1
|
Li L, Xiao H, Wu X, Tang Z, Khoury JD, Wang J, Wan S. RanBALL: An Ensemble Random Projection Model for Identifying Subtypes of B-cell Acute Lymphoblastic Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614777. [PMID: 39386448 PMCID: PMC11463541 DOI: 10.1101/2024.09.24.614777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
As the most common pediatric malignancy, B-cell acute lymphoblastic leukemia (B-ALL) has multiple distinct subtypes characterized by recurrent and sporadic somatic and germline genetic alterations. Identification of B-ALL subtypes can facilitate risk stratification and enable tailored therapeutic approaches. Existing methods for B-ALL subtyping primarily depend on immunophenotypic, cytogenetic and genomic analyses, which would be costly, complicated, and laborious in clinical practice applications. To overcome these challenges, we present RanBALL (an Ensemble Random Projection-Based Model for Identifying B-Cell Acute Lymphoblastic Leukemia Subtypes), an accurate and cost-effective model for B-ALL subtype identification based on transcriptomic profiling only. RanBALL leverages random projection (RP) to construct an ensemble of dimension-reduced multi-class support vector machine (SVM) classifiers for B-ALL subtyping. Results based on 100 times 5-fold cross validation tests for >1700 B-ALL patients demonstrated that the proposed model achieved an accuracy of 93.35%, indicating promising prediction capabilities of RanBALL for B-ALL subtyping. The high accuracies of RanBALL suggested that our model could effectively capture underlying patterns of transcriptomic profiling for accurate B-ALL subtype identification. We believe RanBALL will facilitate the discovery of B-ALL subtype-specific marker genes and therapeutic targets, and eventually have consequential positive impacts on downstream risk stratification and tailored treatment design.
Collapse
Affiliation(s)
- Lusheng Li
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hanyu Xiao
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xinchao Wu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zhenya Tang
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joseph D. Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jieqiong Wang
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Daugaliyeva A, Daugaliyeva S, Kydyr N, Peletto S. Molecular typing methods to characterize Brucella spp. from animals: A review. Vet World 2024; 17:1778-1788. [PMID: 39328439 PMCID: PMC11422631 DOI: 10.14202/vetworld.2024.1778-1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 09/28/2024] Open
Abstract
Brucellosis is an infectious disease of animals that can infect humans. The disease causes significant economic losses and threatens human health. A timely and accurate disease diagnosis plays a vital role in the identification of brucellosis. In addition to traditional diagnostic methods, molecular methods allow diagnosis and typing of the causative agent of brucellosis. This review will discuss various methods, such as Bruce-ladder, Suiladder, high-resolution melt analysis, restriction fragment length polymorphism, multilocus sequence typing, multilocus variable-number tandem repeat analysis, and whole-genome sequencing single-nucleotide polymorphism, for the molecular typing of Brucella and discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Aida Daugaliyeva
- LLP "Kazakh Research Institute for Livestock and Fodder Production," St. Zhandosova 51, Almaty 050035, Kazakhstan
| | - Saule Daugaliyeva
- LLP "Scientific Production Center of Microbiology and Virology," Bogenbay Batyr Str. 105, Almaty 050010, Kazakhstan
| | - Nazerke Kydyr
- LLP "Kazakh Research Institute for Livestock and Fodder Production," St. Zhandosova 51, Almaty 050035, Kazakhstan
| | - Simone Peletto
- Experimental Zooprofilactic Institute of Piedmont, Liguria and Aosta Valley, Via Bologna 148, 10154 Turin, Italy
| |
Collapse
|
3
|
Peng H, Yi Y, Li J, Qing Y, Zhai X, Deng Y, Tian J, Zhang J, Hu Y, Qin X, Lu Y, Yao Y, Wang S, Zheng Y. A haplotype-resolved genome assembly of Malus domestica 'Red Fuji'. Sci Data 2024; 11:592. [PMID: 38844753 PMCID: PMC11156929 DOI: 10.1038/s41597-024-03401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
The 'Red Fuji' apple (Malus domestica), is one of the most important and popular economic crops worldwide in the fruit industry. Using PacBio HiFi long reads and Hi-C reads, we assembled a high-quality haplotype-resolved genome of 'Red Fuji', with sizes of 668.7 and 668.8 Mb, and N50 sizes of 34.1 and 31.4 Mb. About 97.2% of sequences were anchored in 34 chromosomes. We annotated both haploid genomes, identifying a total of 95,439 protein-coding genes in the two haplotype genomes, with 98% functional annotation. The haplotype-resolved genome of 'Red Fuji' apple stands as a precise benchmark for an array of analyses, such as comparative genomics, transcriptomics, and allelic expression studies. This comprehensive resource is paramount in unraveling variations in allelic expression, advancing quality improvements, and refining breeding efforts.
Collapse
Affiliation(s)
- Haixu Peng
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Yating Yi
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Jinrong Li
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - You Qing
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Xuyang Zhai
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Yulin Deng
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Ji Tian
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Jie Zhang
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Yujing Hu
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Xiaoxiao Qin
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Yanfen Lu
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Yuncong Yao
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Sen Wang
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China.
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China.
| | - Yi Zheng
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China.
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China.
| |
Collapse
|
4
|
Li L, Xie W, Zhan L, Wen S, Luo X, Xu S, Cai Y, Tang W, Wang Q, Li M, Xie Z, Deng L, Zhu H, Yu G. Resolving tumor evolution: a phylogenetic approach. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:97-106. [PMID: 39282584 PMCID: PMC11390690 DOI: 10.1016/j.jncc.2024.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 09/19/2024] Open
Abstract
The evolutionary dynamics of cancer, characterized by its profound heterogeneity, demand sophisticated tools for a holistic understanding. This review delves into tumor phylogenetics, an essential approach bridging evolutionary biology with oncology, offering unparalleled insights into cancer's evolutionary trajectory. We provide an overview of the workflow, encompassing study design, data acquisition, and phylogeny reconstruction. Notably, the integration of diverse data sets emerges as a transformative step, enhancing the depth and breadth of evolutionary insights. With this integrated perspective, tumor phylogenetics stands poised to redefine our understanding of cancer evolution and influence therapeutic strategies.
Collapse
Affiliation(s)
- Lin Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenqin Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Zhan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaodi Wen
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital, Nanjing, China
| | - Xiao Luo
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuangbin Xu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Division of Laboratory Medicine, Microbiome Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yantong Cai
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wenli Tang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qianwen Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ming Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zijing Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Deng
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongyuan Zhu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Pan L, Parini P, Tremmel R, Loscalzo J, Lauschke VM, Maron BA, Paci P, Ernberg I, Tan NS, Liao Z, Yin W, Rengarajan S, Li X. Single Cell Atlas: a single-cell multi-omics human cell encyclopedia. Genome Biol 2024; 25:104. [PMID: 38641842 PMCID: PMC11027364 DOI: 10.1186/s13059-024-03246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
Single-cell sequencing datasets are key in biology and medicine for unraveling insights into heterogeneous cell populations with unprecedented resolution. Here, we construct a single-cell multi-omics map of human tissues through in-depth characterizations of datasets from five single-cell omics, spatial transcriptomics, and two bulk omics across 125 healthy adult and fetal tissues. We construct its complement web-based platform, the Single Cell Atlas (SCA, www.singlecellatlas.org ), to enable vast interactive data exploration of deep multi-omics signatures across human fetal and adult tissues. The atlas resources and database queries aspire to serve as a one-stop, comprehensive, and time-effective resource for various omics studies.
Collapse
Affiliation(s)
- Lu Pan
- Institute of Environmental Medicine, Karolinska Institutet, 171 65, Solna, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Medicine, and, Department of Laboratory Medicine , Karolinska Institutet, 141 86, Stockholm, Sweden
- Theme Inflammation and Ageing, Medicine Unit, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Volker M Lauschke
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Solna, Sweden
| | - Bradley A Maron
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, 00185, Rome, Italy
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Solna, Sweden
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore
| | - Zehuan Liao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Solna, Sweden
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Weiyao Yin
- Institute of Environmental Medicine, Karolinska Institutet, 171 65, Solna, Sweden
| | - Sundararaman Rengarajan
- Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Solna, Sweden.
| |
Collapse
|
6
|
Ji Q, Jiang X, Wang M, Xin Z, Zhang W, Qu J, Liu GH. Multimodal Omics Approaches to Aging and Age-Related Diseases. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:56-71. [PMID: 38605908 PMCID: PMC11003952 DOI: 10.1007/s43657-023-00125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 04/13/2024]
Abstract
Aging is associated with a progressive decline in physiological capacities and an increased risk of aging-associated disorders. An increasing body of experimental evidence shows that aging is a complex biological process coordinately regulated by multiple factors at different molecular layers. Thus, it is difficult to delineate the overall systematic aging changes based on single-layer data. Instead, multimodal omics approaches, in which data are acquired and analyzed using complementary omics technologies, such as genomics, transcriptomics, and epigenomics, are needed for gaining insights into the precise molecular regulatory mechanisms that trigger aging. In recent years, multimodal omics sequencing technologies that can reveal complex regulatory networks and specific phenotypic changes have been developed and widely applied to decode aging and age-related diseases. This review summarizes the classification and progress of multimodal omics approaches, as well as the rapidly growing number of articles reporting on their application in the field of aging research, and outlines new developments in the clinical treatment of age-related diseases based on omics technologies.
Collapse
Affiliation(s)
- Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Minxian Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zijuan Xin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190 China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190 China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053 China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| |
Collapse
|
7
|
Qin R, Wang X, Fan T, Wu T, Lu C, Shao X, Yin L. Bilateral inflammatory recurrence of HER-2 positive breast cancer: a unique case report and literature review. Front Oncol 2024; 14:1276637. [PMID: 38283858 PMCID: PMC10811202 DOI: 10.3389/fonc.2024.1276637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Inflammatory breast cancer (IBC) is an aggressive and rare form of breast cancer with a poor prognosis. The occurrence of bilateral IBC in a short period of time is extremely rare. In this case report, a 54-year-old woman diagnosed with invasive ductal carcinoma of the left breast underwent lumpectomy, lymph node dissection, chemotherapy, and radiotherapy but opted against trastuzumab treatment. Four years later, she experienced bilateral breast inflammation, skin changes, edema, and heat (calor). Biopsies confirmed breast cancer metastasis to both breasts. Whole-Exome Sequencing revealed genetic mutations, including PIK3CA and C4orf54, in both primary and recurrent tumors, with significant downregulation in the recurrent tumors. KEGG analysis suggested potential enrichment of axon guidance signal pathways in both tumors. The patient showed a partial response after treatment with liposome paclitaxel, along with targeted therapy using trastuzumab and pertuzumab. This case report sheds light on the rare occurrence of bilateral inflammatory breast cancer post-HER-2 treatment and highlights the importance of genetic profiling in understanding the disease. Further research on clinical targets for breast cancer management is warranted.
Collapse
Affiliation(s)
- Rong Qin
- Department of Medical Oncology, Jiangsu University Affiliated People’s Hospital, Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
| | - Xiangyang Wang
- Department of Traditional Chinese Medicine, Jiangsu University Affiliated People’s Hospital, Clinical Medical College, Nanjing University of Chinese Medicine, Zhenjiang, China
| | - Tingting Fan
- Department of Medical Oncology, Jiangsu University Affiliated People’s Hospital, Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
| | - Ting Wu
- Department of Pathology, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Chao Lu
- Department of Medical Iconography, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Xun Shao
- Department of Nuclear Medicine, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Liang Yin
- Department of Breast Surgery, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| |
Collapse
|
8
|
Xue H, Li J, Ma L, Yang X, Ren L, Zhao Z, Wang J, Zhao Y, Zhao Z, Zhang X, Liu Z, Li Z. Seroprevalence and Molecular Characterization of Brucella abortus from the Himalayan Marmot in Qinghai, China. Infect Drug Resist 2023; 16:7721-7734. [PMID: 38144222 PMCID: PMC10749113 DOI: 10.2147/idr.s436950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023] Open
Abstract
Objective Brucellosis is a serious public health issue in Qinghai (QH), China. Surveying the seroprevalence and isolation of B. abortus strains from marmots is key to understanding the role of wildlife in the maintenance and spread of brucellosis. Methods In this study, a set of methods, including a serology survey, bacteriology, antibiotic susceptibility, molecular genotyping (MLST and MLVA), and genome sequencing, were employed to characterize the two B. abortus strains. Results The seroprevalence of brucellosis in marmots was 7.0% (80/1146) by serum tube agglutination test (SAT); one Brucella strain was recovered from these positive samples, and another Brucella strain from a human. Two strains were identified as B. abortus bv. 1 and were susceptible to all eight drugs examined. The distribution patterns of the accessory genes, virulence associated genes, and resistance genes of the two strains were consistent, and there was excellent collinearity between the two strains on chromosome I, but they had significant SVs in chromosome II, including inversions and translocations. MLST genotyping identified two B. abortus strains as ST2, and MLVA-16 analysis showed that the two strains clustered with strains from northern China. WGS-SNP phylogenetic analysis showed that the strains were genetically homogeneous with strains from the northern region, implying that strains from a common lineage were spread continuously in different regions and hosts. Conclusion Seroprevalence and molecular clues demonstrated frequent direct or indirect contact between sheep/goats, cattle, and marmots, implying that wildlife plays a vital role in the maintenance and spread of B. abortus in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Hongmei Xue
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Jiquan Li
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Li Ma
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Xuxin Yang
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Lingling Ren
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Zhijun Zhao
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Jianling Wang
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Yuanbo Zhao
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Zhongzhi Zhao
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Xuefei Zhang
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Zhiguo Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zhenjun Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Zhang S, Zhang T, Fu Y. Proteome-wide structural analysis quantifies structural conservation across distant species. Genome Res 2023; 33:1975-1993. [PMID: 37993136 PMCID: PMC10760455 DOI: 10.1101/gr.277771.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
Traditional evolutionary biology research mainly relies on sequence information to infer evolutionary relationships between genes or proteins. In contrast, protein structural information has long been overlooked, although structures are more conserved and closely linked to the functions than the sequences. To address this gap, we conducted a proteome-wide structural analysis using experimental and computed protein structures for organisms from the three distinct domains, including Homo sapiens (eukarya), Escherichia coli (bacteria), and Methanocaldococcus jannaschii (archaea). We reveal the distribution of structural similarity and sequence identity at the genomic level and characterize the twilight zone, where signals obtained from sequence alignment are blurred and evolutionary relationships cannot be inferred unambiguously. We find that structurally similar homologous protein pairs in the twilight zone account for ∼0.004%-0.021% of all possible protein pair combinations, which translates to ∼8%-32% of the protein-coding genes, depending on the species under comparison. In addition, by comparing the structural homologs, we show that human proteins involved in the energy supply are more similar to their E. coli homologs, whereas proteins relating to the central dogma are more similar to their M. jannaschii homologs. We also identify a bacterial GPCR homolog in the E. coli proteome that displays distinctive domain architecture. Our results shed light on the characteristics of the twilight zone and the origin of different pathways from a protein structure perspective, highlighting an exciting new frontier in evolutionary biology.
Collapse
Affiliation(s)
- Shijie Zhang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Teng Zhang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuan Fu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
10
|
Hong K, Radian Y, Manda T, Xu H, Luo Y. The Development of Plant Genome Sequencing Technology and Its Conservation and Application in Endangered Gymnosperms. PLANTS (BASEL, SWITZERLAND) 2023; 12:4006. [PMID: 38068641 PMCID: PMC10708082 DOI: 10.3390/plants12234006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024]
Abstract
Genome sequencing is widely recognized as a fundamental pillar in genetic research and legal studies of biological phenomena, providing essential insights for genetic investigations and legal analyses of biological events. The field of genome sequencing has experienced significant progress due to rapid improvements in scientific and technological developments. These advancements encompass not only significant improvements in the speed and quality of sequencing but also provide an unparalleled opportunity to explore the subtle complexities of genomes, particularly in the context of rare species. Such a wide range of possibilities has successfully supported the validation of plant gene functions and the refinement of precision breeding methodologies. This expanded scope now includes a comprehensive exploration of the current state and conservation efforts of gymnosperm gene sequencing, offering invaluable insights into their genomic landscapes. This comprehensive review elucidates the trajectory of development and the diverse applications of genome sequencing. It encompasses various domains, including crop breeding, responses to abiotic stress, species evolutionary dynamics, biodiversity, and the unique challenges faced in the conservation and utilization of gymnosperms. It highlights both ongoing challenges and the unveiling of forthcoming developmental trajectories.
Collapse
Affiliation(s)
- Kaiyue Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yasmina Radian
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Teja Manda
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Haibin Xu
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yuming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
| |
Collapse
|
11
|
Han T, Liao X, Guo Z, Chen JY, He C, Lu Z. Comparative transcriptome analysis reveals deep molecular landscapes in stony coral Montipora clade. Front Genet 2023; 14:1297483. [PMID: 38028626 PMCID: PMC10662330 DOI: 10.3389/fgene.2023.1297483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Coral reefs, among the most invaluable ecosystems in the world, face escalating threats from climate change and anthropogenic activities. To decipher the genetic underpinnings of coral adaptation and resilience, we undertook comprehensive transcriptome profiling of two emblematic coral species, Montipora foliosa and Montipora capricornis, leveraging PacBio Iso-Seq technology. These species were strategically selected for their ecological significance and their taxonomic proximity within the Anthozoa class. Methods: Our study encompassed the generation of pristine transcriptomes, followed by thorough functional annotation via diverse databases. Subsequently, we quantified transcript abundance and scrutinized gene expression patterns, revealing notable distinctions between the two species. Results: Intriguingly, shared orthologous genes were identified across a spectrum of coral species, highlighting a substantial genetic conservation within scleractinian corals. Importantly, a subset of genes, integral to biomineralization processes, emerged as exclusive to scleractinian corals, shedding light on their intricate evolutionary history. Furthermore, we discerned pronounced upregulation of genes linked to immunity, stress response, and oxidative-reduction processes in M. foliosa relative to M. capricornis. These findings hint at the presence of more robust mechanisms in M. foliosa for maintaining internal equilibrium and effectively navigating external challenges, underpinning its potential ecological advantage. Beyond elucidating genetic adaptation in corals, our research underscores the urgency of preserving genetic diversity within coral populations. Discussion: These insights hold promise for informed conservation strategies aimed at safeguarding these imperiled ecosystems, bearing ecological and economic significance. In synthesis, our study seamlessly integrates genomic inquiry with ecological relevance, bridging the gap between molecular insights and the imperative to conserve coral reefs in the face of mounting threats.
Collapse
Affiliation(s)
- Tingyu Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xin Liao
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Beihai, China
| | - Zhuojun Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - J.-Y. Chen
- Nanjing Institute of Geology and Paleontology, Nanjing, China
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
12
|
Wang B, Lei X, Tian W, Perez-Rathke A, Tseng YY, Liang J. Structure-based pathogenicity relationship identifier for predicting effects of single missense variants and discovery of higher-order cancer susceptibility clusters of mutations. Brief Bioinform 2023; 24:bbad206. [PMID: 37332013 PMCID: PMC10359089 DOI: 10.1093/bib/bbad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 05/13/2023] [Indexed: 06/20/2023] Open
Abstract
We report the structure-based pathogenicity relationship identifier (SPRI), a novel computational tool for accurate evaluation of pathological effects of missense single mutations and prediction of higher-order spatially organized units of mutational clusters. SPRI can effectively extract properties determining pathogenicity encoded in protein structures, and can identify deleterious missense mutations of germ line origin associated with Mendelian diseases, as well as mutations of somatic origin associated with cancer drivers. It compares favorably to other methods in predicting deleterious mutations. Furthermore, SPRI can discover spatially organized pathogenic higher-order spatial clusters (patHOS) of deleterious mutations, including those of low recurrence, and can be used for discovery of candidate cancer driver genes and driver mutations. We further demonstrate that SPRI can take advantage of AlphaFold2 predicted structures and can be deployed for saturation mutation analysis of the whole human proteome.
Collapse
Affiliation(s)
- Boshen Wang
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill, Department of Biomedical Engineering, University of Illinois at Chicago, W103 Suite, 820 S Wood St, 60612 IL, USA
| | - Xue Lei
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill, Department of Biomedical Engineering, University of Illinois at Chicago, W103 Suite, 820 S Wood St, 60612 IL, USA
| | - Wei Tian
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill, Department of Biomedical Engineering, University of Illinois at Chicago, W103 Suite, 820 S Wood St, 60612 IL, USA
| | - Alan Perez-Rathke
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill, Department of Biomedical Engineering, University of Illinois at Chicago, W103 Suite, 820 S Wood St, 60612 IL, USA
| | - Yan-Yuan Tseng
- Center for Molecular Medicine and Genetics, Biochemistry and Molecular Biology Department, School of Medicine, Wayne State University, 540 E. Canfield Avenue, 48201MI, USA
| | - Jie Liang
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill, Department of Biomedical Engineering, University of Illinois at Chicago, W103 Suite, 820 S Wood St, 60612 IL, USA
| |
Collapse
|
13
|
Ye B, Wang B, Liang J. Predicting Pathology of Missense Mutations through Protein-Specific Evolutionary Pattern. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082878 PMCID: PMC10984725 DOI: 10.1109/embc40787.2023.10339993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Missense mutations, which are single base pair genetic alternation resulting in a different amino acid, are among the most common occurring variants in exon regions of the human genome and may lead to diseases. Thus to assess the effects of missense mutations, it is essential to investigate the evolutionary history of the protein under selection pressures. In this study, we employ a continuous-time Markov model to investigate the evolutionary patterns in protein sequences and a Bayesian Markov chain Monte Carlo method to estimate the substitution rates for protein of interest, from which we obtain scoring matrices. Specifically, we examined the evolutionary patterns of protein sequences containing missense mutations using a species tree to define the phylogeny of the protein of interest. We thoroughly studied the evolutionary pattern of human muscle glycogen phosphorylase containing 127 known missense mutations, and identified characteristic evolutionary patterns in 63 proteins with 2,238 missense mutations, including both deleterious and neutral effects. Our results show that the estimated protein-specific evolutionary pattern-based scoring matrices (PSM) lead to higher sensitivity in detecting the pathological effects of missense mutations, compared to the general evolutionary pattern-based scoring matrix of Blosum62 (BL62) matrix. By incorporating PSM, the performance of a recently released structure-based model SPRI for evaluating missense mutations is further improved.
Collapse
|
14
|
Nandhini K, Tamilpavai G. An Optimal Stacked ResNet-BiLSTM-Based Accurate Detection and Classification of Genetic Disorders. Neural Process Lett 2023:1-22. [PMID: 37359129 PMCID: PMC10196306 DOI: 10.1007/s11063-023-11195-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 06/28/2023]
Abstract
Gene is located inside the nuclease and the genetic data is contained in deoxyribonucleic acid (DNA). A person's gene count ranges from 20,000 to 30,000. Even a minor alteration to the DNA sequence can be harmful if it affects the cell's fundamental functions. As a result, the gene begins to act abnormally. The sorts of genetic abnormalities brought on by mutation include chromosomal disorders, complex disorders, and single-gene disorders. Therefore, a detailed diagnosis method is required. Thus, we proposed an Elephant Herd Optimization-Whale Optimization Algorithm (EHO-WOA) optimized Stacked ResNet-Bidirectional Long Term Short Memory (ResNet-BiLSTM) model for detecting genetic disorders. Here, a hybrid EHO-WOA algorithm is presented to assess the Stacked ResNet-BiLSTM architecture's fitness. The ResNet-BiLSTM design uses the genotype and gene expression phenotype as input data. Furthermore, the proposed method identifies rare genetic disorders such as Angelman Syndrome, Rett Syndrome, and Prader-Willi Syndrome. It demonstrates the effectiveness of the developed model with greater accuracy, recall, specificity, precision, and f1-score. Thus, a wide range of DNA deficiencies including Prader-Willi syndrome, Marfan syndrome, Early Onset Morbid Obesity, Rett syndrome, and Angelman syndrome are predicted accurately.
Collapse
Affiliation(s)
- K. Nandhini
- Department of Computer Science and Engineering, Anna University, Chennai, India
| | - G. Tamilpavai
- Department of Computer Science and Engineering, Government College of Engineering, Tirunelveli, India
| |
Collapse
|
15
|
Bopape FL, Chiulele RM, Shonhai A, Gwata ET. The Genome of a Pigeonpea Compatible Rhizobial Strain '10ap3' Appears to Lack Common Nodulation Genes. Genes (Basel) 2023; 14:1084. [PMID: 37239443 PMCID: PMC10217799 DOI: 10.3390/genes14051084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
The symbiotic fixation of atmospheric nitrogen (N) in root nodules of tropical legumes such as pigeonpea (Cajanus cajan) is a complex process, which is regulated by multiple genetic factors at the host plant genotype microsymbiont interface. The process involves multiple genes with various modes of action and is accomplished only when both organisms are compatible. Therefore, it is necessary to develop tools for the genetic manipulation of the host or bacterium towards improving N fixation. In this study, we sequenced the genome of a robust rhizobial strain, Rhizobium tropici '10ap3' that was compatible with pigeonpea, and we determined its genome size. The genome consisted of a large circular chromosome (6,297,373 bp) and contained 6013 genes of which 99.13% were coding sequences. However only 5833 of the genes were associated with proteins that could be assigned to specific functions. The genes for nitrogen, phosphorus and iron metabolism, stress response and the adenosine monophosphate nucleoside for purine conversion were present in the genome. However, the genome contained no common nod genes, suggesting that an alternative pathway involving a purine derivative was involved in the symbiotic association with pigeonpea.
Collapse
Affiliation(s)
- Francina L. Bopape
- Agricultural Research Council, Plant Health and Protection (ARC-PHP), Private Bag X134, Pretoria 0121, South Africa
- Department of Plant and Soil Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Rogerio M. Chiulele
- Centre of Excellence in Agri-Food Systems and Nutrition, Eduardo Mondlane University, 5th Floor, Rectory Building, 25th June Square, Maputo 1100, Mozambique;
- Faculty of Agronomy and Forestry Engineering, Eduardo Mondlane University, Julius Nyerere Avenue, Maputo 1100, Mozambique
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Eastonce T. Gwata
- Department of Plant and Soil Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| |
Collapse
|
16
|
Nguyen XTA, Moekotte L, Plomp AS, Bergen AA, van Genderen MM, Boon CJF. Retinitis Pigmentosa: Current Clinical Management and Emerging Therapies. Int J Mol Sci 2023; 24:ijms24087481. [PMID: 37108642 PMCID: PMC10139437 DOI: 10.3390/ijms24087481] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Retinitis pigmentosa (RP) comprises a group of inherited retinal dystrophies characterized by the degeneration of rod photoreceptors, followed by the degeneration of cone photoreceptors. As a result of photoreceptor degeneration, affected individuals experience gradual loss of visual function, with primary symptoms of progressive nyctalopia, constricted visual fields and, ultimately, central vision loss. The onset, severity and clinical course of RP shows great variability and unpredictability, with most patients already experiencing some degree of visual disability in childhood. While RP is currently untreatable for the majority of patients, significant efforts have been made in the development of genetic therapies, which offer new hope for treatment for patients affected by inherited retinal dystrophies. In this exciting era of emerging gene therapies, it remains imperative to continue supporting patients with RP using all available options to manage their condition. Patients with RP experience a wide variety of physical, mental and social-emotional difficulties during their lifetime, of which some require timely intervention. This review aims to familiarize readers with clinical management options that are currently available for patients with RP.
Collapse
Affiliation(s)
- Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lude Moekotte
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Astrid S Plomp
- Department of Clinical Genetics, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Bartiméus, Diagnostic Center for Complex Visual Disorders, 3703 AJ Zeist, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
17
|
The study of selection signature and its applications on identification of candidate genes using whole genome sequencing data in chicken - a review. Poult Sci 2023; 102:102657. [PMID: 37054499 PMCID: PMC10123265 DOI: 10.1016/j.psj.2023.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Chicken is a major source of protein for the increasing human population and is useful for research purposes. There are almost 1,600 distinct regional breeds of chicken across the globe, among which a large body of genetic and phenotypic variations has been accumulated due to extensive natural and artificial selection. Moreover, natural selection is a crucial force for animal domestication. Several approaches have been adopted to detect selection signatures in different breeds of chicken using whole genome sequencing (WGS) data including integrated haplotype score (iHS), cross-populated extend haplotype homozygosity test (XP-EHH), fixation index (FST), cross-population composite likelihood ratio (XP-CLR), nucleotide diversity (Pi), and others. In addition, gene enrichment analyses are utilized to determine KEGG pathways and gene ontology (GO) terms related to traits of interest in chicken. Herein, we review different studies that have adopted diverse approaches to detect selection signatures in different breeds of chicken. This review systematically summarizes different findings on selection signatures and related candidate genes in chickens. Future studies could combine different selection signatures approaches to strengthen the quality of the results thereby providing more affirmative inference. This would further aid in deciphering the importance of selection in chicken conservation for the increasing human population.
Collapse
|
18
|
Li J, Wang H, Zhu J, Yang Q, Luan Y, Shi L, Molina-Mora JA, Zheng Y. De novo assembly of a chromosome-level reference genome of the ornamental butterfly Sericinus montelus based on nanopore sequencing and Hi-C analysis. Front Genet 2023; 14:1107353. [PMID: 36968580 PMCID: PMC10030965 DOI: 10.3389/fgene.2023.1107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Sericinus montelus (Lepidoptera, Papilionidae, Parnassiinae) is a high-value ornamental swallowtail butterfly species widely distributed in Northern and Central China, Japan, Korea, and Russia. The larval stage of this species feeds exclusively on Aristolochia plants. The Aristolochia species is well known for its high levels of aristolochic acids (AAs), which have been found to be carcinogenic for numerous animals. The swallowtail butterfly is among the few that can feed on these toxic host plants. However, the genetic adaptation of S. montelus to confer new abilities for AA tolerance has not yet been well explored, largely due to the limited genomic resources of this species. This study aimed to present a chromosome-level reference genome for S. montelus using the Oxford Nanopore long-read sequencing, Illumina short-read sequencing, and Hi-C technology. The final assembly was composed of 581.44 Mb with an expected genome size of 619.27 Mb. Further, 99.98% of the bases could be anchored onto 30 chromosomes. The N50 of contigs and scaffolds was 5.74 and 19.12 Mb, respectively. Approximately 48.86% of the assembled genome was suggested to be repeat elements, and 13,720 protein-coding genes were predicted in the current assembly. The phylogenetic analysis indicated that S. montelus diverged from the common ancestor of swallowtails about 58.57-80.46 million years ago. Compared with related species, S. montelus showed a significant expansion of P450 gene family members, and positive selections on eloa, heatr1, and aph1a resulted in the AA tolerance for S. montelus larva. The de novo assembly of a high-quality reference genome for S. montelus provided a fundamental genomic tool for future research on evolution, genome genetics, and toxicology of the swallowtail butterflies.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- Grandomics Biosciences Institute, Wuhan, China
| | - Haiyan Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | | | - Qi Yang
- Grandomics Biosciences Institute, Wuhan, China
| | - Yang Luan
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - José Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- *Correspondence: José Arturo Molina-Mora, ; Yuanting Zheng,
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- *Correspondence: José Arturo Molina-Mora, ; Yuanting Zheng,
| |
Collapse
|
19
|
Chemical Communication of the Head Lice with the Human Host. CURRENT TROPICAL MEDICINE REPORTS 2022. [DOI: 10.1007/s40475-022-00279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Andrews PW, Barbaric I, Benvenisty N, Draper JS, Ludwig T, Merkle FT, Sato Y, Spits C, Stacey GN, Wang H, Pera MF. The consequences of recurrent genetic and epigenetic variants in human pluripotent stem cells. Cell Stem Cell 2022; 29:1624-1636. [PMID: 36459966 DOI: 10.1016/j.stem.2022.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
It is well established that human pluripotent stem cells (hPSCs) can acquire genetic and epigenetic changes during culture in vitro. Given the increasing use of hPSCs in research and therapy and the vast expansion in the number of hPSC lines available for researchers, the International Society for Stem Cell Research has recognized the need to reassess quality control standards for ensuring the genetic integrity of hPSCs. Here, we summarize current knowledge of the nature of recurrent genetic and epigenetic variants in hPSC culture, the methods for their detection, and what is known concerning their effects on cell behavior in vitro or in vivo. We argue that the potential consequences of low-level contamination of cell therapy products with cells bearing oncogenic variants are essentially unknown at present. We highlight the key challenges facing the field with particular reference to safety assessment of hPSC-derived cellular therapeutics.
Collapse
Affiliation(s)
- Peter W Andrews
- Centre for Stem Cell Biology, School of Biological Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Steering Committee, International Stem Cell Initiative
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biological Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Steering Committee, International Stem Cell Initiative
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel; Steering Committee, International Stem Cell Initiative
| | - Jonathan S Draper
- Stem Cell Network, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Steering Committee, International Stem Cell Initiative
| | - Tenneille Ludwig
- WiCell Research Institute, Madison, WI, USA; University of Wisconsin-Madison, Madison, WI 53719, USA; Steering Committee, International Stem Cell Initiative
| | - Florian T Merkle
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0QQ, UK; Steering Committee, International Stem Cell Initiative
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki Ward, Kawasaki City, Kanagawa 210-9501, Japan; Steering Committee, International Stem Cell Initiative
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Steering Committee, International Stem Cell Initiative
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, UK; National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Steering Committee, International Stem Cell Initiative
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China; Steering Committee, International Stem Cell Initiative
| | - Martin F Pera
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Steering Committee, International Stem Cell Initiative.
| |
Collapse
|
21
|
Rodríguez-Aguilar ED, Martínez-Barnetche J, Rodríguez MH. Three highly variable genome regions of the four dengue virus serotypes can accurately recapitulate the CDS phylogeny. MethodsX 2022; 9:101859. [PMID: 36187156 PMCID: PMC9516459 DOI: 10.1016/j.mex.2022.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022] Open
Abstract
The circulation of the four-dengue virus (DENV) serotypes has significantly increased in recent years, accompanied by an increase in viral genetic diversity. In order to conduct disease surveillance and understand DENV evolution and its effects on virus transmission and disease, efficient and accurate methods for phylogenetic classification are required. Phylogenetic analysis of different viral genes sequences is the most used method, the envelope gene (E) being the most frequently selected target. We explored the genetic variability of the four DENV serotypes throughout their complete coding sequence (CDS) of sequences available in GenBank and used genomic regions of different variability rate to recapitulate the phylogeny obtained with the DENV CDS. Our results indicate that the use of high or low variable regions accurately recapitulate the phylogeny obtained with CDS of sequences from different DENV genotypes. However, when analyzing the phylogeny of a single genotype, highly variable regions performed better in recapitulating the distance branch length, topology, and support of the CDS phylogeny. The use of three concatenated highly variable regions was not statistically different in distance branch length and support to that obtained in CDS phylogeny.•This study demonstrated the ability of highly variable regions of the DENV genome to recapitulate the phylogeny obtained with the full coding sequence (CDS).•The use of genomic regions of high or low variability did not affect the performance in recapitulating the phylogeny obtained with CDS from different genotypes. However, when phylogeny was analyzed for sequences from a single genotype, highly variable regions performed better in recapitulating the distance branch length, topology, and support of the CDS phylogeny.•The use of concatenated highly variable genome regions represent a useful option for recapitulating genome-wide phylogenies in analyses of sequences belonging to the same DENV genotype.
Collapse
|
22
|
Hu Y, Mangal S, Zhang L, Zhou X. Automated filtering of genome-wide large deletions through an ensemble deep learning framework. Methods 2022; 206:77-86. [PMID: 36038049 DOI: 10.1016/j.ymeth.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022] Open
Abstract
Computational methods based on whole genome linked-reads and short-reads have been successful in genome assembly and detection of structural variants (SVs). Numerous variant callers that rely on linked-reads and short reads can detect genetic variations, including SVs. A shortcoming of existing tools is a propensity for overestimating SVs, especially for deletions. Optimizing the advantages of linked-read and short-read sequencing technologies would thus benefit from an additional step to effectively identify and eliminate false positive large deletions. Here, we introduce a novel tool, AquilaDeepFilter, aiming to automatically filter genome-wide false positive large deletions. Our approach relies on transforming sequencing data into an image and then relying on convolutional neural networks to improve classification of candidate deletions as such. Input data take into account multiple alignment signals including read depth, split reads and discordant read pairs. We tested the performance of AquilaDeepFilter on five linked-reads and short-read libraries sequenced from the well-studied NA24385 sample, validated against the Genome in a Bottle benchmark. To demonstrate the filtering ability of AquilaDeepFilter, we utilized the SV calls from three upstream SV detection tools including Aquila, Aquila_stLFR and Delly as the baseline. We showed that AquilaDeepFilter increased precision while preserving the recall rate of all three tools. The overall F1-score improved by an average 20% on linked-reads and by an average of 15% on short-read data. AquilaDeepFilter also compared favorably to existing deep learning based methods for SV filtering, such as DeepSVFilter. AquilaDeepFilter is thus an effective SV refinement framework that can improve SV calling for both linked-reads and short-read data.
Collapse
Affiliation(s)
- Yunfei Hu
- Department of Computer Science, Vanderbilt University, 2301 Vanderbilt Place, 37235 Nashville, USA
| | - Sanidhya Mangal
- Department of Computer Science, Vanderbilt University, 2301 Vanderbilt Place, 37235 Nashville, USA
| | - Lu Zhang
- Department of Computer Science, Hong Kong Baptist University, Room R708, Sir Run Run Shaw Building, Kowloon Tong, Hong Kong
| | - Xin Zhou
- Department of Computer Science, Vanderbilt University, 2301 Vanderbilt Place, 37235 Nashville, USA; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, 37235, Nashville, USA; Data Science Institute, Vanderbilt University, Sony Building, 1400 18th Ave S Building, Suite 2000, 37212 Nashville, USA.
| |
Collapse
|
23
|
Zhang Y, Xu S, Wen Z, Gao J, Li S, Weissman SM, Pan X. Sample-multiplexing approaches for single-cell sequencing. Cell Mol Life Sci 2022; 79:466. [PMID: 35927335 PMCID: PMC11073057 DOI: 10.1007/s00018-022-04482-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/25/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022]
Abstract
Single-cell sequencing is widely used in biological and medical studies. However, its application with multiple samples is hindered by inefficient sample processing, high experimental costs, ambiguous identification of true single cells, and technical batch effects. Here, we introduce sample-multiplexing approaches for single-cell sequencing in transcriptomics, epigenomics, genomics, and multiomics. In single-cell transcriptomics, sample multiplexing uses variants of native or artificial features as sample markers, enabling sample pooling and decoding. Such features include: (1) natural genetic variation, (2) nucleotide-barcode anchoring on cellular or nuclear membranes, (3) nucleotide-barcode internalization to the cytoplasm or nucleus, (4) vector-based barcode expression in cells, and (5) nucleotide-barcode incorporation during library construction. Other single-cell omics methods are based on similar concepts, particularly single-cell combinatorial indexing. These methods overcome current challenges, while enabling super-loading of single cells. Finally, selection guidelines are presented that can accelerate technological application.
Collapse
Affiliation(s)
- Yulong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Siwen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, 510515, China
- SequMed BioTechnology, Inc., Guangzhou, Guangdong, China
| | - Zebin Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinyu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shuang Li
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Sherman M Weissman
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520-8005, USA
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, 510515, China.
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| |
Collapse
|
24
|
Wang Z, Wiggs JL, Aung T, Khawaja AP, Khor CC. The genetic basis for adult onset glaucoma: Recent advances and future directions. Prog Retin Eye Res 2022; 90:101066. [PMID: 35589495 DOI: 10.1016/j.preteyeres.2022.101066] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/26/2022]
Abstract
Glaucoma, a diverse group of eye disorders that results in the degeneration of retinal ganglion cells, is the world's leading cause of irreversible blindness. Apart from age and ancestry, the major risk factor for glaucoma is increased intraocular pressure (IOP). In primary open-angle glaucoma (POAG), the anterior chamber angle is open but there is resistance to aqueous outflow. In primary angle-closure glaucoma (PACG), crowding of the anterior chamber angle due to anatomical alterations impede aqueous drainage through the angle. In exfoliation syndrome and exfoliation glaucoma, deposition of white flaky material throughout the anterior chamber directly interfere with aqueous outflow. Observational studies have established that there is a strong hereditable component for glaucoma onset and progression. Indeed, a succession of genome wide association studies (GWAS) that were centered upon single nucleotide polymorphisms (SNP) have yielded more than a hundred genetic markers associated with glaucoma risk. However, a shortcoming of GWAS studies is the difficulty in identifying the actual effector genes responsible for disease pathogenesis. Building on the foundation laid by GWAS studies, research groups have recently begun to perform whole exome-sequencing to evaluate the contribution of protein-changing, coding sequence genetic variants to glaucoma risk. The adoption of this technology in both large population-based studies as well as family studies are revealing the presence of novel, protein-changing genetic variants that could enrich our understanding of the pathogenesis of glaucoma. This review will cover recent advances in the genetics of primary open-angle glaucoma, primary angle-closure glaucoma and exfoliation glaucoma, which collectively make up the vast majority of all glaucoma cases in the world today. We will discuss how recent advances in research methodology have uncovered new risk genes, and how follow up biological investigations could be undertaken in order to define how the risk encoded by a genetic sequence variant comes into play in patients. We will also hypothesise how data arising from characterising these genetic variants could be utilized to predict glaucoma risk and the manner in which new therapeutic strategies might be informed.
Collapse
Affiliation(s)
- Zhenxun Wang
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tin Aung
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Chiea Chuen Khor
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| |
Collapse
|
25
|
Malatji DP. Breeding of African sheep reared under low-input/output smallholder production systems for trypanotolerance. Vet World 2022; 15:1031-1043. [PMID: 35698514 PMCID: PMC9178589 DOI: 10.14202/vetworld.2022.1031-1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Trypanosomiasis is a disease caused by unicellular protozoan parasites. Small ruminants succumb to trypanosomiasis in areas of high tsetse fly challenge, resulting in serious economic loss often to farmers in low-input smallholder systems. At present, trypanosomiasis is treated with trypanocidal drugs, but access to these can be limited, and increasing parasite resistance raises questions about their efficacy. The development of trypanotolerance in small ruminant flocks through targeted breeding strategies is considered a sustainable and economical option for controlling African trypanosomiasis. Recently, quantitative trait loci (QTLs) associated with trypanotolerance traits in sheep have been reported. The results of these studies form the basis for more studies to identify QTLs associated with trypanosomiasis resistance, particularly in African livestock species. For example, signatures of positive selection for trypanotolerance have been identified using genome-wide single-nucleotide polymorphism data. However, there are several challenges in performing genetic analyses using data from low-input smallholder systems, including a lack of recorded pedigree and production records and the need for large sample sizes when flock sizes are often fewer than 50 animals. Breeding strategies to improve trypanotolerance should also preserve existing genetic diversity as well as minimize excessive genetic introgression by trypanosusceptible breeds. This review discusses the possibilities of breeding for trypanosome tolerance/resistance in low-input/low-output small ruminant production systems. Potential challenges are outlined, and potential available genetic resources are described as a foundation for future work.
Collapse
Affiliation(s)
- Dikeledi P. Malatji
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, Gauteng Province, South Africa
| |
Collapse
|
26
|
Varillas-Delgado D, Del Coso J, Gutiérrez-Hellín J, Aguilar-Navarro M, Muñoz A, Maestro A, Morencos E. Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. Eur J Appl Physiol 2022; 122:1811-1830. [PMID: 35428907 PMCID: PMC9012664 DOI: 10.1007/s00421-022-04945-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/29/2022] [Indexed: 12/19/2022]
Abstract
The impact of genetics on physiology and sports performance is one of the most debated research aspects in sports sciences. Nearly 200 genetic polymorphisms have been found to influence sports performance traits, and over 20 polymorphisms may condition the status of the elite athlete. However, with the current evidence, it is certainly too early a stage to determine how to use genotyping as a tool for predicting exercise/sports performance or improving current methods of training. Research on this topic presents methodological limitations such as the lack of measurement of valid exercise performance phenotypes that make the study results difficult to interpret. Additionally, many studies present an insufficient cohort of athletes, or their classification as elite is dubious, which may introduce expectancy effects. Finally, the assessment of a progressively higher number of polymorphisms in the studies and the introduction of new analysis tools, such as the total genotype score (TGS) and genome-wide association studies (GWAS), have produced a considerable advance in the power of the analyses and a change from the study of single variants to determine pathways and systems associated with performance. The purpose of the present study was to comprehensively review evidence on the impact of genetics on endurance- and power-based exercise performance to clearly determine the potential utility of genotyping for detecting sports talent, enhancing training, or preventing exercise-related injuries, and to present an overview of recent research that has attempted to correct the methodological issues found in previous investigations.
Collapse
Affiliation(s)
- David Varillas-Delgado
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain.
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, 28933, Madrid, Spain
| | - Jorge Gutiérrez-Hellín
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Millán Aguilar-Navarro
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Alejandro Muñoz
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | | | - Esther Morencos
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
27
|
A comprehensive WGS-based pipeline for the identification of new candidate genes in inherited retinal dystrophies. NPJ Genom Med 2022; 7:17. [PMID: 35246562 PMCID: PMC8897414 DOI: 10.1038/s41525-022-00286-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/04/2022] [Indexed: 12/11/2022] Open
Abstract
To enhance the use of Whole Genome Sequencing (WGS) in clinical practice, it is still necessary to standardize data analysis pipelines. Herein, we aimed to define a WGS-based algorithm for the accurate interpretation of variants in inherited retinal dystrophies (IRD). This study comprised 429 phenotyped individuals divided into three cohorts. A comparison of 14 pathogenicity predictors, and the re-definition of its cutoffs, were performed using panel-sequencing curated data from 209 genetically diagnosed individuals with IRD (training cohort). The optimal tool combinations, previously validated in 50 additional IRD individuals, were also tested in patients with hereditary cancer (n = 109), and with neurological diseases (n = 47) to evaluate the translational value of this approach (validation cohort). Then, our workflow was applied for the WGS-data analysis of 14 individuals from genetically undiagnosed IRD families (discovery cohort). The statistical analysis showed that the optimal filtering combination included CADDv1.6, MAPP, Grantham, and SIFT tools. Our pipeline allowed the identification of one homozygous variant in the candidate gene CFAP20 (c.337 C > T; p.Arg113Trp), a conserved ciliary gene, which was abundantly expressed in human retina and was located in the photoreceptors layer. Although further studies are needed, we propose CFAP20 as a candidate gene for autosomal recessive retinitis pigmentosa. Moreover, we offer a translational strategy for accurate WGS-data prioritization, which is essential for the advancement of personalized medicine.
Collapse
|
28
|
Coppée R, Mama A, Sarrasin V, Kamaliddin C, Adoux L, Palazzo L, Ndam NT, Letourneur F, Ariey F, Houzé S, Clain J. 5WBF: a low-cost and straightforward whole blood filtration method suitable for whole-genome sequencing of Plasmodium falciparum clinical isolates. Malar J 2022; 21:51. [PMID: 35172825 PMCID: PMC8848818 DOI: 10.1186/s12936-022-04073-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Background Whole-genome sequencing (WGS) is becoming increasingly helpful to assist malaria control programmes. A major drawback of this approach is the large amount of human DNA compared to parasite DNA extracted from unprocessed whole blood. As red blood cells (RBCs) have a diameter of about 7–8 µm and exhibit some deformability, it was hypothesized that cheap and commercially available 5 µm filters might retain leukocytes but much less of Plasmodium falciparum-infected RBCs. This study aimed to test the hypothesis that such a filtration method, named 5WBF (for 5 µm Whole Blood Filtration), may provide highly enriched parasite material suitable for P. falciparum WGS. Methods Whole blood was collected from five patients experiencing a P. falciparum malaria episode (ring-stage parasitaemia range: 0.04–5.5%) and from mock samples obtained by mixing synchronized, ring-stage cultured P. falciparum 3D7 parasites with uninfected human whole blood (final parasitaemia range: 0.02–1.1%). These whole blood samples (50 to 400 µL) were diluted in RPMI 1640 medium or PBS 1× buffer and filtered with a syringe connected to a 5 µm commercial filter. DNA was extracted from 5WBF-treated and unfiltered counterpart blood samples using a commercial kit. The 5WBF method was evaluated on the ratios of parasite:human DNA assessed by qPCR and by sequencing depth and percentages of coverage from WGS data (Illumina NextSeq 500). As a comparison, the popular selective whole-genome amplification (sWGA) method, which does not rely on blood filtration, was applied to the unfiltered counterpart blood samples. Results After applying 5WBF, qPCR indicated an average of twofold loss in the amount of parasite template DNA (Pf ARN18S gene) and from 4096- to 65,536-fold loss of human template DNA (human β actin gene). WGS analyses revealed that > 95% of the parasite nuclear and organellar genomes were all covered at ≥ 10× depth for all samples tested. In sWGA counterparts, the organellar genomes were poorly covered and from 47.7 to 82.1% of the nuclear genome was covered at ≥ 10× depth depending on parasitaemia. Sequence reads were homogeneously distributed across gene sequences for 5WBF-treated samples (n = 5460 genes; mean coverage: 91×; median coverage: 93×; 5th percentile: 70×; 95th percentile: 103×), allowing the identification of gene copy number variations such as for gch1. This later analysis was not possible for sWGA-treated samples, as a much more heterogeneous distribution of reads across gene sequences was observed (mean coverage: 80×; median coverage: 51×; 5th percentile: 7×; 95th percentile: 245×). Conclusions The novel 5WBF leucodepletion method is simple to implement and based on commercially available, standardized 5 µm filters which cost from 1.0 to 1.7€ per unit depending on suppliers. 5WBF permits extensive genome-wide analysis of P. falciparum ring-stage isolates from minute amounts of whole blood even with parasitaemias as low as 0.02%. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04073-1.
Collapse
Affiliation(s)
- Romain Coppée
- Université de Paris, IRD, MERIT, 75006, Paris, France. .,Université de Paris, Infection Modelisation Antimicrobial Evolution (IAME), Inserm UMR1137, 75018, Paris, France.
| | - Atikatou Mama
- Université de Paris, IRD, MERIT, 75006, Paris, France
| | - Véronique Sarrasin
- Université de Paris, IRD, MERIT, 75006, Paris, France.,Centre National de Référence du Paludisme, AP-HP, Hôpital Bichat - Claude-Bernard, 75018, Paris, France
| | - Claire Kamaliddin
- Centre National de Référence du Paludisme, AP-HP, Hôpital Bichat - Claude-Bernard, 75018, Paris, France.,Cumming School of Medicine, Pathology and Laboratory Medicine, The University of Calgary, Calgary, AB, Canada
| | - Lucie Adoux
- Cochin Institute, INSERM U1016, UMR CNRS 8104, Genomic Platform, 75014, Paris, France
| | | | | | - Franck Letourneur
- Cochin Institute, INSERM U1016, UMR CNRS 8104, Genomic Platform, 75014, Paris, France
| | - Frédéric Ariey
- Université de Paris, INSERM 1016, Service de Parasitologie-Mycologie Hôpital Cochin, 75014, Paris, France
| | - Sandrine Houzé
- Université de Paris, IRD, MERIT, 75006, Paris, France.,Centre National de Référence du Paludisme, AP-HP, Hôpital Bichat - Claude-Bernard, 75018, Paris, France
| | - Jérôme Clain
- Université de Paris, IRD, MERIT, 75006, Paris, France. .,Centre National de Référence du Paludisme, AP-HP, Hôpital Bichat - Claude-Bernard, 75018, Paris, France.
| |
Collapse
|
29
|
Abstract
BACKGROUND To date, besides genome-wide association studies, a variety of other genetic analyses (e.g. polygenic risk scores, whole-exome sequencing and whole-genome sequencing) have been conducted, and a large amount of data has been gathered for investigating the involvement of common, rare and very rare types of DNA sequence variants in bipolar disorder. Also, non-invasive neuroimaging methods can be used to quantify changes in brain structure and function in patients with bipolar disorder. AIMS To provide a comprehensive assessment of genetic findings associated with bipolar disorder, based on the evaluation of different genomic approaches and neuroimaging studies. METHOD We conducted a PubMed search of all relevant literatures from the beginning to the present, by querying related search strings. RESULTS ANK3, CACNA1C, SYNE1, ODZ4 and TRANK1 are five genes that have been replicated as key gene candidates in bipolar disorder pathophysiology, through the investigated studies. The percentage of phenotypic variance explained by the identified variants is small (approximately 4.7%). Bipolar disorder polygenic risk scores are associated with other psychiatric phenotypes. The ENIGMA-BD studies show a replicable pattern of lower cortical thickness, altered white matter integrity and smaller subcortical volumes in bipolar disorder. CONCLUSIONS The low amount of explained phenotypic variance highlights the need for further large-scale investigations, especially among non-European populations, to achieve a more complete understanding of the genetic architecture of bipolar disorder and the missing heritability. Combining neuroimaging data with genetic data in large-scale studies might help researchers acquire a better knowledge of the engaged brain regions in bipolar disorder.
Collapse
Affiliation(s)
- Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Germany
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, USA
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, USA
| |
Collapse
|
30
|
FgSfl1 and Its Conserved PKA Phosphorylation Sites Are Important for Conidiation, Sexual Reproduction, and Pathogenesis in Fusarium graminearum. J Fungi (Basel) 2021; 7:jof7090755. [PMID: 34575793 PMCID: PMC8466192 DOI: 10.3390/jof7090755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022] Open
Abstract
The fungal plant pathogen, Fusarium graminearum, contains two genes, FgCPK1 and FgCPK2, encoding the catalytic subunits of cAMP-dependent protein kinase A. FgCPK1 and FgCPK2 are responsible for most of the PKA activities and have overlapping functions in various cellular processes in F. graminearum. The cpk1 cpk2 double mutant was significantly reduced in growth, rarely produced conidia, and was non-pathogenic. In this study, we found that the cpk1 cpk2 double mutant was unstable and produced fast-growing spontaneous sectors that were defective in plant infection. All spontaneous suppressor strains had mutations in FgSFL1, a transcription factor gene orthologous to SFL1 in yeast. Thirteen suppressor strains had non-sense mutations at Q501, three suppressor strains had frameshift mutations at W198, and five suppressor strains had mutations in the HSF binding domain of FgSfl1. Only one suppressor strain had both a non-synonymous mutation at H225 and a non-sense mutation at R490. We generated the SFL1 deletion mutant and found that it produced less than 2% of conidia than that of the wild-type strain PH-1. The sfl1 mutant was significantly reduced in the number of perithecia on carrot agar plates at 7 days post-fertilization (dpf). When incubated for more than 12 days, ascospore cirrhi were observed on the sfl1 mutant perithecia. The infection ability of the sfl1 deletion mutant was also obviously defective. Furthermore, we found that in addition to the S223 and S559 phosphorylation sites, FgSFL1 had another predicted phosphorylation site: T452. Interestingly, the S223 phosphorylation site was responsible for sexual reproduction, and the T452 phosphorylation site was responsible for growth and sexual reproduction. Only the S559 phosphorylation site was found to play an important role in conidiation, sexual reproduction, and infection. Overall, our results indicate that FgSFL1 and its conserved PKA phosphorylation sites are important for vegetative growth, conidiation, sexual reproduction, and pathogenesis in F. graminearum.
Collapse
|
31
|
Ahmed Z, Renart EG, Mishra D, Zeeshan S. JWES: a new pipeline for whole genome/exome sequence data processing, management, and gene-variant discovery, annotation, prediction, and genotyping. FEBS Open Bio 2021; 11:2441-2452. [PMID: 34370400 PMCID: PMC8409305 DOI: 10.1002/2211-5463.13261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 01/07/2023] Open
Abstract
Whole genome and exome sequencing (WGS/WES) are the most popular next‐generation sequencing (NGS) methodologies and are at present often used to detect rare and common genetic variants of clinical significance. We emphasize that automated sequence data processing, management, and visualization should be an indispensable component of modern WGS and WES data analysis for sequence assembly, variant detection (SNPs, SVs), imputation, and resolution of haplotypes. In this manuscript, we present a newly developed findable, accessible, interoperable, and reusable (FAIR) bioinformatics‐genomics pipeline Java based Whole Genome/Exome Sequence Data Processing Pipeline (JWES) for efficient variant discovery and interpretation, and big data modeling and visualization. JWES is a cross‐platform, user‐friendly, product line application, that entails three modules: (a) data processing, (b) storage, and (c) visualization. The data processing module performs a series of different tasks for variant calling, the data storage module efficiently manages high‐volume gene‐variant data, and the data visualization module supports variant data interpretation with Circos graphs. The performance of JWES was tested and validated in‐house with different experiments, using Microsoft Windows, macOS Big Sur, and UNIX operating systems. JWES is an open‐source and freely available pipeline, allowing scientists to take full advantage of all the computing resources available, without requiring much computer science knowledge. We have successfully applied JWES for processing, management, and gene‐variant discovery, annotation, prediction, and genotyping of WGS and WES data to analyze variable complex disorders. In summary, we report the performance of JWES with some reproducible case studies, using open access and in‐house generated, high‐quality datasets.
Collapse
Affiliation(s)
- Zeeshan Ahmed
- Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, New Brunswick, NJ, USA
| | - Eduard Gibert Renart
- Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Deepshikha Mishra
- Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
32
|
Garner E, Davis BC, Milligan E, Blair MF, Keenum I, Maile-Moskowitz A, Pan J, Gnegy M, Liguori K, Gupta S, Prussin AJ, Marr LC, Heath LS, Vikesland PJ, Zhang L, Pruden A. Next generation sequencing approaches to evaluate water and wastewater quality. WATER RESEARCH 2021; 194:116907. [PMID: 33610927 DOI: 10.1016/j.watres.2021.116907] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.
Collapse
Affiliation(s)
- Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, 1306 Evansdale Drive, Morgantown, WV 26505, United States.
| | - Benjamin C Davis
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Erin Milligan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Matthew Forrest Blair
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ishi Keenum
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ayella Maile-Moskowitz
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Jin Pan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Mariah Gnegy
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Krista Liguori
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Aaron J Prussin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Linsey C Marr
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Peter J Vikesland
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States.
| |
Collapse
|
33
|
Roberts HE, Lopopolo M, Pagnamenta AT, Sharma E, Parkes D, Lonie L, Freeman C, Knight SJL, Lunter G, Dreau H, Lockstone H, Taylor JC, Schuh A, Bowden R, Buck D. Short and long-read genome sequencing methodologies for somatic variant detection; genomic analysis of a patient with diffuse large B-cell lymphoma. Sci Rep 2021; 11:6408. [PMID: 33742045 PMCID: PMC7979876 DOI: 10.1038/s41598-021-85354-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in throughput and accuracy mean that the Oxford Nanopore Technologies PromethION platform is a now a viable solution for genome sequencing. Much of the validation of bioinformatic tools for this long-read data has focussed on calling germline variants (including structural variants). Somatic variants are outnumbered many-fold by germline variants and their detection is further complicated by the effects of tumour purity/subclonality. Here, we evaluate the extent to which Nanopore sequencing enables detection and analysis of somatic variation. We do this through sequencing tumour and germline genomes for a patient with diffuse B-cell lymphoma and comparing results with 150 bp short-read sequencing of the same samples. Calling germline single nucleotide variants (SNVs) from specific chromosomes of the long-read data achieved good specificity and sensitivity. However, results of somatic SNV calling highlight the need for the development of specialised joint calling algorithms. We find the comparative genome-wide performance of different tools varies significantly between structural variant types, and suggest long reads are especially advantageous for calling large somatic deletions and duplications. Finally, we highlight the utility of long reads for phasing clinically relevant variants, confirming that a somatic 1.6 Mb deletion and a p.(Arg249Met) mutation involving TP53 are oriented in trans.
Collapse
Affiliation(s)
- Hannah E Roberts
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Maria Lopopolo
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alistair T Pagnamenta
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Duncan Parkes
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lorne Lonie
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Colin Freeman
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Samantha J L Knight
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Gerton Lunter
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Epidemiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Helene Dreau
- Oxford University Hospitals NHS Trust, Oxford, UK
- Department of Haematology, University of Oxford, Oxford, UK
| | - Helen Lockstone
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jenny C Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK.
| | - Anna Schuh
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK.
- Oxford University Hospitals NHS Trust, Oxford, UK.
- Department of Oncology, University of Oxford, Oxford, UK.
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David Buck
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Prasad A, Bhargava H, Gupta A, Shukla N, Rajagopal S, Gupta S, Sharma A, Valadi J, Nigam V, Suravajhala P. Next Generation Sequencing. Adv Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
35
|
Byrd JB, Greene AC, Prasad DV, Jiang X, Greene CS. Responsible, practical genomic data sharing that accelerates research. Nat Rev Genet 2020; 21:615-629. [PMID: 32694666 PMCID: PMC7974070 DOI: 10.1038/s41576-020-0257-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Data sharing anchors reproducible science, but expectations and best practices are often nebulous. Communities of funders, researchers and publishers continue to grapple with what should be required or encouraged. To illuminate the rationales for sharing data, the technical challenges and the social and cultural challenges, we consider the stakeholders in the scientific enterprise. In biomedical research, participants are key among those stakeholders. Ethical sharing requires considering both the value of research efforts and the privacy costs for participants. We discuss current best practices for various types of genomic data, as well as opportunities to promote ethical data sharing that accelerates science by aligning incentives.
Collapse
Affiliation(s)
- James Brian Byrd
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Anna C Greene
- Alex's Lemonade Stand Foundation, Bala Cynwyd, PA, USA
| | | | - Xiaoqian Jiang
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Casey S Greene
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Abstract
The budding yeast, Saccharomyces cerevisiae, has been widely used for genetic studies of fundamental cellular functions. The isolation and analysis of yeast mutants is a commonly used and powerful technique to identify the genes that are involved in a process of interest. Furthermore, natural genetic variation among wild yeast strains has been studied for analysis of polygenic traits by quantitative trait loci mapping. Whole-genome sequencing, often combined with bulk segregant analysis, is a powerful technique that helps determine the identity of mutations causing a phenotype. Here, we describe protocols for the construction of libraries for S. cerevisiae whole-genome sequencing. We also present a bioinformatic pipeline to determine the genetic variants in a yeast strain using whole-genome sequencing data. This pipeline can also be used for analyzing Schizosaccharomyces pombe mutants. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Generation of haploid spores for bulk segregant analysis Basic Protocol 2: Extraction of genomic DNA from yeast cells Basic Protocol 3: Shearing of genomic DNA for library preparation Basic Protocol 4: Construction and amplification of DNA libraries Support Protocol 1: Annealing oligonucleotides for forming Y-adapters Support Protocol 2: Size selection and cleanup using SPRI beads Basic Protocol 5: Identification of genomic variants from sequencing data.
Collapse
Affiliation(s)
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
37
|
Khalyfa A, Sanz-Rubio D. Genetics and Extracellular Vesicles of Pediatrics Sleep Disordered Breathing and Epilepsy. Int J Mol Sci 2019; 20:ijms20215483. [PMID: 31689970 PMCID: PMC6862182 DOI: 10.3390/ijms20215483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
Sleep remains one of the least understood phenomena in biology, and sleep disturbances are one of the most common behavioral problems in childhood. The etiology of sleep disorders is complex and involves both genetic and environmental factors. Epilepsy is the most popular childhood neurological condition and is characterized by an enduring predisposition to generate epileptic seizures, and the neurobiological, cognitive, psychological, and social consequences of this condition. Sleep and epilepsy are interrelated, and the importance of sleep in epilepsy is less known. The state of sleep also influences whether a seizure will occur at a given time, and this differs considerably for various epilepsy syndromes. The development of epilepsy has been associated with single or multiple gene variants. The genetics of epilepsy is complex and disorders exhibit significant genetic heterogeneity and variability in the expressivity of seizures. Phenobarbital (PhB) is the most widely used antiepileptic drug. With its principal mechanism of action to prolong the opening time of the γ-aminobutyric acid (GABA)-A receptor-associated chloride channel, it enhances chloride anion influx into neurons, with subsequent hyperpolarization, thereby reducing excitability. Enzymes that metabolize pharmaceuticals including PhB are well known for having genetic polymorphisms that contribute to adverse drug–drug interactions. PhB metabolism is highly dependent upon the cytochrome P450 (CYP450) and genetic polymorphisms can lead to variability in active drug levels. The highly polymorphic CYP2C19 isozymes are responsible for metabolizing a large portion of routinely prescribed drugs and variants contribute significantly to adverse drug reactions and therapeutic failures. A limited number of CYP2C19 single nucleotide polymorphisms (SNPs) are involved in drug metabolism. Extracellular vesicles (EVs) are circular membrane fragments released from the endosomal compartment as exosomes are shed from the surfaces of the membranes of most cell types. Increasing evidence indicated that EVs play a pivotal role in cell-to-cell communication. Theses EVs may play an important role between sleep, epilepsy, and treatments. The discovery of exosomes provides potential strategies for the diagnosis and treatment of many diseases including neurocognitive deficit. The aim of this study is to better understand and provide further knowledge about the metabolism and interactions between phenobarbital and CYP2C19 polymorphisms in children with epilepsy, interplay between sleep, and EVs. Understanding this interplay between epilepsy and sleep is helpful in the optimal treatment of all patients with epileptic seizures. The use of genetics and extracellular vesicles as precision medicine for the diagnosis and treatment of children with sleep disorder will improve the prognosis and the quality of life in patients with epilepsy.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Pediatrics, Section of Sleep Medicine, The University of Chicago, Chicago, IL 60637, USA.
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| | - David Sanz-Rubio
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| |
Collapse
|
38
|
Amao JA, Barooah M, Omojasola PF. Comparative 16S rDNA metagenomics study of two samples of cassava peel heap from Nigeria and India. 3 Biotech 2019; 9:418. [PMID: 31696023 DOI: 10.1007/s13205-019-1941-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/10/2019] [Indexed: 11/28/2022] Open
Abstract
The microbiology of many cassava products and the wastes generated during the processing have been reported; however, majority of these reports used culture-dependent methods. This has resulted in a dearth of information on the bacterial diversity of cassava peels and peel heaps. Large amounts of cassava peels generated during the processing of cassava root are usually discharged on land or water as wastes and are allowed to rot in the open, especially in some developing countries. Culture-independent methods such as PCR-based amplification and sequencing of 16S rRNA genes, among others have been used in recent times to study the diversity of microbes in different environmental samples. In this study, bacterial isolates were screened for cellulase and xylanase enzyme activities on minimal agar and genomic DNA was isolated from cassava peel samples; metagenomics was carried out using MiSeq 2 × 300 with primers specific for V3-V4 bacterial region. Samples collected from Nigeria (AAG) had more species compared with samples from India (JHA) with 793 and 525 observed OTUs (operational taxonomic units), respectively. Five bacterial isolates from cassava peel-heap samples obtained from Ogbomoso, Nigeria showed no ability to produce cellulase enzyme, seven isolates from the Nigeria samples and three from Jorhat samples were positive for xylanase production; the highest amylase activity was shown by isolate AG18 (10,055 U/mL), while the lowest was recorded for isolate JA2 (2333 U/mL) with a significant difference observed in the amylase activities of isolates (p ≤ 0.05). Comparing the most abundant taxonomy for each of the samples at different taxonomic levels, the most abundant for sample AAG were phylum Firmicutes (42.11%), class Bacilli (41.27%), order Lactobacillales (33.11%), family Acetobacteraceae (31.30%), genus Acetobacter (30.02%) and unclassified species of Acetobacter (29.88%), while sample JHA had Actinobacteria (47.47%) as the highest phylum and class, order Actinomycetales (47.47%), family Brevibacteriaceae (46.97%), genus Brevibacterium (46.97%) and unclassified species of Brevibacterium (46.89%). This study provides an insight into the vast diversity of the bacteria associated with cassava peel heaps and the ability of some of the bacteria to produce selected extracellular enzymes.
Collapse
Affiliation(s)
- John Ayobami Amao
- 1Department of Microbiology, University of Ilorin, Ilorin, Nigeria
- 2Microbial Biotechnology Laboratory, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Madhumita Barooah
- 2Microbial Biotechnology Laboratory, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | | |
Collapse
|
39
|
Liu S, Ge F, Huang W, Lightfoot DA, Peng D. Effective identification of soybean candidate genes involved in resistance to soybean cyst nematode via direct whole genome re-sequencing of two segregating mutants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2677-2687. [PMID: 31250041 DOI: 10.1007/s00122-019-03381-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE Three soybean candidate genes involved in resistance to soybean cyst nematode race 4 were identified via direct whole genome re-sequencing of two segregating mutants. The genes conferring resistance to soybean cyst nematode (SCN) race 4 (Hg type 1.2.3.5.7) in soybean (Glycine max L. Merr.) remains unknown. Next generation sequencing-based methods identify a wide range of targets, it is difficult to identify genes underlying traits. Use of the MutMap and QTL-seq methods to identify trait candidate genes needs backcrossing and is very time-consuming. Here we report a simple method to effectively identify candidate genes involved in resistance to SCN race 4. Two ethane methylsulfonate mutagenized mutants of soybean 'PI 437654', whose SCN race 4-infection phenotype altered, were selected. Six relevant whole genomes were re-sequenced, and then calling of genomic variants (SNPs and InDels) was conducted and compared to 'Williams 82'. The comparison eliminated many genomic variants from the mutant lines that overlapped two non-phenotypic but mutant progeny plants, wild-type PI 437654 and 'Zhonghuang 13'. Finally, only 27 mutations were found among 10 genes. Of these 10 genes, 3 genes, Glyma.09g054000, Glyma.16g065700 and Glyma.18g192200 were overlapped between two phenotypic mutant progeny plants. Therefore, the three genes may be the candidate genes involved in resistance of PI 437654 to soybean cyst nematode race 4. This method simplifies the effective identification of candidate genes.
Collapse
Affiliation(s)
- Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Fengyong Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - David A Lightfoot
- College of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| |
Collapse
|
40
|
Farina R, Severi M, Carrieri A, Miotto E, Sabbioni S, Trombelli L, Scapoli C. Whole metagenomic shotgun sequencing of the subgingival microbiome of diabetics and non-diabetics with different periodontal conditions. Arch Oral Biol 2019; 104:13-23. [PMID: 31153098 DOI: 10.1016/j.archoralbio.2019.05.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of this study was to use high-resolution whole metagenomic shotgun sequencing to characterize the subgingival microbiome of patients with/without type 2 Diabetes Mellitus and with/without periodontitis. DESIGN Twelve subjects, falling into one of the four study groups based on the presence/absence of poorly controlled type 2 Diabetes Mellitus and moderate-severe periodontitis, were selected. For each eligible subject, subgingival plaque samples were collected at 4 sites, all representative of the periodontal condition of the individual (i.e., non-bleeding sulci in subjects without a history of periodontitis, bleeding pockets in patients with moderate-severe periodontitis). The subgingival microbiome was evaluated using high-resolution whole metagenomic shotgun sequencing. RESULTS The results showed that: (i) the presence of type 2 Diabetes Mellitus and/or periodontitis were associated with a tendency of the subgingival microbiome to decrease in richness and diversity; (ii) the presence of type 2 Diabetes Mellitus was not associated with significant differences in the relative abundance of one or more species in patients either with or without periodontitis; (iii) the presence of periodontitis was associated with a significantly higher relative abundance of Anaerolineaceae bacterium oral taxon 439 in type 2 Diabetes Mellitus patients. CONCLUSIONS Whole metagenomic shotgun sequencing of the subgingival microbiome was extremely effective in the detection of low-abundant taxon. Our results point out a significantly higher relative abundance of Anaerolineaceae bacterium oral taxon 439 in patients with moderate to severe periodontitis vs patients without history of periodontitis, which was maintained when the comparison was restricted to type 2 diabetics.
Collapse
Affiliation(s)
- Roberto Farina
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Italy; Operative Unit of Dentistry, University-Hospital of Ferrara, Italy.
| | - Mattia Severi
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Italy
| | - Alberto Carrieri
- Department of Life Sciences and Biotechnology - Section of Biology and Evolution, University of Ferrara, Italy
| | - Elena Miotto
- Department of Life Sciences and Biotechnology - Section of Pathology and Applied Microbiology,University of Ferrara, Italy
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnology - Section of Pathology and Applied Microbiology,University of Ferrara, Italy
| | - Leonardo Trombelli
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Italy; Operative Unit of Dentistry, University-Hospital of Ferrara, Italy
| | - Chiara Scapoli
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Italy; Department of Life Sciences and Biotechnology - Section of Biology and Evolution, University of Ferrara, Italy
| |
Collapse
|
41
|
McLennan EA, Wright BR, Belov K, Hogg CJ, Grueber CE. Too much of a good thing? Finding the most informative genetic data set to answer conservation questions. Mol Ecol Resour 2019; 19:659-671. [DOI: 10.1111/1755-0998.12997] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Elspeth A. McLennan
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Belinda R. Wright
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Katherine Belov
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Catherine E. Grueber
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
- San Diego Zoo Global San Diego California
| |
Collapse
|
42
|
Development of a Novel Mule Deer Genomic Assembly and Species-Diagnostic SNP Panel for Assessing Introgression in Mule Deer, White-Tailed Deer, and Their Interspecific Hybrids. G3-GENES GENOMES GENETICS 2019; 9:911-919. [PMID: 30670611 PMCID: PMC6404596 DOI: 10.1534/g3.118.200838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mule deer (Odocoileus hemionus) are endemic to a wide variety of habitats in western North America, many of which are shared in sympatry with their closely related sister-species white-tailed deer (Odocoileus virginianus), whom they hybridize with in wild populations. Although mule deer meet many ideal conditions for a molecular ecological research species, such as high abundance, ecological importance, and broad dispersal and gene flow, conservation genetic studies have been limited by a relative lack of existing genomic resources and inherent difficulties caused by introgression with white-tailed deer. Many molecular tools currently available for the study of cervids were designed using reference assemblies of divergent model species, specifically cattle (Bos taurus). Bovidae and Cervidae diverged approximately 28 million years ago, therefore, we sought to ameliorate the available resources by contributing the first mule deer whole genome sequence draft assembly with an average genome-wide read depth of 25X, using the white-tailed genome assembly (Ovir.te_1.0) as a reference. Comparing the two assemblies, we identified ∼33 million single nucleotide polymorphisms (SNPs) and insertion/deletion variants. We then verified fixed SNP differences between the two species and developed a 40-loci SNP assay capable of identifying pure mule deer, white-tailed deer, and interspecific hybrids. Assignment capacity of the panel, which was tested on simulated datasets, is reliable up to and including the third backcross hybrid generation. Identification of post-F1 hybrids will be necessary for hybrid zone population studies going forward, and the new mule deer assembly will be a valuable resource for genetic and comparative genomics studies.
Collapse
|
43
|
Mass Spectrometry-Based Biomarkers in Drug Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:435-449. [PMID: 31347063 DOI: 10.1007/978-3-030-15950-4_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Advances in mass spectrometry, proteomics, protein bioanalytical approaches, and biochemistry have led to a rapid evolution and expansion in the area of mass spectrometry-based biomarker discovery and development. The last decade has also seen significant progress in establishing accepted definitions, guidelines, and criteria for the analytical validation, acceptance and qualification of biomarkers. These advances have coincided with a decreased return on investment for pharmaceutical research and development and an increasing need for better early decision making tools. Empowering development teams with tools to measure a therapeutic interventions impact on disease state and progression, measure target engagement and to confirm predicted pharmacodynamic effects is critical to efficient data-driven decision making. Appropriate implementation of a biomarker or a combination of biomarkers can enhance understanding of a drugs mechanism, facilitate effective translation from the preclinical to clinical space, enable early proof of concept and dose selection, and increases the efficiency of drug development. Here we will provide descriptions of the different classes of biomarkers that have utility in the drug development process as well as review specific, protein-centric, mass spectrometry-based approaches for the discovery of biomarkers and development of targeted assays to measure these markers in a selective and analytically precise manner.
Collapse
|
44
|
AFLP-AFLP in silico-NGS approach reveals polymorphisms in repetitive elements in the malignant genome. PLoS One 2018; 13:e0206620. [PMID: 30408048 PMCID: PMC6224067 DOI: 10.1371/journal.pone.0206620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022] Open
Abstract
The increasing interest in exploring the human genome and identifying genetic risk factors contributing to the susceptibility to and outcome of diseases has supported the rapid development of genome-wide techniques. However, the large amount of obtained data requires extensive bioinformatics analysis. In this work, we established an approach combining amplified fragment length polymorphism (AFLP), AFLP in silico and next generation sequencing (NGS) methods to map the malignant genome of patients with chronic myeloid leukemia. We compared the unique DNA fingerprints of patients generated by the AFLP technique approach with those of healthy donors to identify AFLP markers associated with the disease and/or the response to treatment with imatinib, a tyrosine kinase inhibitor. Among the statistically significant AFLP markers selected for NGS analysis and virtual fingerprinting, we identified the sequences of three fragments in the region of DNA repeat element OldhAT1, LINE L1M7, LTR MER90, and satellite ALR/Alpha among repetitive elements, which may indicate a role of these non-coding repetitive sequences in hematological malignancy. SNPs leading to the presence/absence of these fragments were confirmed by Sanger sequencing. When evaluating the results of AFLP analysis for some fragments, we faced the frequently discussed size homoplasy, resulting in co-migration of non-identical AFLP fragments that may originate from an insertion/deletion, SNP, somatic mutation anywhere in the genome, or combination thereof. The AFLP–AFLP in silico–NGS procedure represents a smart alternative to microarrays and relatively expensive and bioinformatically challenging whole-genome sequencing to detect the association of variable regions of the human genome with diseases.
Collapse
|
45
|
Abbasi M, Smith AD, Swaminathan H, Sangngern P, Douglas A, Horsager A, Carrell DT, Uren PJ. Establishing a stable, repeatable platform for measuring changes in sperm DNA methylation. Clin Epigenetics 2018; 10:119. [PMID: 30227883 PMCID: PMC6145208 DOI: 10.1186/s13148-018-0551-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/31/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Several independent research groups have shown that alterations in human sperm methylation profiles correlate with decreased fecundity and an increased risk of poor embryo development. Moving these initial findings from the lab into a clinical setting where they can be used to measure male infertility though requires a platform that is stable and robust against batch effects that can occur between sample runs. Operating parameters must be established, performance characteristics determined, and guidelines set to ensure repeatability and accuracy. The standard for technical validation of a lab developed test (LDT) in the USA comes from the Clinical Laboratory Improvement Amendments (CLIA). However, CLIA was introduced in 1988, before the advent of genome-wide profiling and associated computational analysis. This, coupled with its intentionally general nature, makes its interpretation for epigenetic assays non-trivial. RESULTS Here, we present an interpretation of the CLIA technical validation requirements for profiling DNA methylation and calling aberrant methylation using the Illumina Infinium platform (e.g., the 450HM and MethylationEPIC). We describe an experimental design to meet these requirements, the experimental results obtained, and the operating parameters established. CONCLUSIONS The CLIA guidelines, although not intended for high-throughput assays, can be interpreted in a way that is consistent with modern epigenetic assays. Based on such an interoperation, Illumina's Infinium platform is quite amenable to usage in a clinical setting for diagnostic work.
Collapse
Affiliation(s)
| | - Andrew D. Smith
- University of Southern California, 1051 Childs Way, Los Angeles, 90089 USA
| | | | - Peer Sangngern
- National Genetics Institute, 2440 S Sepulveda Blvd, Los Angeles, 90064 USA
| | - Amanda Douglas
- National Genetics Institute, 2440 S Sepulveda Blvd, Los Angeles, 90064 USA
| | - Alan Horsager
- Episona, 69 N. Catalina Ave., Pasadena, USA
- University of Southern California, 1051 Childs Way, Los Angeles, 90089 USA
| | - Douglas T. Carrell
- University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, 84132 USA
| | | |
Collapse
|
46
|
Ke J, Zhu Y, Miao X. The advances of genetics research on Hirschsprung's disease. Pediatr Investig 2018; 2:189-195. [PMID: 32851260 PMCID: PMC7391411 DOI: 10.1002/ped4.12062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022] Open
Abstract
Hirschsprung's disease (HSCR) is a rare and complex congenital disorder characterized by the absence of the enteric neurons in lower digestive tract with an incidence of 1/5 000. Affected infant usually suffer from severe constipation with megacolon and distended abdomen, and face long-term complications even after surgery. In the last 2 decades, great efforts and progresses have been made in understanding the genetics and molecular biological mechanisms that underlie HSCR. However, only a small fraction of the genetic risk can be explained by the identified mutations in the previously established genes. To search novel genetic alterations, new study designs with advanced technologies such as genome/exome-wide association studies (GWASs/EWASs) and next generation sequencing (NGS) on target genes or whole genome/exome, were applied to HSCR. In this review, we summaries the current development of the genetics researches on HSCR based on GWASs/EWASs and NGS, focusing on the newly discovered variants and genes, and their potential roles in HSCR pathogenesis.
Collapse
Affiliation(s)
- Juntao Ke
- State Key Laboratory of Environment Health (Incubation)Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan)WuhanChina
- Department of Epidemiology and BiostatisticsSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ying Zhu
- State Key Laboratory of Environment Health (Incubation)Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan)WuhanChina
- Department of Epidemiology and BiostatisticsSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoping Miao
- State Key Laboratory of Environment Health (Incubation)Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan)WuhanChina
- Department of Epidemiology and BiostatisticsSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
47
|
Ming Y, Jian J, Yu F, Yu X, Wang J, Liu W. Molecular footprints of inshore aquatic adaptation in Indo-Pacific humpback dolphin (Sousa chinensis). Genomics 2018; 111:1034-1042. [PMID: 30031902 DOI: 10.1016/j.ygeno.2018.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/28/2018] [Accepted: 07/17/2018] [Indexed: 11/19/2022]
Abstract
The Indo-Pacific humpback dolphin, Sousa chinensis, being a member of cetaceans, had fully adapted to inshore waters. As a threatened marine mammal, little molecular information available for understanding the genetic basis of ecological adaptation. We firstly sequenced and obtained the draft genome map of S. chinensis. Phylogenetic analysis in this study, based on the single copy orthologous genes of the draft genome, is consistent with traditional phylogenetic classification. The comparative genomic analysis indicated that S. chinensis had 494 species-specific gene families, which involved immune, DNA repair and sensory systems associated with the potential adaption mechanism. We also identified the expansion and positive selection genes in S. chinensis lineage to investigate the potential adaptation mechanism. Our study provided the potential insight into the molecular bases of ecological adaptation in Indo-Pacific humpback dolphin and will be also valuable for future understanding the ecological adaptation and evolution of cetaceans at the genomic level.
Collapse
Affiliation(s)
- Yao Ming
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Jianbo Jian
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Fei Yu
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Xueying Yu
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf,Qinzhou University, Qinzhou, Guangxi 535011, PR China.
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf,Qinzhou University, Qinzhou, Guangxi 535011, PR China.
| | - Wenhua Liu
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
48
|
Douglas MP, Parker SL, Trosman JR, Slavotinek AM, Phillips KA. Private payer coverage policies for exome sequencing (ES) in pediatric patients: trends over time and analysis of evidence cited. Genet Med 2018; 21:152-160. [PMID: 29997388 PMCID: PMC6329652 DOI: 10.1038/s41436-018-0043-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/05/2018] [Indexed: 11/16/2022] Open
Abstract
Purpose Whole Exome Sequencing (WES) is being adopted for neurodevelopmental
disorders in pediatric patients. However, little is known about current
coverage policies or the evidence cited supporting these policies. Our study
is the first in-depth review of private payer WES coverage policies for
pediatric patients with neurodevelopmental disorders. Methods We reviewed private payer coverage policies and examined evidence
cited in the policies of the 15 largest payers in 2017, and trends in
coverage policies and evidence cited (2015 – 2017) for the five
largest payers. Results There were four relevant policies (N=5 payers) in 2015 and 13
policies (N=15 payers) in 2017. In 2015, no payer covered WES, but
by 2017, three payers from the original registry payers did. In 2017, eight
of the 15 payers covered WES. We found variations in the number and types of
evidence cited. Positive coverage policies tended to include a larger number
and range of citations. Conclusion We conclude that more systematic assessment of evidence cited in
coverage policies can provide a greater understanding of coverage policies
and how evidence is used. Such assessments could facilitate the ability of
researchers to provide the needed evidence, and the ability of clinicians to
provide the most appropriate testing for patients.
Collapse
Affiliation(s)
- Michael P Douglas
- University of California at San Francisco, Department of Clinical Pharmacy; Center for Translational and Policy Research on Personalized Medicine (TRANSPERS), 3333 California St, Room 420, Box 0613, San Francisco, California, USA.
| | | | - Julia R Trosman
- Center for Business Models in Healthcare, San Francisco, California, USA
| | - Anne M Slavotinek
- University of California, San Francisco, Department of Pediatrics, San Francisco, California, USA
| | - Kathryn A Phillips
- University of California at San Francisco, Department of Clinical Pharmacy; Center for Translational and Policy Research on Personalized Medicine (TRANSPERS); UCSF Philip R. Lee Institute for Health Policy; and UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| |
Collapse
|
49
|
Průcha M, Zazula R, Russwurm S. Sepsis Diagnostics in the Era of "Omics" Technologies. Prague Med Rep 2018; 119:9-29. [PMID: 29665344 DOI: 10.14712/23362936.2018.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Sepsis is a multifactorial clinical syndrome with an extremely dynamic clinical course and with high diverse clinical phenotype. Early diagnosis is crucial for the final clinical outcome. Previous studies have not identified a biomarker for the diagnosis of sepsis which would have sufficient sensitivity and specificity. Identification of the infectious agents or the use of molecular biology, next gene sequencing, has not brought significant benefit for the patient in terms of early diagnosis. Therefore, we are currently searching for biomarkers, through "omics" technologies with sufficient diagnostic specificity and sensitivity, able to predict the clinical course of the disease and the patient response to therapy. Current progress in the use of systems biology technologies brings us hope that by using big data from clinical trials such biomarkers will be found.
Collapse
Affiliation(s)
- Miroslav Průcha
- Department of Clinical Biochemistry, Haematology and Immunology, Na Homolce Hospital, Prague, Czech Republic.
| | - Roman Zazula
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Stefan Russwurm
- Department of Anesthesiology and Intensive Care, University Hospital Jena, Jena, Germany
| |
Collapse
|
50
|
Ramharack P, Soliman MES. Bioinformatics-based tools in drug discovery: the cartography from single gene to integrative biological networks. Drug Discov Today 2018; 23:1658-1665. [PMID: 29864527 DOI: 10.1016/j.drudis.2018.05.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/12/2018] [Accepted: 05/29/2018] [Indexed: 02/02/2023]
Abstract
Originally developed for the analysis of biological sequences, bioinformatics has advanced into one of the most widely recognized domains in the scientific community. Despite this technological evolution, there is still an urgent need for nontoxic and efficient drugs. The onus now falls on the 'omics domain to meet this need by implementing bioinformatics techniques that will allow for the introduction of pioneering approaches in the rational drug design process. Here, we categorize an updated list of informatics tools and explore the capabilities of integrative bioinformatics in disease control. We believe that our review will serve as a comprehensive guide toward bioinformatics-oriented disease and drug discovery research.
Collapse
Affiliation(s)
- Pritika Ramharack
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.
| |
Collapse
|