1
|
Li Z, Li S, Chen L, Sun T, Zhang W. Fast-growing cyanobacterial chassis for synthetic biology application. Crit Rev Biotechnol 2024; 44:414-428. [PMID: 36842999 DOI: 10.1080/07388551.2023.2166455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/19/2022] [Accepted: 12/28/2022] [Indexed: 02/28/2023]
Abstract
Carbon neutrality by 2050 has become one of the most urgent challenges the world faces today. To address the issue, it is necessary to develop and promote new technologies related with CO2 recycling. Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis, capable of fixing CO2 into biomass under sunlight and serving as one of the most important primary producers on earth. Notably, recent progress on synthetic biology has led to utilizing model cyanobacteria such as Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 as chassis for "light-driven autotrophic cell factories" to produce several dozens of biofuels and various fine chemicals directly from CO2. However, due to the slow growth rate and low biomass accumulation in the current chassis, the productivity for most products is still lower than the threshold necessary for large-scale commercial application, raising the importance of developing high-efficiency cyanobacterial chassis with fast growth and/or higher biomass accumulation capabilities. In this article, we critically reviewed recent progresses on identification, systems biology analysis, and engineering of fast-growing cyanobacterial chassis. Specifically, fast-growing cyanobacteria identified in recent years, such as S. elongatus UTEX 2973, S. elongatus PCC 11801, S. elongatus PCC 11802 and Synechococcus sp. PCC 11901 was comparatively analyzed. In addition, the progresses on their recent application in converting CO2 into chemicals, and genetic toolboxes developed for these new cyanobacterial chassis were discussed. Finally, the article provides insights into future challenges and perspectives on the synthetic biology application of cyanobacterial chassis.
Collapse
Affiliation(s)
- Zhixiang Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
2
|
Cheng J, Zhang K, Hou Y. The current situations and limitations of genetic engineering in cyanobacteria: a mini review. Mol Biol Rep 2023; 50:5481-5487. [PMID: 37119415 DOI: 10.1007/s11033-023-08456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Cyanobacteria are an ancient group of photoautotrophic prokaryotes, and play an essential role in the global carbon cycle. They are also model organisms for studying photosynthesis and circadian regulation, and metabolic engineering and synthetic biology strategies grants light-driven biotechnological applications to cyanobacteria, especially for engineering cyanobacteria cells to achieve an efficient light-driven system for synthesizing any product of interest from renewable feedstocks. However, lower yield limits the potential of industrial application of cyanobacterial synthetic biology, and some key limitations must be overcome to realize the full biotechnological potential of these versatile microorganisms. Although genetic engineering toolkits for cyanobacteria have made some progress, the tools available still lag behind conventional heterotrophic microorganism. Consequently, this study describes the current situations and limitations of genetic engineering in cyanobacteria, and further improvements are proposed to improve the output of targeted products. We believe that cyanobacteria-mediated light-driven platforms towards efficient synthesis of green chemicals could unlock a bright future by developing the tools for strain manipulation and novel chassis organisms with excellent performance for biotechnological applications, which could also accelerate the advancement of bio-manufacturing industries.
Collapse
Affiliation(s)
- Jie Cheng
- School of Life Sciences, Liaocheng University, Liaocheng, 252000, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, 570100, China.
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Yuyong Hou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
3
|
Wang Q, Cai L, Zhang R, Wei S, Li F, Liu Y, Xu Y. A Unique Set of Auxiliary Metabolic Genes Found in an Isolated Cyanophage Sheds New Light on Marine Phage-Host Interactions. Microbiol Spectr 2022; 10:e0236722. [PMID: 36190421 PMCID: PMC9602691 DOI: 10.1128/spectrum.02367-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/10/2022] [Indexed: 01/04/2023] Open
Abstract
Cyanophages, viruses that infect cyanobacteria, are abundant and widely distributed in aquatic ecosystems, playing important roles in regulating the abundance, activity, diversity, and evolution of cyanobacteria. A T4-like cyanophage, S-SCSM1, infecting Synechococcus and Prochlorococcus strains of different ecotypes, was isolated from the South China Sea in this study. For the first time, a mannose-6-phosphate isomerase (MPI) gene was identified in the cultured cyanophage. At least 11 phylogenetic clusters of cyanophage MPIs were retrieved and identified from the marine metagenomic data sets, indicating that cyanophage MPIs in the marine environment are extremely diverse. The existence of 24 genes encoding 2-oxoglutarate (2OG)-Fe(II) oxygenase superfamily proteins in the S-SCSM1 genome emphasizes their potential importance and diverse functions in reprogramming host metabolism during phage infection. Novel cell wall synthesis and modification genes found in the S-SCSM1 genome indicate that diverse phenotypic modifications imposed by phages on cyanobacterial hosts remain to be discovered. Two noncoding RNAs of cis-regulatory elements in the S-SCSM1 genome were predicted to be associated with host exopolysaccharide metabolism and photosynthesis. The isolation and genomic characterization of cyanophage S-SCSM1 provide more information on the genetic diversity of cyanophages and phage-host interactions in the marine environment. IMPORTANCE Cyanophages play important ecological roles in aquatic ecosystems. Genomic and proteomic characterizations of the T4-like cyanophage S-SCSM1 indicate that novel and diverse viral genes and phage-host interactions in the marine environment remain unexplored. The first identified mannose-6-phosphate isomerase (MPI) gene from a cultured cyanophage was found in the S-SCSM1 genome, although MPIs were previously found in viral metagenomes at high frequencies similar to those of the cyanophage photosynthetic gene psbA. The presence of 24 genes encoding 2-oxoglutarate (2OG)-Fe(II) oxygenase superfamily proteins, novel cell wall synthesis and modification genes, a nonbleaching protein A gene, and 2 noncoding RNAs of cis-regulatory elements in the S-SCSM1 genome as well as the presence of a virion-associated regulatory protein indicate the diverse functions that cyanophages have in reprogramming the metabolism and modifying the phenotypes of hosts during infection.
Collapse
Affiliation(s)
- Qiong Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People’s Republic of China
| | - Yuanfang Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
| |
Collapse
|
4
|
Light-Driven Synthetic Biology: Progress in Research and Industrialization of Cyanobacterial Cell Factory. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101537. [PMID: 36294972 PMCID: PMC9605453 DOI: 10.3390/life12101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Light-driven synthetic biology refers to an autotrophic microorganisms-based research platform that remodels microbial metabolism through synthetic biology and directly converts light energy into bio-based chemicals. This technology can help achieve the goal of carbon neutrality while promoting green production. Cyanobacteria are photosynthetic microorganisms that use light and CO2 for growth and production. They thus possess unique advantages as "autotrophic cell factories". Various fuels and chemicals have been synthesized by cyanobacteria, indicating their important roles in research and industrial application. This review summarized the progresses and remaining challenges in light-driven cyanobacterial cell factory. The choice of chassis cells, strategies used in metabolic engineering, and the methods for high-value CO2 utilization will be discussed.
Collapse
|
5
|
Soulier N, Walters K, Laremore TN, Shen G, Golbeck JH, Bryant DA. Acclimation of the photosynthetic apparatus to low light in a thermophilic Synechococcus sp. strain. PHOTOSYNTHESIS RESEARCH 2022; 153:21-42. [PMID: 35441927 DOI: 10.1007/s11120-022-00918-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Depending upon their growth responses to high and low irradiance, respectively, thermophilic Synechococcus sp. isolates from microbial mats associated with the effluent channels of Mushroom Spring, an alkaline siliceous hot spring in Yellowstone National Park, can be described as either high-light (HL) or low-light (LL) ecotypes. Strains isolated from the bottom of the photic zone grow more rapidly at low irradiance compared to strains isolated from the uppermost layer of the mat, which conversely grow better at high irradiance. The LL-ecotypes develop far-red absorbance and fluorescence emission features after growth in LL. These isolates have a unique gene cluster that encodes a putative cyanobacteriochrome denoted LcyA, a putative sensor histidine kinase; an allophycocyanin (FRL-AP; ApcD4-ApcB3) that absorbs far-red light; and a putative chlorophyll a-binding protein, denoted IsiX, which is homologous to IsiA. The emergence of FRL absorbance in LL-adapted cells of Synechococcus sp. strain A1463 was analyzed in cultures responding to differences in light intensity. The far-red absorbance phenotype arises from expression of a novel antenna complex containing the FRL-AP, ApcD4-ApcB3, which is produced when cells were grown at very low irradiance. Additionally, the two GAF domains of LcyA were shown to bind phycocyanobilin and a [4Fe-4S] cluster, respectively. These ligands potentially enable this photoreceptor to respond to a variety of environmental factors including irradiance, redox potential, and/or oxygen concentration. The products of the gene clusters specific to LL-ecotypes likely facilitate growth in low-light environments through a process called Low-Light Photoacclimation.
Collapse
Affiliation(s)
- Nathan Soulier
- Department of Biochemistry and Molecular Biology, S-002 Frear Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Karim Walters
- Department of Biochemistry and Molecular Biology, S-002 Frear Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tatiana N Laremore
- Proteomics and Mass Spectrometry Core Facility, Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, S-002 Frear Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, S-002 Frear Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, S-002 Frear Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
6
|
Expression of Cyanobacterial Biosynthetic Gene Clusters in Escherichia coli. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2489:315-332. [PMID: 35524058 DOI: 10.1007/978-1-0716-2273-5_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyanobacteria represent an attractive source of natural bioactive compounds, ranging from sunscreens to cancer treatments. While many biosynthetic gene clusters (BGCs) that encode cyanobacterial natural products are known, the slow growth and lack of genetic tools in the native producers hampers their modification, characterization, and large-scale production. By engineering heterologous hosts for the expression of cyanobacterial BGCs, sufficient material can be produced for research or industry. Although several hosts have been evaluated for the expression of cyanobacterial natural products, this work details the process of expressing BGCs in Escherichia coli via promoter exchange.
Collapse
|
7
|
Yang R, Zhu L, Li T, Zhu LY, Ye Z, Zhang D. Photosynthetic Conversion of CO 2 Into Pinene Using Engineered Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2022; 9:779437. [PMID: 34976975 PMCID: PMC8718756 DOI: 10.3389/fbioe.2021.779437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic engineering of cyanobacteria has received much attention as a sustainable strategy to convert CO2 to various longer carbon chain fuels. Pinene has become increasingly attractive since pinene dimers contain high volumetric energy and have been proposed to act as potential aircraft fuels. However, cyanobacteria cannot directly convert geranyl pyrophosphate into pinene due to the lack of endogenous pinene synthase. Herein, we integrated the gene encoding Abies grandis pinene synthase into the model cyanobacterium Synechococcus sp. PCC 7002 through homologous recombination. The genetically modified cyanobacteria achieved a pinene titer of 1.525 ± 0.l45 mg L-1 in the lab-scale tube photobioreactor with CO2 aeration. Specifically, the results showed a mixture of α- and β-pinene (∼33:67 ratio). The ratio of β-pinene in the product was significantly increased compared with that previously reported in the engineered Escherichia coli. Furthermore, we investigated the photoautotrophic growth performances of Synechococcus overlaid with different concentrations of dodecane. The work demonstrates that the engineered Synechococcus is a suitable potential platform for β-pinene production.
Collapse
Affiliation(s)
- Ruigang Yang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lv-Yun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Zi Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dongyi Zhang
- Hunan Key Laboratory of Economic Crops, Genetic Improvement, and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|
8
|
Yadav I, Rautela A, Kumar S. Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology. World J Microbiol Biotechnol 2021; 37:201. [PMID: 34664124 DOI: 10.1007/s11274-021-03157-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Cyanobacteria, photosynthetic prokaryotic microorganisms having a simple genetic composition are the prospective photoautotrophic cell factories for the production of a wide range of biofuel molecules. The simple genetic composition of cyanobacteria allows effortless genetic manipulation which leads to increased research endeavors from the synthetic biology approach. Various unicellular model cyanobacterial strains like Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 have been successfully engineered for biofuels generation. Improved development of synthetic biology tools, genetic modification methods and advancement in transformation techniques to construct a strain that can contain multiple foreign genes in a single operon have vastly expanded the functions that can be used for engineering photosynthetic cyanobacteria for the generation of various biofuel molecules. In this review, recent advancements and approaches in synthetic biology tools used for cyanobacterial genome editing have been discussed. Apart from this, cyanobacterial productions of various fuel molecules like isoprene, limonene, α-farnesene, squalene, alkanes, butanol, and fatty acids, which can be a substitute for petroleum and fossil fuels in the future, have been elaborated.
Collapse
Affiliation(s)
- Indrajeet Yadav
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Akhil Rautela
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
9
|
Jones CM, Parrish S, Nielsen DR. Exploiting Polyploidy for Markerless and Plasmid-Free Genome Engineering in Cyanobacteria. ACS Synth Biol 2021; 10:2371-2382. [PMID: 34530614 DOI: 10.1021/acssynbio.1c00269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we describe a universal approach for plasmid-free genome engineering in cyanobacteria that exploits the polyploidy of their chromosomes as a natural counterselection system. Rather than being delivered via replicating plasmids, genes encoding for DNA modifying enzymes are instead integrated into essential genes on the chromosome by allelic exchange, as facilitated by antibiotic selection, a process that occurs readily and with only minor fitness defects. By virtue of the essentiality of these integration sites, full segregation is never achieved, with the strain instead remaining as a merodiploid so long as antibiotic selection is maintained. As a result, once the desired genome modification is complete, removal of antibiotic selection results in the gene encoding for the DNA modifying enzyme to then be promptly eliminated from the population. Proof of concept of this new and generalizable strategy is provided using two different site-specific recombination systems, CRE-lox and DRE-rox, in the fast-growing cyanobacterium Synechococcus sp. PCC 7002, as well as CRE-lox in the model cyanobacterium Synechocystis sp. PCC 6803. Reusability of the method, meanwhile, is demonstrated by constructing a high-CO2 requiring and markerless Δndh3 Δndh4 ΔbicA ΔsbtA mutant of Synechococcus sp. PCC 7002. Overall, this method enables the simple and efficient construction of stable and unmarked mutants in cyanobacteria without the need to develop additional shuttle vectors nor counterselection systems.
Collapse
Affiliation(s)
- Christopher M. Jones
- Chemical Engineering, School for Engineering Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Sydney Parrish
- Chemical Engineering, School for Engineering Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - David R. Nielsen
- Chemical Engineering, School for Engineering Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
10
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
11
|
Dahlgren KK, Gates C, Lee T, Cameron JC. Proximity-based proteomics reveals the thylakoid lumen proteome in the cyanobacterium Synechococcus sp. PCC 7002. PHOTOSYNTHESIS RESEARCH 2021; 147:177-195. [PMID: 33280076 PMCID: PMC7880944 DOI: 10.1007/s11120-020-00806-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacteria possess unique intracellular organization. Many proteomic studies have examined different features of cyanobacteria to learn about the intracellular structures and their respective functions. While these studies have made great progress in understanding cyanobacterial physiology, the conventional fractionation methods used to purify cellular structures have limitations; specifically, certain regions of cells cannot be purified with existing fractionation methods. Proximity-based proteomics techniques were developed to overcome the limitations of biochemical fractionation for proteomics. Proximity-based proteomics relies on spatiotemporal protein labeling followed by mass spectrometry of the labeled proteins to determine the proteome of the region of interest. We performed proximity-based proteomics in the cyanobacterium Synechococcus sp. PCC 7002 with the APEX2 enzyme, an engineered ascorbate peroxidase. We determined the proteome of the thylakoid lumen, a region of the cell that has remained challenging to study with existing methods, using a translational fusion between APEX2 and PsbU, a lumenal subunit of photosystem II. Our results demonstrate the power of APEX2 as a tool to study the cell biology of intracellular features and processes, including photosystem II assembly in cyanobacteria, with enhanced spatiotemporal resolution.
Collapse
Affiliation(s)
- Kelsey K Dahlgren
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
- Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Colin Gates
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Thomas Lee
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA.
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA.
- National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
12
|
Jones CM, Korosh TC, Nielsen DR, Pfleger BF. Optimization of a T7-RNA polymerase system in Synechococcus sp. PCC 7002 mirrors the protein overproduction phenotype from E. coli BL21(DE3). Appl Microbiol Biotechnol 2021; 105:1147-1158. [PMID: 33443634 DOI: 10.1007/s00253-020-11085-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/14/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023]
Abstract
With the goal of expanding the diversity of tools available for controlling gene expression in cyanobacteria, the T7-RNA polymerase gene expression system from E. coli BL21(DE3) was adapted and systematically engineered for robust function Synechococcus sp. PCC 7002, a fast-growing saltwater strain. Expression of T7-RNA polymerase was controlled via LacI regulation, while functionality was optimized by both further tuning its expression level along with optimizing the translation initiation region of the expressed gene, in this case an enhanced YFP reporter. Under high CO2 conditions, the resulting system displayed a 60-fold dynamic range in expression levels. Furthermore, when maximally induced, T7-RNA polymerase-dependent protein production constituted up to two-thirds of total cellular protein content in Synechococcus sp. PCC 7002. Ultimately, however, this came at the cost of 40% reductions in both biomass and pigmentation levels. Taken together, the developed T7-RNA polymerase gene expression system is effective for controlling and achieving high-level expression of heterologous genes in Synechococcus sp. PCC 7002, making it a valuable tool for cyanobacterial research. KEY POINTS: • Promoter driving T7-RNA polymerase was optimized. • Up to 60-fold dynamic range in expression, depending on CO2 conditions. • Two-thirds of total protein is T7-RNA polymerase dependent.
Collapse
Affiliation(s)
- Christopher M Jones
- Chemical Engineering, School for Engineering Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Travis C Korosh
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David R Nielsen
- Chemical Engineering, School for Engineering Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
13
|
Hunnestad AV, Vogel AIM, Armstrong E, Digernes MG, Ardelan MV, Hohmann-Marriott MF. From the Ocean to the Lab-Assessing Iron Limitation in Cyanobacteria: An Interface Paper. Microorganisms 2020; 8:E1889. [PMID: 33260337 PMCID: PMC7760322 DOI: 10.3390/microorganisms8121889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential, yet scarce, nutrient in marine environments. Phytoplankton, and especially cyanobacteria, have developed a wide range of mechanisms to acquire iron and maintain their iron-rich photosynthetic machinery. Iron limitation studies often utilize either oceanographic methods to understand large scale processes, or laboratory-based, molecular experiments to identify underlying molecular mechanisms on a cellular level. Here, we aim to highlight the benefits of both approaches to encourage interdisciplinary understanding of the effects of iron limitation on cyanobacteria with a focus on avoiding pitfalls in the initial phases of collaboration. In particular, we discuss the use of trace metal clean methods in combination with sterile techniques, and the challenges faced when a new collaboration is set up to combine interdisciplinary techniques. Methods necessary for producing reliable data, such as High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS), Flow Injection Analysis Chemiluminescence (FIA-CL), and 77K fluorescence emission spectroscopy are discussed and evaluated and a technical manual, including the preparation of the artificial seawater medium Aquil, cleaning procedures, and a sampling scheme for an iron limitation experiment is included. This paper provides a reference point for researchers to implement different techniques into interdisciplinary iron studies that span cyanobacteria physiology, molecular biology, and biogeochemistry.
Collapse
Affiliation(s)
- Annie Vera Hunnestad
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.V.H.); (M.G.D.)
| | - Anne Ilse Maria Vogel
- PhotoSynLab, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.I.M.V.); (M.F.H.-M.)
| | - Evelyn Armstrong
- NIWA/University of Otago Research Centre for Oceanography, Department of Chemistry, University of Otago, 9054 Dunedin, New Zealand;
| | - Maria Guadalupe Digernes
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.V.H.); (M.G.D.)
| | - Murat Van Ardelan
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.V.H.); (M.G.D.)
| | - Martin Frank Hohmann-Marriott
- PhotoSynLab, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.I.M.V.); (M.F.H.-M.)
| |
Collapse
|
14
|
Engineering of Synechococcus sp. strain PCC 7002 for the photoautotrophic production of light-sensitive riboflavin (vitamin B2). Metab Eng 2020; 62:275-286. [DOI: 10.1016/j.ymben.2020.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 11/24/2022]
|
15
|
Soulier N, Laremore TN, Bryant DA. Characterization of cyanobacterial allophycocyanins absorbing far-red light. PHOTOSYNTHESIS RESEARCH 2020; 145:189-207. [PMID: 32710194 DOI: 10.1007/s11120-020-00775-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Phycobiliproteins (PBPs) are pigment proteins that comprise phycobilisomes (PBS), major light-harvesting antenna complexes of cyanobacteria and red algae. PBS core substructures are made up of allophycocyanins (APs), a subfamily of PBPs. Five paralogous AP subunits are encoded by the Far-Red Light Photoacclimation (FaRLiP) gene cluster, which is transcriptionally activated in cells grown in far-red light (FRL; λ = 700 to 800 nm). FaRLiP gene expression enables some terrestrial cyanobacteria to remodel their PBS and photosystems and perform oxygenic photosynthesis in far-red light (FRL). Paralogous AP genes encoding a putative, FRL-absorbing AP (FRL-AP) are also found in an operon associated with improved low-light growth (LL; < 50 μmol photons m-2 s-1) in some thermophilic Synechococcus spp., a phenomenon termed low-light photoacclimation (LoLiP). In this study, apc genes from FaRLiP and LoLiP gene clusters were heterologously expressed individually and in combinations in Escherichia coli. The resulting novel FRL-APs were characterized and identified as major contributors to the FRL absorbance observed in whole cells after FaRLiP and potentially LoLiP. Post-translational modifications of native FRL-APs from FaRLiP cyanobacterium, Leptolyngbya sp. strain JSC-1, were analyzed by mass spectrometry. The PBP complexes made in two FaRLiP organisms were compared, revealing strain-specific diversity in the FaRLiP responses of cyanobacteria. Through analyses of native and recombinant proteins, we improved our understanding of how different cyanobacterial strains utilize specialized APs to acclimate to FRL and LL. We discuss some insights into structural changes that may allow these APs to absorb longer light wavelengths than their visible-light-absorbing paralogs.
Collapse
Affiliation(s)
- Nathan Soulier
- S-002 Frear Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tatiana N Laremore
- Proteomics and Mass Spectrometry Core Facility, Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- S-002 Frear Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
16
|
Till P, Toepel J, Bühler B, Mach RL, Mach-Aigner AR. Regulatory systems for gene expression control in cyanobacteria. Appl Microbiol Biotechnol 2020; 104:1977-1991. [PMID: 31965222 PMCID: PMC7007895 DOI: 10.1007/s00253-019-10344-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 11/24/2022]
Abstract
As photosynthetic microbes, cyanobacteria are attractive hosts for the production of high-value molecules from CO2 and light. Strategies for genetic engineering and tightly controlled gene expression are essential for the biotechnological application of these organisms. Numerous heterologous or native promoter systems were used for constitutive and inducible expression, yet many of them suffer either from leakiness or from a low expression output. Anyway, in recent years, existing systems have been improved and new promoters have been discovered or engineered for cyanobacteria. Moreover, alternative tools and strategies for expression control such as riboswitches, riboregulators or genetic circuits have been developed. In this mini-review, we provide a broad overview on the different tools and approaches for the regulation of gene expression in cyanobacteria and explain their advantages and disadvantages.
Collapse
Affiliation(s)
- Petra Till
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
| |
Collapse
|
17
|
Gupta JK, Rai P, Jain KK, Srivastava S. Overexpression of bicarbonate transporters in the marine cyanobacterium Synechococcus sp. PCC 7002 increases growth rate and glycogen accumulation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:17. [PMID: 32015756 PMCID: PMC6988372 DOI: 10.1186/s13068-020-1656-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/13/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Synechococcus sp. PCC 7002 is an attractive organism as a feedstock and for photoautotrophic production of biofuels and biochemicals due to its fast growth and ability to grow in marine/brackish medium. Previous studies suggest that the growth of this organism is limited by the HCO3 - transport across the cytoplasmic membrane. Tools for genetic engineering are well established for this cyanobacterium, which makes it possible to overexpress genes of interest. RESULTS In this work, we overexpressed two different native Na+-dependent carbon transporters viz., SbtA and BicA in Synechococcus sp. PCC 7002 cells under the influence of a strong light-inducible promoter and a strong RBS sequence. The overexpression of these transporters enhanced biomass by about 50%, increased intracellular glycogen about 50%, and increased extracellular carbohydrate up to threefold. Importantly, the biomass and glycogen productivity of the transformants with air bubbling was even higher than that of WT cells with 1% CO2 bubbling. The overexpression of these transporters was associated with an increased carotenoid content without altering the chl a content. CONCLUSIONS Our work shows the utility of increased carbon transport in improving the growth as well as product formation in a marine cyanobacterium and will serve to increase the utility of this organism as a potential cell factory.
Collapse
Affiliation(s)
- Jai Kumar Gupta
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Preeti Rai
- DBT-ICGEB Centre for Advanced Bioenergy Research, New Delhi, India
| | | | - Shireesh Srivastava
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067 India
- DBT-ICGEB Centre for Advanced Bioenergy Research, New Delhi, India
| |
Collapse
|
18
|
Hitchcock A, Hunter CN, Canniffe DP. Progress and challenges in engineering cyanobacteria as chassis for light-driven biotechnology. Microb Biotechnol 2019; 13:363-367. [PMID: 31880868 PMCID: PMC7017823 DOI: 10.1111/1751-7915.13526] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 11/26/2022] Open
Abstract
Cyanobacteria are prokaryotic phototrophs that, in addition to being excellent model organisms for studying photosynthesis, have tremendous potential for light‐driven synthetic biology and biotechnology. These versatile and resilient microorganisms harness the energy of sunlight to oxidise water, generating chemical energy (ATP) and reductant (NADPH) that can be used to drive sustainable synthesis of high‐value natural products in genetically modified strains. In this commentary article for the Synthetic Microbiology Caucus we discuss the great progress that has been made in engineering cyanobacterial hosts as microbial cell factories for solar‐powered biosynthesis. We focus on some of the main areas where the synthetic biology and metabolic engineering tools in cyanobacteria are not as advanced as those in more widely used heterotrophic chassis, and go on to highlight key improvements that we feel are required to unlock the full power of cyanobacteria for future green biotechnology.
Collapse
Affiliation(s)
- Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Daniel P Canniffe
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
19
|
Hasunuma T, Takaki A, Matsuda M, Kato Y, Vavricka CJ, Kondo A. Single-Stage Astaxanthin Production Enhances the Nonmevalonate Pathway and Photosynthetic Central Metabolism in Synechococcus sp. PCC 7002. ACS Synth Biol 2019; 8:2701-2709. [PMID: 31653173 DOI: 10.1021/acssynbio.9b00280] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The natural pigment astaxanthin is widely used in aquaculture, pharmaceutical, nutraceutical, and cosmetic industries due to superior antioxidant properties. The green alga Haematococcus pluvialis is currently used for commercial production of astaxanthin pigment. However, slow growing H. pluvialis requires a complex two-stage stress-induced process with high light intensity leading to increased contamination risks. In contrast, the fast-growing euryhaline cyanobacterium Synechococcus sp. PCC 7002 (Synechococcus 7002) is able to reach high density under stress-free phototrophic conditions, and is therefore a promising metabolic engineering platform for astaxanthin production. In the present study, genes encoding β-carotene hydroxylase and β-carotene ketolase, from the marine bacterium Brevundimonas sp. SD212, are integrated into the endogenous plasmid of Synechococcus 7002, and then expressed to biosynthesize astaxanthin. Although Synechococcus 7002 does not inherently produce astaxanthin, the recombinant ZW strain yields 3 mg/g dry cell weight astaxanthin from CO2 as the sole carbon source, with significantly higher astaxanthin content than previous cyanobacteria reports. Synechococcus 7002 astaxanthin productivity reached 3.35 mg/L/day after just 2 days in a continuous autotrophic process, which is comparable to the best H. pluvialis astaxanthin productivities when factoring in growth times. Metabolomics analysis reveals increases in fractions of hexose-, pentose-, and triose phosphates along with intermediates involved in the nonmevalonate pathway. Dynamic metabolomics analysis of 13C labeled metabolites clearly indicates flux enhancements in the Calvin cycle and glycolysis resulting from the overexpression of astaxanthin biosynthetic genes. This study suggests that cyanobacteria may enhance central metabolism as well as the nonmevalonate pathway in an attempt to replenish depleted pigments such as β-carotene and zeaxanthin.
Collapse
Affiliation(s)
- Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ayako Takaki
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mami Matsuda
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Christopher J. Vavricka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro,
Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
20
|
Khan AZ, Bilal M, Mehmood S, Sharma A, Iqbal HMN. State-of-the-Art Genetic Modalities to Engineer Cyanobacteria for Sustainable Biosynthesis of Biofuel and Fine-Chemicals to Meet Bio-Economy Challenges. Life (Basel) 2019; 9:life9030054. [PMID: 31252652 PMCID: PMC6789541 DOI: 10.3390/life9030054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/15/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, metabolic engineering of microorganisms has attained much research interest to produce biofuels and industrially pertinent chemicals. Owing to the relatively fast growth rate, genetic malleability, and carbon neutral production process, cyanobacteria has been recognized as a specialized microorganism with a significant biotechnological perspective. Metabolically engineering cyanobacterial strains have shown great potential for the photosynthetic production of an array of valuable native or non-native chemicals and metabolites with profound agricultural and pharmaceutical significance using CO2 as a building block. In recent years, substantial improvements in developing and introducing novel and efficient genetic tools such as genome-scale modeling, high throughput omics analyses, synthetic/system biology tools, metabolic flux analysis and clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease (CRISPR/cas) systems have been made for engineering cyanobacterial strains. Use of these tools and technologies has led to a greater understanding of the host metabolism, as well as endogenous and heterologous carbon regulation mechanisms which consequently results in the expansion of maximum productive ability and biochemical diversity. This review summarizes recent advances in engineering cyanobacteria to produce biofuel and industrially relevant fine chemicals of high interest. Moreover, the development and applications of cutting-edge toolboxes such as the CRISPR-cas9 system, synthetic biology, high-throughput "omics", and metabolic flux analysis to engineer cyanobacteria for large-scale cultivation are also discussed.
Collapse
Affiliation(s)
- Aqib Zafar Khan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Shahid Mehmood
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Epigmenio Gonzalez 500, Queretaro CP 76130, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| |
Collapse
|
21
|
Selão TT, Włodarczyk A, Nixon PJ, Norling B. Growth and selection of the cyanobacterium Synechococcus sp. PCC 7002 using alternative nitrogen and phosphorus sources. Metab Eng 2019; 54:255-263. [PMID: 31063791 DOI: 10.1016/j.ymben.2019.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
Cyanobacteria, such as Synechococcus sp. PCC 7002 (Syn7002), are promising chassis strains for "green" biotechnological applications as they can be grown in seawater using oxygenic photosynthesis to fix carbon dioxide into biomass. Their other major nutritional requirements for efficient growth are sources of nitrogen (N) and phosphorus (P). As these organisms are more economically cultivated in outdoor open systems, there is a need to develop cost-effective approaches to prevent the growth of contaminating organisms, especially as the use of antibiotic selection markers is neither economically feasible nor ecologically desirable due to the risk of horizontal gene transfer. Here we have introduced a synthetic melamine degradation pathway into Syn7002 and evolved the resulting strain to efficiently use the nitrogen-rich xenobiotic compound melamine as the sole N source. We also show that expression of phosphite dehydrogenase in the absence of its cognate phosphite transporter permits growth of Syn7002 on phosphite and can be used as a selectable marker in Syn7002. We combined these two strategies to generate a strain that can grow on melamine and phosphite as sole N and P sources, respectively. This strain is able to resist deliberate contamination in large excess and should be a useful chassis for metabolic engineering and biotechnological applications using cyanobacteria.
Collapse
Affiliation(s)
| | - Artur Włodarczyk
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Peter J Nixon
- School of Biological Sciences, Nanyang Technological University, Singapore; Sir Ernst Chain Building- Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington Campus, London, SW7 2AZ, UK
| | - Birgitta Norling
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
22
|
Shen G, Canniffe DP, Ho MY, Kurashov V, van der Est A, Golbeck JH, Bryant DA. Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. PHOTOSYNTHESIS RESEARCH 2019; 140:77-92. [PMID: 30607859 DOI: 10.1007/s11120-018-00610-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/17/2018] [Indexed: 05/19/2023]
Abstract
In diverse terrestrial cyanobacteria, Far-Red Light Photoacclimation (FaRLiP) promotes extensive remodeling of the photosynthetic apparatus, including photosystems (PS)I and PSII and the cores of phycobilisomes, and is accompanied by the concomitant biosynthesis of chlorophyll (Chl) d and Chl f. Chl f synthase, encoded by chlF, is a highly divergent paralog of psbA; heterologous expression of chlF from Chlorogloeopsis fritscii PCC 9212 led to the light-dependent production of Chl f in Synechococcus sp. PCC 7002 (Ho et al., Science 353, aaf9178 (2016)). In the studies reported here, expression of the chlF gene from Fischerella thermalis PCC 7521 in the heterologous system led to enhanced synthesis of Chl f. N-terminally [His]10-tagged ChlF7521 was purified and identified by immunoblotting and tryptic-peptide mass fingerprinting. As predicted from its sequence similarity to PsbA, ChlF bound Chl a and pheophytin a at a ratio of ~ 3-4:1, bound β-carotene and zeaxanthin, and was inhibited in vivo by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Cross-linking studies and the absence of copurifying proteins indicated that ChlF forms homodimers. Flash photolysis of ChlF produced a Chl a triplet that decayed with a lifetime (1/e) of ~ 817 µs and that could be attributed to intersystem crossing by EPR spectroscopy at 90 K. When the chlF7521 gene was expressed in a strain in which the psbD1 and psbD2 genes had been deleted, significantly more Chl f was produced, and Chl f levels could be further enhanced by specific growth-light conditions. Chl f synthesized in Synechococcus sp. PCC 7002 was inserted into trimeric PSI complexes.
Collapse
Affiliation(s)
- Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel P Canniffe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Molecular Biology & Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Art van der Est
- Department of Chemistry, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
- S-002 Frear Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
23
|
Madsen MA, Semerdzhiev S, Amtmann A, Tonon T. Engineering Mannitol Biosynthesis in Escherichia coli and Synechococcus sp. PCC 7002 Using a Green Algal Fusion Protein. ACS Synth Biol 2018; 7:2833-2840. [PMID: 30408953 DOI: 10.1021/acssynbio.8b00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The genetic engineering of microbial cell factories is a sustainable alternative to the chemical synthesis of organic compounds. Successful metabolic engineering often depends on manipulating several enzymes, requiring multiple transformation steps and selection markers, as well as protein assembly and efficient substrate channeling. Naturally occurring fusion genes encoding two or more enzymatic functions may offer an opportunity to simplify the engineering process and to generate ready-made protein modules, but their functionality in heterologous systems remains to be tested. Here we show that heterologous expression of a fusion enzyme from the marine alga Micromonas pusilla, comprising a mannitol-1-phosphate dehydrogenase and a mannitol-1-phosphatase, leads to synthesis of mannitol by Escherichia coli and by the cyanobacterium Synechococcus sp. PCC 7002. Neither of the heterologous systems naturally produce this sugar alcohol, which is widely used in food, pharmaceutical, medical, and chemical industries. While the mannitol production rates obtained by single-gene manipulation were lower than those previously achieved after pathway optimization with multiple genes, our findings show that naturally occurring fusion proteins can offer simple building blocks for the assembly and optimization of recombinant metabolic pathways.
Collapse
Affiliation(s)
- Mary Ann Madsen
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Stefan Semerdzhiev
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Anna Amtmann
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Thierry Tonon
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
24
|
Metabolic engineering tools in model cyanobacteria. Metab Eng 2018; 50:47-56. [DOI: 10.1016/j.ymben.2018.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/27/2022]
|
25
|
Synthetic Gene Regulation in Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:317-355. [DOI: 10.1007/978-981-13-0854-3_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Pluta R, Espinosa M. Antisense and yet sensitive: Copy number control of rolling circle-replicating plasmids by small RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1500. [PMID: 30074293 DOI: 10.1002/wrna.1500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 12/27/2022]
Abstract
Bacterial plasmids constitute a wealth of shared DNA amounting to about 20% of the total prokaryotic pangenome. Plasmids replicate autonomously and control their replication by maintaining a fairly constant number of copies within a given host. Plasmids should acquire a good fitness to their hosts so that they do not constitute a genetic load. Here we review some basic concepts in plasmid biology, pertaining to the control of replication and distribution of plasmid copies among daughter cells. A particular class of plasmids is constituted by those that replicate by the rolling circle mode (rolling circle-replicating [RCR]-plasmids). They are small double-stranded DNA molecules, with a rather high number of copies in the original host. RCR-plasmids control their replication by means of a small short-lived antisense RNA, alone or in combination with a plasmid-encoded transcriptional repressor protein. Two plasmid prototypes have been studied in depth, namely the staphylococcal plasmid pT181 and the streptococcal plasmid pMV158, each corresponding to the two types of replication control circuits, respectively. We further discuss possible applications of the plasmid-encoded antisense RNAs and address some future directions that, in our opinion, should be pursued in the study of these small molecules. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Radoslaw Pluta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| |
Collapse
|
27
|
Liu X, Yang M, Wang Y, Chen Z, Zhang J, Lin X, Ge F, Zhao J. Effects of PSII Manganese-Stabilizing Protein Succinylation on Photosynthesis in the Model Cyanobacterium Synechococcus sp. PCC 7002. PLANT & CELL PHYSIOLOGY 2018; 59:1466-1482. [PMID: 29912468 DOI: 10.1093/pcp/pcy080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Lysine succinylation is a newly identified protein post-translational modification and plays important roles in various biological pathways in both prokaryotes and eukaryotes, but its extent and function in photosynthetic organisms remain largely unknown. Here, we performed the first systematic studies of lysine succinylation in cyanobacteria, which are the only prokaryotes capable of oxygenic photosynthesis and the established model organisms for studying photosynthetic mechanisms. By using mass spectrometry analysis in combination with the enrichment of succinylated peptides from digested cell lysates, we identified 1,704 lysine succinylation sites on 691 proteins in a model cyanobacterium Synechococcus sp. PCC 7002. Bioinformatic analysis revealed that a large proportion of the succinylation sites were present on proteins in photosynthesis and metabolism. Among all identified succinylated proteins involved in photosynthesis, the PSII manganese-stabilizing protein (PsbO) was found to be succinylated on Lys99 and Lys234. Functional studies of PsbO were performed by site-directed mutagenesis, and mutants mimicking either constitutively succinylated (K99E and K234E) or non-succinylated states (K99R and K234R) were constructed. The succinylation-mimicking K234E mutant exhibited a decreased oxygen evolution rate of the PSII center and the efficiency of energy transfer during the photosynthetic reaction. Molecular dynamics simulations suggested a mechanism that may allow succinylation to influence the efficiency of photosynthesis by altering the conformation of PsbO, thereby hindering the interaction between PsbO and the PSII core. Our findings suggest that reversible succinylation may be an important regulatory mechanism during photosynthesis in Synechococcus, as well as in other photosynthetic organisms.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingkun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jia Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaohuang Lin
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jindong Zhao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
28
|
Xiao Y, Wang S, Rommelfanger S, Balassy A, Barba-Ostria C, Gu P, Galazka JM, Zhang F. Developing a Cas9-based tool to engineer native plasmids in Synechocystis sp. PCC 6803. Biotechnol Bioeng 2018; 115:2305-2314. [PMID: 29896914 DOI: 10.1002/bit.26747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/06/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023]
Abstract
The oxygenic photosynthetic bacterium Synechocystis sp. PCC 6803 (S6803) is a model cyanobacterium widely used for fundamental research and biotechnology applications. Due to its polyploidy, existing methods for genome engineering of S6803 require multiple rounds of selection to modify all genome copies, which is time-consuming and inefficient. In this study, we engineered the Cas9 tool for one-step, segregation-free genome engineering. We further used our Cas9 tool to delete three of seven S6803 native plasmids. Our results show that all three small-size native plasmids, but not the large-size native plasmids, can be deleted with this tool. To further facilitate heterologous gene expression in S6803, a shuttle vector based on the native plasmid pCC5.2 was created. The shuttle vector can be introduced into Cas9-containing S6803 in one step without requiring segregation and can be stably maintained without antibiotic pressure for at least 30 days. Moreover, genes encoded on the shuttle vector remain functional after 30 days of continuous cultivation without selective pressure. Thus, this study provides a set of new tools for rapid modification of the S6803 genome and for stable expression of heterologous genes, potentially facilitating both fundamental research and biotechnology applications using S6803.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missori
- Present address: State Key Laboratory for Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaojie Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missori
| | - Sarah Rommelfanger
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, Saint Louis, Missori
| | - Andrea Balassy
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missori
| | - Carlos Barba-Ostria
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missori
- Present address: Department of Health Sciences, Ambato Technical University, Ambato, Ecuador
| | - Pengfei Gu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missori
| | - Jonathan M Galazka
- Space Biosciences Division, Ames Research Center, National Aeronautics and Space Administration, Mountain View, California
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missori
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, Saint Louis, Missori
- Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, Misssori
| |
Collapse
|
29
|
Qian X, Zhang Y, Lun DS, Dismukes GC. Rerouting of Metabolism into Desired Cellular Products by Nutrient Stress: Fluxes Reveal the Selected Pathways in Cyanobacterial Photosynthesis. ACS Synth Biol 2018; 7:1465-1476. [PMID: 29617123 DOI: 10.1021/acssynbio.8b00116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Boosting cellular growth rates while redirecting metabolism to make desired products are the preeminent goals of gene engineering of photoautotrophs, yet so far these goals have been hardly achieved owing to lack of understanding of the functional pathways and their choke points. Here we apply a 13C mass isotopic method (INST-MFA) to quantify instantaneous fluxes of metabolites during photoautotrophic growth. INST-MFA determines the globally most accurate set of absolute fluxes for each metabolite from a finite set of measured 13C-isotopomer fluxes by minimizing the sum of squared residuals between experimental and predicted mass isotopomers. We show that the widely observed shift in biomass composition in cyanobacteria, demonstrated here with Synechococcus sp. PCC 7002, favoring glycogen synthesis during nitrogen starvation is caused by (1) increased flux through a bottleneck step in gluconeogenesis (3PG → GAP/DHAP), and (2) flux overflow through a previously unrecognized hybrid gluconeogenesis-pentose phosphate (hGPP) pathway. Our data suggest the slower growth rate and biomass accumulation under N starvation is due to a reduced carbon fixation rate and a reduced flux of carbon into amino acid precursors. Additionally, 13C flux from α-ketoglutarate to succinate is demonstrated to occur via succinic semialdehyde, an alternative to the conventional TCA cycle, in Synechococcus 7002 under photoautotrophic conditions. We found that pyruvate and oxaloacetate are synthesized mainly by malate dehydrogenase with minimal flux into acetyl coenzyme-A via pyruvate dehydrogenase. Nutrient stress induces major shifts in fluxes into new pathways that deviate from historical metabolic pathways derived from model bacteria.
Collapse
Affiliation(s)
- Xiao Qian
- Waksman Institute, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Yuan Zhang
- Waksman Institute, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Desmond S. Lun
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey 08102, United States
- Department of Computer Science, Rutgers University, Camden, New Jersey 08102, United States
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - G. Charles Dismukes
- Waksman Institute, Rutgers University, New Brunswick, New Jersey 08854, United States
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
30
|
Kelly CL, Taylor GM, Hitchcock A, Torres-Méndez A, Heap JT. A Rhamnose-Inducible System for Precise and Temporal Control of Gene Expression in Cyanobacteria. ACS Synth Biol 2018; 7:1056-1066. [PMID: 29544054 DOI: 10.1021/acssynbio.7b00435] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyanobacteria are important for fundamental studies of photosynthesis and have great biotechnological potential. In order to better study and fully exploit these organisms, the limited repertoire of genetic tools and parts must be expanded. A small number of inducible promoters have been used in cyanobacteria, allowing dynamic external control of gene expression through the addition of specific inducer molecules. However, the inducible promoters used to date suffer from various drawbacks including toxicity of inducers, leaky expression in the absence of inducer and inducer photolability, the latter being particularly relevant to cyanobacteria, which, as photoautotrophs, are grown under light. Here we introduce the rhamnose-inducible rhaBAD promoter of Escherichia coli into the model freshwater cyanobacterium Synechocystis sp. PCC 6803 and demonstrate it has superior properties to previously reported cyanobacterial inducible promoter systems, such as a non-toxic, photostable, non-metabolizable inducer, a linear response to inducer concentration and crucially no basal transcription in the absence of inducer.
Collapse
Affiliation(s)
- Ciarán L. Kelly
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - George M. Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Andrew Hitchcock
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Antonio Torres-Méndez
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - John T. Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| |
Collapse
|
31
|
Pérez AA, Ferlez BH, Applegate AM, Walters K, He Z, Shen G, Golbeck JH, Bryant DA. Presence of a [3Fe-4S] cluster in a PsaC variant as a functional component of the photosystem I electron transfer chain in Synechococcus sp. PCC 7002. PHOTOSYNTHESIS RESEARCH 2018; 136:31-48. [PMID: 28916964 DOI: 10.1007/s11120-017-0437-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
A site-directed C14G mutation was introduced into the stromal PsaC subunit of Synechococcus sp. strain PCC 7002 in vivo in order to introduce an exchangeable coordination site into the terminal FB [4Fe-4S] cluster of Photosystem I (PSI). Using an engineered PSI-less strain (psaAB deletion), psaC was deleted and replaced with recombinant versions controlled by a strong promoter, and the psaAB deletion was complemented. Modified PSI accumulated at lower levels in this strain and supported slower photoautotrophic growth than wild type. As-isolated PSI complexes containing PsaCC14G showed resonances with g values of 2.038 and 2.007 characteristic of a [3Fe-4S]1+ cluster. When the PSI complexes were illuminated at 15 K, these resonances partially disappeared and two new sets of resonances appeared. The majority set had g values of 2.05, 1.95, and 1.85, characteristic of FA-, and the minority set had g values of 2.11, 1.90, and 1.88 from FB' in the modified site. The S = 1/2 spin state of the latter implied the presence of a thiolate as the terminal ligand. The [3Fe-4S] clusters could be partially reconstituted with iron, producing a larger population of [4Fe-4S] clusters. Rates of flavodoxin reduction were identical in PSI complexes isolated from wild type and the PsaCC14G variant strain; this implied equivalent capacity for forward electron transfer in PSI complexes that contained [3Fe-4S] and [4Fe-4S] clusters. The development of this cyanobacterial strain is a first step toward translation of in vitro PSI-based biosolar molecular wire systems in vivo and provides new insights into the formation of Fe/S clusters.
Collapse
Affiliation(s)
- Adam A Pérez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Bryan H Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 28824, USA
| | - Amanda M Applegate
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
- Musculoskeletal Transplant Foundation, Jessup, PA, 18434, USA
| | - Karim Walters
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Zhihui He
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
32
|
Inhibition of Cyanobacterial Growth on a Municipal Wastewater Sidestream Is Impacted by Temperature. mSphere 2018; 3:mSphere00538-17. [PMID: 29507895 PMCID: PMC5830474 DOI: 10.1128/msphere.00538-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/07/2018] [Indexed: 01/21/2023] Open
Abstract
Cyanobacteria are viewed as promising platforms to produce fuels and/or high-value chemicals as part of so-called “biorefineries.” Their integration into wastewater treatment systems is particularly interesting because removal of the nitrogen and phosphorus in many wastewater streams is an expensive but necessary part of wastewater treatment. In this study, we evaluated strategies for cultivating Synechococcus sp. strain PCC 7002 on media comprised of two wastewater streams, i.e., treated secondary effluent supplemented with the liquid fraction extracted from sludge following anaerobic digestion. This strain is commonly used for metabolic engineering to produce a variety of valuable chemical products and product precursors (e.g., lactate). However, initial attempts to grow PCC 7002 under otherwise-standard conditions of light and temperature failed. We thus systematically evaluated alternative cultivation conditions and then used multiple methods to dissect the apparent toxicity of the media under standard cultivation conditions. Sidestreams in wastewater treatment plants can serve as concentrated sources of nutrients (i.e., nitrogen and phosphorus) to support the growth of photosynthetic organisms that ultimately serve as feedstock for production of fuels and chemicals. However, other chemical characteristics of these streams may inhibit growth in unanticipated ways. Here, we evaluated the use of liquid recovered from municipal anaerobic digesters via gravity belt filtration as a nutrient source for growing the cyanobacterium Synechococcus sp. strain PCC 7002. The gravity belt filtrate (GBF) contained high levels of complex dissolved organic matter (DOM), which seemed to negatively influence cells. We investigated the impact of GBF on physiological parameters such as growth rate, membrane integrity, membrane composition, photosystem composition, and oxygen evolution from photosystem II. At 37°C, we observed an inverse correlation between GBF concentration and membrane integrity. Radical production was also detected upon exposure to GBF at 37°C. However, the dose-dependent relationship between the GBF concentration and the lack of membrane integrity was abolished at 27°C. Immediate resuspension of strains in high levels of GBF showed markedly reduced oxygen evolution rates relative to those seen with the control. Taken together, the data indicate that one mechanism responsible for GBF toxicity to Synechococcus is the interruption of photosynthetic electron flow and subsequent phenomena. We hypothesize that this is likely due to the presence of phenolic compounds within the DOM. IMPORTANCE Cyanobacteria are viewed as promising platforms to produce fuels and/or high-value chemicals as part of so-called “biorefineries.” Their integration into wastewater treatment systems is particularly interesting because removal of the nitrogen and phosphorus in many wastewater streams is an expensive but necessary part of wastewater treatment. In this study, we evaluated strategies for cultivating Synechococcus sp. strain PCC 7002 on media comprised of two wastewater streams, i.e., treated secondary effluent supplemented with the liquid fraction extracted from sludge following anaerobic digestion. This strain is commonly used for metabolic engineering to produce a variety of valuable chemical products and product precursors (e.g., lactate). However, initial attempts to grow PCC 7002 under otherwise-standard conditions of light and temperature failed. We thus systematically evaluated alternative cultivation conditions and then used multiple methods to dissect the apparent toxicity of the media under standard cultivation conditions.
Collapse
|
33
|
Stensjö K, Vavitsas K, Tyystjärvi T. Harnessing transcription for bioproduction in cyanobacteria. PHYSIOLOGIA PLANTARUM 2018; 162:148-155. [PMID: 28762505 DOI: 10.1111/ppl.12606] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Sustainable production of biofuels and other valuable compounds is one of our future challenges. One tempting possibility is to use photosynthetic cyanobacteria as production factories. Currently, tools for genetic engineering of cyanobacteria are not good enough to exploit the full potential of cyanobacteria. A wide variety of expression systems will be required to adjust both the expression of heterologous enzyme(s) and metabolic routes to the best possible balance, allowing the optimal production of a particular substance. In bacteria, transcription, especially the initiation of transcription, has a central role in adjusting gene expression and thus also metabolic fluxes of cells according to environmental cues. Here we summarize the recent progress in developing tools for efficient cyanofactories, focusing especially on transcriptional regulation.
Collapse
Affiliation(s)
- Karin Stensjö
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Konstantinos Vavitsas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Taina Tyystjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
34
|
Wang B, Eckert C, Maness PC, Yu J. A Genetic Toolbox for Modulating the Expression of Heterologous Genes in the Cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 2018; 7:276-286. [PMID: 29232504 DOI: 10.1021/acssynbio.7b00297] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cyanobacteria, genetic models for photosynthesis research for decades, have recently become attractive hosts for producing renewable fuels and chemicals, owing to their genetic tractability, relatively fast growth, and their ability to utilize sunlight, fix carbon dioxide, and in some cases, fix nitrogen. Despite significant advances, there is still an urgent demand for synthetic biology tools in order to effectively manipulate genetic circuits in cyanobacteria. In this study, we have compared a total of 17 natural and chimeric promoters, focusing on expression of the ethylene-forming enzyme (EFE) in the cyanobacterium Synechocystis sp. PCC 6803. We report the finding that the E. coli σ70 promoter Ptrc is superior compared to the previously reported strong promoters, such as PcpcB and PpsbA, for the expression of EFE. In addition, we found that the EFE expression level was very sensitive to the 5'-untranslated region upstream of the open reading frame. A library of ribosome binding sites (RBSs) was rationally designed and was built and systematically characterized. We demonstrate a strategy complementary to the RBS prediction software to facilitate the rational design of an RBS library to optimize the gene expression in cyanobacteria. Our results show that the EFE expression level is dramatically enhanced through these synthetic biology tools and is no longer the rate-limiting step for cyanobacterial ethylene production. These systematically characterized promoters and the RBS design strategy can serve as useful tools to tune gene expression levels and to identify and mitigate metabolic bottlenecks in cyanobacteria.
Collapse
Affiliation(s)
- Bo Wang
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Carrie Eckert
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University of Colorado, Boulder, 4001 Discovery Drive, Boulder, Colorado 80303, United States
| | - Pin-Ching Maness
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Jianping Yu
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
35
|
Rewiring of Cyanobacterial Metabolism for Hydrogen Production: Synthetic Biology Approaches and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:171-213. [PMID: 30091096 DOI: 10.1007/978-981-13-0854-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
With the demand for renewable energy growing, hydrogen (H2) is becoming an attractive energy carrier. Developing H2 production technologies with near-net zero carbon emissions is a major challenge for the "H2 economy." Certain cyanobacteria inherently possess enzymes, nitrogenases, and bidirectional hydrogenases that are capable of H2 evolution using sunlight, making them ideal cell factories for photocatalytic conversion of water to H2. With the advances in synthetic biology, cyanobacteria are currently being developed as a "plug and play" chassis to produce H2. This chapter describes the metabolic pathways involved and the theoretical limits to cyanobacterial H2 production and summarizes the metabolic engineering technologies pursued.
Collapse
|
36
|
Nozzi NE, Case AE, Carroll AL, Atsumi S. Systematic Approaches to Efficiently Produce 2,3-Butanediol in a Marine Cyanobacterium. ACS Synth Biol 2017; 6:2136-2144. [PMID: 28718632 DOI: 10.1021/acssynbio.7b00157] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyanobacteria have attracted significant interest as a platform for renewable production of fuel and feedstock chemicals from abundant atmospheric carbon dioxide by way of photosynthesis. While great strides have been made in developing this technology in freshwater cyanobacteria, logistical issues remain in scale-up. Use of the cyanobacterium Synechococcus sp. PCC 7002 (7002) as a chemical production chassis could address a number of these issues given the higher tolerance to salt, light, and heat as well as the fast growth rate of 7002 in comparison to traditional model cyanobacteria such as Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803. However, despite growing interest, the development of genetic engineering tools for 7002 continues to lag behind those available for model cyanobacterial strains. In this work we demonstrate the systematic development of a 7002 production strain for the feedstock chemical 2,3-butanediol (23BD). We expand the range of tools available for use in 7002 by identifying and utilizing new integration sites for homologous recombination, demonstrating the inducibility of theophylline riboswitches, and screening a set of isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible promoters. We then demonstrate improvements of 23BD production with the systematic screening of different conditions including: operon arrangement and copy number, light strength, inducer concentration, cell density at the time of induction, and nutrient concentration. Final production tests yielded titers of 1.6 g/L 23BD after 16 days at a rate of 100 mg/L/day. This work represents great strides in the development of 7002 as an industrially relevant production host.
Collapse
Affiliation(s)
- Nicole E. Nozzi
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Anna E. Case
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Austin L. Carroll
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
37
|
Chen Z, Zhang G, Yang M, Li T, Ge F, Zhao J. Lysine Acetylome Analysis Reveals Photosystem II Manganese-stabilizing Protein Acetylation is Involved in Negative Regulation of Oxygen Evolution in Model Cyanobacterium Synechococcus sp. PCC 7002. Mol Cell Proteomics 2017; 16:1297-1311. [PMID: 28550166 PMCID: PMC5500762 DOI: 10.1074/mcp.m117.067835] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/09/2017] [Indexed: 12/11/2022] Open
Abstract
Nε-Acetylation of lysine residues represents a frequently occurring post-translational modification widespread in bacteria that plays vital roles in regulating bacterial physiology and metabolism. However, the role of lysine acetylation in cyanobacteria remains unclear, presenting a hurdle to in-depth functional study of this post-translational modification. Here, we report the lysine acetylome of Synechococcus sp. PCC 7002 (hereafter Synechococcus) using peptide prefractionation, immunoaffinity enrichment, and coupling with high-precision liquid chromatography-tandem mass spectrometry analysis. Proteomic analysis of Synechococcus identified 1653 acetylation sites on 802 acetylproteins involved in a broad range of biological processes. Interestingly, the lysine acetylated proteins were enriched for proteins involved in photosynthesis, for example. Functional studies of the photosystem II manganese-stabilizing protein were performed by site-directed mutagenesis and mutants mimicking either constitutively acetylated (K99Q, K190Q, and K219Q) or nonacetylated states (K99R, K190R, and K219R) were constructed. Mutation of the K190 acetylation site resulted in a distinguishable phenotype. Compared with the K190R mutant, the K190Q mutant exhibited a decreased oxygen evolution rate and an enhanced cyclic electron transport rate in vivo Our findings provide new insight into the molecular mechanisms of lysine acetylation that involved in the negative regulation of oxygen evolution in Synechococcus and creates opportunities for in-depth elucidation of the physiological role of protein acetylation in photosynthesis in cyanobacteria.
Collapse
Affiliation(s)
- Zhuo Chen
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- §Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Guiying Zhang
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- ¶University of Chinese Academy of Sciences, Beijing 100094, China
| | - Mingkun Yang
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Tao Li
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China;
| | - Feng Ge
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China;
| | - Jindong Zhao
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| |
Collapse
|
38
|
Vogel AIM, Lale R, Hohmann-Marriott MF. Streamlining recombination-mediated genetic engineering by validating three neutral integration sites in Synechococcus sp. PCC 7002. J Biol Eng 2017; 11:19. [PMID: 28592992 PMCID: PMC5458483 DOI: 10.1186/s13036-017-0061-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/08/2017] [Indexed: 11/17/2022] Open
Abstract
Background Synechococcus sp. PCC 7002 (henceforth Synechococcus) is developing into a powerful synthetic biology chassis. In order to streamline the integration of genes into the Synechococcus chromosome, validation of neutral integration sites with optimization of the DNA transformation protocol parameters is necessary. Availability of BioBrick-compatible integration modules is desirable to further simplifying chromosomal integrations. Results We designed three BioBrick-compatible genetic modules, each targeting a separate neutral integration site, A2842, A0935, and A0159, with varying length of homologous region, spanning from 100 to 800 nt. The performance of the different modules for achieving DNA integration were tested. Our results demonstrate that 100 nt homologous regions are sufficient for inserting a 1 kb DNA fragment into the Synechococcus chromosome. By adapting a transformation protocol from a related cyanobacterium, we shortened the transformation procedure for Synechococcus significantly. Conclusions The optimized transformation protocol reported in this study provides an efficient way to perform genetic engineering in Synechococcus. We demonstrated that homologous regions of 100 nt are sufficient for inserting a 1 kb DNA fragment into the three tested neutral integration sites. Integration at A2842, A0935 and A0159 results in only a minimal fitness cost for the chassis. This study contributes to developing Synechococcus as the prominent chassis for future synthetic biology applications. Electronic supplementary material The online version of this article (doi:10.1186/s13036-017-0061-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Ilse Maria Vogel
- Department of Biotechnology, PhotoSynLab, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rahmi Lale
- Department of Biotechnology, PhotoSynLab, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
39
|
Hill EA, Chrisler WB, Beliaev AS, Bernstein HC. A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks. BIORESOURCE TECHNOLOGY 2017; 228:250-256. [PMID: 28092828 DOI: 10.1016/j.biortech.2016.12.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 06/06/2023]
Abstract
A new co-cultivation technology is presented that converts greenhouse gasses, CH4 and CO2, into microbial biomass. The methanotrophic bacterium, Methylomicrobium alcaliphilum 20z, was coupled to a cyanobacterium, Synechococcus PCC 7002 via oxygenic photosynthesis. The system exhibited robust growth on diverse gas mixtures ranging from biogas to those representative of a natural gas feedstock. A continuous processes was developed on a synthetic natural gas feed that achieved steady-state by imposing coupled light and O2 limitations on the cyanobacterium and methanotroph, respectively. Continuous co-cultivation resulted in an O2 depleted reactor and does not require CH4/O2 mixtures to be fed into the system, thereby enhancing process safety considerations over traditional methanotroph mono-culture platforms. This co-culture technology is scalable with respect to its ability to utilize different gas streams and its biological components constructed from model bacteria that can be metabolically customized to produce a range of biofuels and bioproducts.
Collapse
Affiliation(s)
- Eric A Hill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alex S Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Hans C Bernstein
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
| |
Collapse
|
40
|
Xiong W, Shen G, Bryant DA. Synechocystis sp. PCC 6803 CruA (sll0147) encodes lycopene cyclase and requires bound chlorophyll a for activity. PHOTOSYNTHESIS RESEARCH 2017; 131:267-280. [PMID: 27743323 DOI: 10.1007/s11120-016-0316-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/06/2016] [Indexed: 05/15/2023]
Abstract
The genome of the model cyanobacterium, Synechococcus sp. PCC 7002, encodes two paralogs of CruA-type lycopene cyclases, SynPCC7002_A2153 and SynPCC7002_A0043, which are denoted cruA and cruP, respectively. Unlike the wild-type strain, a cruA deletion mutant is light-sensitive, grows slowly, and accumulates lycopene, γ-carotene, and 1-OH-lycopene; however, this strain still produces β-carotene and other carotenoids derived from it. Expression of cruA from Synechocystis sp. PCC 6803 (cruA 6803) in Escherichia coli strains that synthesize either lycopene or γ-carotene did not lead to the synthesis of either γ-carotene or β-carotene, respectively. However, expression of this orthologous cruA 6803 gene (sll0147) in the Synechococcus sp. PCC 7002 cruA deletion mutant produced strains with phenotypic properties identical to the wild type. CruA6803 was purified from Synechococcus sp. PCC 7002 by affinity chromatography, and the purified protein was pale yellow-green due to the presence of bound chlorophyll (Chl) a and β-carotene. Native polyacrylamide gel electrophoresis of the partly purified protein in the presence of lithium dodecylsulfate at 4 °C confirmed that the protein was yellow-green in color. When purified CruA6803 was assayed in vitro with either lycopene or γ-carotene as substrate, β-carotene was synthesized. These data establish that CruA6803 is a lycopene cyclase and that it requires a bound Chl a molecule for activity. Possible binding sites for Chl a and the potential regulatory role of the Chl a in coordination of Chl and carotenoid biosynthesis are discussed.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
41
|
Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Zn2+-Inducible Expression Platform for Synechococcus sp. Strain PCC 7002 Based on the smtA Promoter/Operator and smtB Repressor. Appl Environ Microbiol 2017; 83:AEM.02491-16. [PMID: 27836841 DOI: 10.1128/aem.02491-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
Synechococcus sp. strain PCC 7002 has been gaining significance as both a model system for photosynthesis research and for industrial applications. Until recently, the genetic toolbox for this model cyanobacterium was rather limited and relied primarily on tools that only allowed constitutive gene expression. This work describes a two-plasmid, Zn2+-inducible expression platform that is coupled with a zurA mutation, providing enhanced Zn2+ uptake. The control elements are based on the metal homeostasis system of a class II metallothionein gene (smtA7942) and its cognate SmtB7942 repressor from Synechococcus elongatus strain PCC 7942. Under optimal induction conditions, yellow fluorescent protein (YFP) levels were about half of those obtained with the strong, constitutive phycocyanin (cpcBA6803) promoter of Synechocystis sp. strain PCC 6803. This metal-inducible expression system in Synechococcus sp. strain PCC 7002 allowed the titratable gene expression of YFP that was up to 19-fold greater than the background level. This system was utilized successfully to control the expression of the Drosophila melanogaster β-carotene 15,15'-dioxygenase, NinaB, which is toxic when constitutively expressed from a strong promoter in Synechococcus sp. strain PCC 7002. Together, these properties establish this metal-inducible system as an additional useful tool that is capable of controlling gene expression for applications ranging from basic research to synthetic biology in Synechococcus sp. strain PCC 7002. IMPORTANCE This is the first metal-responsive expression system in cyanobacteria, to our knowledge, that does not exhibit low sensitivity for induction, which is one of the major hurdles for utilizing this class of genetic tools. In addition, high levels of expression can be generated that approximate those of established constitutive systems, with the added advantage of titratable control. Together, these properties establish this Zn2+-inducible system, which is based on the smtA7942 operator/promoter and smtB7942 repressor, as a versatile gene expression platform that expands the genetic toolbox of Synechococcus sp. strain PCC 7002.
Collapse
|
43
|
Kopka J, Schmidt S, Dethloff F, Pade N, Berendt S, Schottkowski M, Martin N, Dühring U, Kuchmina E, Enke H, Kramer D, Wilde A, Hagemann M, Friedrich A. Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:56. [PMID: 28286551 PMCID: PMC5340023 DOI: 10.1186/s13068-017-0741-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/23/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Future sustainable energy production can be achieved using mass cultures of photoautotrophic microorganisms, which are engineered to synthesize valuable products directly from CO2 and sunlight. As cyanobacteria can be cultivated in large scale on non-arable land, these phototrophic bacteria have become attractive organisms for production of biofuels. Synechococcus sp. PCC 7002, one of the cyanobacterial model organisms, provides many attractive properties for biofuel production such as tolerance of seawater and high light intensities. RESULTS Here, we performed a systems analysis of an engineered ethanol-producing strain of the cyanobacterium Synechococcus sp. PCC 7002, which was grown in artificial seawater medium over 30 days applying a 12:12 h day-night cycle. Biosynthesis of ethanol resulted in a final accumulation of 0.25% (v/v) ethanol, including ethanol lost due to evaporation. The cultivation experiment revealed three production phases. The highest production rate was observed in the initial phase when cells were actively growing. In phase II growth of the producer strain stopped, but ethanol production rate was still high. Phase III was characterized by a decrease of both ethanol production and optical density of the culture. Metabolomics revealed that the carbon drain due to ethanol diffusion from the cell resulted in the expected reduction of pyruvate-based intermediates. Carbon-saving strategies successfully compensated the decrease of central intermediates of carbon metabolism during the first phase of fermentation. However, during long-term ethanol production the producer strain showed clear indications of intracellular carbon limitation. Despite the decreased levels of glycolytic and tricarboxylic acid cycle intermediates, soluble sugars and even glycogen accumulated in the producer strain. The changes in carbon assimilation patterns are partly supported by proteome analysis, which detected decreased levels of many enzymes and also revealed the stress phenotype of ethanol-producing cells. Strategies towards improved ethanol production are discussed. CONCLUSIONS Systems analysis of ethanol production in Synechococcus sp. PCC 7002 revealed initial compensation followed by increasing metabolic limitation due to excessive carbon drain from primary metabolism.
Collapse
Affiliation(s)
- Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Stefanie Schmidt
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Frederik Dethloff
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Max-Planck-Institute of Psychiatry, Kraepelinstraße 2-10, 80804 Munich, Germany
| | - Nadin Pade
- Institute of Biological Sciences, Plant Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Susanne Berendt
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | | | - Nico Martin
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Ulf Dühring
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Ekaterina Kuchmina
- Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Heike Enke
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
- Cyano Biotech GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Dan Kramer
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
- Cyano Biotech GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Martin Hagemann
- Institute of Biological Sciences, Plant Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | | |
Collapse
|
44
|
Flux balance analysis of photoautotrophic metabolism: Uncovering new biological details of subsystems involved in cyanobacterial photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:276-287. [PMID: 28012908 DOI: 10.1016/j.bbabio.2016.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/03/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022]
Abstract
We have constructed and experimentally tested a comprehensive genome-scale model of photoautotrophic growth, denoted iSyp821, for the cyanobacterium Synechococcus sp. PCC 7002. iSyp821 incorporates a variable biomass objective function (vBOF), in which stoichiometries of the major biomass components vary according to light intensity. The vBOF was constrained to fit the measured cellular carbohydrate/protein content under different light intensities. iSyp821 provides rigorous agreement with experimentally measured cell growth rates and inorganic carbon uptake rates as a function of light intensity. iSyp821 predicts two observed metabolic transitions that occur as light intensity increases: 1) from PSI-cyclic to linear electron flow (greater redox energy), and 2) from carbon allocation as proteins (growth) to carbohydrates (energy storage) mode. iSyp821 predicts photoautotrophic carbon flux into 1) a hybrid gluconeogenesis-pentose phosphate (PP) pathway that produces glycogen by an alternative pathway than conventional gluconeogenesis, and 2) the photorespiration pathway to synthesize the essential amino acid, glycine. Quantitative fluxes through both pathways were verified experimentally by following the kinetics of formation of 13C metabolites from 13CO2 fixation. iSyp821 was modified to include changes in gene products (enzymes) from experimentally measured transcriptomic data and applied to estimate changes in concentrations of metabolites arising from nutrient stress. Using this strategy, we found that iSyp821 correctly predicts the observed redistribution pattern of carbon products under nitrogen depletion, including decreased rates of CO2 uptake, amino acid synthesis, and increased rates of glycogen and lipid synthesis.
Collapse
|
45
|
Chen Y, Taton A, Go M, London RE, Pieper LM, Golden SS, Golden JW. Self-replicating shuttle vectors based on pANS, a small endogenous plasmid of the unicellular cyanobacterium Synechococcus elongatus PCC 7942. Microbiology (Reading) 2016; 162:2029-2041. [DOI: 10.1099/mic.0.000377] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- You Chen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Arnaud Taton
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Michaela Go
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ross E. London
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lindsey M. Pieper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Susan S. Golden
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - James W. Golden
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
46
|
Zhang S, Qian X, Chang S, Dismukes GC, Bryant DA. Natural and Synthetic Variants of the Tricarboxylic Acid Cycle in Cyanobacteria: Introduction of the GABA Shunt into Synechococcus sp. PCC 7002. Front Microbiol 2016; 7:1972. [PMID: 28018308 PMCID: PMC5160925 DOI: 10.3389/fmicb.2016.01972] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/24/2016] [Indexed: 12/02/2022] Open
Abstract
For nearly half a century, it was believed that cyanobacteria had an incomplete tricarboxylic acid (TCA) cycle, because 2-oxoglutarate dehydrogenase (2-OGDH) was missing. Recently, a bypass route via succinic semialdehyde (SSA), which utilizes 2-oxoglutarate decarboxylase (OgdA) and succinic semialdehyde dehydrogenase (SsaD) to convert 2-oxoglutarate (2-OG) into succinate, was identified, thus completing the TCA cycle in most cyanobacteria. In addition to the recently characterized glyoxylate shunt that occurs in a few of cyanobacteria, the existence of a third variant of the TCA cycle connecting these metabolites, the γ-aminobutyric acid (GABA) shunt, was considered to be ambiguous because the GABA aminotransferase is missing in many cyanobacteria. In this study we isolated and biochemically characterized the enzymes of the GABA shunt. We show that N-acetylornithine aminotransferase (ArgD) can function as a GABA aminotransferase and that, together with glutamate decarboxylase (GadA), it can complete a functional GABA shunt. To prove the connectivity between the OgdA/SsaD bypass and the GABA shunt, the gadA gene from Synechocystis sp. PCC 6803 was heterologously expressed in Synechococcus sp. PCC 7002, which naturally lacks this enzyme. Metabolite profiling of seven Synechococcus sp. PCC 7002 mutant strains related to these two routes to succinate were investigated and proved the functional connectivity. Metabolite profiling also indicated that, compared to the OgdA/SsaD shunt, the GABA shunt was less efficient in converting 2-OG to SSA in Synechococcus sp. PCC 7002. The metabolic profiling study of these two TCA cycle variants provides new insights into carbon metabolism as well as evolution of the TCA cycle in cyanobacteria.
Collapse
Affiliation(s)
- Shuyi Zhang
- 403C Althouse Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park PA, USA
| | - Xiao Qian
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Shannon Chang
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - G C Dismukes
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, PiscatawayNJ, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, PiscatawayNJ, USA
| | - Donald A Bryant
- 403C Althouse Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University ParkPA, USA; Department of Chemistry and Biochemistry, Montana State University, BozemanMT, USA
| |
Collapse
|
47
|
Specht EA, Karunanithi PS, Gimpel JA, Ansari WS, Mayfield SP. Host Organisms: Algae. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Elizabeth A. Specht
- University of California; California Center for Algae Biotechnology; Division of Biological Sciences; 9500 Gilman Drive San Diego, La Jolla CA 92093 USA
| | - Prema S. Karunanithi
- University of California; California Center for Algae Biotechnology; Division of Biological Sciences; 9500 Gilman Drive San Diego, La Jolla CA 92093 USA
| | - Javier A. Gimpel
- Centre for Biotechnology and Bioengineering; Department of Chemical Engineering and Biotechnology, Universidad de Chile; 851 Beaucheff Santiago USA
| | - William S. Ansari
- University of California; California Center for Algae Biotechnology; Division of Biological Sciences; 9500 Gilman Drive San Diego, La Jolla CA 92093 USA
| | - Stephen P. Mayfield
- University of California; California Center for Algae Biotechnology; Division of Biological Sciences; 9500 Gilman Drive San Diego, La Jolla CA 92093 USA
| |
Collapse
|
48
|
Ruffing AM, Jensen TJ, Strickland LM. Genetic tools for advancement of Synechococcus sp. PCC 7002 as a cyanobacterial chassis. Microb Cell Fact 2016; 15:190. [PMID: 27832791 PMCID: PMC5105302 DOI: 10.1186/s12934-016-0584-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Successful implementation of modified cyanobacteria as hosts for industrial applications requires the development of a cyanobacterial chassis. The cyanobacterium Synechococcus sp. PCC 7002 embodies key attributes for an industrial host, including a fast growth rate and high salt, light, and temperature tolerances. This study addresses key limitations in the advancement of Synechococcus sp. PCC 7002 as an industrial chassis. Results Tools for genome integration were developed and characterized, including several putative neutral sites for genome integration. The minimum homology arm length for genome integration in Synechococcus sp. PCC 7002 was determined to be approximately 250 bp. Three fluorescent protein reporters (hGFP, Ypet, and mOrange) were characterized for gene expression, microscopy, and flow cytometry applications in Synechococcus sp. PCC 7002. Of these three proteins, the yellow fluorescent protein (Ypet) had the best optical properties for minimal interference with the native photosynthetic pigments and for detection using standard microscopy and flow cytometry optics. Twenty-five native promoters were characterized as tools for recombinant gene expression in Synechococcus sp. PCC 7002 based on previous RNA-seq results. This characterization included comparisons of protein and mRNA levels as well as expression under both continuous and diurnal light conditions. Promoters A2520 and A2579 were found to have strong expression in Synechococcus sp. PCC 7002 while promoters A1930, A1961, A2531, and A2813 had moderate expression. Promoters A2520 and A2813 showed more than twofold increases in gene expression under light conditions compared to dark, suggesting these promoters may be useful tools for engineering diurnal regulation. Conclusions The genome integration, fluorescent protein, and promoter tools developed in this study will help to advance Synechococcus sp. PCC 7002 as a cyanobacterial chassis. The long minimum homology arm length for Synechococcus sp. PCC 7002 genome integration indicates native exonuclease activity or a low efficiency of homologous recombination. Low correlation between transcript and protein levels in Synechococcus sp. PCC 7002 suggests that transcriptomic data are poor selection criteria for promoter tool development. Lastly, the conventional strategy of using promoters from photosynthetic operons as strong promoter tools is debunked, as promoters from hypothetical proteins (A2520 and A2579) were found to have much higher expression levels. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0584-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne M Ruffing
- Department of Bioenergy and Defense Technologies, Sandia National Laboratories, P.O. Box 5800, MS 1413, Albuquerque, NM, 87185-1413, USA.
| | - Travis J Jensen
- Department of Bioenergy and Defense Technologies, Sandia National Laboratories, P.O. Box 5800, MS 1413, Albuquerque, NM, 87185-1413, USA
| | - Lucas M Strickland
- Department of Bioenergy and Defense Technologies, Sandia National Laboratories, P.O. Box 5800, MS 1413, Albuquerque, NM, 87185-1413, USA
| |
Collapse
|
49
|
Identification and Regulation of Genes for Cobalamin Transport in the Cyanobacterium Synechococcus sp. Strain PCC 7002. J Bacteriol 2016; 198:2753-61. [PMID: 27457716 DOI: 10.1128/jb.00476-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/19/2016] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED The cyanobacterium Synechococcus sp. strain PCC 7002 is a cobalamin auxotroph and utilizes this coenzyme solely for the synthesis of l-methionine by methionine synthase (MetH). Synechococcus sp. strain PCC 7002 is unable to synthesize cobalamin de novo, and because of the large size of this tetrapyrrole, an active-transport system must exist for cobalamin uptake. Surprisingly, no cobalamin transport system was identified in the initial annotation of the genome of this organism. With more sophisticated in silico prediction tools, a btuB-cpdA-btuC-btuF operon encoding components putatively required for a B12 uptake (btu) system was identified. The expression of these genes was predicted to be controlled by a cobalamin riboswitch. Global transcriptional profiling by high-throughput RNA sequencing of a cobalamin-independent form of Synechococcus sp. strain PCC 7002 grown in the absence or presence of cobalamin confirmed regulation of the btu operon by cobalamin. Pérez et al. (A. A. Pérez, Z. Liu, D. A. Rodionov, Z. Li, and D. A. Bryant, J Bacteriol 198:2743-2752, 2016, http://dx.doi.org/10.1128/JB.00475-16) developed a cobalamin-dependent yellow fluorescent protein reporter system in a Synechococcus sp. strain PCC 7002 variant that had been genetically modified to allow cobalamin-independent growth. This reporter system was exploited to validate components of the btu uptake system by assessing the ability of targeted mutants to transport cobalamin. The btuB promoter and a variant counterpart mutated in an essential element of the predicted cobalamin riboswitch were fused to a yfp reporter. The combined data indicate that the btuB-cpdA-btuF-btuC operon in this cyanobacterium is transcriptionally regulated by a cobalamin riboswitch. IMPORTANCE With a cobalamin-regulated reporter system for expression of yellow fluorescent protein, genes previously misidentified as encoding subunits of a siderophore transporter were shown to encode components of cobalamin uptake in the cyanobacterium Synechococcus sp. strain PCC 7002. This study demonstrates the importance of experimental validation of in silico predictions and provides a general scheme for in vivo verification of similar cobalamin transport systems. A putative cobalamin riboswitch was identified in Synechococcus sp. strain PCC 7002. This riboswitch acts as a potential transcriptional attenuator of the btu operon that encodes the components of the cobalamin active-transport system.
Collapse
|
50
|
Complementation of Cobalamin Auxotrophy in Synechococcus sp. Strain PCC 7002 and Validation of a Putative Cobalamin Riboswitch In Vivo. J Bacteriol 2016; 198:2743-52. [PMID: 27457714 DOI: 10.1128/jb.00475-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/19/2016] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED The euryhaline cyanobacterium Synechococcus sp. strain PCC 7002 has an obligate requirement for exogenous vitamin B12 (cobalamin), but little is known about the roles of this compound in cyanobacteria. Bioinformatic analyses suggest that only the terminal enzyme in methionine biosynthesis, methionine synthase, requires cobalamin as a coenzyme in Synechococcus sp. strain PCC 7002. Methionine synthase (MetH) catalyzes the transfer of a methyl group from N(5)-methyl-5,6,7,8-tetrahydrofolate to l-homocysteine during l-methionine synthesis and uses methylcobalamin as an intermediate methyl donor. Numerous bacteria and plants alternatively employ a cobalamin-independent methionine synthase isozyme, MetE, that catalyzes the same methyl transfer reaction as MetH but uses N(5)-methyl-5,6,7,8-tetrahydrofolate directly as the methyl donor. The cobalamin auxotrophy of Synechococcus sp. strain PCC 7002 was complemented by using the metE gene from the closely related cyanobacterium Synechococcus sp. strain PCC 73109, which possesses genes for both methionine synthases. This result suggests that methionine biosynthesis is probably the sole use of cobalamin in Synechococcus sp. strain PCC 7002. Furthermore, a cobalamin-repressible gene expression system was developed in Synechococcus sp. strain PCC 7002 that was used to validate the presence of a cobalamin riboswitch in the promoter region of metE from Synechococcus sp. strain PCC 73109. This riboswitch acts as a cobalamin-dependent transcriptional attenuator for metE in that organism. IMPORTANCE Synechococcus sp. strain PCC 7002 is a cobalamin auxotroph because, like eukaryotic marine algae, it uses a cobalamin-dependent methionine synthase (MetH) for the final step of l-methionine biosynthesis but cannot synthesize cobalamin de novo Heterologous expression of metE, encoding cobalamin-independent methionine synthase, from Synechococcus sp. strain PCC 73109, relieved this auxotrophy and enabled the construction of a truly autotrophic Synechococcus sp. strain PCC 7002 more suitable for large-scale industrial applications. Characterization of a cobalamin riboswitch expands the genetic toolbox for Synechococcus sp. strain PCC 7002 by providing a cobalamin-repressible expression system.
Collapse
|