, is the first tissue in contact with the parasite. The trophoblast turnover implies cellular proliferation, differentiation and apoptotic cell death. The epithelial turnover is considered part of innate immunity. We previously demonstrated that T. cruzi induces cellular differentiation and apoptosis in this tissue. Here we demonstrate that T. cruzi induces cellular proliferation in a trophoblastic cell line. We analyzed the cellular proliferation in BeWo cells by determining DNA synthesis by BrdU incorporation assays, mitotic index, cell cycle analysis by flow cytometry, as well as quantification of nucleolus organizer regions by histochemistry and expression of the proliferation markers PCNA and Ki67 by Western blotting and/or immunofluorescence. Additionally, we determined the ERK1/2 MAPK pathway activation by the parasite by Western blotting.
Collapse
Affiliation(s)
- Daniel Droguett
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile; Departamento de Estomatología, Facultad de Ciencias de la Salud, Universidad de Talca, Chile
| | - Ileana Carrillo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Fresia Gómez
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Miguel Negrete
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Ana Liempi
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Lorena Muñoz
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Norbel Galanti
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
18
|
Carrillo I, Droguett D, Castillo C, Liempi A, Muñoz L, Maya JD, Galanti N, Kemmerling U. Caspase-8 activity is part of the BeWo trophoblast cell defense mechanisms against Trypanosoma cruzi infection. Exp Parasitol 2016; 168:9-15. [DOI: 10.1016/j.exppara.2016.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/17/2016] [Indexed: 02/08/2023]
|
19
|
Liempi A, Castillo C, Carrillo I, Muñoz L, Droguett D, Galanti N, Maya JD, Kemmerling U. A local innate immune response against Trypanosoma cruzi in the human placenta: The epithelial turnover of the trophoblast. Microb Pathog 2016; 99:123-129. [PMID: 27554274 DOI: 10.1016/j.micpath.2016.08.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/29/2022]
Abstract
Congenital Chagas disease, caused by Trypanosoma cruzi, is partially responsible for the progressive globalization of Chagas disease despite of its low transmission rate. The probability of congenital transmission depends on complex interactions between the parasite, the maternal and fetus/newborn immune responses and placental factors, being the latter the least studied one. During transplacental transmission, the parasite must cross the placental barrier where the trophoblast, a continuous renewing epithelium, is the first tissue to have contact with the parasite. Importantly, the epithelial turnover is considered part of the innate immune system since pathogens, prior to cell invasion, must attach to the surface of cells. The trophoblast turnover involves cellular processes such as proliferation, differentiation and apoptotic cell death, all of them are induced by the parasite. In the present review, we analyze the current evidence about the trophoblast epithelial turnover as a local placental innate immune response.
Collapse
Affiliation(s)
- Ana Liempi
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Ileana Carrillo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Lorena Muñoz
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Daniel Droguett
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile; Departamento de Estomatología, Facultad de Ciencias de la Salud, Universidad de Talca, Chile
| | - Norbel Galanti
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
20
|
Tang C, Tang L, Wu X, Xiong W, Ruan H, Hussain M, Wu J, Zou C, Wu X. Glioma-associated Oncogene 2 Is Essential for Trophoblastic Fusion by Forming a Transcriptional Complex with Glial Cell Missing-a. J Biol Chem 2016; 291:5611-5622. [PMID: 26769961 DOI: 10.1074/jbc.m115.700336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 01/20/2023] Open
Abstract
Cell-cell fusion of human villous trophoblasts, referred to as a process of syncytialization, acts as a prerequisite for the proper development and functional maintenance of the human placenta. Given the fact that the main components of the Hedgehog signaling pathway are expressed predominantly in the syncytial layer of human placental villi, in this study, we investigated the potential roles and underlying mechanisms of Hedgehog signaling in trophoblastic fusion. Activation of Hedgehog signaling by a variety of approaches robustly induced cell fusion and the expression of syncytial markers, whereas suppression of Hedgehog signaling significantly attenuated cell fusion and the expression of syncytial markers in both human primary cytotrophoblasts and trophoblast-like BeWo cells. Moreover, among glioma-associated oncogene (GLI) family transcriptional factors in Hedgehog signaling, knockdown of GLI2 but not GLI1 and GLI3 significantly attenuated Hedgehog-induced cell fusion, whereas overexpression of the GLI2 activator alone was sufficient to induce cell fusion. Finally, GLI2 not only stabilized glial cell missing-a, a pivotal transcriptional factor for trophoblastic syncytialization, but also formed a transcriptional heterodimer with glial cell missing-a to transactivate syncytin-1, a trophoblastic fusogen, and promote trophoblastic syncytialization. Taken together, this study uncovered a so far uncharacterized role of Hedgehog/GLI2 signaling in trophoblastic fusion, implicating that Hedgehog signaling, through GLI2, could be required for human placental development and pregnancy maintenance.
Collapse
Affiliation(s)
- Chao Tang
- From the Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China,; the Department of Microbiology, School of Medicine, University of Tokyo, Tokyo 1130033, Japan, and
| | | | - Xiaokai Wu
- From the Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | | | - Hongfeng Ruan
- From the Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Musaddique Hussain
- From the Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Junsong Wu
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | | | - Ximei Wu
- From the Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China,.
| |
Collapse
|
21
|
Malhotra SS, Suman P, Gupta SK. Alpha or beta human chorionic gonadotropin knockdown decrease BeWo cell fusion by down-regulating PKA and CREB activation. Sci Rep 2015; 5:11210. [PMID: 26053549 PMCID: PMC4459146 DOI: 10.1038/srep11210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 05/01/2015] [Indexed: 01/01/2023] Open
Abstract
The aim of the present study is to delineate the role of human chorionic gonadotropin (hCG) in trophoblast fusion. In this direction, using shRNA lentiviral particles, α- and β-hCG silenced ‘BeWo’ cell lines were generated. Treatment of both α- and β-hCG silenced BeWo cells with either forskolin or exogenous hCG showed a significant reduction in cell fusion as compared with control shRNA treated cells. Studies by qRT-PCR, Western blotting and immunofluorescence revealed down-regulation of fusion-associated proteins such as syncytin-1 and syndecan-1 in the α- and β-hCG silenced cells. Delineation of downstream signaling pathways revealed that phosphorylation of PKA and CREB were compromised in the silenced cells whereas, no significant changes in p38MAPK and ERK1/2 phosphorylation were observed. Moreover, β-catenin activation was unaffected by either α- or β-hCG silencing. Further, inhibition of PKA by H89 inhibitor led to a significant decrease in BeWo cell fusion but had no effect on β-catenin activation suggesting the absence of non-canonical β-catenin stabilization via PKA. Interestingly, canonical activation of β-catenin was associated with the up-regulation of Wnt 10b expression. In summary, this study establishes the significance of hCG in the fusion of trophoblastic BeWo cells, but there may be additional factors involved in this process.
Collapse
Affiliation(s)
- Sudha Saryu Malhotra
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi-110 067, India
| | - Pankaj Suman
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh-201 301, India
| | - Satish Kumar Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi-110 067, India
| |
Collapse
|
22
|
Chen B, Zaveri PG, Longtine MS, Nelson DM. N-myc downstream-regulated gene 1 (NDRG1) mediates pomegranate juice protection from apoptosis in hypoxic BeWo cells but not in primary human trophoblasts. Placenta 2015; 36:847-53. [PMID: 26028238 DOI: 10.1016/j.placenta.2015.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/09/2015] [Accepted: 05/07/2015] [Indexed: 02/07/2023]
Abstract
INTRODUCTION N-Myc downstream-regulated gene 1 (NDRG1) expression is increased in placentas of human pregnancies with intrauterine growth restriction and in hypoxic cultured primary trophoblasts. We previously showed that elevated NDRG1 decreases trophoblast apoptosis induced by hypoxia. Separately, we found that pomegranate juice (PJ) decreases cell death induced by hypoxia in trophoblasts. Here, we test the hypothesis that PJ protects trophoblasts from hypoxia-induced apoptosis by modulating NDRG1 expression. METHODS Quantitative rtPCR was used to investigate the effects of PJ treatment on mRNA levels of 22 candidate genes involved in apoptosis, oxidative stress, and differentiation in trophoblasts. Western blotting and immunofluorescence were used to analyze NDRG1 protein levels. siRNA-mediated NDRG1 knockdown was used to investigate the role of NDRG1 in response to PJ in hypoxic BeWo choriocarcinoma cells and hypoxic cultured primary human trophoblasts. RESULTS The mRNA levels of eight genes were altered, with NDRG1 showing the largest response to PJ and thus, we pursued the role of NDRG1 here. PJ significantly increased NDRG1 protein expression in primary trophoblasts and in BeWo cells. Knockdown of NDRG1 in hypoxic BeWo cells in the presence of PJ yielded increased apoptosis. In contrast, knockdown of NDRG1 in hypoxic primary trophoblasts in the presence of PJ did not increase apoptosis. DISCUSSION We conclude that the PJ-mediated decrease in cell death in hypoxia is partially mediated by NDRG1 in BeWo cells but not in primary trophoblasts. The disparate effects of NDRG1 between BeWo cells and primary trophoblasts indicate caution is required when extrapolating from results obtained with cell lines to primary trophoblasts.
Collapse
Affiliation(s)
- B Chen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA.
| | - P G Zaveri
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - M S Longtine
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - D M Nelson
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
23
|
Liempi A, Castillo C, Cerda M, Droguett D, Duaso J, Barahona K, Hernández A, Díaz-Luján C, Fretes R, Härtel S, Kemmerling U. Trypanosoma cruzi infectivity assessment in "in vitro" culture systems by automated cell counting. Acta Trop 2015; 143:47-50. [PMID: 25553972 DOI: 10.1016/j.actatropica.2014.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/04/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Chagas disease is an endemic, neglected tropical disease in Latin America that is caused by the protozoan parasite Trypanosoma cruzi. In vitro models constitute the first experimental approach to study the physiopathology of the disease and to assay potential new trypanocidal agents. Here, we report and describe clearly the use of commercial software (MATLAB(®)) to quantify T. cruzi amastigotes and infected mammalian cells (BeWo) and compared this analysis with the manual one. There was no statistically significant difference between the manual and the automatic quantification of the parasite; the two methods showed a correlation analysis r(2) value of 0.9159. The most significant advantage of the automatic quantification was the efficiency of the analysis. The drawback of this automated cell counting method was that some parasites were assigned to the wrong BeWo cell, however this data did not exceed 5% when adequate experimental conditions were chosen. We conclude that this quantification method constitutes an excellent tool for evaluating the parasite load in cells and therefore constitutes an easy and reliable ways to study parasite infectivity.
Collapse
|
24
|
Liempi A, Castillo C, Duaso J, Droguett D, Sandoval A, Barahona K, Hernández A, Galanti N, Maya JD, Kemmerling U. Trypanosoma cruzi induces trophoblast differentiation: a potential local antiparasitic mechanism of the human placenta? Placenta 2014; 35:1035-42. [PMID: 25315217 DOI: 10.1016/j.placenta.2014.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The congenital transmission of Trypanosoma cruzi (T. cruzi) is responsible for one-third of new Chagas disease cases each year. During congenital transmission, the parasite breaks down the placental barrier formed by the trophoblast, basal laminae and villous stroma. The observation that only 5% of infected mothers transmit the parasite to the fetus implies that the placenta may impair parasite transmission. The trophoblast undergoes continuous epithelial turnover, which is considered part of innate immunity. Therefore, we propose that T. cruzi induces differentiation in the trophoblast as part of a local antiparasitic mechanism of the placenta. METHODS We analyzed β-human chorionic gonadotropin (β-hCG) and syncytin protein expression in HPCVE and BeWo cells using immunofluorescence and western blotting. Additionally, β-hCG secretion into the culture medium was measured by ELISA. We assessed the differentiation of trophoblastic cells in BeWo cells using the two-color fusion assay and by determining desmoplakin re-distribution. RESULTS T. cruzi trypomastigotes induce β-hCG secretion and protein expression as well as syncytin protein expression in HPCVE and BeWo cells. Additionally, the parasite induces the trophoblast fusion of BeWo cells. DISCUSSION T. cruzi induces differentiation of the trophoblast, which may contribute to increase the trophoblast turnover. The turnover could be a component of local antiparasitic mechanisms in the human placenta.
Collapse
Affiliation(s)
- A Liempi
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - C Castillo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - J Duaso
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - D Droguett
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Estomatología, Facultad de Ciencias de la Salud, Universidad de Talca, Chile
| | - A Sandoval
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - K Barahona
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - A Hernández
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - N Galanti
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - J D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - U Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
25
|
Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency. Stem Cell Res 2014; 13:478-91. [PMID: 25239494 DOI: 10.1016/j.scr.2014.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/24/2014] [Accepted: 07/22/2014] [Indexed: 12/15/2022] Open
Abstract
Dysfunctional stem cell differentiation into placental lineages is associated with gestational diseases. Of the differentiated lineages available to trophoblast stem cells (TSC), elevated O2 and mitochondrial function are necessary to placental lineages at the maternal-placental surface and important in the etiology of preeclampsia. TSC lineage imbalance leads to embryonic failure during uterine implantation. Stress at implantation exacerbates stem cell depletion by decreasing proliferation and increasing differentiation. In an implantation site O2 is normally ~2%. In culture, exposure to 2% O2 and fibroblast growth factor 4 (FGF4) enabled the highest mouse TSC multipotency and proliferation. In contrast, hypoxic stress (0.5% O2) initiated the most TSC differentiation after 24h despite exposure to FGF4. However, hypoxic stress supported differentiation poorly after 4-7 days, despite FGF4 removal. At all tested O2 levels, FGF4 maintained Warburg metabolism; mitochondrial inactivity and aerobic glycolysis. However, hypoxic stress suppressed mitochondrial membrane potential and maintained low mitochondrial cytochrome c oxidase (oxidative phosphorylation/OxPhos), and high pyruvate kinase M2 (glycolysis) despite FGF4 removal. Inhibiting OxPhos inhibited optimum differentiation at 20% O2. Moreover, adding differentiation-inducing hyperosmolar stress failed to induce differentiation during hypoxia. Thus, differentiation depended on OxPhos at 20% O2; hypoxic and hyperosmolar stresses did not induce differentiation at 0.5% O2. Hypoxia-limited differentiation and mitochondrial inhibition and activation suggest that differentiation into two lineages of the labyrinthine placenta requires O2>0.5-2% and mitochondrial function. Stress-activated protein kinase increases an early lineage and suppresses later lineages in proportion to the deviation from optimal O2 for multipotency, thus it is the first enzyme reported to prioritize differentiation.
Collapse
|
26
|
Riddell MR, Winkler-Lowen B, Jiang Y, Davidge ST, Guilbert LJ. Pleiotropic actions of forskolin result in phosphatidylserine exposure in primary trophoblasts. PLoS One 2013; 8:e81273. [PMID: 24339915 PMCID: PMC3855289 DOI: 10.1371/journal.pone.0081273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022] Open
Abstract
Forskolin is an extract of the Coleus forskholii plant that is widely used in cell physiology to raise intracellular cAMP levels. In the field of trophoblast biology, forskolin is one of the primary treatments used to induce trophoblastic cellular fusion. The syncytiotrophoblast (ST) is a continuous multinucleated cell in the human placenta that separates maternal from fetal circulations and can only expand by fusion with its stem cell, the cytotrophoblast (CT). Functional investigation of any aspect of ST physiology requires in vitro differentiation of CT and de novo ST formation, thus selecting the most appropriate differentiation agent for the hypothesis being investigated is necessary as well as addressing potential off-target effects. Previous studies, using forskolin to induce fusion in trophoblastic cell lines, identified phosphatidylserine (PS) externalization to be essential for trophoblast fusion and showed that widespread PS externalization is present even after fusion has been achieved. PS is a membrane phospholipid that is primarily localized to the inner-membrane leaflet. Externalization of PS is a hallmark of early apoptosis and is involved in cellular fusion of myocytes and macrophages. We were interested to examine whether PS externalization was also involved in primary trophoblast fusion. We show widespread PS externalization occurs after 72 hours when fusion was stimulated with forskolin, but not when stimulated with the cell permeant cAMP analog Br-cAMP. Using a forskolin analog, 1,9-dideoxyforskolin, which stimulates membrane transporters but not adenylate cyclase, we found that widespread PS externalization required both increased intracellular cAMP levels and stimulation of membrane transporters. Treatment of primary trophoblasts with Br-cAMP alone did not result in widespread PS externalization despite high levels of cellular fusion. Thus, we concluded that widespread PS externalization is independent of trophoblast fusion and, importantly, provide evidence that the common differentiation agent forskolin has previously unappreciated pleiotropic effects on trophoblastic cells.
Collapse
Affiliation(s)
- Meghan R. Riddell
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bonnie Winkler-Lowen
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Yanyan Jiang
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T. Davidge
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| | - Larry J. Guilbert
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Brocato B, Zoerner AA, Janjetovic Z, Skobowiat C, Gupta S, Moore BM, Slominski A, Zhang J, Schenone M, Phinehas R, Ferry RJ, Dick E, Hubbard GB, Mari G, Schlabritz-Loutsevitch N. Endocannabinoid crosstalk between placenta and maternal fat in a baboon model (Papio spp.) of obesity. Placenta 2013; 34:983-9. [PMID: 24008071 DOI: 10.1016/j.placenta.2013.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/26/2013] [Accepted: 08/09/2013] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Maternal obesity (MO) remains a serious obstetric problem with acute and chronic morbidities for both mothers and offspring. The mechanisms underlying these adverse consequences of MO remain unknown. Endocannabinoids (ECB) are neuromodulatory lipids released from adipocytes and other tissues. Metabolic crosstalk between placenta and adipocytes may mediate sequelae of MO. The goal of this study was to elucidate placental and systemic ECB in MO. MATERIAL AND METHODS Placentas, sera, and subcutaneous fat were collected at Cesarean sections performed near term (0.9 G) in four non-obese (nOB) and four obese (OB) baboons (Papio spp.). Concentrations of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured by liquid chromatography coupled to tandem mass spectrometry. AEA and 2-AG pathways were characterized in placentas by Q-RT-PCR, Western blot and immunohistochemistry. RESULTS Placental 2-AG levels were lower and maternal fat AEA levels were higher in OB (1254.1 ± 401.3 nmol/kg and 17.3 ± 4 nmol/kg) vs. nOB (3124.2 ± 557.3 nmol/kg and 3.1 ± 0.6 nmol/kg) animals. Concentrations of 2-AG correlated positively between maternal fat and placenta (r = 0.82, p = 0.013), but correlated negatively with maternal leptin concentrations (r = -0.72, p = 0.04 and r = -0.83, p = 0.01, respectively). CONCLUSION This is the first study to demonstrate differential ECB pathway regulation in maternal fat and placenta in MO. Differential regulation and function exist for AEA and 2-AG as the major ECB pathways in placenta.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/blood
- Arachidonic Acids/metabolism
- Biological Transport
- Chromatography, High Pressure Liquid
- Disease Models, Animal
- Endocannabinoids/blood
- Endocannabinoids/metabolism
- Female
- Gene Expression Regulation, Developmental
- Glycerides/blood
- Glycerides/metabolism
- Leptin/blood
- Obesity/blood
- Obesity/metabolism
- Obesity/pathology
- Papio
- Placenta/metabolism
- Placenta/pathology
- Polyunsaturated Alkamides/blood
- Polyunsaturated Alkamides/metabolism
- Pregnancy
- Pregnancy Complications/blood
- Pregnancy Complications/metabolism
- Pregnancy Complications/pathology
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/biosynthesis
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid/biosynthesis
- Receptors, Cannabinoid/genetics
- Receptors, Cannabinoid/metabolism
- Subcutaneous Fat, Abdominal/metabolism
- Subcutaneous Fat, Abdominal/pathology
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- B Brocato
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Castillo C, Villarroel A, Duaso J, Galanti N, Cabrera G, Maya JD, Kemmerling U. Phospholipase C gamma and ERK1/2 Mitogen Activated Kinase Pathways are differentially modulated by Trypanosoma cruzi during tissue invasion in human placenta. Exp Parasitol 2013; 133:12-7. [DOI: 10.1016/j.exppara.2012.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/08/2012] [Accepted: 10/19/2012] [Indexed: 02/07/2023]
|
29
|
Crowe A, Keelan JA. Development of a Model for Functional Studies of ABCG2 (Breast Cancer Resistance Protein) Efflux Employing a Standard BeWo Clone (B24). Assay Drug Dev Technol 2012; 10:476-84. [DOI: 10.1089/adt.2011.441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Andrew Crowe
- School of Pharmacy and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Jeffrey A. Keelan
- School of Women's and Infants Health, University of Western Australia, Crawley, Australia
| |
Collapse
|
30
|
Fretes RE, Kemmerling U. Mechanism of Trypanosoma cruzi Placenta Invasion and Infection: The Use of Human Chorionic Villi Explants. J Trop Med 2012; 2012:614820. [PMID: 22701129 PMCID: PMC3369486 DOI: 10.1155/2012/614820] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/06/2012] [Accepted: 02/14/2012] [Indexed: 11/28/2022] Open
Abstract
Congenital Chagas disease, a neglected tropical disease, endemic in Latin America, is associated with premature labor and miscarriage. During vertical transmission the parasite Trypanosoma cruzi (T. cruzi) crosses the placental barrier. However, the exact mechanism of the placental infection remains unclear. We review the congenital transmission of T. cruzi, particularly the role of possible local placental factors that contribute to the vertical transmission of the parasite. Additionally, we analyze the different methods available for studying the congenital transmission of the parasite. In that context, the ex vivo infection with T. cruzi trypomastigotes of human placental chorionic villi constitutes an excellent tool for studying parasite infection strategies as well as possible local antiparasitic mechanisms.
Collapse
Affiliation(s)
- Ricardo E. Fretes
- Department of Histology and Embryology, Faculty of Medicine, Universidad Nacional Córdoba, 5000 Cordoba, Argentina
- IICSHUM and Cathedra of Histology, Embryology and Genetic, Health Department, Universidad Nacional La Rioja, 5300 La Rioja, Argentina
| | - Ulrike Kemmerling
- Program of Anatomy and Developmental Biology, Institute for Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| |
Collapse
|
31
|
Thresholds for indirect DNA damage across cellular barriers for orthopaedic biomaterials. Biomaterials 2010; 31:4477-83. [DOI: 10.1016/j.biomaterials.2010.02.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 02/12/2010] [Indexed: 12/12/2022]
|
32
|
Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, Surprenant A, Lopez-Castejon G, Mann S, Davis SA, Hails LA, Ingham E, Verkade P, Lane J, Heesom K, Newson R, Case CP. Nanoparticles can cause DNA damage across a cellular barrier. NATURE NANOTECHNOLOGY 2009; 4:876-883. [PMID: 19893513 DOI: 10.1038/nnano.2009.313] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/21/2009] [Indexed: 05/28/2023]
Abstract
The increasing use of nanoparticles in medicine has raised concerns over their ability to gain access to privileged sites in the body. Here, we show that cobalt-chromium nanoparticles (29.5 +/- 6.3 nm in diameter) can damage human fibroblast cells across an intact cellular barrier without having to cross the barrier. The damage is mediated by a novel mechanism involving transmission of purine nucleotides (such as ATP) and intercellular signalling within the barrier through connexin gap junctions or hemichannels and pannexin channels. The outcome, which includes DNA damage without significant cell death, is different from that observed in cells subjected to direct exposure to nanoparticles. Our results suggest the importance of indirect effects when evaluating the safety of nanoparticles. The potential damage to tissues located behind cellular barriers needs to be considered when using nanoparticles for targeting diseased states.
Collapse
Affiliation(s)
- Gevdeep Bhabra
- Bristol Implant Research Centre, Southmead Hospital, Bristol, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|