1
|
Weng W, Zhang B, Deng D. P16 INK4A drives RB1 degradation by UTP14A-catalyzed K810 ubiquitination. iScience 2024; 27:110882. [PMID: 39351198 PMCID: PMC11440251 DOI: 10.1016/j.isci.2024.110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
P16INK4A expression is inversely associated with RB1 expression in cancer cells, and P16INK4A inhibits CDK4-catalyzed RB1 phosphorylation. How P16INK4A and RB1 coordinately express and regulate the cell cycle remains to be studied. In the present study, we found that P16INK4A upregulated the E3 ligase UTP14A, which led to the ubiquitination of RB1 at K810 and RB1 degradation. P16INK4A loss consistently disrupted the UTP14A-mediated degradation of RB1 and caused RB1 accumulation. Functionally, P16INK4A loss inhibited RB1 ubiquitination in a cell cycle progression-independent fashion and inhibited proteome-scale ubiquitination in a cell cycle progression-dependent manner. Our findings indicate that there is a negative feedback loop between P16INK4A and RB1 expression and that disruption of this loop may partially rescue the biological outcomes of P16INK4A loss. We also revealed a hitherto unknown function for P16 INK4A in regulating proteome-scale ubiquitination by inhibiting cell proliferation, which may be useful for the development of anticancer drugs.
Collapse
Affiliation(s)
- Wenjie Weng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Baozhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
2
|
Chen YL, Reddy S, Suzuki A. Reversible and effective cell cycle synchronization method for studying stage-specific investigations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610832. [PMID: 39282459 PMCID: PMC11398389 DOI: 10.1101/2024.09.02.610832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The cell cycle is a crucial process for cell proliferation, differentiation, and development. Numerous genes and proteins play pivotal roles at specific cell cycle stages to regulate these events precisely. Studying the stage-specific functions of the cell cycle requires accumulating cell populations at the desired cell cycle stage. Cell synchronization, achieved through the use of cell cycle kinase and protein inhibitors, is often employed for this purpose. However, suboptimal concentrations of these inhibitors can result in reduced efficiency, irreversibility, and undesirable cell cycle defects. In this study, we have optimized effective and reversible techniques to synchronize the cell cycle at each stage in human RPE1 cells, utilizing both fixed high-precision cell cycle identification methods and high-temporal live-cell imaging. These reproducible synchronization methods are invaluable for investigating the regulatory mechanisms specific to each cell cycle stage.
Collapse
Affiliation(s)
- Yu-Lin Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Syon Reddy
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Chen YL, Chen YC, Suzuki A. ImmunoCellCycle-ID: A high-precision immunofluorescence-based method for cell cycle identification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607961. [PMID: 39185179 PMCID: PMC11343203 DOI: 10.1101/2024.08.14.607961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The cell cycle is a fundamental process essential for cell proliferation, differentiation, and development. It consists of four major phases: G1, S, G2, and M. These phases collectively drive the reproductive cycle and are meticulously regulated by various proteins that play critical roles in both the prevention and progression of cancer. Traditional methods for studying these functions, such as flow cytometry, require a substantial number of cells to ensure accuracy. In this study, we have developed a user-friendly, immunofluorescence-based method for identifying cell cycle stages, providing single-cell resolution and precise identification of G1, early S, late S, early G2, late G2, and each sub-stage of the M phase using fluorescence microscopy. This method provides high-precision cell cycle identification and can serve as an alternative to, or in combination with, traditional flow cytometry to dissect detailed substages of the cell cycle in a variety of cell lines.
Collapse
Affiliation(s)
- Yu-Lin Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Tools used to assay genomic instability in cancers and cancer meiomitosis. J Cell Commun Signal 2021; 16:159-177. [PMID: 34841477 DOI: 10.1007/s12079-021-00661-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022] Open
Abstract
Genomic instability is a defining characteristic of cancer and the analysis of DNA damage at the chromosome level is a crucial part of the study of carcinogenesis and genotoxicity. Chromosomal instability (CIN), the most common level of genomic instability in cancers, is defined as the rate of loss or gain of chromosomes through successive divisions. As such, DNA in cancer cells is highly unstable. However, the underlying mechanisms remain elusive. There is a debate as to whether instability succeeds transformation, or if it is a by-product of cancer, and therefore, studying potential molecular and cellular contributors of genomic instability is of high importance. Recent work has suggested an important role for ectopic expression of meiosis genes in driving genomic instability via a process called meiomitosis. Improving understanding of these mechanisms can contribute to the development of targeted therapies that exploit DNA damage and repair mechanisms. Here, we discuss a workflow of novel and established techniques used to assess chromosomal instability as well as the nature of genomic instability such as double strand breaks, micronuclei, and chromatin bridges. For each technique, we discuss their advantages and limitations in a lab setting. Lastly, we provide detailed protocols for the discussed techniques.
Collapse
|
5
|
Abstract
Cell cycle involves a series of changes that lead to cell growth and division. Cell cycle analysis is crucial to understand cellular responses to changing environmental conditions. Since its inception, flow cytometry has been particularly useful for cell cycle analysis at single cell level due to its speed and precision. Previously, flow cytometric cell cycle analysis relied solely on the measurement of cellular DNA content. Later, methods were developed for multiparametric analysis. This review explains the journey of flow cytometry to understand different molecular and cellular events underlying cell cycle using various protocols. Recent advances in the field that overcome the shortcomings of traditional flow cytometry and expand its scope for cell cycle studies are also discussed.
Collapse
|
6
|
Rong G, Zhang Y, Chen Y, Chen J, Jiang N, Merchuk JC. The prodigiosin change on the surface of Serratia marcescens detected by flow cytometry. Cytometry A 2021; 101:254-263. [PMID: 34448526 DOI: 10.1002/cyto.a.24497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022]
Abstract
The potential of flow cytometry for the study of changes in prodigiosin on the cell surface of Serratia marcescens is of academic and practical interest. This is because S. marcescens can produce prodigiosin, a secondary metabolite, with potential use as a cancer-cell inhibitor. In this study, three groups of bacterial cultures with different carbon sources were compared, and the effect of the addition of cAMP to the sucrose-based culture was studied. Both cellular morphology and DNA content were detected by flow cytometry, rendering a broad description of the bacterial behavior. It is the first use of flow cytometry to investigate the dynamics of prodigiosin on the surface of S. marcescens during growth in different media. The fluorescence intensity is related to the DNA content, the forward-scattered light is related to cell volume, and the side-scattered light is related to the surface morphology, especially the surface prodigiosin. These may contribute to the potential development of a bacterial metabolic monitoring strategy using both DNA content analysis and bacterial morphology based on flow cytometry technique.
Collapse
Affiliation(s)
- Guangjian Rong
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China.,Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, LiuFang Campus, Wuhan, China.,Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, LiuFang Campus, Wuhan, China
| | - Youhong Zhang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China.,Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, LiuFang Campus, Wuhan, China.,Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, LiuFang Campus, Wuhan, China.,School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Yan Chen
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Jie Chen
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Nan Jiang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Jose C Merchuk
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
7
|
A CRISPR/Cas9-Mediated, Homology-Independent Tool Developed for Targeted Genome Integration in Yarrowia lipolytica. Appl Environ Microbiol 2021; 87:AEM.02666-20. [PMID: 33452022 DOI: 10.1128/aem.02666-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/19/2020] [Indexed: 12/30/2022] Open
Abstract
Yarrowia lipolytica has been extensively used to produce essential chemicals and enzymes. As in most other eukaryotes, nonhomologous end joining (NHEJ) is the major repair pathway for DNA double-strand breaks in Y. lipolytica Although numerous studies have attempted to achieve targeted genome integration through homologous recombination (HR), this process requires the construction of homologous arms, which is time-consuming. This study aimed to develop a homology-independent and CRISPR/Cas9-mediated targeted genome integration tool in Y. lipolytica Through optimization of the cleavage efficiency of Cas9, targeted integration of a hyg fragment was achieved with 12.9% efficiency, which was further improved by manipulation of the fidelity of NHEJ repair, the cell cycle, and the integration sites. Thus, the targeted integration rate reached 55% through G1 phase synchronization. This tool was successfully applied for the rapid verification of intronic promoters and iterative integration of four genes in the pathway for canthaxanthin biosynthesis. This homology-independent integration tool does not require homologous templates and selection markers and achieves one-step targeted genome integration of the 8,417-bp DNA fragment, potentially replacing current HR-dependent genome-editing methods for Y. lipolytica IMPORTANCE This study describes the development and optimization of a homology-independent targeted genome integration tool mediated by CRISPR/Cas9 in Yarrowia lipolytica This tool does not require the construction of homologous templates and can be used to rapidly verify genetic elements and to iteratively integrate multiple-gene pathways in Y. lipolytica This tool may serve as a potential supplement to current HR-dependent genome-editing methods for eukaryotes.
Collapse
|
8
|
Surani AA, Colombo SL, Barlow G, Foulds GA, Montiel-Duarte C. Optimizing Cell Synchronization Using Nocodazole or Double Thymidine Block. Methods Mol Biol 2021; 2329:111-121. [PMID: 34085219 DOI: 10.1007/978-1-0716-1538-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell synchronization is crucial when studying events that take place at specific points of the cell cycle. Several chemical agents can be used to achieve the cell culture synchronization but not all type of cells respond equally to a given concentration of these drugs. Here we describe a simple optimization method to select concentrations and timings for nocodazole or thymidine treatments using fluorescence staining. In addition, we provide detailed protocols to arrest an asynchronous culture of either suspension or adherent cells in G1/S or in G2/M.
Collapse
Affiliation(s)
- Arif A Surani
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Sergio L Colombo
- Centre for Diabetes, Chronic Diseases and Ageing, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - George Barlow
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Gemma A Foulds
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Cristina Montiel-Duarte
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
9
|
Moshkovskii SA, Lobas AA, Gorshkov MV. Single Cell Proteogenomics - Immediate Prospects. BIOCHEMISTRY (MOSCOW) 2020; 85:140-146. [PMID: 32093591 DOI: 10.1134/s0006297920020029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent technical advances in genomic technology have led to the explosive growth of transcriptome-wide studies at the level of single cells. The review describes the first steps of the single cell proteomics that has originated soon after development of transcriptomics methods. The first studies on the shotgun proteomics of single cells that used liquid chromatography/mass spectrometry have been already published. In these works, the cells were separated by the methods used in transcriptomics studies (e.g., cell sorting) and analyzed by modified mass spectrometry with tandem mass tags. The new proteogenomics approach involving integration of single cell transcriptomics and proteomics data will provide better understanding of the mechanisms of cell interactions in normal development and disease.
Collapse
Affiliation(s)
- S A Moshkovskii
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia. .,Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - A A Lobas
- Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - M V Gorshkov
- Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
10
|
Du M, Wang G, Barsukov IL, Gross SR, Smith R, Rudland PS. Direct interaction of metastasis-inducing S100P protein with tubulin causes enhanced cell migration without changes in cell adhesion. Biochem J 2020; 477:1159-1178. [PMID: 32065231 PMCID: PMC7108782 DOI: 10.1042/bcj20190644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Overexpression of S100P promotes breast cancer metastasis in animals and elevated levels in primary breast cancers are associated with poor patient outcomes. S100P can differentially interact with nonmuscle myosin (NM) isoforms (IIA > IIC > IIB) leading to the redistribution of actomyosin filaments to enhance cell migration. Using COS-7 cells which do not naturally express NMIIA, S100P is now shown to interact directly with α,β-tubulin in vitro and in vivo with an equilibrium Kd of 2-3 × 10-7 M. The overexpressed S100P is located mainly in nuclei and microtubule organising centres (MTOC) and it significantly reduces their number, slows down tubulin polymerisation and enhances cell migration in S100P-induced COS-7 or HeLa cells. It fails, however, to significantly reduce cell adhesion, in contrast with NMIIA-containing S100P-inducible HeLa cells. When taxol is used to stabilise MTs or colchicine to dissociate MTs, S100P's stimulation of migration is abolished. Affinity-chromatography of tryptic digests of α and β-tubulin on S100P-bound beads identifies multiple S100P-binding sites consistent with S100P binding to all four half molecules in gel-overlay assays. When screened by NMR and ITC for interacting with S100P, four chemically synthesised peptides show interactions with low micromolar dissociation constants. The two highest affinity peptides significantly inhibit binding of S100P to α,β-tubulin and, when tagged for cellular entry, also inhibit S100P-induced reduction in tubulin polymerisation and S100P-enhancement of COS-7 or HeLa cell migration. A third peptide incapable of interacting with S100P also fails in this respect. Thus S100P can interact directly with two different cytoskeletal filaments to independently enhance cell migration, the most important step in the metastatic cascade.
Collapse
Affiliation(s)
- Min Du
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Guozheng Wang
- Institute of Infection and Global Health, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Igor L. Barsukov
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Stephane R. Gross
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, U.K
| | - Richard Smith
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Philip S. Rudland
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| |
Collapse
|
11
|
Moon I, Ahmadzadeh E, Jaferzadeh K, Kim N. Automated quantification study of human cardiomyocyte synchronization using holographic imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:610-621. [PMID: 30800503 PMCID: PMC6377906 DOI: 10.1364/boe.10.000610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/21/2018] [Accepted: 12/25/2018] [Indexed: 05/05/2023]
Abstract
This paper investigates the rhythm strip and parameters of synchronization of human induced pluripotent stem cell (iPS) derived cardiomyocytes. The synchronization is evaluated from quantitative phase images of beating cardiomyocytes which are obtained using the time-lapse digital holographic imaging method. By quantitatively monitoring the dry mass redistribution, digital holography provides the physical contraction-relaxation signal caused by autonomous cardiac action potential. In order to analyze the synchronicity at the cell-to-cell level, we extracted single cardiac muscle cells, which contain the nuclei, from the phase images of cardiomyocytes containing multiple cells resulting from the fusion of k-means clustering and watershed segmentation algorithms. We demonstrate that mature cardiomyocyte cell synchronization can be automatically evaluated by time-lapse microscopic holographic imaging. Our proposed method can be applied for studies on cardiomyocyte disorders and drug safety testing systems.
Collapse
Affiliation(s)
- InKyu Moon
- Department of Robotics Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea
| | - Ezat Ahmadzadeh
- Department of Robotics Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea
- Department of Computer Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, South Korea
| | - Keyvan Jaferzadeh
- Department of Robotics Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea
| | - Namgon Kim
- Department of Robotics Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea
| |
Collapse
|
12
|
Delgado M, Kothari A, Hittelman WN, Chambers TC. Preparation of Primary Acute Lymphoblastic Leukemia Cells in Different Cell Cycle Phases by Centrifugal Elutriation. J Vis Exp 2017. [PMID: 29155772 DOI: 10.3791/56418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ability to synchronize cells has been central to advancing our understanding of cell cycle regulation. Common techniques employed include serum deprivation; chemicals which arrest cells at different cell cycle phases; or the use of mitotic shake-off which exploits their reduced adherence. However, all of these have disadvantages. For example, serum starvation works well for normal cells but less well for tumor cells with compromised cell cycle checkpoints due to oncogene activation or tumor suppressor loss. Similarly, chemically-treated cell populations can harbor drug-induced damage and show stress-related alterations. A technique which circumvents these problems is counterflow centrifugal elutriation (CCE), where cells are subjected to two opposing forces, centrifugal force and fluid velocity, which results in the separation of cells on the basis of size and density. Since cells advancing through the cycle typically enlarge, CCE can be used to separate cells into different cell cycle phases. Here we apply this technique to primary acute lymphoblastic leukemia cells. Under optimal conditions, an essentially pure population of cells in G1 phase and a highly enriched population of cells in G2/M phases can be obtained in excellent yield. These cell populations are ideally suited for studying cell cycle-dependent mechanisms of action of anticancer drugs and for other applications. We also show how modifications to the standard procedure can result in suboptimal performance and discuss the limitations of the technique. The detailed methodology presented should facilitate application and exploration of the technique to other types of cells.
Collapse
Affiliation(s)
- Magdalena Delgado
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences
| | - Anisha Kothari
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences
| | - Walter N Hittelman
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center
| | - Timothy C Chambers
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences;
| |
Collapse
|
13
|
Abstract
While chromatin characteristics in interphase are widely studied, characteristics of mitotic chromatin and their inheritance through mitosis are still poorly understood. During mitosis, chromatin undergoes dramatic changes: transcription stalls, chromatin-binding factors leave the chromatin, histone modifications change and chromatin becomes highly condensed. Many key insights into mitotic chromosome state and conformation have come from extensive microscopy studies over the last century. Over the last decade, the development of 3C-based techniques has enabled the study of higher order chromosome organization during mitosis in a genome-wide manner. During mitosis, chromosomes lose their cell type-specific and locus-dependent chromatin organization that characterizes interphase chromatin and fold into randomly positioned loop arrays. Upon exit of mitosis, cells are capable of quickly rearranging the chromosome conformation to form the cell type-specific interphase organization again. The information that enables this rearrangement after mitotic exit is thought to be encoded at least in part in mitotic bookmarks, e.g. histone modifications and variants, histone remodelers, chromatin factors, and non-coding RNA. Here we give an overview of the chromosomal organization and epigenetic characteristics of interphase and mitotic chromatin in vertebrates. Second, we describe different ways in which mitotic bookmarking enables epigenetic memory of the features of interphase chromatin through mitosis. And third, we explore the role of epigenetic modifications and mitotic bookmarking in cell differentiation.
Collapse
Affiliation(s)
- Marlies E. Oomen
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-0103, USA
| | - Job Dekker
- Howard Hughes Medical Institute, Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-0103, USA
| |
Collapse
|
14
|
Nagy G, Tanczos B, Fidrus E, Talas L, Banfalvi G. Chemically Induced Cell Cycle Arrest in Perfusion Cell Culture. Methods Mol Biol 2017; 1524:161-176. [PMID: 27815902 DOI: 10.1007/978-1-4939-6603-5_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In contrast to most present methods, continuous imaging of live cells would require full automation in each processing step. As an integrated system that would meet all requirements does not exist, we have established a long-term scanning-perfusion platform that: (a) replaces old medium with fresh one, (b) bypasses physical contact with the cell culture during continuous cell growth, (c) provides uninterrupted photomicrography of single cells, and (d) secures near physiological conditions and sterility up to several weeks. The system was validated by synchronizing cells using serum starvation and butyrate-induced cell cycle arrest of HaCaT cells.
Collapse
Affiliation(s)
- Gabor Nagy
- Department of Biotechnology and Microbiology, University of Debrecen, 1 Egyetem Square, Debrecen, 4010, Hungary
| | - Bence Tanczos
- Department of Biotechnology and Microbiology, University of Debrecen, 1 Egyetem Square, Debrecen, 4010, Hungary
| | - Eszter Fidrus
- Department of Biotechnology and Microbiology, University of Debrecen, 1 Egyetem Square, Debrecen, 4010, Hungary
| | - Laszlo Talas
- Department of Biotechnology and Microbiology, University of Debrecen, 1 Egyetem Square, Debrecen, 4010, Hungary
| | - Gaspar Banfalvi
- Department of Biotechnology and Microbiology, University of Debrecen, 1 Egyetem Square, Debrecen, 4010, Hungary.
| |
Collapse
|
15
|
Halicka D, Zhao H, Li J, Garcia J, Podhorecka M, Darzynkiewicz Z. DNA Damage Response Resulting from Replication Stress Induced by Synchronization of Cells by Inhibitors of DNA Replication: Analysis by Flow Cytometry. Methods Mol Biol 2017; 1524:107-119. [PMID: 27815899 DOI: 10.1007/978-1-4939-6603-5_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell synchronization is often achieved by transient inhibition of DNA replication. When cultured in the presence of such inhibitors as hydroxyurea, aphidicolin or excess of thymidine the cells that become arrested at the entrance to S-phase upon release from the block initiate progression through S then G2 and M. However, exposure to these inhibitors at concentrations commonly used to synchronize cells leads to activation of ATR and ATM protein kinases as well as phosphorylation of Ser139 of histone H2AX. This observation of DNA damage signaling implies that synchronization of cells by these inhibitors is inducing replication stress. Thus, a caution should be exercised while interpreting data obtained with use of cells synchronized this way since they do not represent unperturbed cell populations in a natural metabolic state. This chapter critically outlines virtues and vices of most cell synchronization methods. It also presents the protocol describing an assessment of phosphorylation of Ser139 on H2AX and activation of ATM in cells treated with aphidicolin, as a demonstrative of one of several DNA replication inhibitors that are being used for cell synchronization. Phosphorylation of Ser139H2AX and Ser1981ATM in individual cells is detected immunocytochemically with phospho-specific Abs and intensity of immunofluorescence is measured by flow cytometry. Concurrent measurement of cellular DNA content followed by multiparameter analysis allows one to correlate the extent of phosphorylation of these proteins in response to aphidicolin with the cell cycle phase.
Collapse
Affiliation(s)
- Dorota Halicka
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA
| | - Hong Zhao
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA
| | - Jiangwei Li
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA
| | - Jorge Garcia
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA
| | - Monika Podhorecka
- Department of Hemato-Oncology and Bone Marrow Transplantation, Medical University, Lublin, Poland
| | - Zbigniew Darzynkiewicz
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA.
| |
Collapse
|
16
|
Growth of the Mammalian Golgi Apparatus during Interphase. Mol Cell Biol 2016; 36:2344-59. [PMID: 27325676 DOI: 10.1128/mcb.00046-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022] Open
Abstract
During the cell cycle, genetic materials and organelles are duplicated to ensure that there is sufficient cellular content for daughter cells. While Golgi growth in interphase has been observed in lower eukaryotes, the elaborate ribbon structure of the mammalian Golgi apparatus has made it challenging to monitor. Here we demonstrate the growth of the mammalian Golgi apparatus in its protein content and volume during interphase. Through ultrastructural analyses, physical growth of the Golgi apparatus was revealed to occur by cisternal elongation of the individual Golgi stacks. By examining the timing and regulation of Golgi growth, we established that Golgi growth starts after passage through the cell growth checkpoint at late G1 phase and continues in a manner highly correlated with cell size growth. Finally, by identifying S6 kinase 1 as a major player in Golgi growth, we revealed the coordination between cell size and Golgi growth via activation of the protein synthesis machinery in early interphase.
Collapse
|
17
|
Pérez-Benavente B, Farràs R. Cell Synchronization Techniques to Study the Action of CDK Inhibitors. Methods Mol Biol 2016; 1336:85-93. [PMID: 26231710 DOI: 10.1007/978-1-4939-2926-9_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cell synchronization techniques have been used for the studies of mechanisms involved in cell cycle regulation. Synchronization involves the enrichment of subpopulations of cells in specific stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cell cycle such as DNA synthesis, gene expression, protein synthesis, protein phosphorylation, protein degradation, and development of new drugs (e.g., CDK inhibitors). Here, we describe several protocols for synchronization of cells from different phases of the cell cycle. We also describe protocols for determining cell viability and mitotic index and for validating the synchrony of the cells by flow cytometry.
Collapse
Affiliation(s)
- Beatriz Pérez-Benavente
- Oncogenic Signalling Laboratory, Centro de Investigación Príncipe Felipe de Valencia, Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | | |
Collapse
|
18
|
Welschinger R, Bendall LJ. Temporal Tracking of Cell Cycle Progression Using Flow Cytometry without the Need for Synchronization. J Vis Exp 2015:e52840. [PMID: 26327278 PMCID: PMC4692543 DOI: 10.3791/52840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This protocol describes a method to permit the tracking of cells through the cell cycle without requiring the cells to be synchronized. Achieving cell synchronization can be difficult for many cell systems. Standard practice is to block cell cycle progression at a specific stage and then release the accumulated cells producing a wave of cells progressing through the cycle in unison. However, some cell types find this block toxic resulting in abnormal cell cycling, or even mass death. Bromodeoxyuridine (BrdU) uptake can be used to track the cell cycle stage of individual cells. Cells incorporate this synthetic thymidine analog, while synthesizing new DNA during S phase. By providing BrdU for a brief period it is possible to mark a pool of cells that were in S phase while the BrdU was present. These cells can then be tracked through the remainder of the cell cycle and into the next round of replication, permitting the duration of the cell cycle phases to be determined without the need to induce a potentially toxic cell cycle block. It is also possible to determine and correlate the expression of both internal and external proteins during subsequent stages of the cell cycle. These can be used to further refine the assignment of cell cycle stage or assess effects on other cellular functions such as checkpoint activation or cell death.
Collapse
Affiliation(s)
- Robert Welschinger
- Centre for Cancer Research, Westmead Millennium Institute for Medical Research and University of Sydney
| | - Linda J Bendall
- Centre for Cancer Research, Westmead Millennium Institute for Medical Research and University of Sydney;
| |
Collapse
|
19
|
Li N, Sun M, Wang Y, Lv Y, Hu Z, Cao W, Zheng J, Jiao X. Effect of cell cycle phase on the sensitivity of SAS cells to sonodynamic therapy using low-intensity ultrasound combined with 5-aminolevulinic acid in vitro. Mol Med Rep 2015; 12:3177-83. [PMID: 25955510 DOI: 10.3892/mmr.2015.3747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 03/26/2015] [Indexed: 11/06/2022] Open
Abstract
Sonodynamic therapy (SDT) with 5-aminolevulinic acid (5-ALA) can effectively inhibit various types of tumor in vitro and in vivo. However, the association between the efficacy of SDT and the phase of the cell cycle remains to be elucidated. 5-ALA may generate different quantities of sonosensitizer, protoporphyrin IX (PpIX), in different phases of the cell cycle, which may result in differences in sensitivity to 5-ALA-induced SDT. The present study aimed to investigate the effect of the cell cycle on the susceptibility of SAS cells to SDT following synchronization to different cell cycle phases. These results indicates that the rates of cell death and apoptosis of the SAS cells in the S and G2/M phases were significantly higher following SDT, compared with those in the G1-phase cells and unsynchronized cells, with a corresponding increase in PpIX in the S and G2/M cells. In addition, the expression of caspase-3 increased, while that of B-cell lymphoma (Bcl)-2 decreased markedly in theS and G2/M cells following SDT. Cyclin A was also expressed at higher levels in the S and G2/M cells, compared with the G1-phase cells. SDT also caused a significant upregulation of cyclin A in all phases of the cell cycle, however this was most marked in the S and G2/M cells. It was hypothesized that high expression levels of cyclin A in the S and G2/M cells may promote the induction of caspase-3 and reduce the induction of Bcl-2 by SDT and, therefore, enhance apoptosis. Taken together, these data demonstrated that cells in The S and G2/M phases generate more intracellular PpIX, have higher levels of cyclin A and are, therefore, more sensitive to SDT-induced cytotoxicity. These findings indicate the potential novel approach to preventing the onset of cancer by combining cell-cycle regulators with SDT. This sequential combination therapy may be a simple and cost-effective way of enhancing the effects of SDT in clinical settings.
Collapse
Affiliation(s)
- Nan Li
- Department of Oral Maxillofacial Surgery, School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Miao Sun
- Department of Stomatology, the Fourth Clinical College, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yao Wang
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yanhong Lv
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zheng Hu
- Laboratory of Sono‑ and Photo‑theranostic Technologies, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P.R. China
| | - Wenwu Cao
- Laboratory of Sono‑ and Photo‑theranostic Technologies, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P.R. China
| | - Jinhua Zheng
- Laboratory of Sono‑ and Photo‑theranostic Technologies, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P.R. China
| | - Xiaohui Jiao
- Department of Oral Maxillofacial Surgery, School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
20
|
Medina-Reyes EI, Bucio-López L, Freyre-Fonseca V, Sánchez-Pérez Y, García-Cuéllar CM, Morales-Bárcenas R, Pedraza-Chaverri J, Chirino YI. Cell cycle synchronization reveals greater G2/M-phase accumulation of lung epithelial cells exposed to titanium dioxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3976-3982. [PMID: 25422119 DOI: 10.1007/s11356-014-3871-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/16/2014] [Indexed: 06/04/2023]
Abstract
Titanium dioxide has been classified in the 2B group as a possible human carcinogen by the International Agency for Research on Cancer, and amid concerns of its exposure, cell cycle alterations are an important one. However, several studies show inconclusive effects, mainly because it is difficult to compare cell cycle effects caused by TiO2 nanoparticle (NP) exposure between different shapes and sizes of NP, cell culture types, and time of exposure. In addition, cell cycle is frequently analyzed without cell cycle synchronization, which may also mask some effects. We hypothesized that synchronization after TiO2 NP exposure could reveal dissimilar cell cycle progression when compared with unsynchronized cell population. To test our hypothesis, we exposed lung epithelial cells to 1 and 10 μg/cm(2) TiO2 NPs for 7 days and one population was synchronized by serum starvation and inhibition of ribonucleotide reductase using hydroxyurea. Another cell population was exposed to TiO2 NPs under the same experimental conditions, but after treatments, cell cycle was analyzed without synchronization. Our results showed that TiO2 NP-exposed cells without synchronization had no changes in cell cycle distribution; however, cell population synchronized after 1 and 10 μg/cm(2) TiO2 NP treatment showed a 1.5-fold and 1.66-fold increase, respectively, in proliferation. Synchronized cells also reveal a faster capability of TiO2 NP-exposed cells to increase cell population in the G2/M phase in the following 9 h after synchronization. We conclude that synchronization discloses a greater percentage of cells in the G2/M phase and higher proliferation than TiO2 NP-synchronized cells.
Collapse
Affiliation(s)
- Estefany I Medina-Reyes
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059, Estado de México, México
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ly T, Endo A, Lamond AI. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells. eLife 2015; 4:e04534. [PMID: 25555159 PMCID: PMC4383314 DOI: 10.7554/elife.04534] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/06/2014] [Indexed: 11/13/2022] Open
Abstract
Previously, we analyzed protein abundance changes across a 'minimally perturbed' cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (
Collapse
Affiliation(s)
- Tony Ly
- Centre for Gene
Regulation and Expression, College of Life Sciences,
University of Dundee, Dundee, United
Kingdom
| | - Aki Endo
- Centre for Gene
Regulation and Expression, College of Life Sciences,
University of Dundee, Dundee, United
Kingdom
| | - Angus I Lamond
- Centre for Gene
Regulation and Expression, College of Life Sciences,
University of Dundee, Dundee, United
Kingdom
| |
Collapse
|
22
|
Bruhn C, Kroll T, Wang ZQ. Systematic characterization of cell cycle phase-dependent protein dynamics and pathway activities by high-content microscopy-assisted cell cycle phenotyping. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:255-65. [PMID: 25458086 PMCID: PMC4411490 DOI: 10.1016/j.gpb.2014.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 11/22/2022]
Abstract
Cell cycle progression is coordinated with metabolism, signaling and other complex cellular functions. The investigation of cellular processes in a cell cycle stage-dependent manner is often the subject of modern molecular and cell biological research. Cell cycle synchronization and immunostaining of cell cycle markers facilitate such analysis, but are limited in use due to unphysiological experimental stress, cell type dependence and often low flexibility. Here, we describe high-content microscopy-assisted cell cycle phenotyping (hiMAC), which integrates high-resolution cell cycle profiling of asynchronous cell populations with immunofluorescence microscopy. hiMAC is compatible with cell types from any species and allows for statistically powerful, unbiased, simultaneous analysis of protein interactions, modifications and subcellular localization at all cell cycle stages within a single sample. For illustration, we provide a hiMAC analysis pipeline tailored to study DNA damage response and genomic instability using a 3–4-day protocol, which can be adjusted to any other cell cycle stage-dependent analysis.
Collapse
Affiliation(s)
- Christopher Bruhn
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Torsten Kroll
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), 07745 Jena, Germany; Faculty of Biology and Pharmacy, Friedrich Schiller University of Jena, 07745 Jena, Germany.
| |
Collapse
|
23
|
Rodrigues AF, Carrondo MJT, Alves PM, Coroadinha AS. Cellular targets for improved manufacturing of virus-based biopharmaceuticals in animal cells. Trends Biotechnol 2014; 32:602-7. [PMID: 25450042 DOI: 10.1016/j.tibtech.2014.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 12/24/2022]
Abstract
The past decade witnessed the entry into the market of new virus-based biopharmaceuticals produced in animal cells such as oncolytic vectors, virus-like particle vaccines, and gene transfer vectors. Therefore, increased attention and investment to optimize cell culture processes towards enhanced manufacturing of these bioproducts is anticipated. Herein, we review key findings on virus-host interactions that have been explored in cell culture optimization. Approaches supporting improved productivity or quality of vector preparations are discussed, mainly focusing on medium design and genetic manipulation. This review provides an integrated outline for current and future efforts in exploring cellular targets for the optimization of cell culture manufacturing of virus-based biopharmaceuticals.
Collapse
Affiliation(s)
- Ana F Rodrigues
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Manuel J T Carrondo
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; FCT-UNL, P-2829-516 Caparica, Portugal
| | - Paula M Alves
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana S Coroadinha
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
24
|
Messa M, Fernández-Busnadiego R, Sun EW, Chen H, Czapla H, Wrasman K, Wu Y, Ko G, Ross T, Wendland B, De Camilli P. Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits. eLife 2014; 3:e03311. [PMID: 25122462 PMCID: PMC4161027 DOI: 10.7554/elife.03311] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epsin is an evolutionarily conserved endocytic clathrin adaptor whose most critical function(s) in clathrin coat dynamics remain(s) elusive. To elucidate such function(s), we generated embryonic fibroblasts from conditional epsin triple KO mice. Triple KO cells displayed a dramatic cell division defect. Additionally, a robust impairment in clathrin-mediated endocytosis was observed, with an accumulation of early and U-shaped pits. This defect correlated with a perturbation of the coupling between the clathrin coat and the actin cytoskeleton, which we confirmed in a cell-free assay of endocytosis. Our results indicate that a key evolutionary conserved function of epsin, in addition to other roles that include, as we show here, a low affinity interaction with SNAREs, is to help generate the force that leads to invagination and then fission of clathrin-coated pits.
Collapse
Affiliation(s)
- Mirko Messa
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Rubén Fernández-Busnadiego
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Elizabeth Wen Sun
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Hong Chen
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Heather Czapla
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Kristie Wrasman
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Yumei Wu
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Genevieve Ko
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Theodora Ross
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States
| | - Beverly Wendland
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Pietro De Camilli
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
25
|
Robinson NP. Analysis of branched DNA replication and recombination intermediates from prokaryotic cells by two-dimensional (2D) native-native agarose gel electrophoresis. Methods Mol Biol 2014; 1054:45-61. [PMID: 23913284 DOI: 10.1007/978-1-62703-565-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.
Collapse
|
26
|
Leitz J, Reuschenbach M, Lohrey C, Honegger A, Accardi R, Tommasino M, Llano M, von Knebel Doeberitz M, Hoppe-Seyler K, Hoppe-Seyler F. Oncogenic human papillomaviruses activate the tumor-associated lens epithelial-derived growth factor (LEDGF) gene. PLoS Pathog 2014; 10:e1003957. [PMID: 24604027 PMCID: PMC3946365 DOI: 10.1371/journal.ppat.1003957] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/13/2014] [Indexed: 12/20/2022] Open
Abstract
The expression of the human papillomavirus (HPV) E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF) gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic. Specific types of human papillomaviruses (HPVs) are closely linked to the development of malignant tumors, such as cervical cancer. Virtually all cervical cancers contain HPV DNA and the tumorigenic growth behavior of cervical cancer cells is dependent on the activity of two viral oncogenes, called E6 and E7. It is important to study the activities by which the HPV oncogenes can support the growth of tumor cells. This should allow new insights into the molecular mechanisms of virus-induced carcinogenesis and could also be useful for developing novel approaches for cancer therapy. We here show that the HPV oncogenes stimulate and maintain expression of the cellular LEDGF gene in HPV-positive cancer cells. Consistently, pre-malignant and malignant lesions of the cervix exhibit significantly increased LEDGF protein levels. LEDGF is crucial for the protection of tumor cells against various forms of cellular stress, including DNA damage. LEDGF stimulation by the viral oncogenes could be a critical survival mechanism by which HPVs support the growth of cervical cancer cells and provide resistance towards chemo- and radiotherapy in the clinic.
Collapse
Affiliation(s)
- Jenny Leitz
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miriam Reuschenbach
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Claudia Lohrey
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Honegger
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rosita Accardi
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | | | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (KHS); (FHS)
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (KHS); (FHS)
| |
Collapse
|
27
|
Begum J, Day W, Henderson C, Purewal S, Cerveira J, Summers H, Rees P, Davies D, Filby A. A method for evaluating the use of fluorescent dyes to track proliferation in cell lines by dye dilution. Cytometry A 2013; 83:1085-95. [PMID: 24166880 DOI: 10.1002/cyto.a.22403] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Labeling nonquiescent cells with carboxyfluorescein succinimidyl ester (CFSE)-like dyes gives rise to a population width exceeding the threshold for resolving division peaks by flow cytometry. Width is a function of biological heterogeneity plus extrinsic and intrinsic error sources associated with the measurement process. Optimal cytometer performance minimizes extrinsic error, but reducing intrinsic error to the point of facilitating peak resolution requires careful fluorochrome selection and fluorescent cell sorting. In this study, we labeled the Jurkat and A549 cell lines with CFSE, CellTraceViolet (CTV), and eFluor 670 proliferation dye (EPD) to test if we could resolve division peaks in culture after reducing the labeled input widths by cell sorting. Reanalysis of the sorted populations to ascertain the level of reduction achieved always led to widths exceeding the gated limits due to the contribution of errors. Measuring detector-specific extrinsic error by sorting uniform fluorescent particles with similar spectral properties to the tracking dyes allowed us to determine the intrinsic error for each dye and cell type using a simple mathematical approach. We found that cell intrinsic error ultimately dictated whether we could resolve division peaks, and that as this increased, the required sort gate width to resolve any division peaks decreased to the point whereby issues with yield made A549 unsuitable for this approach. Finally, attempts to improve yields by setting two concurrent sort gates on the fluorescence distribution enriched for cells in different stages of the cell cycle that had nonequivalent proliferative properties in culture and thus should be practiced with caution.
Collapse
Affiliation(s)
- Julfa Begum
- FACS Laboratory, London Research Institute, Cancer Research UK, London, WC2A 3LY, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cell cycle regulation of purine synthesis by phosphoribosyl pyrophosphate and inorganic phosphate. Biochem J 2013; 454:91-9. [PMID: 23734909 DOI: 10.1042/bj20130153] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cells must increase synthesis of purine nucleotides/deoxynucleotides before or during S-phase. We found that rates of purine synthesis via the de novo and salvage pathways increased 5.0- and 3.3-fold respectively, as cells progressed from mid-G1-phase to early S-phase. The increased purine synthesis could be attributed to a 3.2-fold increase in intracellular PRPP (5-phosphoribosyl-α-1-pyrophosphate), a rate-limiting substrate for de novo and salvage purine synthesis. PRPP can be produced by the oxidative and non-oxidative pentose phosphate pathways, and we found a 3.1-fold increase in flow through the non-oxidative pathway, with no change in oxidative pathway activity. Non-oxidative pentose phosphate pathway enzymes showed no change in activity, but PRPP synthetase is regulated by phosphate, and we found that phosphate uptake and total intracellular phosphate concentration increased significantly between mid-G1-phase and early S-phase. Over the same time period, PRPP synthetase activity increased 2.5-fold when assayed in the absence of added phosphate, making enzyme activity dependent on cellular phosphate at the time of extraction. We conclude that purine synthesis increases as cells progress from G1- to S-phase, and that the increase is from heightened PRPP synthetase activity due to increased intracellular phosphate.
Collapse
|
29
|
Konorov SO, Schulze HG, Piret JM, Blades MW, Turner RFB. Label-Free Determination of the Cell Cycle Phase in Human Embryonic Stem Cells by Raman Microspectroscopy. Anal Chem 2013; 85:8996-9002. [DOI: 10.1021/ac400310b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stanislav O. Konorov
- Michael Smith
Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada, V6T 1Z4
- Department
of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - H. Georg Schulze
- Michael Smith
Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada, V6T 1Z4
| | - James M. Piret
- Michael Smith
Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada, V6T 1Z4
- Department
of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Michael W. Blades
- Department
of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Robin F. B. Turner
- Michael Smith
Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada, V6T 1Z4
- Department
of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
- Department
of Electrical and Computer Engineering, The University of British Columbia, 2332 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z4
| |
Collapse
|
30
|
Polarized neural stem cells derived from adult bone marrow stromal cells develop a rosette-like structure. In Vitro Cell Dev Biol Anim 2013; 49:638-52. [DOI: 10.1007/s11626-013-9628-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/26/2013] [Indexed: 12/19/2022]
|
31
|
Rosner M, Schipany K, Hengstschläger M. Merging high-quality biochemical fractionation with a refined flow cytometry approach to monitor nucleocytoplasmic protein expression throughout the unperturbed mammalian cell cycle. Nat Protoc 2013; 8:602-26. [DOI: 10.1038/nprot.2013.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Madren SM, Hoffman MD, Brown PJ, Kysela DT, Brun YV, Jacobson SC. Microfluidic device for automated synchronization of bacterial cells. Anal Chem 2012; 84:8571-8. [PMID: 23030473 PMCID: PMC3484264 DOI: 10.1021/ac301565g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the development of an automated microfluidic "baby machine" to synchronize the bacterium Caulobacter crescentus on-chip and to move the synchronized populations downstream for analysis. The microfluidic device is fabricated from three layers of poly(dimethylsiloxane) and has integrated pumps and valves to control the movement of cells and media. This synchronization method decreases incubation time and media consumption and improves synchrony quality compared to the conventional plate-release technique. Synchronized populations are collected from the device at intervals as short as 10 min and at any time over four days. Flow cytometry and fluorescence cell tracking are used to determine synchrony quality, and cell populations synchronized in minimal growth medium with 0.2% glucose (M2G) and peptone yeast extract (PYE) medium contain >70% and >80% swarmer cells, respectively. Our on-chip method overcomes limitations with conventional physical separation methods that consume large volumes of media, require manual manipulations, have lengthy incubation times, are limited to one collection, and lack precise temporal control of collection times.
Collapse
Affiliation(s)
- Seth M. Madren
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | | | - Pamela J.B. Brown
- Department of Biology, Indiana University, Bloomington, IN 47405-3700
| | - David T. Kysela
- Department of Biology, Indiana University, Bloomington, IN 47405-3700
| | - Yves V. Brun
- Department of Biology, Indiana University, Bloomington, IN 47405-3700
| | | |
Collapse
|
33
|
Shaw J, Payer K, Son S, Grover WH, Manalis SR. A microfluidic "baby machine" for cell synchronization. LAB ON A CHIP 2012; 12:2656-2663. [PMID: 22627487 DOI: 10.1039/c2lc40277g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Common techniques used to synchronize eukaryotic cells in the cell cycle often impose metabolic stress on the cells or physically select for size rather than age. To address these deficiencies, a minimally perturbing method known as the "baby machine" was developed previously. In the technique, suspension cells are attached to a membrane, and as the cells divide, the newborn cells are eluted to produce a synchronous population of cells in the G1 phase of the cell cycle. However, the existing "baby machine" is only suitable for cells which can be chemically attached to a surface. Here, we present a microfluidic "baby machine" in which cells are held onto a surface by pressure differences rather than chemical attachment. As a result, our method can in principle be used to synchronize a variety of cell types, including cells which may have weak or unknown surface attachment chemistries. We validate our microfluidic "baby machine" by using it to produce a synchronous population of newborn L1210 mouse lymphocytic leukemia cells in G1 phase.
Collapse
Affiliation(s)
- Josephine Shaw
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
34
|
Seiler C, Gazdhar A, Reyes M, Benneker LM, Geiser T, Siebenrock KA, Gantenbein-Ritter B. Time-lapse microscopy and classification of 2D human mesenchymal stem cells based on cell shape picks up myogenic from osteogenic and adipogenic differentiation. J Tissue Eng Regen Med 2012; 8:737-46. [PMID: 22815264 DOI: 10.1002/term.1575] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 05/21/2012] [Accepted: 06/15/2012] [Indexed: 01/14/2023]
Abstract
Current methods to characterize mesenchymal stem cells (MSCs) are limited to CD marker expression, plastic adherence and their ability to differentiate into adipogenic, osteogenic and chondrogenic precursors. It seems evident that stem cells undergoing differentiation should differ in many aspects, such as morphology and possibly also behaviour; however, such a correlation has not yet been exploited for fate prediction of MSCs. Primary human MSCs from bone marrow were expanded and pelleted to form high-density cultures and were then randomly divided into four groups to differentiate into adipogenic, osteogenic chondrogenic and myogenic progenitor cells. The cells were expanded as heterogeneous and tracked with time-lapse microscopy to record cell shape, using phase-contrast microscopy. The cells were segmented using a custom-made image-processing pipeline. Seven morphological features were extracted for each of the segmented cells. Statistical analysis was performed on the seven-dimensional feature vectors, using a tree-like classification method. Differentiation of cells was monitored with key marker genes and histology. Cells in differentiation media were expressing the key genes for each of the three pathways after 21 days, i.e. adipogenic, osteogenic and chondrogenic, which was also confirmed by histological staining. Time-lapse microscopy data were obtained and contained new evidence that two cell shape features, eccentricity and filopodia (= 'fingers') are highly informative to classify myogenic differentiation from all others. However, no robust classifiers could be identified for the other cell differentiation paths. The results suggest that non-invasive automated time-lapse microscopy could potentially be used to predict the stem cell fate of hMSCs for clinical application, based on morphology for earlier time-points. The classification is challenged by cell density, proliferation and possible unknown donor-specific factors, which affect the performance of morphology-based approaches.
Collapse
Affiliation(s)
- Christof Seiler
- Institute for Surgical Technology and Biomechanics, University of Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
35
|
Wu AY, Morrow DM. Clinical use of Dieletrophoresis separation for live Adipose derived stem cells. J Transl Med 2012; 10:99. [PMID: 22594610 PMCID: PMC3477126 DOI: 10.1186/1479-5876-10-99] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/23/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Microelectrode dieletrophoresis capture of live cells has been explored in animal and cellular models ex-vivo. Currently, there is no clinical data available regarding the safety and efficacy of dielectrophoresis (DEP) buffers and microcurrent manipulation in humans, despite copious pre-clinical studies suggesting its safety. The purpose of this study was to determine if DEP isolation of SVF using minimal manipulation methods is safe and efficacious for use in humans using the hand lipotransfer model. METHODS Autologous stromal vascular fraction cells (SVF) were obtained from lipoaspirate by collagenase digestion and centrifugation. The final mixture of live and dead cells was further processed using a custom DEP microelectrode array and microcurrent generator to isolate only live nucleated cells. Lipotransfer was completed using fat graft enhanced with either standard processed SVF (control) versus DEP filtered SVF (experimental). Spectral photography, ultrasound and biometric measurements were obtained at post operatively days 1, 4, 7, 14, 30, 60 and 90. RESULTS The DEP filter was capable of increasing SVF viability counts from 74.3 ± 2.0% to 94.7 ± 2.1%. Surrogate markers of inflammation (temperature, soft tissue swelling, pain and diminished range of motion) were more profound on the control hand. Clinical improvement in hand appearance was appreciated in both hands, though the control hand exclusively sustained late phase erosive skin breaks on post operative day 7. No skin breaks were appreciated on the DEP-SVF treated hand. Early fat engraftment failure was noted on the control hand thenar web space at 3 months post surgery. DISCUSSION No immediate hypersensitivity or adverse reaction was appreciated with the DEP-SVF treated hand. In fact, the control hand experienced skin disruption and mild superficial cellulitis, whereas the experimental hand did not experience this complication, suggesting a possible "protective" effect with DEP filtered SVF. Late ultrasound survey revealed larger and more frequent formation of oil cysts in the control hand, also suggesting greater risk of engraftment failure with standard lipotransfer. CONCLUSION Clinical DEP appears safe and efficacious for human use. The DEP microelectrode array was found to be versatile and robust in efficiently isolating live SVF cells from dead cells and cellular debris in a time sensitive clinical setting.
Collapse
Affiliation(s)
- Allan Y Wu
- The Morrow Institute, 69-780 Stellar Drive, Rancho Mirage, CA 92270, USA.
| | | |
Collapse
|
36
|
Optimization of Cell Cycle Measurement by Time-Lapse Microscopy. Methods Cell Biol 2012. [DOI: 10.1016/b978-0-12-405914-6.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|