1
|
Wu XY, Dong QW, Zhang YB, Li JX, Zhang MQ, Zhang DQ, Cui YL. Cimicifuga heracleifolia kom. Attenuates ulcerative colitis through the PI3K/AKT/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118892. [PMID: 39395768 DOI: 10.1016/j.jep.2024.118892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cimicifuga heracleifolia Kom. (C. heracleifolia) has demonstrated efficacy in treating gastrointestinal disorders, including splenasthenic diarrhea. Ulcerative colitis (UC), a chronic inflammatory bowel disease, shares similarities with splenasthenic diarrhea. However, the pharmacological effects of C. heracleifolia on UC and the underlying mechanisms remain unexplored. AIM OF THE STUDY The present study investigates the therapeutic potential and mechanisms of C. heracleifolia in UC. METHODS Initially, network pharmacology analysis, encompassing ingredient screening, target prediction, protein-protein interaction (PPI) network analysis, and enrichment analysis, was employed to predict the mechanisms of C. heracleifolia. The findings were further validated using transcriptomics and functional assays in a dextran sulfate sodium (DSS)-induced UC model. Additionally, bioactive compounds were identified through surface plasmon resonance (SPR) analysis, molecular docking, and cell-based assays. RESULTS A total of 52 ingredients of C. heracleifolia were screened, and 32 key targets were identified within a PPI network comprising 285 potential therapeutic targets. Enrichment analysis indicated that the anti-UC effects of C. heracleifolia are mediated through immune response modulation and the inhibition of inflammatory signaling pathways. In vivo experiments showed that C. heracleifolia mitigated histological damage in the colon, reduced the expression of phosphorylated Akt1, nuclear factor-kappa B (NF-κB) p65, and inhibitor of Kappa B kinase α/β (IKKα/β), suppressed the content of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and enhanced the expression of tight junction proteins. Moreover, cimigenoside, caffeic acid, and methyl caffeate were identified as the bioactive constituents responsible for the UC treatment effects of C. heracleifolia. CONCLUSIONS In summary, this study is the first to demonstrate that C. heracleifolia exerts therapeutic effects on UC by enhancing the intestinal mucosal barrier and inhibiting the phosphatidylinositol 3-kinase (PI3K)/AKT/NF-κB signaling pathway. These findings offer valuable insights into the clinical application of C. heracleifolia for UC management.
Collapse
Affiliation(s)
- Xue-Yi Wu
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Qin-Wei Dong
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yong-Bo Zhang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Jia-Xin Li
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Mei-Qing Zhang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - De-Qin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
2
|
Esmaealzadeh N, Abdolghaffari A, Baeeri M, Hasanpour M, Iranshahi M, Santarcangelo C, Gholami M, Bahramsoltani R. Protective effect of freeze-dried extract of Persicaria bistorta Samp. on acetic acid-induced colitis model in rats: Involvement of nitric oxide and opioid system. Inflammopharmacology 2024; 32:3845-3861. [PMID: 39044067 DOI: 10.1007/s10787-024-01518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
Inflammatory bowel disease is a chronic inflammatory disorder accompanied by occasional flare-ups, abdominal pain, and rectal bleeding. Persicaria bistorta Samp. is a medicinal plant repeatedly mentioned in traditional Persian medicine for the treatment of bleeding and tissue damage in different organs, including the intestines. The current study aimed to evaluate the effect of bistort root in an animal model of colitis. Freeze-dried aqueous extract of the plant (PB) was prepared and analyzed using liquid chromatography-mass spectrometry and high-performance liquid chromatography. The anti-inflammatory effect of oral PB (300, 500, and 700 mg/kg) was evaluated in acetic acid-induced colitis in Wistar rats compared with negative control and positive control (dexamethasone). The role of nitric oxide (NO), opioid receptors, Toll-like receptors (TLR-4), interleukin (IL)-1β, IL-6, TNF-α, NF-κB, myeloperoxidase, and intestinal tissue damage using immunohistochemistry staining for cyclooxygenase-2 (COX-2) were also assessed. A total of 29 compounds were identified in the extract. The gallic acid content of the extract was 4.973 ± 1.102 mg/g. PB significantly ameliorated the gross morphological damage from 4.66 ± 0.577 in negative control to 1.33 ± 0.56 in PB 700 (p < 0.001). Also, PB 700 lowered the levels of TNF-α (p < 0.01), TLR-4 (p < 0.001), NF-κB (p < 0.0001), IL-1β (p < 0.0001), and IL-6 (p < 0.0001) compared to the negative control. Additionally, while blocking NO and opioid pathways, the therapeutic effect of the extract was not significant, compared to the negative control, suggesting that PB 700 has exerted its therapeutic effect via these two pathways. However, further mechanistic and clinical studies are recommended to confirm PB as a natural treatment for colitis.
Collapse
Affiliation(s)
- Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, No. 27, North Sarparast, West Taleqani, Felestin Sq, PO Box 1417653761, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Baeeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 11369, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, No. 27, North Sarparast, West Taleqani, Felestin Sq, PO Box 1417653761, Tehran, Iran.
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Scull CE, Hu Y, Jennings S, Wang G. Normalization of Cystic Fibrosis Immune System Reverses Intestinal Neutrophilic Inflammation and Significantly Improves the Survival of Cystic Fibrosis Mice. Cell Mol Gastroenterol Hepatol 2024; 19:101424. [PMID: 39510500 PMCID: PMC11720009 DOI: 10.1016/j.jcmgh.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND & AIMS Cystic fibrosis (CF) is an autosomal recessive genetic disorder, affecting multiple organ systems. CF intestinal disease develops early, manifesting as intestinal bacterial overgrowth/dysbiosis, neutrophilic inflammation, and obstruction. As unresolvable infection and inflammation reflect host immune deficiency, we sought to determine if the CF-affected immune system plays any significant role in CF intestinal disease pathogenesis. METHODS CF and sibling wild-type (WT) mice underwent reciprocal bone marrow transplantation. After immune reconstitution, their mortality, intestinal transit, fecal inflammatory markers, and mucosal immune cell composition were assessed. Moreover, reciprocal neutrophil transfusion was conducted to determine if neutrophil function affects intestinal movement. Furthermore, expression of induced nitric oxide synthase (iNOS) and production of nitric oxide (NO) in CF and WT neutrophils were compared. Lastly, specific iNOS inhibitor 1400W was tested to prevent CF intestinal obstruction. RESULTS Immune restoration in CF mice reversed the intestinal neutrophilic inflammation, improved the intestinal dysmotility, and rescued the mice from mortality. Transfusion of WT neutrophils into CF mice ameliorated the retarded bowel movement. CF neutrophils expressed significantly more iNOS and produced significantly more NO. Pharmaceutical blocking of iNOS significantly improved intestinal transit and survival of CF mice. CONCLUSIONS CF immune defect plays a critical role in CF intestinal disease development. Activation of iNOS in inflammatory cells produces excessive NO, slows the bowel movement, and facilitates intestinal paralysis and obstruction in CF. Thus, normalization of the CF immune system may offer a novel therapy to treat CF intestinal disease.
Collapse
Affiliation(s)
- Callie E Scull
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Yawen Hu
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Scott Jennings
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Guoshun Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| |
Collapse
|
4
|
Chen M, Chang S, Xu Y, Guo H, Liu J. Dietary Beetroot Juice - Effects in Patients with COPD: A Review. Int J Chron Obstruct Pulmon Dis 2024; 19:1755-1765. [PMID: 39099609 PMCID: PMC11296515 DOI: 10.2147/copd.s473397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) exerts a severe toll on human health and the economy, with high prevalence and mortality rates. The search for bioactive components effective in the treatment of COPD has become a focal point of research. Beetroot juice, readily accessible and cost-effective, is noted for its ability to enhance athletic performance and for its preventive and therapeutic impact on hypertension. Beetroot juice is a rich source of dietary nitrates and modulates physiological processes via the nitrate-nitrite- nitric oxide pathway, exerting multiple beneficial effects such as antihypertensive, bronchodilatory, anti-inflammatory, antioxidant, hypoglycemic, and lipid-lowering actions. This paper provides a review of the existing research on the effects of beetroot juice on COPD, summarizing its potential in enhancing exercise capacity, lowering blood pressure, improving vascular function, and ameliorating sleep quality among patients with COPD. The review serves as a reference for the prospective use of beetroot juice in the symptomatic improvement of COPD, as well as in the prevention of exacerbations and associated comorbidities.
Collapse
Affiliation(s)
- Mingming Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Shuting Chang
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Yunpeng Xu
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Hong Guo
- Department of Critical Care Medicine, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou City, Gansu Province, People’s Republic of China
| | - Jian Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou City, Gansu Province, People’s Republic of China
| |
Collapse
|
5
|
Grifagni D, Silva JM, Querci L, Lepoivre M, Vallières C, Louro RO, Banci L, Piccioli M, Golinelli-Cohen MP, Cantini F. Biochemical and cellular characterization of the CISD3 protein: Molecular bases of cluster release and destabilizing effects of nitric oxide. J Biol Chem 2024; 300:105745. [PMID: 38354784 PMCID: PMC10937110 DOI: 10.1016/j.jbc.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
The NEET proteins, an important family of iron-sulfur (Fe-S) proteins, have generated a strong interest due to their involvement in diverse diseases such as cancer, diabetes, and neurodegenerative disorders. Among the human NEET proteins, CISD3 has been the least studied, and its functional role is still largely unknown. We have investigated the biochemical features of CISD3 at the atomic and in cellulo levels upon challenge with different stress conditions i.e., iron deficiency, exposure to hydrogen peroxide, and nitric oxide. The redox and cellular stability properties of the protein agree on a predominance of reduced form of CISD3 in the cells. Upon the addition of iron chelators, CISD3 loses its Fe-S clusters and becomes unstructured, and its cellular level drastically decreases. Chemical shift perturbation measurements suggest that, upon cluster oxidation, the protein undergoes a conformational change at the C-terminal CDGSH domain, which determines the instability of the oxidized state. This redox-associated conformational change may be the source of cooperative electron transfer via the two [Fe2S2] clusters in CISD3, which displays a single sharp voltammetric signal at -31 mV versus SHE. Oxidized CISD3 is particularly sensitive to the presence of hydrogen peroxide in vitro, whereas only the reduced form is able to bind nitric oxide. Paramagnetic NMR provides clear evidence that, upon NO binding, the cluster is disassembled but iron ions are still bound to the protein. Accordingly, in cellulo CISD3 is unaffected by oxidative stress induced by hydrogen peroxide but it becomes highly unstable in response to nitric oxide treatment.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - José Malanho Silva
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Querci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Michel Lepoivre
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cindy Vallières
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lucia Banci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Mario Piccioli
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| | | | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
6
|
Omidkhah N, Hadizadeh F, Ghodsi R, Kesharwani P, Sahebkar A. In silico Evaluation of NO-Sartans against SARS-CoV-2. Curr Drug Discov Technol 2024; 21:e050324227669. [PMID: 38445698 DOI: 10.2174/0115701638279362240223070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Numerous clinical trials are currently investigating the potential of nitric oxide (NO) as an antiviral agent against coronaviruses, including SARS-CoV-2. Additionally, some researchers have reported positive effects of certain Sartans against SARS-CoV-2. METHOD Considering the impact of NO-Sartans on the cardiovascular system, we have compiled information on the general structure, synthesis methods, and biological studies of synthesized NOSartans. In silico evaluation of all NO-Sartans and approved sartans against three key SARS-CoV- -2 targets, namely Mpro (PDB ID: 6LU7), NSP16 (PDB ID: 6WKQ), and ACE-2 (PDB ID: 1R4L), was performed using MOE. RESULTS Almost all NO-Sartans and approved sartans demonstrated promising results in inhibiting these SARS-CoV-2 targets. Compound 36 (CLC-1280) showed the best docking scores against the three evaluated targets and was further evaluated using molecular dynamics (MD) simulations. CONCLUSION Based on our in silico studies, CLC-1280 (a Valsartan dinitrate) has the potential to be considered as an inhibitor of the SARS-CoV-2 virus. However, further in vitro and in vivo evaluations are necessary for the drug development process.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, 110062, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Diep TT, Dung LV, Trung PV, Hoai NT, Thao DT, Uyen NTT, Linh TTH, Ha THN, Truc HT. Chemical Composition, Antimicrobial, Nitric Oxide Inhibition and Cytotoxic Activity of Essential Oils from Zanthoxylum acanthopodium DC. Leaves and Stems from Vietnam. Chem Biodivers 2023; 20:e202300649. [PMID: 37471031 DOI: 10.1002/cbdv.202300649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
This study was aimed to investigate the chemical composition and biological activities of leaf and stem essential oils of Zanthoxylum acanthopodium DC. from Vietnam. Their chemical composition was analyzed by GC/MS. Antimicrobial activities were evaluated by microdilution broth assay. Anti-inflammatory activity was evaluated by the ability to inhibit nitric oxide production in macrophage cells. Cytotoxic activity was evaluated using the sulforhodamine B assay on three human cancer cell lines. Forty-four compounds were identified in the leaf oil, among which dehydroaromadendrane (23.4 %), (E)-carpacin (17.6 %), 2-tridecanone (12.2 %), and 9-methyl-2-decanone (11.8 %) were the most abundant. The stem oil contained fifty-five identified constituents, mainly γ-gurjunene (51.1 %) and butyl acetate (11.8 %). Both oils exhibited inhibitory effects on three bacterial strains, namely S. aureus, E. coli, P. aeruginosa and a fungal strain C. albican, while showed insignificant effects on B. subtilis, L. fermentum, and S. enterica. Both oils showed weak NO production inhibition in LPS-induced RAW264.7 cells, but exhibited potent cytotoxic activity against all three tested cell lines SK-LU-1, MCF-7, and HepG2 with the IC50 values ranging from 16.03±0.77 to 35.60±1.62 μg/mL. This is the first report on the antimicrobial, anti-inflammatory and cytotoxic activities of essential oils from the leaves and stems of Z. acanthopodium.
Collapse
Affiliation(s)
- Trinh Thi Diep
- Faculty of Chemistry and Environment, Dalat University, Dalat, 670000, Lam Dong, Vietnam
| | - Luong Van Dung
- Center for Biodiversity and Climate Change, Dalat University, Dalat, 670000, Lam Dong, Vietnam
| | - Phung Van Trung
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hochiminh City, 700000, Vietnam
| | - Nguyen Thi Hoai
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, 530000, Vietnam
| | - Do Thi Thao
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Nguyen Thi To Uyen
- Faculty of Chemistry and Environment, Dalat University, Dalat, 670000, Lam Dong, Vietnam
| | - Tran Thi Hoai Linh
- Faculty of Chemistry and Environment, Dalat University, Dalat, 670000, Lam Dong, Vietnam
| | - Trang Hanh Nhat Ha
- Faculty of Chemistry and Environment, Dalat University, Dalat, 670000, Lam Dong, Vietnam
| | - Huynh Thanh Truc
- Faculty of Chemistry and Environment, Dalat University, Dalat, 670000, Lam Dong, Vietnam
| |
Collapse
|
8
|
Ryder L, Arendrup FS, Martínez JF, Snieckute G, Pecorari C, Shah RA, Lund AH, Blasius M, Bekker-Jensen S. Nitric oxide-induced ribosome collision activates ribosomal surveillance mechanisms. Cell Death Dis 2023; 14:467. [PMID: 37495584 PMCID: PMC10372077 DOI: 10.1038/s41419-023-05997-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/23/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Impairment of protein translation can cause stalling and collision of ribosomes and is a signal for the activation of ribosomal surveillance and rescue pathways. Despite clear evidence that ribosome collision occurs stochastically at a cellular and organismal level, physiologically relevant sources of such aberrations are poorly understood. Here we show that a burst of the cellular signaling molecule nitric oxide (NO) reduces translational activity and causes ribosome collision in human cell lines. This is accompanied by activation of the ribotoxic stress response, resulting in ZAKα-mediated activation of p38 and JNK kinases. In addition, NO production is associated with ZNF598-mediated ubiquitination of the ribosomal protein RPS10 and GCN2-mediated activation of the integrated stress response, which are well-described responses to the collision of ribosomes. In sum, our work implicates a novel role of NO as an inducer of ribosome collision and activation of ribosomal surveillance mechanisms in human cells.
Collapse
Affiliation(s)
- Laura Ryder
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Frederic Schrøder Arendrup
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - José Francisco Martínez
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Goda Snieckute
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Chiara Pecorari
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Riyaz Ahmad Shah
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Melanie Blasius
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
9
|
Locascio A, Annona G, Caccavale F, D'Aniello S, Agnisola C, Palumbo A. Nitric Oxide Function and Nitric Oxide Synthase Evolution in Aquatic Chordates. Int J Mol Sci 2023; 24:11182. [PMID: 37446358 DOI: 10.3390/ijms241311182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Nitric oxide (NO) is a key signaling molecule in almost all organisms and is active in a variety of physiological and pathological processes. Our understanding of the peculiarities and functions of this simple gas has increased considerably by extending studies to non-mammal vertebrates and invertebrates. In this review, we report the nitric oxide synthase (Nos) genes so far characterized in chordates and provide an extensive, detailed, and comparative analysis of the function of NO in the aquatic chordates tunicates, cephalochordates, teleost fishes, and amphibians. This comprehensive set of data adds new elements to our understanding of Nos evolution, from the single gene commonly found in invertebrates to the three genes present in vertebrates.
Collapse
Affiliation(s)
- Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Giovanni Annona
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Department of Research Infrastructure for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Filomena Caccavale
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
10
|
Yakout SM, Abdi S, Alaskar AH, Khattak MNK, Al-Masri AA, Al-Daghri NM. Impact of Vitamin D Status Correction on Serum Lipid Profile, Carboxypeptidase N and Nitric Oxide Levels in Saudi Adults. Int J Mol Sci 2023; 24:ijms24097711. [PMID: 37175418 PMCID: PMC10177893 DOI: 10.3390/ijms24097711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to determine the impact on the lipid profile, carboxypeptidase N (CPN) and nitric oxide (NOx) associated with vitamin D (VD) status correction among Saudi adults with VD deficiency. A total 111 VD deficient (25(OH)D < 50 nmol/L)) adult Saudis aged 18-50 years old (57 females and 54 males) were enrolled in this 6-month interventional study. They were given 50,000 IU VD weekly for the first 2 months and then twice a month for the next 2 months, followed by 1000 IU daily for the last 2 months. The fasting lipid profile and the blood glucose, VD, NOx and CPN concentrations were measured at baseline and after intervention. Post-supplementation, the median VD was significantly higher (p < 0.001) in females [58.3 (50.6-71.2)] and males [57.8 (51.0-71.8)]. HDL cholesterol significantly increased (p = 0.05) and NOx significantly decreased (p = 0.02) in males post-supplementation. Triglycerides were positively associated with NOx in all subjects before (r = 0.44, p = 0.01) and after (r = 0.37, p = 0.01) VD status correction. There was a significant increase in serum levels of CPN2 (p = 0.02) in all subjects. Furthermore, CPN was inversely correlated with NOx (r = -0.35, p = 0.05) in males post-supplementation. In conclusion, VD status correction reduced serum NOx, particularly in males. The inhibition of NOx synthesis may be responsible for the anti-inflammatory effects of VD supplementation. An inverse association was found between NOx and CPN2.
Collapse
Affiliation(s)
- Sobhy M Yakout
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saba Abdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alhanouf H Alaskar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Malak Nawaz Khan Khattak
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abeer A Al-Masri
- Department of Physiology, College Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser M Al-Daghri
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Esen O, Cepicka L, Gabrys T, Karayigit R. High-Dose Nitrate Supplementation Attenuates the Increased Blood Pressure Responses to Isometric Blood Flow Restriction Exercise in Healthy Males. Nutrients 2022; 14:nu14173645. [PMID: 36079902 PMCID: PMC9460709 DOI: 10.3390/nu14173645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
The effect of nitrate (NO3−) supplementation on blood pressure (BP) responses during large muscle mass isometric and ischaemic exercise in healthy young adults is unclear. The aim of the present study was to assess the effect of 5-day supplementation of NO3− on BP responses during a short isometric contraction and a sustained ischaemic contraction. In a randomised, double-blinded, crossover design, 14 healthy active young adults underwent BP measurements after 5 days of either NO3− (NIT) or placebo (PLA) supplementation. Beat-by-beat BP was measured at pre- and post-exercise rest, and during a short (20 s) isometric contraction at 25% maximal strength and throughout a sustained ischaemic contraction. Plasma nitrite (NO2−) concentration increased significantly after NO3− supplementation compared to placebo (475 ± 93 nmol·L−1 vs. 198 ± 46 nmol·L−1, p < 0.001, d = 3.37). Systolic BP was significantly lower at pre- (p = 0.051) and post-exercise rest (p = 0.006), during a short isometric contraction (p = 0.030), and throughout a sustained ischaemic contraction (p = 0.040) after NO3− supplementation. Mean arterial pressure was significantly lower at pre- (p = 0.004) and post-exercise rest (p = 0.043), during a short isometric contraction (p = 0.041), and throughout a sustained ischaemic contraction (p = 0.021) after NO3− supplementation. Diastolic BP was lower at pre-exercise rest (p = 0.032), but not at post-exercise rest, during a short isometric contraction, and during a sustained ischaemic contraction (all p > 0.05). Five days of NO3− supplementation elevated plasma NO2− concentration and reduced BP during a short isometric contraction and a sustained ischaemic contraction in healthy adults. These observations indicate that multiple-day nitrate supplementation can decrease BP at rest and attenuate the increased BP response during isometric exercise. These findings support that NO3− supplementation is an effective nutritional intervention in reducing SBP and MAP in healthy young males during submaximal exercise.
Collapse
Affiliation(s)
- Ozcan Esen
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK
- Correspondence: ; Tel.: +44-191-232-60-02
| | - Ladislav Cepicka
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Tomasz Gabrys
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Raci Karayigit
- Department of Coaching Education, Faculty of Sport Sciences, Ankara University, Ankara 06830, Turkey
| |
Collapse
|
12
|
Transcranial Photobiomodulation Therapy for Sexual Dysfunction Associated with Depression or Induced by Antidepressant Medications. PHOTONICS 2022. [DOI: 10.3390/photonics9050330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sexual dysfunction (SD) is frequently encountered in patients suffering from depression. There is a bidirectional relationship between various types of SD and depression, so the presence or treatment of one condition may exacerbate or improve the other condition. The most frequent sexual problem in untreated depressed patients is declining sexual desire, while in treated depressed patients it is difficulties with erection/ejaculation and with orgasm. Numerous classes of neuropsychiatric medications, commonly used in depressed patients—such as antidepressant, antipsychotic, alpha sympathetic, and opioid drugs—may cause SD. Photobiomodulation (PBM) therapy, also called low-level light/laser therapy, is a novel neuromodulation technique for neuropsychiatric conditions, such as depression. Transcranial PBM (tPBM) targets the cellular metabolism—through the mitochondrial respiratory enzyme, cytochrome c oxidase—and has numerous cellular and physiological beneficial effects on the central nervous system. This paper represents a comprehensive review of the application of tPBM to SD, coexisting with depression or induced by antidepressant medications.
Collapse
|
13
|
Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Biomedicines 2022; 10:biomedicines10040823. [PMID: 35453573 PMCID: PMC9029215 DOI: 10.3390/biomedicines10040823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress-inducing therapies are characterized as a specific treatment that involves the production of reactive oxygen and nitrogen species (RONS) by external or internal sources. To protect cells against oxidative stress, cells have evolved a strong antioxidant defense system to either prevent RONS formation or scavenge them. The maintenance of the redox balance ensures signal transduction, development, cell proliferation, regulation of the mechanisms of cell death, among others. Oxidative stress can beneficially be used to treat several diseases such as neurodegenerative disorders, heart disease, cancer, and other diseases by regulating the antioxidant system. Understanding the mechanisms of various endogenous antioxidant systems can increase the therapeutic efficacy of oxidative stress-based therapies, leading to clinical success in medical treatment. This review deals with the recent novel findings of various cellular endogenous antioxidant responses behind oxidative stress, highlighting their implication in various human diseases, such as ulcers, skin pathologies, oncology, and viral infections such as SARS-CoV-2.
Collapse
|
14
|
Al Abdi S, Almoushref A, Naal T, Melillo CA, Aulak KS, Ahmed MK, Chatterjee S, Highland KB, Dweik RA, Tonelli AR. Cutaneous iontophoresis of vasoactive medications in patients with scleroderma-associated pulmonary arterial hypertension. Microcirculation 2021; 29:e12734. [PMID: 34741773 DOI: 10.1111/micc.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND It remains unknown whether the cutaneous microvascular responses are different between patients with scleroderma-associated pulmonary arterial hypertension (SSc-PAH) and SSc without pulmonary hypertension (PH). METHODS We included 59 patients with SSc between March 2013 and September 2019. We divided patients into 4 groups: (a) no PH by right heart catheterization (RHC) (n = 8), (b) no PH by noninvasive screening tests (n = 16), (c) treatment naïve PAH (n = 16), and (d) PAH under treatment (n = 19). Microvascular studies using laser Doppler flowmetry (LDF) were done immediately after RHC or at the time of an outpatient clinic visit (group b). RESULTS The median (IQR) age was 59 (54-68) years, and 90% were females. The responses to local thermal stimulation and postocclusive reactive hyperemia, acetylcholine, and sodium nitroprusside iontophoresis were similar among groups. The microvascular response to treprostinil was more pronounced in SSc patients without PH by screening tests (% change: 340 (214-781)) compared with SSc-PAH (naïve + treatment) (Perfusion Units (PU) % change: 153 (94-255) % [p = .01]). The response to A-350619 (a soluble guanylate cyclase (sGC) activator) was significantly higher in patients with SSc without PH by screening tests (PU % change: 168 (46-1,296)) than those with SSc-PAH (PU % change: 22 (15-57) % [p = .006]). The % change in PU with A350619 was directly associated with cardiac index and stroke volume index (R: 0.36, p = .03 and 0.39, p = .02, respectively). CONCLUSIONS Patients with SSc-PAH have a lower cutaneous microvascular response to a prostacyclin analog treprostinil and the sGC activator A-350619 when compared with patients with SSc and no evidence of PH on screening tests, presumably due to a peripheral reduction in prostacyclin receptor expression and nitric oxide bioavailability.
Collapse
Affiliation(s)
- Sami Al Abdi
- Cleveland Clinic Fairview Hospital, Cleveland Clinic, Cleveland, Ohio, USA
| | - Allaa Almoushref
- Internal medicine Department, University of Connecticut, Hartford, Connecticut, USA
| | - Tawfeq Naal
- Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina, USA
| | - Celia A Melillo
- Inflammation and Immunity Department, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kulwant S Aulak
- Inflammation and Immunity Department, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mostafa K Ahmed
- Department of Chest Diseases, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Soumya Chatterjee
- Department of Rheumatic and Immunologic Diseases, Orthopaedic and Rheumatologic Institute Cleveland Clinic, Cleveland, OH, USA
| | - Kristin B Highland
- Department of Pulmonary, Allergy and Critical Care Medicine. Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Raed A Dweik
- Department of Pulmonary, Allergy and Critical Care Medicine. Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adriano R Tonelli
- Department of Pulmonary, Allergy and Critical Care Medicine. Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Sava A, Buron F, Routier S, Panainte A, Bibire N, Constantin SM, Lupașcu FG, Focșa AV, Profire L. Design, Synthesis, In Silico and In Vitro Studies for New Nitric Oxide-Releasing Indomethacin Derivatives with 1,3,4-oxadiazole-2-thiol Scaffold. Int J Mol Sci 2021; 22:7079. [PMID: 34209248 PMCID: PMC8267937 DOI: 10.3390/ijms22137079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Starting from indomethacin (IND), one of the most prescribed non-steroidal anti-inflammatory drugs (NSAIDs), new nitric oxide-releasing indomethacin derivatives with 1,3,4-oxadiazole-2-thiol scaffold (NO-IND-OXDs, 8a-p) have been developed as a safer and more efficient multitarget therapeutic strategy. The successful synthesis of designed compounds (intermediaries and finals) was proved by complete spectroscopic analyses. In order to study the in silico interaction of NO-IND-OXDs with cyclooxygenase isoenzymes, a molecular docking study, using AutoDock 4.2.6 software, was performed. Moreover, their biological characterization, based on in vitro assays, in terms of thermal denaturation of serum proteins, antioxidant effects and the NO releasing capacity, was also performed. Based on docking results, 8k, 8l and 8m proved to be the best interaction for the COX-2 (cyclooxygense-2) target site, with an improved docking score compared with celecoxib. Referring to the thermal denaturation of serum proteins and antioxidant effects, all the tested compounds were more active than IND and aspirin, used as references. In addition, the compounds 8c, 8h, 8i, 8m, 8n and 8o showed increased capacity to release NO, which means they are safer in terms of gastrointestinal side effects.
Collapse
Affiliation(s)
- Alexandru Sava
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (A.S.); (A.P.); (N.B.)
- Institut de Chimie Organique et Analytique ICOA, CNRS UMR 7311, Université d’Orléans, 45067 Orléans, France;
| | - Frederic Buron
- Institut de Chimie Organique et Analytique ICOA, CNRS UMR 7311, Université d’Orléans, 45067 Orléans, France;
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique ICOA, CNRS UMR 7311, Université d’Orléans, 45067 Orléans, France;
| | - Alina Panainte
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (A.S.); (A.P.); (N.B.)
| | - Nela Bibire
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (A.S.); (A.P.); (N.B.)
| | - Sandra Mădălina Constantin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| | - Florentina Geanina Lupașcu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| | - Alin Viorel Focșa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| | - Lenuţa Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| |
Collapse
|
16
|
Statsenko ME, Turkina SV. [Possibilities of sequential levocarnitin and acetylcarnitin treatment in correcting cognitive deficiency in patients with cardiovascular diseases]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:45-51. [PMID: 34184477 DOI: 10.17116/jnevro202112105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of sequential therapy with levocarnitine and acetylcarnitine in patients with cardiovascular pathology (arterial hypertension and/or coronary heart disease) and moderate cognitive deficits. MATERIAL AND METHODS The study included 120 patients aged 54-67 years. The main group of patients (n=60) in addition to the basic treatment of the underlying disease received l-carnitine (Elkar solution for intravenous and intramuscular injection of 100 mg/ml, the company «PIK-FARMA»)/jet during 10 days in a dose of 1000 mg/day, with following transition to oral administration of acetyl-l-carnitine (Carnitin, the company «PIK-FARMA»), 500 mg (2 cap Sula) 2 times a day for 2 months. The comparison group (n=60) received basic therapy for major diseases. The total duration of follow-up was 70 days. RESULTS The results obtained indicate that in such comorbid patients, the use of levocarnitine and acetylcarnitine reduces the severity of cognitive deficits. An important aspect of their pathogenetic effect on the severity of cognitive deficits may be the possibility of correcting endothelial dysfunction. The use of levocarnitine and acetylcarnitine in patients with cardiovascular pathology has demonstrated good tolerability and safety.
Collapse
Affiliation(s)
- M E Statsenko
- Volgograd State Medical University, Volgograd, Russia
| | - S V Turkina
- Volgograd State Medical University, Volgograd, Russia
| |
Collapse
|
17
|
Bhaskar L. Susceptibility to vascular complications in sickle cell anemia patients is associated with intron 4a/b polymorphism of the NOS3 gene: A meta-analysis. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
Chemical Constituents of Eupatorium japonicum and Anti-Inflammatory, Cytotoxic, and Apoptotic Activities of Eupatoriopicrin on Cancer Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6610347. [PMID: 34055014 PMCID: PMC8149239 DOI: 10.1155/2021/6610347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/18/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Eupatorium japonicum Thunb. of the plant family Asteraceae is a popular traditional herb in Vietnam. However, its chemical constituents as well as bioactive principles have not been investigated yet. We investigated the phytochemistry of E. japonicum in Vietnam and isolated seventeen compounds (1–17) including phytosterols, terpenoids, phenolic acids, flavonoids, fatty alcohols, and fatty acids. They were structurally determined by MS and NMR analysis. Except for compounds 6 and 12, all the other compounds were identified for the first time from E. japonicum. Since many sesquiterpene lactones with α-methylene γ-lactone ring are reported as anti-inflammatory and anticancer agents, eupatoriopicrin (10), 1-hydroxy-8-(4,5-dihydroxytigloyloxy)eudesma-4(15),11(13)-dien-6,12-olide (11) were selected among the isolates for biological assays. Compound 10 was identified as the main bioactive sesquiterpene lactone of E. japonicum showing its potent anti-inflammatory and cytotoxic activity through inhibiting NO production and the growth of HepG2 and MCF-7 human cancer cell lines. For the first time, eupatoriopicrin (10) was demonstrated to strongly inhibit NTERA-2 human cancer stem cell (CSC) line in vitro. It is noticeable that the cytotoxicity of eupatoriopicrin against NTERA-2 cells is mediated by its apoptosis-inducing capability of 10 as demonstrated by the results of Hoechst 33342 staining, flow cytometry apoptosis analysis, and caspase-3 activity assays. The biological activities of the main bioactive constituents 1–7, 10, 12, and 15 supported the reported anti-inflammatory and anticancer properties of extracts from E. japonicum.
Collapse
|
19
|
New nitric oxide-releasing indomethacin derivatives with 1,3-thiazolidine-4-one scaffold: Design, synthesis, in silico and in vitro studies. Biomed Pharmacother 2021; 139:111678. [PMID: 33964802 DOI: 10.1016/j.biopha.2021.111678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
In this study we present design and synthesis of nineteen new nitric oxide-releasing indomethacin derivatives with 1,3-thiazolidine-4-one scaffold (NO-IND-TZDs) (6a-s), as a new safer and efficient multi-targets strategy for inflammatory diseases. The chemical structure of all synthesized derivatives (intermediaries and finals) was proved by NMR and mass spectroscopic analysis. In order to study the selectivity of NO-IND-TZDs for COX isoenzymes (COX-1 and COX-2) a molecular docking study was performed using AutoDock 4.2.6 software. Based on docking results, COX-2 inhibitors were designed and 6o appears as the most selective derivative which showed an improved selective index compared with indomethacin (IND) and diclofenac (DCF), used as reference drugs. The biological evaluation of 6a-s, using in vitro assays has included the anti-inflammatory and antioxidant effects as well as the nitric oxide (NO) release. Referring to the anti-inflammatory effects, the most active compound was 6i, which was more active than IND and aspirin (ASP) in term of denaturation effect, on bovine serum albumin (BSA), as indirect assay to predict the anti-inflammatory effect. An appreciable anti-inflammatory effect, in reference with IND and ASP, was also showed by 6k, 6c, 6q, 6o, 6j, 6d. The antioxidant assay revealed the compound 6n as the most active, being 100 times more active than IND. The compound 6n showed also the most increase capacity to release NO, which means is safer in terms of gastro-intestinal side effects. The ADME-Tox study revealed also that the NO-IND-TZDs are generally proper for oral administration, having optimal physico-chemical and ADME properties. We can conclude that the compounds 6i and 6n are promising agents and could be included in further investigations to study in more detail their pharmaco-toxicological profile.
Collapse
|
20
|
Taylor CM, Kasztan M, Sedaka R, Molina PA, Dunaway LS, Pollock JS, Pollock DM. Hydroxyurea improves nitric oxide bioavailability in humanized sickle cell mice. Am J Physiol Regul Integr Comp Physiol 2021; 320:R630-R640. [PMID: 33624556 DOI: 10.1152/ajpregu.00205.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite advancements in disease management, sickle cell nephropathy, a major contributor to mortality and morbidity in patients, has limited therapeutic options. Previous studies indicate hydroxyurea, a commonly prescribed therapy for sickle cell disease (SCD), can reduce renal injury in SCD but the mechanisms are uncertain. Because SCD is associated with reduced nitric oxide (NO) bioavailability, we hypothesized that hydroxyurea treatment would improve NO bioavailability in the humanized sickle cell mouse. Humanized male 12-wk-old sickle (HbSS) and genetic control (HbAA) mice were treated with hydroxyurea or regular tap water for 2 wk before renal and systemic NO bioavailability as well as renal injury were assessed. Untreated HbSS mice exhibited increased proteinuria, elevated plasma endothelin-1 (ET-1), and reduced urine concentrating ability compared with HbAA mice. Hydroxyurea reduced proteinuria and plasma ET-1 levels in HbSS mice. Untreated HbSS mice had reduced plasma nitrite and elevated plasma arginase concentrations compared with HbAA mice. Hydroxyurea treatment augmented plasma nitrite and attenuated plasma arginase in HbSS mice. Renal vessels isolated from HbSS mice also had elevated nitric oxide synthase 3 (NOS3) and arginase 2 expression compared with untreated HbAA mice. Hydroxyurea treatment did not alter renal vascular NOS3, however, renal vascular arginase 2 expression was significantly reduced. These data support the hypothesis that hydroxyurea treatment augments renal and systemic NO bioavailability by reducing arginase activity as a potential mechanism for the improvement on renal injury seen in SCD mice.
Collapse
Affiliation(s)
- Crystal M Taylor
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata Kasztan
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Randee Sedaka
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Patrick A Molina
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Luke S Dunaway
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
21
|
Maiuthed A, Prakhongcheep O, Chanvorachote P. Microarray-based Analysis of Genes, Transcription Factors, and Epigenetic Modifications in Lung Cancer Exposed to Nitric Oxide. Cancer Genomics Proteomics 2021; 17:401-415. [PMID: 32576585 DOI: 10.21873/cgp.20199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIM Nitric oxide (NO) is recognized as an important biological mediator that exerts several human physiological functions. As its nature is an aqueous soluble gas that can diffuse through cells and tissues, NO can affect cell signaling, the phenotype of cancer and modify surrounding cells. The variety of effects of NO on cancer cell biology has convinced researchers to determine the defined mechanisms of these effects and how to control this mediator for a better understanding as well as for therapeutic gain. MATERIALS AND METHODS We used bioinformatics and pharmacological experiments to elucidate the potential regulation and underlying mechanisms of NO in non-small a lung cancer cell model. RESULTS Using microarrays, we identified a total of 151 NO-regulated genes (80 up-regulated genes, 71 down-regulated genes) with a strong statistically significant difference compared to untreated controls. Among these, the genes activated by a factor of more than five times were: DCBLD2, MGC24975, RAB40AL, PER3, RCN1, MRPL51, PTTG1, KLF5, NFIX. On the other hand, the expression of RBMS2, PDP2, RBAK, ORMDL2, GRPEL2, ZNF514, MTHFD2, POLR2D, RCBTB1, JOSD1, RPS27, GPR4 genes were significantly decreased by a factor of more than five times. Bioinformatics further revealed that NO exposure of lung cancer cells resulted in a change in transcription factors (TFs) and epigenetic modifications (histone modification and miRNA). Interestingly, NO treatment was shown to potentiate cancer stem cell-related genes and transcription factors Oct4, Klf4, and Myc. CONCLUSION Through this comprehensive approach, the present study illustrated the scheme of how NO affects molecular events in lung cancer cells.
Collapse
Affiliation(s)
- Arnatchai Maiuthed
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Ornjira Prakhongcheep
- Cell-based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Cell-based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand .,Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
22
|
Vivarelli S, Falzone L, Basile MS, Candido S, Libra M. Nitric Oxide in Hematological Cancers: Partner or Rival? Antioxid Redox Signal 2021; 34:383-401. [PMID: 32027171 DOI: 10.1089/ars.2019.7958] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Significance: Hematological malignancies represent the fourth most diagnosed cancer. Relapse and acquired resistance to anticancer therapy constitute two actual issues that need to be overcome. Nitric oxide (NO) plays a pivotal role in regulating cancer progression. At present, many studies are attempting to uncover the potentials of modulating NO levels to improve the efficacy of currently available treatments against lymphoma, leukemia, and myeloma. Recent Advances: It is becoming progressively clear that NO modulation may help hematological cancer management, either by targeting directly tumor cells or by driving the immune system to eliminate cancer cells. Critical Issues: NO is a dual molecule that can have a tumor-protecting or stimulating effect, depending on its local concentration. Moreover, NO is able to target a wide range of molecules involved in both cancer genesis and evolution. In this review, an overview of the recent findings regarding the pivotal role played by NO and nitric oxide synthase in cancer progression and anticancer therapy is presented, with particular focus on hematological malignancies. Future Directions: It is critical to establish the cancer-specific function of NO and critically drive its modulation to improve cancer management toward a personalized approach. This has a special importance in hematological tumors, where the urgency of finding eradicative therapies is constant. Antioxid. Redox Signal. 34, 383-401.
Collapse
Affiliation(s)
- Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", Napoli, Italy
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
23
|
LE Roux-Mallouf T, Vallejo A, Pelen F, Halimaoui I, Doutreleau S, Verges S. Synergetic Effect of NO Precursor Supplementation and Exercise Training. Med Sci Sports Exerc 2020; 52:2437-2447. [PMID: 33064413 DOI: 10.1249/mss.0000000000002387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Nitric oxide (NO) precursor supplementation has been shown to increase NO bioavailability and can potentially improve vascular function and exercise performance. It remains unclear whether the combination of NO precursor supplementation and exercise training has synergic effects on exercise performance. This study aims to assess the effect of chronic nitrate and citrulline intake on exercise training adaptations in healthy young individuals. METHODS In this randomized, double-bind trial, 24 healthy young (12 females) subjects performed vascular function assessment (blood pressure, pulse wave velocity, postischemia vasodilation, and cerebrovascular reactivity) and both local (submaximal isometric unilateral knee extension) and whole-body (incremental cycling) exercise tests to exhaustion before and after a 2-month exercise training program and daily intake of a placebo or a nitrate-rich salad and citrulline (N + C, 520 mg nitrate and 6 g citrulline) drink. Prefrontal cortex and quadriceps oxygenation was monitored continuously during exercise by near-infrared spectroscopy. RESULTS N + C supplementation had no effect on vascular function and muscle and cerebral oxygenation during both local and whole-body exercise. N + C supplementation induced a significantly larger increase in maximal knee extensor strength (+5.1 ± 3.5 vs +0.2 ± 5.5 kg, P = 0.008) as well as a trend toward a larger increase in knee extensor endurance (+35.2 ± 26.1 vs +24.0 ± 10.4 contractions, P = 0.092) than placebo, but no effect on exercise training-induced maximal aerobic performance improvement. CONCLUSION These results suggest that chronic nitrate and citrulline supplementation enhances the effect of exercise training on quadriceps muscle function in healthy active young individuals, but this does not translate into improved maximal aerobic performances.
Collapse
Affiliation(s)
| | - Angela Vallejo
- HP2 Laboratory INSERM U1042, Faculty of Medicine, Université Grenoble Alpes, Grenoble, FRANCE
| | - Felix Pelen
- HP2 Laboratory INSERM U1042, Faculty of Medicine, Université Grenoble Alpes, Grenoble, FRANCE
| | - Idir Halimaoui
- HP2 Laboratory INSERM U1042, Faculty of Medicine, Université Grenoble Alpes, Grenoble, FRANCE
| | | | | |
Collapse
|
24
|
Nilsson R, Liu NA. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: Physical, chemical and molecular biology aspects. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Kamalian A, Sohrabi Asl M, Dolatshahi M, Afshari K, Shamshiri S, Momeni Roudsari N, Momtaz S, Rahimi R, Abdollahi M, Abdolghaffari AH. Interventions of natural and synthetic agents in inflammatory bowel disease, modulation of nitric oxide pathways. World J Gastroenterol 2020; 26:3365-3400. [PMID: 32655263 PMCID: PMC7327787 DOI: 10.3748/wjg.v26.i24.3365] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) refers to a group of disorders characterized by chronic inflammation of the gastrointestinal (GI) tract. The elevated levels of nitric oxide (NO) in serum and affected tissues; mainly synthesized by the inducible nitric oxide synthase (iNOS) enzyme; can exacerbate GI inflammation and is one of the major biomarkers of GI inflammation. Various natural and synthetic agents are able to ameliorate GI inflammation and decrease iNOS expression to the extent comparable with some IBD drugs. Thereby, the purpose of this study was to gather a list of natural or synthetic mediators capable of modulating IBD through the NO pathway. Electronic databases including Google Scholar and PubMed were searched from 1980 to May 2018. We found that polyphenols and particularly flavonoids are able to markedly attenuate NO production and iNOS expression through the nuclear factor κB (NF-κB) and JAK/STAT signaling pathways. Prebiotics and probiotics can also alter the GI microbiota and reduce NO expression in IBD models through a broad array of mechanisms. A number of synthetic molecules have been found to suppress NO expression either dependent on the NF-κB signaling pathway (i.e., dexamethasone, pioglitazone, tropisetron) or independent from this pathway (i.e., nicotine, prednisolone, celecoxib, β-adrenoceptor antagonists). Co-administration of natural and synthetic agents can affect the tissue level of NO and may improve IBD symptoms mainly by modulating the Toll like receptor-4 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Masoud Sohrabi Asl
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahsa Dolatshahi
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Khashayar Afshari
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Shiva Shamshiri
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
26
|
Borgini M, Zamperini C, Poggialini F, Ferrante L, Summa V, Botta M, Fabio RD. Synthesis and Antiproliferative Activity of Nitric Oxide-Donor Largazole Prodrugs. ACS Med Chem Lett 2020; 11:846-851. [PMID: 32435394 PMCID: PMC7236235 DOI: 10.1021/acsmedchemlett.9b00643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
The marine natural product Largazole is the most potent Class I HDAC inhibitor identified to date. Since its discovery, many research groups have been attracted by the structural complexity and the peculiar anticancer activity, due to its capability to discriminate between tumor cells and normal cells. Herein, we discuss the synthesis and the in vitro biological profile of hybrid analogues of Largazole, as dual HDAC inhibitor and nitric oxide (NO) donors, potentially useful as anticancer agents. In particular, the metabolic stability of the modified thioester moiety of Largazole, bearing the NO-donor function/s, the in vitro release of NO, and the antiproliferative activity in tumor cell lines are presented.
Collapse
Affiliation(s)
- Matteo Borgini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Claudio Zamperini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Lead
Discovery Siena S.r.l., Castelnuovo Berardenga, 53019 Siena, Italy
| | - Federica Poggialini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | | | - Vincenzo Summa
- IRBM
Science Park, Via Pontina Km 30.600, 00070 Pomezia, Italy
| | - Maurizio Botta
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Lead
Discovery Siena S.r.l., Castelnuovo Berardenga, 53019 Siena, Italy
- Biotechnology
College of Science and Technology, Temple
University, BioLife Science
Building, Suite 333, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Romano Di Fabio
- Promidis, Via Olgettina 60, 20132 Milano, Italy
- IRBM
Science Park, Via Pontina Km 30.600, 00070 Pomezia, Italy
| |
Collapse
|
27
|
Tajima S, Nakata E, Sakaguchi R, Saimura M, Mori Y, Morii T. Fluorescence detection of the nitric oxide-induced structural change at the putative nitric oxide sensing segment of TRPC5. Bioorg Med Chem 2020; 28:115430. [DOI: 10.1016/j.bmc.2020.115430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022]
|
28
|
Siemsen BM, McFaddin JA, Haigh K, Brock AG, Nan Leath M, Hooker KN, McGonegal LK, Scofield MD. Amperometric measurements of cocaine cue and novel context-evoked glutamate and nitric oxide release in the nucleus accumbens core. J Neurochem 2020; 153:599-616. [PMID: 31901130 PMCID: PMC7593647 DOI: 10.1111/jnc.14952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/01/2022]
Abstract
Cue-induced reinstatement of cocaine seeking after self-administration (SA) and extinction relies on glutamate release in the nucleus accumbens core (NAcore), which activates neuronal nitric oxide synthase interneurons. Nitric oxide (NO) is required for structural plasticity in NAcore medium spiny neurons, as well as cued cocaine seeking. However, NO release in the NAcore during reinstatement has yet to be directly measured. Furthermore, the temporal relationship between glutamate release and the induction of an NO response also remains unknown. Using wireless amperometric recordings in awake behaving rats, we quantified the magnitude and temporal dynamics of novel context- and cue-induced reinstatement-evoked glutamate and NO release in the NAcore. We found that re-exposure to cocaine-conditioned stimuli following SA and extinction increased extracellular glutamate, leading to release of NO in the NAcore. In contrast, exposing drug-naïve rats to a novel context led to a lower magnitude rise in glutamate in the NAcore relative to cue-induced reinstatement. Interestingly, novel context exposure evoked a higher magnitude NO response relative to cue-induced reinstatement. Despite differences in magnitude, novel context evoked-NO release in the NAcore was also temporally delayed when compared to glutamate. These results demonstrate a dissociation between the magnitude of cocaine cue- and novel context-evoked glutamate and NO release in the NAcore, yet similarity in the temporal dynamics of their release. Together, these data contribute to a greater understanding of the relationship between glutamate and NO, two neurotransmitters implicated in encoding the valence of distinct contextual stimuli.
Collapse
Affiliation(s)
- Benjamin M Siemsen
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - John A McFaddin
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Keiana Haigh
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ashley G Brock
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Mary Nan Leath
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kaylee N Hooker
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Lilly K McGonegal
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Michael D Scofield
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
29
|
Matamoros MA, Cutrona MC, Wienkoop S, Begara-Morales JC, Sandal N, Orera I, Barroso JB, Stougaard J, Becana M. Altered Plant and Nodule Development and Protein S-Nitrosylation in Lotus japonicus Mutants Deficient in S-Nitrosoglutathione Reductases. PLANT & CELL PHYSIOLOGY 2020; 61:105-117. [PMID: 31529085 DOI: 10.1093/pcp/pcz182] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/08/2019] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) is a crucial signaling molecule that conveys its bioactivity mainly through protein S-nitrosylation. This is a reversible post-translational modification (PTM) that may affect protein function. S-nitrosoglutathione (GSNO) is a cellular NO reservoir and NO donor in protein S-nitrosylation. The enzyme S-nitrosoglutathione reductase (GSNOR) degrades GSNO, thereby regulating indirectly signaling cascades associated with this PTM. Here, the two GSNORs of the legume Lotus japonicus, LjGSNOR1 and LjGSNOR2, have been functionally characterized. The LjGSNOR1 gene is very active in leaves and roots, whereas LjGSNOR2 is highly expressed in nodules. The enzyme activities are regulated in vitro by redox-based PTMs. Reducing conditions and hydrogen sulfide-mediated cysteine persulfidation induced both activities, whereas cysteine oxidation or glutathionylation inhibited them. Ljgsnor1 knockout mutants contained higher levels of S-nitrosothiols. Affinity chromatography and subsequent shotgun proteomics allowed us to identify 19 proteins that are differentially S-nitrosylated in the mutant and the wild-type. These include proteins involved in biotic stress, protein degradation, antioxidant protection and photosynthesis. We propose that, in the mutant plants, deregulated protein S-nitrosylation contributes to developmental alterations, such as growth inhibition, impaired nodulation and delayed flowering and fruiting. Our results highlight the importance of GSNOR function in legume biology.
Collapse
Affiliation(s)
- Manuel A Matamoros
- Departamento de Nutrici�n Vegetal, Estaci�n Experimental de Aula Dei, Consejo Superior de Investigaciones Cient�ficas, Apartado 13034, 50080 Zaragoza, Spain
| | - Maria C Cutrona
- Departamento de Nutrici�n Vegetal, Estaci�n Experimental de Aula Dei, Consejo Superior de Investigaciones Cient�ficas, Apartado 13034, 50080 Zaragoza, Spain
| | - Stefanie Wienkoop
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria
| | - Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, Center for Advanced Studies in Olive Grove and Olive Oils, Campus Universitario "Las Lagunillas", University of Ja�n, 23071 Ja�n, Spain
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Irene Orera
- Proteomics Unit, Centro Investigaciones Biom�dicas de Arag�n, Instituto Aragon�s de Ciencias de la Salud, 50059 Zaragoza, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, Center for Advanced Studies in Olive Grove and Olive Oils, Campus Universitario "Las Lagunillas", University of Ja�n, 23071 Ja�n, Spain
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Manuel Becana
- Departamento de Nutrici�n Vegetal, Estaci�n Experimental de Aula Dei, Consejo Superior de Investigaciones Cient�ficas, Apartado 13034, 50080 Zaragoza, Spain
| |
Collapse
|
30
|
Quang TH, Yen DTH, Dung DT, Trang DT, Ngan NTT, Van Kiem P, Van Minh C. Anti-inflammatory phenylpropanoid glycosides from the roots of Polygala aureocauda
Dunn. VIETNAM JOURNAL OF CHEMISTRY 2019. [DOI: 10.1002/vjch.201900048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tran Hong Quang
- Institute of Marine Biochemistry; Vietnam Academy of Science and Technology (VAST); 18, Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
- Graduate University of Science and Technology; VAST; 18, Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
| | - Duong Thi Hai Yen
- Institute of Marine Biochemistry; Vietnam Academy of Science and Technology (VAST); 18, Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
| | - Duong Thi Dung
- Institute of Marine Biochemistry; Vietnam Academy of Science and Technology (VAST); 18, Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
| | - Do Thi Trang
- Institute of Marine Biochemistry; Vietnam Academy of Science and Technology (VAST); 18, Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
| | - Nguyen Thi Thanh Ngan
- Institute of Genome Research; VAST; 18, Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
| | - Phan Van Kiem
- Institute of Marine Biochemistry; Vietnam Academy of Science and Technology (VAST); 18, Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
| | - Chau Van Minh
- Institute of Marine Biochemistry; Vietnam Academy of Science and Technology (VAST); 18, Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
| |
Collapse
|
31
|
Vuong LD, Nguyen QN, Truong VL. Anti-inflammatory and anti-oxidant effects of combination between sulforaphane and acetaminophen in LPS-stimulated RAW 264.7 macrophage cells. Immunopharmacol Immunotoxicol 2019; 41:413-419. [PMID: 31142171 DOI: 10.1080/08923973.2019.1569049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objectives: Accumulating evidence indicates that combination of therapeutic agents may increase their pharmacological properties with fewer undesired side effects. Acetaminophen (APAP) has been widely used to treat pain and fever in many countries. However, APAP only possesses a weak anti-inflammatory property at therapeutic dose, and exhibits hepatotoxicity at high dose. On other hand, sulforaphane (SFN) has been well-known as a potential anti-inflammatory and antioxidant agent. In this study, we investigated the anti-inflammatory and antioxidant effects of combination between APAP and SFN in LPS-stimulated RAW 264.7 macrophage cells. Methods: Nitric oxide (NO) assay was determined using the Griess assay. Reactive oxygen species (ROS) formation was measured using an ROS-sensitive fluorescence indicator, DCFH-DA. The protein expression was determined by western blot analysis. Results: Our results showed that the combination of SFN and APAP exhibited an inhibitory effect on inflammatory markers such as NO, iNOS, COX-2, and IL-1β, and this effect was more pronounced than the compound was used alone. In addition, the combination of SFN and APAP at low doses decreased intracellular ROS formation and increased the protein levels of CAT, GPx, Nrf2, NQO1, and HO-1, which were much better than APAP alone and were equivalent to SFN at full dose. Conclusions: Our findings suggest that the combination of APAP and SFN enhanced anti-inflammatory and anti-oxidant activities in stimulated macrophages, which provide an important rationale to utilize drug and food in combination for prevention and/or treatment inflammation-related diseases.
Collapse
Affiliation(s)
- Linh Dieu Vuong
- a Pathology and Molecular Biology Center , National Cancer Hospital K , Hanoi , Vietnam
| | - Quang Ngoc Nguyen
- a Pathology and Molecular Biology Center , National Cancer Hospital K , Hanoi , Vietnam
| | - Van-Long Truong
- b Department of Smart Food and Drug , College of BNIT, Inje University , Gimhae , South Korea
| |
Collapse
|
32
|
Le Roux-Mallouf T, Pelen F, Vallejo A, Halimaoui I, Doutreleau S, Verges S. Effect of chronic nitrate and citrulline supplementation on vascular function and exercise performance in older individuals. Aging (Albany NY) 2019; 11:3315-3332. [PMID: 31141497 PMCID: PMC6555465 DOI: 10.18632/aging.101984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Abstract
Increased nitric oxide (NO) bioavailability may improve exercise performance and vascular function. It remains unclear whether older adults who experience a decreased NO bioavailability may benefit from chronic NO precursor supplementation. This randomised, double-blind, trial aims to assess the effect of chronic NO precursor intake on vascular function and exercise performance in older adults (60-70 years old). Twenty-four healthy older adults (12 females) performed vascular function assessment and both local (knee extensions) and whole-body (incremental cycling) exercise tests to exhaustion before and after one month of daily intake of a placebo (PLA) or a nitrate-rich salad and citrulline (N+C, 520mg nitrate and 6g citrulline) drink. Arterial blood pressure (BP) and stiffness, post-ischemic, hypercapnic and hypoxic vascular responses were evaluated. Prefrontal cortex and quadriceps oxygenation was monitored by near-infrared spectroscopy. N+C supplementation reduced mean BP (-3.3mmHg; p=0.047) without altering other parameters of vascular function and oxygenation kinetics. N+C supplementation reduced heart rate and oxygen consumption during submaximal cycling and increased maximal power output by 5.2% (p<0.05), but had no effect on knee extension exercise performance. These results suggest that chronic NO precursor supplementation in healthy older individuals can reduce resting BP and increase cycling performance by improving cardiorespiratory responses.
Collapse
Affiliation(s)
| | - Felix Pelen
- Université Grenoble Alpes, Inserm, HP2 Laboratory, Grenoble F-38000, France
| | - Angela Vallejo
- Université Grenoble Alpes, Inserm, HP2 Laboratory, Grenoble F-38000, France
| | - Idir Halimaoui
- Université Grenoble Alpes, Inserm, HP2 Laboratory, Grenoble F-38000, France
| | - Stéphane Doutreleau
- Université Grenoble Alpes, Inserm, HP2 Laboratory, Grenoble F-38000, France
- Sport and Pathologies Unit, Grenoble Alpes University Hospital, Hôpital Michallon, Grenoble F-38042, France
| | - Samuel Verges
- Université Grenoble Alpes, Inserm, HP2 Laboratory, Grenoble F-38000, France
- Sport and Pathologies Unit, Grenoble Alpes University Hospital, Hôpital Michallon, Grenoble F-38042, France
| |
Collapse
|
33
|
Le Roux-Mallouf T, Laurent J, Besset D, Marillier M, Larribaut J, Belaidi E, Corne C, Doutreleau S, Verges S. Effects of acute nitric oxide precursor intake on peripheral and central fatigue during knee extensions in healthy men. Exp Physiol 2019; 104:1100-1114. [PMID: 31004378 DOI: 10.1113/ep087493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/18/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the effect of acute NO precursor intake on vascular function, muscle and cerebral oxygenation and peripheral and central neuromuscular fatigue during knee-extension exercise? What is the main finding and its importance? Acute NO precursor ingestion increases the plasma concentrations of NO precursors (nitrate, arginine and citrulline) and enhances post-ischaemic vasodilatation, but has no significant effect on muscle and cerebral oxygenation, peripheral and central mechanisms of neuromuscular fatigue and, consequently, does not improve exercise performance. ABSTRACT Nitric oxide (NO) plays an important role in matching blood flow to oxygen demand in the brain and contracting muscles during exercise. Previous studies have shown that increasing NO bioavailability can improve muscle function. The aim of this study was to assess the effect of acute NO precursor intake on muscle and cerebral oxygenation and on peripheral and central neuromuscular fatigue during exercise. In four experimental sessions, 15 healthy men performed a thigh ischaemia-reperfusion test followed by submaximal isometric knee extensions (5 s on-4 s off; 45% of maximal voluntary contraction) until task failure. In each session, subjects drank a nitrate-rich beetroot juice containing 520 mg nitrate (N), N and citrulline (6 g; N+C), N and arginine (6 g; N+A) or a placebo (PLA). Prefrontal cortex and quadriceps near-infrared spectroscopy parameters were monitored continuously. Transcranial magnetic stimulation and femoral nerve electrical stimulation were used to assess central and peripheral determinants of fatigue. The post-ischaemic increase in thigh blood total haemoglobin concentration was larger in N (10.1 ± 3.7 mmol) and N+C (10.9 ± 3.3 mmol) compared with PLA (8.2 ± 2.7 mmol; P < 0.05). Nitric oxide precursors had no significant effect on muscle and cerebral oxygenation or on peripheral and central mechanisms of neuromuscular fatigue during exercise. The total number of knee extensions did not differ between sessions (N, 71.9 ± 33.2; N+A, 73.3 ± 39.4; N+C, 74.6 ± 34.0; PLA, 71.8 ± 39.9; P > 0.05). In contrast to the post-ischaemic hyperaemic response, NO bioavailability in healthy subjects might not be the limiting factor for tissue perfusion and oxygenation during submaximal knee extensions to task failure.
Collapse
Affiliation(s)
| | - Julien Laurent
- Laboratoire HP2 (U1042 INSERM), Université, Grenoble Alpes, Grenoble, France
| | - Dimitri Besset
- Laboratoire HP2 (U1042 INSERM), Université, Grenoble Alpes, Grenoble, France
| | - Mathieu Marillier
- Laboratoire HP2 (U1042 INSERM), Université, Grenoble Alpes, Grenoble, France
| | - Julie Larribaut
- Laboratoire HP2 (U1042 INSERM), Université, Grenoble Alpes, Grenoble, France
| | - Elise Belaidi
- Laboratoire HP2 (U1042 INSERM), Université, Grenoble Alpes, Grenoble, France
| | - Christelle Corne
- Inherited Metabolic Disease Laboratory, Department of Biochemistry, Molecular and Environmental Toxicology Biology, Biology and Pathology Institute, Hôpital Michallon, Grenoble, France
| | - Stéphane Doutreleau
- Laboratoire HP2 (U1042 INSERM), Université, Grenoble Alpes, Grenoble, France.,Sport and Pathologies Unit, Grenoble Alpes University Hospital, Hôpital Michallon, Grenoble, France
| | - Samuel Verges
- Laboratoire HP2 (U1042 INSERM), Université, Grenoble Alpes, Grenoble, France.,Sport and Pathologies Unit, Grenoble Alpes University Hospital, Hôpital Michallon, Grenoble, France
| |
Collapse
|
34
|
Abstract
Nitric oxide (NO) has important functions in biology and atmospheric chemistry as a toxin, signaling molecule, ozone depleting agent and the precursor of the greenhouse gas nitrous oxide (N2O). Although NO is a potent oxidant, and was available on Earth earlier than oxygen, it is unclear whether NO can be used by microorganisms for growth. Anaerobic ammonium-oxidizing (anammox) bacteria couple nitrite reduction to ammonium oxidation with NO and hydrazine as intermediates, and produce N2 and nitrate. Here, we show that the anammox bacterium Kuenenia stuttgartiensis is able to grow in the absence of nitrite by coupling ammonium oxidation to NO reduction, and produce only N2. Under these growth conditions, the transcription of proteins necessary for NO generation is downregulated. Our work has potential implications in the control of N2O and NO emissions from natural and manmade ecosystems, where anammox bacteria contribute significantly to N2 release to the atmosphere. We hypothesize that microbial NO-dependent ammonium oxidation may have existed on early Earth.
Collapse
|
35
|
Maiuthed A, Bhummaphan N, Luanpitpong S, Mutirangura A, Aporntewan C, Meeprasert A, Rungrotmongkol T, Rojanasakul Y, Chanvorachote P. Nitric oxide promotes cancer cell dedifferentiation by disrupting an Oct4:caveolin-1 complex: A new regulatory mechanism for cancer stem cell formation. J Biol Chem 2018; 293:13534-13552. [PMID: 29986880 DOI: 10.1074/jbc.ra117.000287] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 06/19/2018] [Indexed: 01/11/2023] Open
Abstract
Cancer stem cells (CSCs) are unique populations of cells that can self-renew and generate different cancer cell lineages. Although CSCs are believed to be a promising target for novel therapies, the specific mechanisms by which these putative therapeutics could intervene are less clear. Nitric oxide (NO) is a biological mediator frequently up-regulated in tumors and has been linked to cancer aggressiveness. Here, we search for targets of NO that could explain its activity. We find that it directly affects the stability and function of octamer-binding transcription factor 4 (Oct4), known to drive the stemness of lung cancer cells. We demonstrated that NO promotes the CSC-regulatory activity of Oct4 through a mechanism that involves complex formation between Oct4 and the scaffolding protein caveolin-1 (Cav-1). In the absence of NO, Oct4 forms a molecular complex with Cav-1, which promotes the ubiquitin-mediated proteasomal degradation of Oct4. NO promotes Akt-dependent phosphorylation of Cav-1 at tyrosine 14, disrupting the Cav-1:Oct4 complex. Site-directed mutagenesis and computational modeling studies revealed that the hydroxyl moiety at tyrosine 14 of Cav-1 is crucial for its interaction with Oct4. Both removal of the hydroxyl via mutation to phenylalanine and phosphorylation lead to an increase in binding free energy (ΔGbind) between Oct4 and Cav-1, destabilizing the complex. Together, these results unveiled a novel mechanism of CSC regulation through NO-mediated stabilization of Oct4, a key stem cell transcription factor, and point to new opportunities to design CSC-related therapeutics.
Collapse
Affiliation(s)
- Arnatchai Maiuthed
- From the Department of Pharmacology and Physiology.,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences
| | - Narumol Bhummaphan
- Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences.,the Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sudjit Luanpitpong
- the Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand, and
| | - Apiwat Mutirangura
- the Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, and
| | | | - Arthitaya Meeprasert
- Structural and Computational Biology Research Group, and Department of Biochemistry, Faculty of Science
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Group, and Department of Biochemistry, Faculty of Science.,Ph.D. Program in Bioinformatics and Computational Biology
| | - Yon Rojanasakul
- WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506
| | - Pithi Chanvorachote
- From the Department of Pharmacology and Physiology, .,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences
| |
Collapse
|
36
|
Sasaki M, Shinozaki S, Morinaga H, Kaneki M, Nishimura E, Shimokado K. iNOS inhibits hair regeneration in obese diabetic (ob/ob) mice. Biochem Biophys Res Commun 2018; 501:893-897. [PMID: 29763605 DOI: 10.1016/j.bbrc.2018.05.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 11/17/2022]
Abstract
Previous studies have shown that androgenic alopecia is associated with metabolic syndrome and diabetes. However, the detailed mechanism whereby diabetes causes alopecia still remains unclear. We focused on the inflammatory response that is caused by diabetes or obesity, given that inflammation is a risk factor for hair loss. Inducible nitric oxide synthase (iNOS) is known to be upregulated under conditions of acute or chronic inflammation. To clarify the potential role of iNOS in diabetes-related alopecia, we generated obese diabetic iNOS-deficient (ob/ob; iNOS-KO mice). We observed that ob/ob; iNOS-KO mice were potentiated for the transition from telogen (rest phase) to anagen (growth phase) in the hair cycle compared with iNOS-proficient ob/ob mice. To determine the effect of nitric oxide (NO) on the hair cycle, we administered an iNOS inhibitor intraperitoneally (compound 1400 W, 10 mg/kg) or topically (10% aminoguanidine) in ob/ob mice. We observed that iNOS inhibitors promoted anagen transition in ob/ob mice. Next, we administered an NO donor (S-nitrosoglutathione, GSNO), to test whether NO has the telogen elongation effects. The NO donor was sufficient to induce telogen elongation in wild-type mice. Together, our data indicate that iNOS-derived NO plays a role in telogen elongation under the inflammatory conditions associated with diabetes in mice.
Collapse
Affiliation(s)
- Mari Sasaki
- Department of Geriatrics and Vascular Medicine, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan
| | - Shohei Shinozaki
- Department of Geriatrics and Vascular Medicine, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan; Department of Arteriosclerosis and Vascular Biology, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan.
| | - Hironobu Morinaga
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Emi Nishimura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Shimokado
- Department of Geriatrics and Vascular Medicine, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Kaur A. Introduction. SPRINGER THESES 2018. [PMCID: PMC7122183 DOI: 10.1007/978-3-319-73405-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Primordial life forms on earth comprised oxygen-sensitive organisms: the anaerobic fermenters and cyanobacteria, which released oxygen as a metabolic by-product, causing the oxygen levels in the atmosphere to rise Benzie (Eur J Nutr 39:53–61, 2000 [1]), Halliwell (Free Radic Res 31:261–272, 1999 [2]).
Collapse
Affiliation(s)
- Amandeep Kaur
- School of Chemistry, University of Sydney, Sydney, NSW Australia
| |
Collapse
|
38
|
Leustean AM, Ciocoiu M, Sava A, Costea CF, Floria M, Tarniceriu CC, Tanase DM. Implications of the Intestinal Microbiota in Diagnosing the Progression of Diabetes and the Presence of Cardiovascular Complications. J Diabetes Res 2018; 2018:5205126. [PMID: 30539026 PMCID: PMC6260408 DOI: 10.1155/2018/5205126] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/06/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
The prevalence of diabetes is steadily rising, and once it occurs, it can cause multiple complications with a negative impact on the whole organism. Complications of diabetes may be macrovascular: such as stroke and ischemic heart disease as well as peripheral vascular and microvascular diseases-retinopathy, nephropathy, and neuropathy. Key factors that cause cardiovascular disease in people with diabetes include hyperglycemia, dyslipidemia, obesity, insulin resistance, inflammation, hypertension, autonomic dysfunction, and decreased vascular response capacity. Microbes can be considered a complex endocrine system capable of ensuring the proper functioning of the body but are also responsible for the development of numerous pathologies (diabetes, coronary syndromes, peripheral arterial disease, neoplasia, Alzheimer's disease, and hepatic steatosis). Changes in the intestinal microbiota may influence the host's sensitivity to insulin, body weight, and lipid and carbohydrate metabolism. Dysbiosis causes activation of proinflammatory mechanisms, metabolic toxicity, and insulin resistance. Trimethylamine N-oxide (TMAO) is a microbial organic compound generated by the large intestine, and its concentration increases in the blood after ingestion of foods rich in L-carnitine and choline, such as red meat, eggs, and fish. The interest for TMAO in cardiometabolic research has recently emerged, given the preclinical evidence that reveals a link between TMAO, diabetes, and cardiovascular complications. Intestinal microbiota can be modulated by changing one's lifestyle but also by antibiotic, probiotic, prebiotic, and fecal transplantation. The purpose of this article is to highlight issues related to the involvement of microbiota and trimethylamine N-oxide in the pathogenesis of diabetes mellitus and cardiovascular disease. Better appreciation of the interactions between food intake and intestinal floral-mediated metabolism can provide clinical insights into the definition of individuals with diabetic risk and cardiometabolic disease as well as potential therapeutic targets for reducing the risk of progression of the disease.
Collapse
Affiliation(s)
- Alina Mihaela Leustean
- Department of Gastroenterology, “Sf. Spiridon” County Clinical Emergency Hospital, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anca Sava
- Department of Morpho-Functional Sciences I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 3rd Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 3rd Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, Iasi, Romania
| |
Collapse
|
39
|
Affiliation(s)
- Joseph C Galley
- From the Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, PA
| | - Adam C Straub
- From the Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, PA.
| |
Collapse
|
40
|
Bai L, Gao C, Liu Q, Yu C, Zhang Z, Cai L, Yang B, Qian Y, Yang J, Liao X. Research progress in modern structure of platinum complexes. Eur J Med Chem 2017; 140:349-382. [PMID: 28985575 DOI: 10.1016/j.ejmech.2017.09.034] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/18/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Since the antitumor activity of cisplatin was discovered in 1967 by Rosenberg, platinum-based anticancer drugs have played an important role in chemotherapy in clinic. Nevertheless, platinum anticancer drugs also have caused severe side effects and cross drug resistance which limited their applications. Therefore, a significant amount of efforts have been devoted to developing new platinum-based anticancer agents with equal or higher antitumor activity but lower toxicity. Until now, a large number of platinum-based complexes have been prepared and extensively investigated in vitro and in vivo. Among them, some platinum-based complexes revealing excellent anticancer activity showed the potential to be developed as novel type of anticancer agents. In this account, we present such platinum-based anticancer complexes which owning various types of ligands, such as, amine carrier ligands, leaving groups, reactive molecule, steric hindrance groups, non-covalently binding platinum (II) complexes, Platinum(IV) complexes and polynuclear platinum complexes. Overall, platinum-based anticancer complexes reported recently years upon modern structure are emphasized.
Collapse
Affiliation(s)
- Linkui Bai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qinghua Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Congtao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhuxin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Linxiang Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunxu Qian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
41
|
Abstract
Purpose of Review In this review, we summarise the evidence on the association between cardiovascular disease (CVD) and cognitive impairment and explore the role of the nitric oxide (NO) pathway as a causal mechanism. Recent Findings Evidence from epidemiological studies suggests that the presence of CVD and its risk factors in midlife is associated with an increased risk of later life cognitive impairment and dementia. It is unclear what is driving this association but risk may be conveyed via an increase in neurodegeneration (e.g. amyloid deposition), vascular changes (e.g. small vessel disease) and mechanistically due to increased levels of oxidative stress and inflammation as well as changes in NO bioavailability. Summary CVDs and dementia are major challenges to global health worldwide. The NO pathway may be a promising biological candidate for future studies focused on reducing not only CVD but also risk of cognitive decline and dementia.
Collapse
|
42
|
Le Roux-Mallouf T, Vibert F, Doutreleau S, Verges S. Effect of acute nitrate and citrulline supplementation on muscle microvascular response to ischemia-reperfusion in healthy humans. Appl Physiol Nutr Metab 2017; 42:901-908. [PMID: 28460182 DOI: 10.1139/apnm-2017-0081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nitric oxide (NO) is implicated in vasomotor control mechanisms altering the diameter of the vessels under various physiological and pathological conditions. There are 2 main NO production pathways, 1 NO synthase (NOS) independent (nitrate-nitrite-NO) and the other is NOS dependent (citrulline-arginine-NO). The objective of the study was to evaluate the effect of acute nitrate and citrulline supplementation on post-ischemic vascular response in healthy subjects. Fourteen subjects performed 2-leg vascular occlusion tests, 3 days apart. They were randomly assigned to consume a drink containing 1200 mg (19.4 mmol) of nitrate and 6 g of citrulline (N+C) or a placebo (Pl). Changes in total hemoglobin (Hbtot) and oxyhemoglobin (HbO2) concentrations were recorded by near-infrared spectroscopy on the thigh and calf muscles. No differences between N+C and Pl were observed during the ischemic period. Hbtot increased to a larger extent during the reperfusion period for the thigh (e.g., area under the curve, 821 ± 324 vs. 627 ± 381 mmol·s-1, p = 0.003) and the calf (515 ± 285 vs. 400 ± 275 mmol·s-1, p = 0.029) in the N+C versus Pl conditions. Similar results were found regarding HbO2 for the thigh (e.g., area under the curve, 842 ± 502 vs. 770 ± 491 mmol·s-1, p = 0.077) and the calf (968 ± 536 vs. 865 ± 275 mmol·s-1, p = 0.075). The larger postocclusive Hbtot and HbO2 responses observed after N+C intake suggests a greater post-ischemic vasodilation, which may be due to increased NO availability, via the activation of the 2 main NO production pathways.
Collapse
Affiliation(s)
- Thibault Le Roux-Mallouf
- U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France.,U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France
| | - Florence Vibert
- U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France.,U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France
| | - Stéphane Doutreleau
- U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France.,U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France
| | - Samuel Verges
- U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France.,U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France
| |
Collapse
|
43
|
Clere N, To KHT, Legeay S, Bertrand S, Helesbeux JJ, Duval O, Faure S. Pro-Angiogenic Effects of Low Dose Ethoxidine in a Murine Model of Ischemic Hindlimb: Correlation between Ethoxidine Levels and Increased Activation of the Nitric Oxide Pathway. Molecules 2017; 22:molecules22040627. [PMID: 28417947 PMCID: PMC6154657 DOI: 10.3390/molecules22040627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 11/16/2022] Open
Abstract
Ethoxidine, a benzo[c]phenanthridine derivative, has been identified as a potent inhibitor of topoisomerase I in cancer cell lines. Our group has reported paradoxical properties of ethoxidine in cellular processes leading to angiogenesis on endothelial cells. Because low concentration ethoxidine is able to favor angiogenesis, the present study aimed to investigate the ability of 10-9 M ethoxidine to modulate neovascularization in a model of mouse hindlimb ischemia. After inducing unilateral hindlimb ischemia, mice were treated for 21 days with glucose 5% or with ethoxidine, to reach plasma concentrations equivalent to 10-9 M. Laser Doppler analysis showed that recovery of blood flow was 1.5 fold higher in ethoxidine-treated mice in comparison with control mice. Furthermore, CD31 staining and angiographic studies confirmed an increase of vascular density in ethoxidine-treated mice. This ethoxidine-induced recovery was associated with an increase of NO production through an enhancement of eNOS phosphorylation on its activator site in skeletal muscle from ischemic hindlimb. Moreover, real-time RT-PCR and western blots have highlighted that ethoxidine has pro-angiogenic properties by inducing a significant enhancement in vegf transcripts and VEGF expression, respectively. These findings suggest that ethoxidine could contribute to favor neovascularization after an ischemic injury by promoting the NO pathway and VEGF expression.
Collapse
Affiliation(s)
- Nicolas Clere
- MINT, Univ Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
- Department of Pharmaceutical Pharmacology and Physiology, UFR Santé-School of Pharmacy, University of Angers, F-49045 Angers, France.
| | - Kim Hung Thien To
- Department of Pharmaceutical Pharmacology and Physiology, UFR Santé-School of Pharmacy, University of Angers, F-49045 Angers, France.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA.
| | - Samuel Legeay
- MINT, Univ Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
- Department of Pharmaceutical Pharmacology and Physiology, UFR Santé-School of Pharmacy, University of Angers, F-49045 Angers, France.
| | - Samuel Bertrand
- EA 2160, Univ Nantes, Université Bretagne Loire, F-44200 Nantes, France.
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| | - Jean Jacques Helesbeux
- SONAS, SFR QUASAV 4207, UPRES EA921, Univ Angers, Université Bretagne Loire, F-49035 Angers, France.
| | - Olivier Duval
- SONAS, SFR QUASAV 4207, UPRES EA921, Univ Angers, Université Bretagne Loire, F-49035 Angers, France.
| | - Sébastien Faure
- MINT, Univ Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
- Department of Pharmaceutical Pharmacology and Physiology, UFR Santé-School of Pharmacy, University of Angers, F-49045 Angers, France.
| |
Collapse
|
44
|
Tomasova L, Konopelski P, Ufnal M. Gut Bacteria and Hydrogen Sulfide: The New Old Players in Circulatory System Homeostasis. Molecules 2016; 21:E1558. [PMID: 27869680 PMCID: PMC6273628 DOI: 10.3390/molecules21111558] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence suggests that gut bacteria play a role in homeostasis of the circulatory system in mammals. First, gut bacteria may affect the nervous control of the circulatory system via the sensory fibres of the enteric nervous system. Second, gut bacteria-derived metabolites may cross the gut-blood barrier and target blood vessels, the heart and other organs involved in the regulation of the circulatory system. A number of studies have shown that hydrogen sulfide (H₂S) is an important biological mediator in the circulatory system. Thus far, research has focused on the effects of H₂S enzymatically produced by cardiovascular tissues. However, some recent evidence indicates that H₂S released in the colon may also contribute to the control of arterial blood pressure. Incidentally, sulfate-reducing bacteria are ubiquitous in mammalian colon, and H₂S is just one among a number of molecules produced by the gut flora. Other gut bacteria-derived compounds that may affect the circulatory system include methane, nitric oxide, carbon monoxide, trimethylamine or indole. In this paper, we review studies that imply a role of gut microbiota and their metabolites, such as H₂S, in circulatory system homeostasis.
Collapse
Affiliation(s)
- Lenka Tomasova
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw 02 091, Poland.
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava 845 05, Slovakia.
| | - Piotr Konopelski
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw 02 091, Poland.
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw 02 091, Poland.
| |
Collapse
|
45
|
Chandrashekara PM, Venkatesh YP. Immunostimulatory properties of fructans derived from raw garlic (Allium sativum L.). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.bcdf.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3565127. [PMID: 27247702 PMCID: PMC4877482 DOI: 10.1155/2016/3565127] [Citation(s) in RCA: 667] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/02/2016] [Accepted: 04/06/2016] [Indexed: 12/15/2022]
Abstract
The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS) and/or Reactive Nitrosative Species (RNS). Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging.
Collapse
|
47
|
Singh N, Bhattacharyya D. Evaluation of the presence of reduced nicotinamide adenine dinucleotide phosphate in bacterial metabolites used as immunostimulators and its role in nitric oxide induction. Microbiol Immunol 2016; 59:311-21. [PMID: 25864512 DOI: 10.1111/1348-0421.12258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/01/2015] [Indexed: 12/15/2022]
Abstract
Bacterial metabolites that act as immunostimulators have aroused interest because of their therapeutic potential in several immune disorders. These metabolites are complex, heterogeneous, and comprise numerous immune-boosting biomolecules. To better understand their immune stimulatory properties, characterization of their components is essential. An ether extract of metabolites from nine bacterial species was analyzed for the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) or other fluorophores. This metabolite in combination with bile lipids is a licensed immune stimulatory drug. Excitation of the extract at 340 nm resulted in fluorescence with an emission maximum of around 410 nm, which is fairly specific for NADH and NADPH. Reverse-phase-HPLC and electro-spray ionization-mass analysis confirmed the presence of NADPH in the bacterial metabolites. Quantification by glutathione reductase assay indicated 11.90 ± 0.01 µM of NADPH in the metabolites. Further characterization of the individual bacterial extracts of the metabolite confirmed the presence of NADPH. Subsequently, studies were performed to evaluate the role/s of NADPH in immune-stimulatory drugs. NADPH is known to be involved in production of nitric oxide (NO), which has versatile roles in the immune system. The biological function of NADPH in NO induction by RAW 264.7 (mouse macrophage) cells was evaluated and it was found that bacterial NADPH has a significant role in inducing NO and that NADPH from individual bacterial extracts is capable of inducing NO. Investigation on the stability and biological potency of NADPH in bacterial metabolites is important because of NADPH's wide therapeutic applications, most of which are associated with its role in NO induction.
Collapse
Affiliation(s)
- Namrata Singh
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
48
|
Somasundaram V, Nadhan R, K Hemalatha S, Kumar Sengodan S, Srinivas P. Nitric oxide and reactive oxygen species: Clues to target oxidative damage repair defective breast cancers. Crit Rev Oncol Hematol 2016; 101:184-92. [PMID: 27017408 DOI: 10.1016/j.critrevonc.2016.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 01/19/2016] [Accepted: 03/02/2016] [Indexed: 12/21/2022] Open
Abstract
The identification of various biomolecules in cancer progression and therapy has led to the exploration of the roles of two cardinal players, namely Nitric Oxide (NO) and Reactive Oxygen Species (ROS) in cancer. Both ROS and NO display bimodal fashions of functional activity in a concentration dependent manner, by inducing either pro- or anti- tumorigenic signals. Researchers have identified the potential capability of NO and ROS in therapies owing to their role in eliciting pro-apoptotic signals at higher concentrations and their ability to sensitize cancer cells to one another as well as to other therapeutics. We review the prospects of NO and ROS in cancer progression and therapy, and analyze the role of a combinatorial therapy wherein an NO donor (SNAP) is used to sensitize the oxidative damage repair defective, triple negative breast cancer cells (HCC 1937) to a potent ROS inducer. Preliminary findings support the potential to employ various combinatorial regimes for anti-cancer therapies with regard to exploiting the chemo-sensitization property of NO donors.
Collapse
Affiliation(s)
- Veena Somasundaram
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thycaud P O, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Revathy Nadhan
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thycaud P O, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Sreelatha K Hemalatha
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thycaud P O, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Satheesh Kumar Sengodan
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thycaud P O, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Priya Srinivas
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thycaud P O, Poojappura, Thiruvananthapuram 695 014, Kerala, India.
| |
Collapse
|
49
|
Eroglu E, Gottschalk B, Charoensin S, Blass S, Bischof H, Rost R, Madreiter-Sokolowski CT, Pelzmann B, Bernhart E, Sattler W, Hallström S, Malinski T, Waldeck-Weiermair M, Graier WF, Malli R. Development of novel FP-based probes for live-cell imaging of nitric oxide dynamics. Nat Commun 2016; 7:10623. [PMID: 26842907 PMCID: PMC4743004 DOI: 10.1038/ncomms10623] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/05/2016] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide () is a free radical with a wide range of biological effects, but practically impossible to visualize in single cells. Here we report the development of novel multicoloured fluorescent quenching-based probes by fusing a bacteria-derived -binding domain close to distinct fluorescent protein variants. These genetically encoded probes, referred to as geNOps, provide a selective, specific and real-time read-out of cellular dynamics and, hence, open a new era of bioimaging. The combination of geNOps with a Ca(2+) sensor allowed us to visualize and Ca(2+) signals simultaneously in single endothelial cells. Moreover, targeting of the probes was used to detect signals within mitochondria. The geNOps are useful new tools to further investigate and understand the complex patterns of signalling on the single (sub)cellular level.
Collapse
Affiliation(s)
- Emrah Eroglu
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Suphachai Charoensin
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Sandra Blass
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Helmut Bischof
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Rene Rost
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Brigitte Pelzmann
- Institute of Biophysics, Center of Physiological Medicine, Medical University of Graz, Harrachgasse 21/IV, 8010 Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Seth Hallström
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, Harrachgasse 21/II, 8010 Graz, Austria
| | - Tadeusz Malinski
- Nanomedical Research Laboratory, Department of Chemistry and Biochemistry, Ohio University, 350 West State Street, Athens, Ohio 45701, USA
| | - Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| |
Collapse
|
50
|
Madhu BP, Singh KP, Saminathan M, Singh R, Tiwari AK, Manjunatha V, Harish C, Manjunathareddy GB. Correlation of inducible nitric oxide synthase (iNOS) inhibition with TNF-α, caspase-1, FasL and TLR-3 in pathogenesis of rabies in mouse model. Virus Genes 2015; 52:61-70. [PMID: 26690069 DOI: 10.1007/s11262-015-1265-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022]
Abstract
The role of inflammatory cytokines such as interleukin-1α/β (IL-1α/β), IL-6, IL-10, tumour necrosis factor-alpha (TNF-α), interferons, nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in pathogenesis of rabies is being actively pursued. Presently, levels of certain immune molecules in pathogenesis of rabies in mice have been investigated. CVS strain of rabies infection resulted in early increase in iNOS, TNF-α, caspase-1, Fas ligand (FasL) and toll-like receptor-3 (TLR-3) mRNA levels in brain, and nitric oxide levels in serum. The severity of clinical signs and microscopic lesions largely correlated with NO levels. Aminoguanidine (AG; iNOS inhibitor) decreased NO production with delay in development of clinical signs and increase in survival time. Prolonged survival time correlated with reduced viral load evident by real-time PCR, reduced fluorescent signals of rabies antigen in brain and reduced immunohistochemistry signals in neuronal cytoplasm. These parameters suggested that nitric oxide did influence the rabies virus replication. Inhibition of iNOS by AG administration led to decreased expression of TNF-α, caspase-1, FasL and TLR-3 mRNA levels suggesting that increase in NO levels in rabies virus infection possibly contributed to development of disease through inflammation, apoptosis and immune-evasive mechanisms.
Collapse
Affiliation(s)
- B P Madhu
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - K P Singh
- Pathology Laboratory, Centre for Animal Disease Research and Diagnosis (CADRAD), ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - M Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - R Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - A K Tiwari
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - V Manjunatha
- Wild Animal Disease Diagnostic Laboratory, Institute of Animal Health and Veterinary Biologicals, Bannerghatta Biological Park, Bannerghatta, Bengaluru, Karnataka, India
| | - C Harish
- Department of Pre-Clinical Research, Anthem Biosciences Pvt Ltd, Bommasandra, Bengaluru, Karnataka, India
| | - G B Manjunathareddy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| |
Collapse
|