1
|
Ungaro RF, Xu J, Kucaba TA, Rao M, Bergmann CB, Brakenridge SC, Efron PA, Goodman MD, Gould RW, Hotchkiss RS, Liang M, Mazer MB, McGonagill PW, Moldawer LL, Remy KE, Turnbull IR, Caldwell CC, Badovinac VP, Griffith TS. Development and optimization of a diluted whole blood ELISpot assay to test immune function. J Immunol Methods 2024; 533:113743. [PMID: 39147231 PMCID: PMC11398710 DOI: 10.1016/j.jim.2024.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Sepsis remains a leading cause of death worldwide with no proven immunomodulatory therapies. Stratifying Patient Immune Endotypes in Sepsis ('SPIES') is a prospective, multicenter observational study testing the utility of ELISpot as a functional bioassay specifically measuring cytokine-producing cells after stimulation to identify the immunosuppressed endotype, predict clinical outcomes in septic patients, and test potential immune stimulants for clinical development. Most ELISpot protocols call for the isolation of PBMC prior to their inclusion in the assay. In contrast, we developed a diluted whole blood (DWB) ELISpot protocol that has been validated across multiple laboratories. Heparinized whole blood was collected from healthy donors and septic patients and tested under different stimulation conditions to evaluate the impact of blood dilution, stimulant concentration, blood storage, and length of stimulation on ex vivo IFNγ and TNFα production as measured by ELISpot. We demonstrate a dynamic range of whole blood dilutions that give a robust ex vivo cytokine response to stimuli. Additionally, a wide range of stimulant concentrations can be utilized to induce cytokine production. Further modifications demonstrate anticoagulated whole blood can be stored up to 24 h at room temperature without losing significant functionality. Finally, we show ex vivo stimulation can be as brief as 4 h allowing for a substantial decrease in processing time. The data demonstrate the feasibility of using ELISpot to measure the functional capacity of cells within DWB under a variety of stimulation conditions to inform clinicians on the extent of immune dysregulation in septic patients.
Collapse
Affiliation(s)
- Ricardo F Ungaro
- Sepsis and Critical Illness Research Center and Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Julie Xu
- Department of Urology, University of Minnesota, Minneapolis, MN, United States of America
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN, United States of America
| | - Mahil Rao
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States of America
| | - Christian B Bergmann
- University Hospital Ulm, Clinic for Trauma Surgery, Hand, Plastic, and Reconstructive Surgery Albert-Einstein-Allee 23, Ulm, Germany
| | - Scott C Brakenridge
- Department of Surgery, University of Washington, Seattle, WA, United States of America
| | - Philip A Efron
- Sepsis and Critical Illness Research Center and Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Michael D Goodman
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States of America
| | - Robert W Gould
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, United States of America
| | - Richard S Hotchkiss
- Department of Anesthesiology, Washington University, St. Louis, MO, United States of America
| | - Muxuan Liang
- Department of Biostatistics, University of Florida, Gainesville, FL, United States of America
| | - Monty B Mazer
- Department of Pediatrics, UH Rainbow Babies and Children's Hospital, Cleveland, OH, United States of America
| | - Patrick W McGonagill
- Department of Surgery, University of Iowa, Iowa City, IA, United States of America
| | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center and Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Kenneth E Remy
- Department of Pediatrics, UH Rainbow Babies and Children's Hospital, Cleveland, OH, United States of America
| | - Isaiah R Turnbull
- Department of Anesthesiology, Washington University, St. Louis, MO, United States of America; Immune Functional Diagnostics, LLC, St. Louis, MO, United States of America
| | - Charles C Caldwell
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States of America
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA, United States of America
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN, United States of America; Center for Immunology, University of Minnesota, Minneapolis, MN, United States of America; Minneapolis VA Health Care System, Minneapolis, MN, United States of America.
| |
Collapse
|
2
|
Unsinger J, Osborne D, Walton AH, Han E, Sheets L, Mazer MB, Remy KE, Griffith TS, Rao M, Badovinac VP, Brakenridge SC, Turnbull I, Efron PA, Moldawer LL, Caldwell CC, Hotchkiss RS. TEMPORAL CHANGES IN INNATE AND ADAPTIVE IMMUNITY DURING SEPSIS AS DETERMINED BY ELISPOT. Shock 2024; 62:255-264. [PMID: 38754032 PMCID: PMC11348958 DOI: 10.1097/shk.0000000000002377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Background: The inability to evaluate host immunity in a rapid quantitative manner in patients with sepsis has severely hampered development of novel immune therapies. The enzyme-linked immunospot (ELISpot) assay is a functional bioassay that measures the number of cytokine-secreting cells and the relative amount of cytokine produced at the single-cell level. A key advantage of ELISpot is its excellent dynamic range enabling a more precise quantifiable assessment of host immunity. Herein, we tested the hypothesis that the ELISpot assay can detect dynamic changes in both innate and adaptive immunity as they often occur during sepsis. We also tested whether ELISpot could detect the effect of immune drug therapies to modulate innate and adaptive immunity. Methods: Mice were made septic using sublethal cecal ligation and puncture. Blood and spleens were harvested serially, and ex vivo interferon γ and TNF-α production were compared by ELISpot and enzyme-linked immunosorbent assay. The capability of ELISpot to detect changes in innate and adaptive immunity due to in vivo immune therapy with dexamethasone, IL-7, and arginine was also evaluated. Results: ELISpot confirmed a decreased innate and adaptive immunity responsiveness during sepsis progression. More importantly, ELISpot was also able to detect changes in adaptive and innate immunity in response to immune-modulatory reagents, for example, dexamethasone, arginine, and IL-7, in a readily quantifiable manner, as predicted by the reagents known mechanisms of action. ELISpot and enzyme-linked immunosorbent assay results tended to parallel one another although some differences were noted. Conclusion: ELISpot offers a unique capability to assess the functional status of both adaptive and innate immunity over time. The results presented herein demonstrate that ELISpot can also be used to detect and follow the in vivo effects of drugs to ameliorate sepsis-induced immune dysfunction. This capability would be a major advance in guiding new immune therapies in sepsis.
Collapse
Affiliation(s)
- Jacqueline Unsinger
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Dale Osborne
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew H Walton
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Ethan Han
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Lauren Sheets
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Monty B Mazer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Kenneth E Remy
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | - Mahil Rao
- Department of Pediatrics, University of Iowa Carver College of Medicine
| | | | - Scott C Brakenridge
- Department of Surgery, Harborview Medical Center, University of Washington School of Medicine, Seattle, Washington
| | - Isaiah Turnbull
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Charles C Caldwell
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Richard S Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
3
|
Trauet J, Bourgoin P, Schuldt J, Lefèvre G, Labalette M, Busnel JM, Demaret J. Studying antigen-specific T cells through a streamlined, whole blood-based extracellular approach. Cytometry A 2024; 105:288-296. [PMID: 38149360 DOI: 10.1002/cyto.a.24818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
Techniques currently used for the study of antigen-specific T-cell responses are either poorly informative or require a heavy workload. Consequently, many perspectives associated with the broader study of such approaches remain mostly unexplored in translational research. However, these could benefit many fields including but not limited to infectious diseases, oncology, and vaccination. Herein, the main objective of this work was to develop a standardized flow cytometry-based approach that would combine ease of use together with a relevant study of antigen-specific T-cell responses so that they could be more often included in clinical research. To this extent, a streamlined approach relying on 1/ the use of whole blood instead of peripheral blood mononuclear cells and 2/ solely based on the expression of extracellular activation-induced markers (AIMs), called whole blood AIM (WAIM), was developed and further compared to more conventional techniques such as enzyme-linked immunospot (ELISpot) and flow cytometry-based intracellular cytokine staining (ICS). Based on a cohort of 20 individuals receiving the COVID-19 mRNA vaccine and focusing on SARS-CoV-2 and cytomegalovirus (CMV)-derived antigen T-cell-specific responses, a significant level of correlation between the three techniques was found. Based on the use of whole blood and on the expression of extracellular activation-induced markers (CD154, CD137, and CD107a), the WAIM technique appears to be very simple to implement and yet allows interesting patient stratification capabilities as the chosen combination of extracellular markers exhibited higher orthogonality than cytokines that are commonly considered in ICS (IFN-γ, TNF-α, and IL-2).
Collapse
Affiliation(s)
- Jacques Trauet
- CHU Lille, Institut d'Immunologie, U1286 - INFINITE - Institute for Translational Research in Inflammation Inserm Univ. Lille, Lille, France
| | - Penelope Bourgoin
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, France
| | - Jana Schuldt
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, France
| | - Guillaume Lefèvre
- CHU Lille, Institut d'Immunologie, U1286 - INFINITE - Institute for Translational Research in Inflammation Inserm Univ. Lille, Lille, France
| | - Myriam Labalette
- CHU Lille, Institut d'Immunologie, U1286 - INFINITE - Institute for Translational Research in Inflammation Inserm Univ. Lille, Lille, France
| | - Jean-Marc Busnel
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, France
| | - Julie Demaret
- CHU Lille, Institut d'Immunologie, U1286 - INFINITE - Institute for Translational Research in Inflammation Inserm Univ. Lille, Lille, France
| |
Collapse
|
4
|
Karulin AY, Katona M, Megyesi Z, Kirchenbaum GA, Lehmann PV. Artificial Intelligence-Based Counting Algorithm Enables Accurate and Detailed Analysis of the Broad Spectrum of Spot Morphologies Observed in Antigen-Specific B-Cell ELISPOT and FluoroSpot Assays. Methods Mol Biol 2024; 2768:59-85. [PMID: 38502388 DOI: 10.1007/978-1-0716-3690-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Antigen-specific B-cell ELISPOT and multicolor FluoroSpot assays, in which the membrane-bound antigen itself serves as the capture reagent for the antibodies that B cells secrete, inherently result in a broad range of spot sizes and intensities. The diversity of secretory footprint morphologies reflects the polyclonal nature of the antigen-specific B cell repertoire, with individual antibody-secreting B cells in the test sample differing in their affinity for the antigen, fine epitope specificity, and activation/secretion kinetics. To account for these heterogeneous spot morphologies, and to eliminate the need for setting up subjective counting parameters well-by-well, CTL introduces here its cutting-edge deep learning-based IntelliCount™ algorithm within the ImmunoSpot® Studio Software Suite, which integrates CTL's proprietary deep neural network. Here, we report detailed analyses of spots with a broad range of morphologies that were challenging to analyze using standard parameter-based counting approaches. IntelliCount™, especially in conjunction with high dynamic range (HDR) imaging, permits the extraction of accurate, high-content information of such spots, as required for assessing the affinity distribution of an antigen-specific memory B-cell repertoire ex vivo. IntelliCount™ also extends the range in which the number of antibody-secreting B cells plated and spots detected follow a linear function; that is, in which the frequencies of antigen-specific B cells can be accurately established. Introducing high-content analysis of secretory footprints in B-cell ELISPOT/FluoroSpot assays, therefore, fundamentally enhances the depth in which an antigen-specific B-cell repertoire can be studied using freshly isolated or cryopreserved primary cell material, such as peripheral blood mononuclear cells.
Collapse
|
5
|
Unsinger J, Osborne D, Walton AH, Han E, Sheets L, Mazer MB, Remy KE, Griffith TS, Rao M, Badovinac VP, Brackenridge SC, Turnbull I, Efron PA, Moldawer LL, Caldwell CC, Hotchkiss RS. Temporal Changes in Innate and Adaptive Immunity During Sepsis as Determined by ELISpot. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571668. [PMID: 38168302 PMCID: PMC10760123 DOI: 10.1101/2023.12.14.571668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background The inability to evaluate host immunity in a rapid quantitative manner in patients with sepsis has severely hampered development of novel immune therapies. The ELISpot assay is a functional bioassay that measures the number of cytokine-secreting cells and the relative amount of cytokine produced at the single-cell level. A key advantage of ELISpot is its excellent dynamic range enabling a more precise quantifiable assessment of host immunity. Herein, we tested the hypothesis on whether the ELISpot assay can detect dynamic changes in both innate and adaptive immunity as they often occur during sepsis. We also tested whether ELISpot could detect the effect of immune drug therapies to modulate innate and adaptive immunity. Methods Mice were made septic using sublethal cecal ligation and puncture (CLP). Blood and spleens were harvested serially and ex vivo IFN-γ and TNF-α production were compared by ELISpot and ELISA. The capability of ELISpot to detect changes in innate and adaptive immunity due to in vivo immune therapy with dexamethasone, IL-7, and arginine was also evaluated. Results ELISpot confirmed a decreased innate and adaptive immunity responsiveness during sepsis progression. More importantly, ELISpot was also able to detect changes in adaptive and innate immunity in response to immune-modulatory reagents, for example dexamethasone, arginine, and IL-7 in a readily quantifiable manner, as predicted by the reagents known mechanisms of action. ELISpot and ELISA results tended to parallel one another although some differences were noted. Conclusion ELISpot offers a unique capability to assess the functional status of both adaptive and innate immunity over time. The results presented herein demonstrate that ELISpot can also be used to detect and follow the in vivo effects of drugs to ameliorate sepsis-induced immune dysfunction. This capability would be a major advance in guiding new immune therapies in sepsis.
Collapse
|
6
|
Groß-Albenhausen E, Weier A, Velten M, Heider T, Chunder R, Kuerten S. Immune monitoring of SARS-CoV-2-specific T cell and B cell responses in patients with multiple sclerosis treated with ocrelizumab. Front Immunol 2023; 14:1254128. [PMID: 37841269 PMCID: PMC10569464 DOI: 10.3389/fimmu.2023.1254128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Since the development of the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), there has been significant interest in determining the effectiveness of SARS-CoV-2 vaccines in patients under immunomodulatory or immunosuppressive therapies. The aim of this study was to evaluate the impact of ocrelizumab, a monoclonal anti-CD20 antibody, on SARS-CoV-2-specific T cell and B cell responses in patients with relapsing-remitting multiple sclerosis (RRMS). Methods To this end, peripheral blood mononuclear cells (PBMCs) were isolated from n = 23 patients with RRMS. Of these patients, n = 17 were tested before (time point t0) and one month after (time point t1) their first dose of ocrelizumab. In addition, we studied n = 9 RRMS patients that got infected with SARS-CoV-2 over the course of ocrelizumab therapy (time point t2). PBMCs were also isolated from n = 19 age- and gender-matched healthy controls (HCs) after vaccination or infection with SARS-CoV-2, respectively. Interferon-γ (IFN-γ)/interleukin-2 (IL-2) and granzyme B (GzB)/perforin (PFN) double-color enzyme-linked immunospot (ELISPOT) assays or single-color ELISPOT assays were performed to measure SARS-CoV-2 antigen-specific T cell and B cell responses. Anti-viral antibody titers were quantified in the serum by chemiluminescence immunoassay. Results Our data indicate a significant difference in the SARS-CoV-2 specific IFN-γ (P = 0.0119) and PFN (P = 0.0005) secreting T cell compartment in the MS cohort at t0 compared to HCs. Following the first dose of ocrelizumab treatment, a significant decrease in the number of SARS-CoV-2 spike protein-specific B cells was observed (P = 0.0012). Infection with SARS-CoV-2 in MS patients under ocrelizumab therapy did not significantly alter their existing immune response against the virus. Kaplan-Meier survival analysis suggested that the spike S1 protein-specific immunoglobulin (Ig)G response might be a key parameter for predicting the probability of (re)infection with SARS-CoV-2. Discussion Our results call for a critical discussion regarding appropriate vaccination intervals and potential biomarkers for the prediction of (re)infection with SARS-CoV-2 in patients with MS receiving ocrelizumab. Unique identifier DRKS00029110; URL: http://apps.who.int/trialsearch/.
Collapse
Affiliation(s)
- Elina Groß-Albenhausen
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Alicia Weier
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Bonn, Bonn, Germany
| | - Thorsten Heider
- Clinic for Neurology, Klinikum St. Marien Amberg, Amberg, Germany
| | - Rittika Chunder
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Wang B, Pei J, Xu S, Liu J, Yu J. Recent advances in mRNA cancer vaccines: meeting challenges and embracing opportunities. Front Immunol 2023; 14:1246682. [PMID: 37744371 PMCID: PMC10511650 DOI: 10.3389/fimmu.2023.1246682] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Since the successful application of messenger RNA (mRNA) vaccines in preventing COVID-19, researchers have been striving to develop mRNA vaccines for clinical use, including those exploited for anti-tumor therapy. mRNA cancer vaccines have emerged as a promising novel approach to cancer immunotherapy, offering high specificity, better efficacy, and fewer side effects compared to traditional treatments. Multiple therapeutic mRNA cancer vaccines are being evaluated in preclinical and clinical trials, with promising early-phase results. However, the development of these vaccines faces various challenges, such as tumor heterogeneity, an immunosuppressive tumor microenvironment, and practical obstacles like vaccine administration methods and evaluation systems for clinical application. To address these challenges, we highlight recent advances from preclinical studies and clinical trials that provide insight into identifying obstacles associated with mRNA cancer vaccines and discuss potential strategies to overcome them. In the future, it is crucial to approach the development of mRNA cancer vaccines with caution and diligence while promoting innovation to overcome existing barriers. A delicate balance between opportunities and challenges will help guide the progress of this promising field towards its full potential.
Collapse
Affiliation(s)
- Bolin Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinli Pei
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
8
|
Guérin M, Shawky M, Zedan A, Octave S, Avalle B, Maffucci I, Padiolleau-Lefèvre S. Lyme borreliosis diagnosis: state of the art of improvements and innovations. BMC Microbiol 2023; 23:204. [PMID: 37528399 PMCID: PMC10392007 DOI: 10.1186/s12866-023-02935-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
With almost 700 000 estimated cases each year in the United States and Europe, Lyme borreliosis (LB), also called Lyme disease, is the most common tick-borne illness in the world. Transmitted by ticks of the genus Ixodes and caused by bacteria Borrelia burgdorferi sensu lato, LB occurs with various symptoms, such as erythema migrans, which is characteristic, whereas others involve blurred clinical features such as fatigue, headaches, arthralgia, and myalgia. The diagnosis of Lyme borreliosis, based on a standard two-tiered serology, is the subject of many debates and controversies, since it relies on an indirect approach which suffers from a low sensitivity depending on the stage of the disease. Above all, early detection of the disease raises some issues. Inappropriate diagnosis of Lyme borreliosis leads to therapeutic wandering, inducing potential chronic infection with a strong antibody response that fails to clear the infection. Early and proper detection of Lyme disease is essential to propose an adequate treatment to patients and avoid the persistence of the pathogen. This review presents the available tests, with an emphasis on the improvements of the current diagnosis, the innovative methods and ideas which, ultimately, will allow more precise detection of LB.
Collapse
Affiliation(s)
- Mickaël Guérin
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Marc Shawky
- Connaissance Organisation Et Systèmes TECHniques (COSTECH), EA 2223, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Ahed Zedan
- Polyclinique Saint Côme, 7 Rue Jean Jacques Bernard, 60204, Compiègne, France
| | - Stéphane Octave
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Bérangère Avalle
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Irene Maffucci
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Séverine Padiolleau-Lefèvre
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France.
| |
Collapse
|
9
|
Arif S, Domingo-Vila C, Pollock E, Christakou E, Williams E, Tree TIM. Monitoring islet specific immune responses in type 1 diabetes clinical immunotherapy trials. Front Immunol 2023; 14:1183909. [PMID: 37283770 PMCID: PMC10240960 DOI: 10.3389/fimmu.2023.1183909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
The number of immunotherapeutic clinical trials in type 1 diabetes currently being conducted is expanding, and thus there is a need for robust immune-monitoring assays which are capable of detecting and characterizing islet specific immune responses in peripheral blood. Islet- specific T cells can serve as biomarkers and as such can guide drug selection, dosing regimens and immunological efficacy. Furthermore, these biomarkers can be utilized in patient stratification which can then benchmark suitability for participation in future clinical trials. This review focusses on the commonly used immune-monitoring techniques including multimer and antigen induced marker assays and the potential to combine these with single cell transcriptional profiling which may provide a greater understanding of the mechanisms underlying immuno-intervention. Although challenges remain around some key areas such as the need for harmonizing assays, technological advances mean that multiparametric information derived from a single sample can be used in coordinated efforts to harmonize biomarker discovery and validation. Moreover, the technologies discussed here have the potential to provide a unique insight on the effect of therapies on key players in the pathogenesis of T1D that cannot be obtained using antigen agnostic approaches.
Collapse
|
10
|
Schwarz M, Mzoughi S, Lozano-Ojalvo D, Tan AT, Bertoletti A, Guccione E. T cell immunity is key to the pandemic endgame: How to measure and monitor it. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:215-221. [PMID: 36065205 PMCID: PMC9434079 DOI: 10.1016/j.crimmu.2022.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 10/27/2022] Open
Abstract
As vaccine deployment improves the healthcare emergency status caused by the SARS-CoV-2 pandemic, we need reliable tools to evaluate the duration of protective immunity at a global scale. Seminal studies have demonstrated that while neutralizing antibodies can protect us from viral infection, T cell-mediated cellular immunity provides long-term protection from severe COVID-19, even in the case of emerging new variants of concern (VOC). Indeed, the emergence of VOCs, able to substantially escape antibodies generated by current vaccines, has made the analysis of correlates of humoral protection against infection obsolete. The focus should now shift towards immunological correlates of protection from disease based on quantification of cellular immunity. Despite this evidence, an assessment of T cell responses is still overlooked. This is largely due to technical challenges and lack of validated diagnostic tests. Here, we review the current state of the art of available tests to distinguish between SARS-CoV-2 antigen-specific Tcells and non-antigen specific T-cells. These assays range from the analysis of the T cell-receptor (TCR) diversity (i.e. Immunoseq and MHC tetramer staining) to the detection of functional T cell activation (i.e. ICS, AIM, Elispot, ELLA, dqTACT, etc.) either from purified Peripheral Blood Mononuclear Cells (PBMCs) or whole blood. We discuss advantages and disadvantages of each assay, proposing their ideal use for different scopes. Finally, we argue how it is paramount to deploy cheap, standardized, and scalable assays to measure T cell functionality to fill this critical diagnostic gap and manage these next years of the pandemic.
Collapse
Affiliation(s)
- Megan Schwarz
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Slim Mzoughi
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Daniel Lozano-Ojalvo
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Anthony T. Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Ernesto Guccione
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Patyna S, Eckes T, Koch BF, Sudowe S, Oftring A, Kohmer N, Rabenau HF, Ciesek S, Avaniadi D, Steiner R, Hauser IA, Pfeilschifter JM, Betz C. Impact of Moderna mRNA-1273 Booster Vaccine on Fully Vaccinated High-Risk Chronic Dialysis Patients after Loss of Humoral Response. Vaccines (Basel) 2022; 10:vaccines10040585. [PMID: 35455334 PMCID: PMC9029590 DOI: 10.3390/vaccines10040585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 12/18/2022] Open
Abstract
The long-term effect of protection by two doses of SARS-CoV-2 vaccination in patients receiving chronic intermittent hemodialysis (CIHD) is an urging question. We investigated the humoral and cellular immune response of 42 CIHD patients who had received two doses of SARS-CoV-2 vaccine, and again after a booster vaccine with mRNA-1273 six months later. We measured antibody levels and SARS-CoV-2-specific surrogate neutralizing antibodies (SNA). Functional T cell immune response to vaccination was assessed by quantifying interferon-γ (IFN-γ) and IL-2 secreting T cells specific for SARS-CoV-2 using an ELISpot assay. Our data reveal a moderate immune response after the second dose of vaccination, with significantly decreasing SARS-CoV-2-specific antibody levels and less than half of the study group showed neutralizing antibodies six months afterwards. Booster vaccines increased the humoral response dramatically and led to a response rate of 89.2% for antibody levels and a response rate of 94.6% for SNA. Measurement in a no response/low response (NR/LR) subgroup of our cohort, which differed from the whole group in age and rate of immunosuppressive drugs, indicated failure of a corresponding T cell response after the booster vaccine. We strongly argue in favor of a regular testing of surrogate neutralizing antibodies and consecutive booster vaccinations for CIHD patients to provide a stronger and persistent immunity.
Collapse
Affiliation(s)
- Sammy Patyna
- Division of Nephrology, Department of Internal Medicine III, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany; (B.F.K.); (D.A.); (R.S.); (I.A.H.); (C.B.)
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany; (T.E.); (A.O.); (J.M.P.)
- Correspondence:
| | - Timon Eckes
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany; (T.E.); (A.O.); (J.M.P.)
| | - Benjamin F. Koch
- Division of Nephrology, Department of Internal Medicine III, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany; (B.F.K.); (D.A.); (R.S.); (I.A.H.); (C.B.)
| | | | - Anke Oftring
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany; (T.E.); (A.O.); (J.M.P.)
| | - Niko Kohmer
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany; (N.K.); (H.F.R.); (S.C.)
| | - Holger F. Rabenau
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany; (N.K.); (H.F.R.); (S.C.)
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany; (N.K.); (H.F.R.); (S.C.)
- German Centre for Infection Research, External Partner Site, 60323 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| | - Despina Avaniadi
- Division of Nephrology, Department of Internal Medicine III, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany; (B.F.K.); (D.A.); (R.S.); (I.A.H.); (C.B.)
| | - Rahel Steiner
- Division of Nephrology, Department of Internal Medicine III, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany; (B.F.K.); (D.A.); (R.S.); (I.A.H.); (C.B.)
| | - Ingeborg A. Hauser
- Division of Nephrology, Department of Internal Medicine III, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany; (B.F.K.); (D.A.); (R.S.); (I.A.H.); (C.B.)
| | - Josef M. Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany; (T.E.); (A.O.); (J.M.P.)
| | - Christoph Betz
- Division of Nephrology, Department of Internal Medicine III, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany; (B.F.K.); (D.A.); (R.S.); (I.A.H.); (C.B.)
| |
Collapse
|
12
|
Portugal R. ELISpot Assay for the Detection of ASFV-Specific Interferon-Gamma (IFN-γ)-Producing Cells. Methods Mol Biol 2022; 2503:169-178. [PMID: 35575894 DOI: 10.1007/978-1-0716-2333-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The enzyme-linked immunospot (ELISpot) assay is a technique of unparalleled sensitivity to determine the frequency of antigen-specific immune cells secreting an immunomodulatory mediator upon recall antigen stimulation, making it a valuable tool in vaccine research. Typically done in multi-well microplate format, it also allows a high-throughput analysis of numerous immune cell samples, e.g., from different donor subjects, especially with the help of automated plate readers and specialized software that currently exist in most laboratories. IFN-γ is a hallmark cytokine secreted especially by T-cell subsets in recall response to pathogens, and consequently the IFN-γ ELISpot assay is one of the most widely used. The cellular arm of the immune response is known to be fundamental in protection against virulent ASFV, and therefore this assay is frequently employed in ASFV vaccine research to evaluate the results from immunization experiments.The technique involves the use of plates with wells that have a membrane for base with a strong binding capacity for amino acids that thus can be densely coated with an antibody for IFN-γ. Upon adding cells and specific antigen or other control stimuli, responding cells will release IFN-γ that is captured by the antibody in close proximity and revealed using a second antibody (sandwich method) through either chromogenic or fluorescent methods, leading to the detection of a "spot" on the membrane for each positive cell. Here we detail our protocol to detect the frequency of ASFV antigen-specific IFN-γ-producing cells in immunized pig lymphocytes and give an example of a typical result using the technique.
Collapse
|
13
|
Baldwin J, Piplani S, Sakala IG, Honda-Okubo Y, Li L, Petrovsky N. Rapid development of analytical methods for evaluating pandemic vaccines: a COVID-19 perspective. Bioanalysis 2021; 13:1805-1826. [PMID: 34645288 PMCID: PMC8516068 DOI: 10.4155/bio-2021-0096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Vaccines are key in charting a path out of the COVID-19 pandemic. However, development of new vaccines is highly dependent on availability of analytical methods for their design and evaluation. This paper highlights the challenges presented in having to rapidly develop vaccine analytical tools during an ongoing pandemic, including the need to address progressive virus mutation and adaptation which can render initial assays unreliable or redundant. It also discusses the potential of new computational modeling techniques to model and analyze key viral proteins and their attributes to assist vaccine production and assay design. It then reviews the current range of analytical tools available for COVID-19 vaccine application, ranging from in vitro assays for immunogen characterization to assays to measure vaccine responses in vivo. Finally, it provides a future perspective for COVID-19 vaccine analytical tools and attempts to predict how the field might evolve over the next 5-10 years.
Collapse
Affiliation(s)
- Jeremy Baldwin
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
| | - Sakshi Piplani
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Isaac G Sakala
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Lei Li
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| |
Collapse
|
14
|
Characterization of Varicella-Zoster (VZV) Specific T Cell Response in Healthy Subjects and Transplanted Patients by Using Enzyme Linked Immunospot (ELISpot) Assays. Vaccines (Basel) 2021; 9:vaccines9080875. [PMID: 34451999 PMCID: PMC8402512 DOI: 10.3390/vaccines9080875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Solid organ transplant recipients, due to the administration of post-transplant immunosuppressive therapies, are at greater risk of viral reactivation episodes, mainly from herpes viruses, including varicella-zoster virus (VZV). The aim of this pilot study was to develop functional immunological assays (VZV-ELISpot) for the quantification and characterization of the VZV-specific effector-memory and central-memory responses in healthy subjects and transplanted patients. Glycoprotein gE and immediate-early 63 (IE-63) were used as antigens for in vitro stimulation. VZV-seropositive healthy subjects showed higher responses in respect to seronegative subjects. Even if differences were observed between VZV-seropositive healthy subjects and transplanted subjects at pre-transplant, the VZV-specific T-cell response was reduced at 60 days after transplant, mainly for the high level of immunosuppression. Phenotypical characterization revealed that response against VZV was mainly mediated by CD4 T cells. The results obtained in this study might be useful for the definition of personalized follow-up of the transplanted patients, providing useful information on the status of the patient potentially at risk of viral reactivation or other opportunistic infections.
Collapse
|
15
|
Zhang L, Wan S, Zhou Z, Zhang Y, Liu X. Utility of interferon gamma/tumor necrosis factor alpha FluoroSpot assay in differentiation between active tuberculosis and latent tuberculosis infection: a pilot study. BMC Infect Dis 2021; 21:651. [PMID: 34225667 PMCID: PMC8259141 DOI: 10.1186/s12879-021-06351-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/18/2021] [Indexed: 11/22/2022] Open
Abstract
Background The differential diagnosis of active tuberculosis (ATB) and latent tuberculosis infection (LTBI) remains challenging in clinical practice. We aimed to evaluate the diagnostic accuracy of the IFN-γ/TNF-α FluoroSpot assay for differentiating ATB from LTBI. Methods We conducted a pilot study of case-control design, using the FluoroSpot assay to simultaneously detect IFN-γ and TNF-α secretion at the single-cell level. The frequencies of antigen-specific single TNF-α-, total TNF-α-, single IFN-γ-, total IFN-γ- and dual IFN-γ/TNF-α-secreting T cells were detected. The optimal cutoffs value of frequencies for differentiating ATB from LTBI were determined according to receiver operating characteristic curve analysis. The sensitivity, specificity, predictive values (PV) and likelihood ratios (LR) of the FluoroSpot assay were calculated. Results Thirty patients diagnosed microbiologically with ATB, 36 healthcare workers with LTBI and 36 healthy controls were enrolled. After stimulated by ESAT-6 or CFP-10 peptides, the median frequencies of single TNF-α-, total TNF-α-, single IFN-γ-, total IFN-γ- and dual IFN-γ/TNF-α-secreting T cells in ATB patients were all significantly higher than those in LTBI and HC groups (P < 0.01). The frequencies of total IFN-γ-secreting T cells detected by FluoroSpot assay correlated significantly with those of T-SPOT.TB (r = 0.910 for ESAT-6, P < 0.001, r = 0.845 for CFP-10, P < 0.001). After stimulated by ESAT-6 peptides, with total TNF-α-secreting T cells frequencies at a cut off value of 21 iSFCs/250,000 PBMCs, the sensitivity, specificity, PLR, NLR, PPV, NPV of IFN-γ/TNF-α FluoroSpot assay in differentiating ATB from LTBI were 96.7% (95%CI, 82.8–99.9%), 94.3% (95%CI, 80.8–99.3%), 16.92 (95%CI, 4.40–65.08), 0.04 (95%CI, 0.01–0.24), 93.6% (95%CI,78.6–99.2%) and 97.1% (95%CI, 84.7–99.9%), respectively. With the frequencies of total TNF-α- and total IFN-γ-secreting T cells stimulated by ESAT-6 peptides combined, the specificity was increased to 97.1%, and the positive likelihood ratio to 31.5. The combination with CFP-10 might not improve the diagnostic accuracy of the ESAT-6 for differentiating ATB from LTBI. Conclusions IFN-γ/TNF-α FluoroSpot assay might have potential to help differentiate ATB from LTBI, but the findings need to be further verified by cross-sectional or prospective cohort studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06351-w.
Collapse
Affiliation(s)
- Lifan Zhang
- Division of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.,Clinical Epidemiology Unit, International Epidemiology Network, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China.,Centre for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shijun Wan
- Division of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ziyue Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Yueqiu Zhang
- Division of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xiaoqing Liu
- Division of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China. .,Clinical Epidemiology Unit, International Epidemiology Network, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China. .,Centre for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Liao JY, Zhang S. Safety and Efficacy of Personalized Cancer Vaccines in Combination With Immune Checkpoint Inhibitors in Cancer Treatment. Front Oncol 2021; 11:663264. [PMID: 34123821 PMCID: PMC8193725 DOI: 10.3389/fonc.2021.663264] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer immunotherapy can induce sustained responses in patients with cancers in a broad range of tissues, however, these treatments require the optimized combined therapeutic strategies. Despite immune checkpoint inhibitors (ICIs) have lasting clinical benefit, researchers are trying to combine them with other treatment modalities, and among them the combination with personalized cancer vaccines is attractive. Neoantigens, arising from mutations in cancer cells, can elicit strong immune response without central tolerance and out-target effects, which is a truly personalized method. Growing studies show that the combination can elevate the antitumor efficacy with acceptable safety and minimal additional toxicity compared with single agent vaccine or ICI. Herein, we have searched these preclinical and clinical trials and summarized safety and efficacy of personalized cancer vaccines combined with ICIs in several malignancies. Meanwhile, we discuss the rationale of the combination and future challenges.
Collapse
Affiliation(s)
- Juan-Yan Liao
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center of Biotherapy, Chengdu, China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center of Biotherapy, Chengdu, China
| |
Collapse
|
17
|
Richards KA, Glover M, Crawford JC, Thomas PG, White C, Sant AJ. Circulating CD4 T Cells Elicited by Endemic Coronaviruses Display Vast Disparities in Abundance and Functional Potential Linked to Antigen Specificity and Age. J Infect Dis 2021; 223:1555-1563. [PMID: 33556959 PMCID: PMC7928818 DOI: 10.1093/infdis/jiab076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/03/2021] [Indexed: 01/12/2023] Open
Abstract
Repeated infections with endemic human coronaviruses (hCoV) are thought to reflect lack of long-lasting protective immunity. We evaluated circulating human CD4 T cells collected prior to 2020 for reactivity towards hCoV spike proteins, probing for the ability to produce interferon-γ, interleukin-2, or granzyme B. We found robust reactivity to spike-derived epitopes, comparable to influenza, but highly variable abundance and functional potential across subjects, depending on age and viral antigen specificity. To explore potential of these memory cells to be recruited in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we examined the subjects for cross-reactive recognition of epitopes from SARS-CoV-2 nucleocapsid, membrane/envelope, and spike. Functional potential of these cross-reactive CD4 T cells was highly variable; nucleocapsid-specific CD4 T cells but not spike-reactive cells showed exceptionally high levels of granzyme production upon stimulation. These results are considered in light of recruitment of hCoV-reactive cells into responses to SARS-CoV infections or vaccinations.
Collapse
Affiliation(s)
- Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Maryah Glover
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jeremy C Crawford
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chantelle White
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
18
|
Demaret J, Lefèvre G, Vuotto F, Trauet J, Duhamel A, Labreuche J, Varlet P, Dendooven A, Stabler S, Gachet B, Bauer J, Prevost B, Bocket L, Alidjinou EK, Lambert M, Yelnik C, Meresse B, Dubuquoy L, Launay D, Dubucquoi S, Montaigne D, Woitrain E, Maggiotto F, Bou Saleh M, Top I, Elsermans V, Jeanpierre E, Dupont A, Susen S, Brousseau T, Poissy J, Faure K, Labalette M. Severe SARS-CoV-2 patients develop a higher specific T-cell response. Clin Transl Immunology 2020; 9:e1217. [PMID: 33376594 PMCID: PMC7757425 DOI: 10.1002/cti2.1217] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/04/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Assessment of the adaptive immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for studying long-term immunity and vaccine strategies. We quantified IFNγ-secreting T cells reactive against the main viral SARS-CoV-2 antigens using a standardised enzyme-linked immunospot assay (ELISpot). METHODS Overlapping peptide pools built from the sequences of M, N and S viral proteins and a mix (MNS) were used as antigens. Using IFNγ T-CoV-Spot assay, we assessed T-cell and antibody responses in mild, moderate and severe SARS-CoV-2 patients and in control samples collected before the outbreak. RESULTS Specific T cells were assessed in 60 consecutive patients (mild, n = 26; moderate, n = 10; and severe patients, n = 24) during their follow-up (median time from symptom onset [interquartile range]: 36 days [28;53]). T cells against M, N and S peptide pools were detected in n = 60 (100%), n = 56 (93.3%), n = 55 patients (91.7%), respectively. Using the MNS mix, IFNγ T-CoV-Spot assay showed a specificity of 96.7% (95% CI, 88.5-99.6%) and a specificity of 90.3% (75.2-98.0%). The frequency of reactive T cells observed with M, S and MNS mix pools correlated with severity and with levels of anti-S1 and anti-RBD serum antibodies. CONCLUSION IFNγ T-CoV-Spot assay is a reliable method to explore specific T cells in large cohorts of patients. This test may become a useful tool to assess the long-lived memory T-cell response after vaccination. Our study demonstrates that SARS-CoV-2 patients developing a severe disease achieve a higher adaptive immune response.
Collapse
|
19
|
Shemesh CS, Hsu JC, Hosseini I, Shen BQ, Rotte A, Twomey P, Girish S, Wu B. Personalized Cancer Vaccines: Clinical Landscape, Challenges, and Opportunities. Mol Ther 2020; 29:555-570. [PMID: 33038322 DOI: 10.1016/j.ymthe.2020.09.038] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 12/21/2022] Open
Abstract
Tremendous innovation is underway among a rapidly expanding repertoire of promising personalized immune-based treatments. Therapeutic cancer vaccines (TCVs) are attractive systemic immunotherapies that activate and expand antigen-specific CD8+ and CD4+ T cells to enhance anti-tumor immunity. Our review highlights key issues impacting TCVs in clinical practice and reports on progress in development. We review the mechanism of action, immune-monitoring, dosing strategies, combinations, obstacles, and regulation of cancer vaccines. Most trials of personalized TCVs are ongoing and represent diverse platforms with predominantly early investigations of mRNA, DNA, or peptide-based targeting strategies against neoantigens in solid tumors, with many in combination immunotherapies. Multiple delivery systems, routes of administration, and dosing strategies are used. Intravenous or intramuscular administration is common, including delivery by lipid nanoparticles. Absorption and biodistribution impact antigen uptake, expression, and presentation, affecting the strength, speed, and duration of immune response. The emerging trials illustrate the complexity of developing this class of innovative immunotherapies. Methodical testing of the multiple potential factors influencing immune responses, as well as refined quantitative methodologies to facilitate optimal dosing strategies, could help resolve uncertainty of therapeutic approaches. To increase the likelihood of success in bringing these medicines to patients, several unique development challenges must be overcome.
Collapse
Affiliation(s)
- Colby S Shemesh
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Joy C Hsu
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Iraj Hosseini
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ben-Quan Shen
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Anand Rotte
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Patrick Twomey
- Department of Product Development Safety, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Sandhya Girish
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Benjamin Wu
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
20
|
Belkina AC, Azer M, Lee JJ, Elgaali HH, Pihl R, Cleveland M, Carr J, Kim S, Habib C, Hasturk H, Snyder-Cappione JE, Nikolajczyk BS. Single-Cell Analysis of the Periodontal Immune Niche in Type 2 Diabetes. J Dent Res 2020; 99:855-862. [PMID: 32186942 DOI: 10.1177/0022034520912188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Periodontitis (PD) is a common source of uncontrolled inflammation in obesity-associated type 2 diabetes (T2D). PD apparently fuels the inflammation of T2D and associates with poor glycemic control and increased T2D morbidity. New therapeutics are critically needed to counter the sources of periodontal infection and inflammation that are accelerated in people with T2D. The precise mechanisms underlying the relationship between PD and T2D remain poorly understood. Every major immune cell subset has been implicated in the unresolved inflammation of PD, regardless of host metabolic health. However, analyses of inflammatory cells in PD with human periodontal tissue have generally focused on mRNA quantification and immunohistochemical analyses, both of which provide limited information on immune cell function. We used a combination of flow cytometry for cell surface markers and enzyme-linked immunospot methods to assess the subset distribution and function of immune cells isolated from gingiva of people who had PD and were systemically healthy, had PD and T2D (PD/T2D), or, for flow cytometry, were systemically and orally healthy. T-cell subsets dominated the cellular immune compartment in gingiva from all groups, and B cells were relatively rare. Although immune cell frequencies were similar among groups, a higher proportion of CD11b+ or CD4+ cells secreted IFNγ/IL-10 or IL-8, respectively, in cells from PD/T2D samples as compared with PD-alone samples. Our data indicate that fundamental differences in gingival immune cell function between PD and T2D-potentiated PD may account for the increased risk and severity of PD in subjects with T2D. Such differences may suggest unexpected therapeutic targets for alleviating periodontal inflammation in people with T2D.
Collapse
Affiliation(s)
- A C Belkina
- Department of Pathology and Laboratory Medicine, School of Medicine, Boston University, Boston, MA, USA.,Flow Cytometry Core Facility, School of Medicine, Boston University, Boston, MA, USA
| | - M Azer
- Department of Oral Biology, Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - J J Lee
- Department of Pharmacology and Nutritional Sciences and Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY, USA
| | - H H Elgaali
- Department of Pharmacology and Nutritional Sciences and Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY, USA
| | - R Pihl
- Flow Cytometry Core Facility, School of Medicine, Boston University, Boston, MA, USA
| | - M Cleveland
- Department of Pharmacology and Nutritional Sciences and Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY, USA
| | - J Carr
- Department of Microbiology, School of Medicine, Boston University, Boston, MA, USA
| | - S Kim
- Department of Medicine, School of Medicine, Boston University, Boston, MA, USA
| | - C Habib
- Department of Medicine, School of Medicine, Boston University, Boston, MA, USA
| | - H Hasturk
- The Forsyth Institute, Cambridge, MA, USA
| | - J E Snyder-Cappione
- Flow Cytometry Core Facility, School of Medicine, Boston University, Boston, MA, USA.,Department of Microbiology, School of Medicine, Boston University, Boston, MA, USA
| | - B S Nikolajczyk
- Department of Pharmacology and Nutritional Sciences and Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY, USA.,Department of Microbiology, School of Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
21
|
Activation-induced surface proteins in the identification of antigen-responsive CD4 T cells. Immunol Lett 2019; 219:1-7. [PMID: 31881234 DOI: 10.1016/j.imlet.2019.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/09/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Identification of antigen specificity of CD4 T cells is instrumental in understanding adaptive immune responses in health and disease. The high diversity of CD4 T cell repertoire combined with the functional heterogeneity of the compartment poses a challenge to the assessment of CD4 T cell responses. In spite of that, multiple technologies allow direct or indirect interrogation of antigen specificity of CD4 T cells. In the last decade, multiple surface proteins have been established as cytokine-independent surrogates of in vitro CD4 T cell activation, and have found applications in the live identification and isolation of antigen-responsive CD4 T cells. Here we review the current knowledge of the surface proteins that permit identification of viable antigen-responsive CD4 T cells with high specificity, including those capable of identifying specialized CD4 T subsets such as germinal center follicular helper T cells and CD4 regulatory T cells.
Collapse
|
22
|
Early Diagnosis of Pathogen Infection by Cell-Based Activation Immunoassay. Cells 2019; 8:cells8090952. [PMID: 31443439 PMCID: PMC6769711 DOI: 10.3390/cells8090952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Diagnostic identification of pathogens is usually accomplished by isolation of the pathogen or its substances, and should correlate with the time and site of infection. Alternatively, immunoassays such as enzyme-linked immunosorbent assay (ELISA) tests for quantification of serum antibodies are expedient and are usually employed for retrospective diagnostic of a particular infective agent. Here, the potential of cell-based immunoassays for early pathogen detection was evaluated by quantification of specific, antigen-activated, low-frequency IFNγ-secreting cells in mouse spleens following infection with various pathogens. Using enzyme-linked immunospot (ELISPOT) assays, specific responses were observed within 3–6 days following infection with F. tularensis, B. anthracis, Y. pestis, or Influenza virus. Blood samples collected from F. tularensis-infected mice revealed the presence of IFNγ-producing activated cells within one week post infection. When non-human primates were infected with B. anthracis, cellular response was observed in peripheral blood samples as early as five days post infection, 3–5 days earlier than serum antibodies. Finally, the expression pattern of genes in splenocytes of F. tularensis-infected mice was inspected by a transcriptomic approach, enabling the identification of potential host targets for the future development of genetic-based cellular immunoassays. Altogether, the data demonstrate the potential of cell-based immunoassays for early pathogen detection.
Collapse
|
23
|
Mosaheb M, Wetzler LM. Meningococcal PorB induces a robust and diverse antigen specific T cell response as a vaccine adjuvant. Vaccine 2018; 36:7689-7699. [PMID: 30381152 DOI: 10.1016/j.vaccine.2018.10.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Abstract
Vaccines formulated with adjuvant have been effective against numerous infectious diseases, almost always due to induction of functional antibodies that recognizes the pathogen of interest. There is an unmet clinical need for vaccine adjuvants that induce T cells responses to potentially enhance protection against malignancies and intracellular pathogens, where a humoral response, alone, may not be adequate for protection. In this study, we demonstrate that a TLR2 ligand-based adjuvant, meningococcal PorB, has broad immunostimulatory activity with the ability to induce a robust and diverse vaccine antigen specific T cell response. We demonstrate that a vaccine formulated with PorB admixed with ovalbumin induces a wide variety of antigen specific antibody subclasses and effector molecules (MIG, MCP-1, IP-10, MIP-1α, KC & IL-2) with known roles for inducing T cell responses, along with elevated levels of Th1 and Th2 type cytokines upon antigen stimulation. We confirmed production of these cytokines by examining the antigen-specific T cells induced by PorB in vivo. After two immunizations with vaccine formulated with PorB/OVA, antigen-specific CD4 and CD8 T cells were significantly increased in numbers and produced IL-4 or IFN-γ upon ex vivo antigen re-stimulation. Finally, in a Listeria mouse infection model, vaccine formulated with PorB significantly reduced the bacterial burden upon a low dose infection and increased survival upon a high dose infection with recombinant Listeria monocytogenes engineered to express OVA (rLmOVA), a pathogen that requires OVA-antigen specific cytotoxic CD8 T cells for clearance. In summary, PorB is able to induce antigen specific broad B and T cell responses, illustrating its potential as a potent and new vaccine adjuvant.
Collapse
Affiliation(s)
- Munir Mosaheb
- Dept. of Microbiology, Boston University School of Medicine, USA
| | - Lee M Wetzler
- Dept. of Microbiology, Boston University School of Medicine, USA; Dept. of Medicine, Sect. of Infectious Diseases, Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
24
|
Rondaan C, de Joode AAE, van Assen S, Bos NA, Westerhuis R, Westra J. Increased incidence of herpes zoster in patients on renal replacement therapy cannot be explained by intrinsic defects of cellular or humoral immunity to varicella-zoster virus. Antiviral Res 2018; 158:206-212. [PMID: 30102958 DOI: 10.1016/j.antiviral.2018.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Patients in need of long-term renal replacement therapy (RRT) are known to be at increased risk of herpes zoster, occurring when the latently present varicella-zoster virus (VZV) reactivates. In this study we investigated immunity to VZV in patients receiving RRT, with the aim of better understanding the mechanism behind the increased risk. METHODS Patients treated for at least three months with hemodialysis or peritoneal dialysis, and matched healthy controls (HC) were included. Cellular immunity to varicella-zoster virus (VZV) was studied using an interferon-γ (IFNγ) enzyme-linked immunospot (ELISpot) assay, flow-cytometric analysis of cytokine production and a proliferation assay. Humoral immunity was determined by measuring immunoglobulin (Ig)G antibody levels to VZV using an in-house glycoprotein enzyme-linked immunosorbent assay (ELISA). Multiple regression was used to assess variables of influence on measures of cellular and humoral immunity to VZV in patients receiving RRT. RESULTS Similar numbers of IFNγ spot-forming cells and levels of VZV-IgG were found in 97 patients and 89 HC. Age and transplantation history were negatively associated with cellular immunity (p = 0.001 and p = 0.012, respectively) while treatment modality, gender and urea levels were not. No variables were found to be associated with VZV-IgG levels. CONCLUSIONS Increased incidence of herpes zoster in patients receiving RRT cannot be explained by intrinsic defects of cellular or humoral immunity to VZV as measured by the methods used in this study, although older age and previous transplantation were associated with decreased cellular immunity to VZV. Herpes zoster susceptibility might be caused by a diminished function of otherwise capable T cells in a uremic environment.
Collapse
Affiliation(s)
- Christien Rondaan
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen and University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Anoek A E de Joode
- Department of Internal Medicine, Division of Nephrology, University Medical Centre Groningen and University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Sander van Assen
- Department of Internal Medicine (Infectious Diseases), Treant Care Group, Dr. G.H. Amshoffweg 1, 7909 AA, Hoogeveen, The Netherlands.
| | - Nicolaas A Bos
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen and University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Ralf Westerhuis
- Dialysis Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen and University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
25
|
Flaxman A, Ewer KJ. Methods for Measuring T-Cell Memory to Vaccination: From Mouse to Man. Vaccines (Basel) 2018; 6:E43. [PMID: 30037078 PMCID: PMC6161152 DOI: 10.3390/vaccines6030043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 12/27/2022] Open
Abstract
The development of effective vaccines continues to be a key goal for public health bodies, governments, funding bodies and pharmaceutical companies. With new vaccines such as Shingrix targeting Shingles and Bexsero for Meningitis B, licensed in recent years, today's population can be protected from more infectious diseases than ever before. Despite this, we are yet to license vaccines for some of the deadliest endemic diseases affecting children, such as malaria. In addition, the threat of epidemics caused by emerging pathogens is very real as exemplified by the 2014⁻2016 Ebola outbreak. Most licensed vaccines provide efficacy through humoral immunity and correlates of protection often quantify neutralising antibody titre. The role of T-cells in vaccine efficacy is less well understood and more complex to quantify. Defining T-cell responses which afford protection also remains a challenge, although more sophisticated assays for assessing cell-mediated immunity with the potential for higher throughput and scalability are now available and warrant review. Here we discuss the benefits of multiparameter cytokine analysis and omics approaches compared with flow cytometric and ELISpot assays. We also review technical challenges unique to clinical trial studies, including assay validation across laboratories and availability of sample type. Measuring T-cell immunogenicity alongside humoral responses provides information on the breadth of immune responses induced by vaccination. Accurately enumerating and phenotyping T-cell immunogenicity to vaccination is key for the determination of immune correlates of protection. However, identifying such T-cell parameters remains challenging without a clear understanding of the immunological mechanisms by which a T-cell-mediated response induces protection.
Collapse
Affiliation(s)
- Amy Flaxman
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| | - Katie J Ewer
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
26
|
Wilcox CR, Jones CE. Beyond Passive Immunity: Is There Priming of the Fetal Immune System Following Vaccination in Pregnancy and What Are the Potential Clinical Implications? Front Immunol 2018; 9:1548. [PMID: 30061881 PMCID: PMC6054988 DOI: 10.3389/fimmu.2018.01548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Infection is responsible for over half a million neonatal deaths worldwide every year, and vaccination in pregnancy is becoming increasingly recognized as an important strategy for the protection of young infants. Increasing evidence suggests that exposure to maternal infection in utero may "prime" the developing immune system, even in the absence of infant infection. It is also possible that in utero priming may occur following maternal vaccination, with antigen-specific cellular immune responses detectable in utero and at birth. However, this remains a topic of some controversy. This review focuses on the evidence for in utero priming and the clinical implications for vaccination in pregnancy, considering whether in utero priming following vaccination could provide protection independent of antibody-mediated passive immunity, the possible effects of vaccination on subsequent infant vaccinations, their potential "non-specific" effects, and how the design and timing of vaccination might affect prenatal priming. Looking forward, we describe other possible options for quantifying antigen-specific cellular responses, including MHC tetramers, novel proliferation and cytokine-based assays, and animal models. Together, these may help us address future research questions and establish more robust evidence of fetal immune system priming.
Collapse
Affiliation(s)
- Christopher R. Wilcox
- NIHR Clinical Research Facility, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Christine E. Jones
- Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| |
Collapse
|
27
|
Enzyme-Linked Immunospot Assay as a Complementary Method to Assess and Monitor Cytomegalovirus Infection in Kidney Transplant Recipients on Pre-emptive Antiviral Therapy: A Single-Center Experience. Transplant Proc 2018; 49:1766-1772. [PMID: 28923622 DOI: 10.1016/j.transproceed.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) disease represents a major cause of post-transplantation morbidity and mortality. To estimate the risk of infection and monitor response to antiviral therapy, current guidelines suggest combination of viral load monitoring with direct assessment of CMV-specific immune response. We used enzyme-linked immunospot (ELISpot) for the evaluation of CMV-specific T-cell response in kidney transplant recipients with CMV viremia and investigated how information gained could help manage CMV infection. METHODS Seventeen patients on pre-emptive antiviral therapy and CMV quantitative polymerase chain reaction (qPCR) ≥500 copies/mL (first episode after transplantation) were assessed using ELISpot and divided into Weak (9 patients with baseline ELISpot <25 spot-forming colonies [SFCs]/200,000 peripheral blood mononuclear cells [PBMCs]) and Strong Responders (8 patients with baseline ELISpot ≥25 SFCs/200,000 PBMCs). CMV-specific T-cell response, infection severity, viral load, and antiviral therapy were prospectively recorded and compared between groups at 1, 2, and 24 months of follow-up. RESULTS Demographic and transplant characteristics of Weak and Strong Responders were similar. No episodes of CMV disease were observed. Weak Responders were more likely to experience CMV syndrome (56% vs 36.5%) and late virus reactivation (56% vs 25%) than Strong Responders. Weak Responders showed higher baseline median viral loads (19,700 vs 9265 copies/mL) and needed antiviral therapy for longer (179 vs 59.5 days). T-cell response showed 2 main patterns: early and delayed. CONCLUSIONS ELISpot provides prognostic information about infection severity, risk of late reactivation, and response to therapy. Randomized trials, evaluating the need for antiviral therapy in kidney transplant recipients with asymptomatic infection and effective virus-specific T-cell immune response, are warranted.
Collapse
|
28
|
Bae S, Jung J, Kim SM, Kang YA, Lee YS, Chong YP, Sung H, Lee SO, Choi SH, Kim YS, Woo JH, Lee JH, Lee JH, Lee KH, Kim SH. The Detailed Kinetics of Cytomegalovirus-specific T cell Responses after Hematopoietic Stem Cell Transplantation: 1 Year Follow-up Data. Immune Netw 2018; 18:e2. [PMID: 29732231 PMCID: PMC5928417 DOI: 10.4110/in.2018.18.e2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/09/2018] [Accepted: 01/18/2018] [Indexed: 12/01/2022] Open
Abstract
The detailed kinetics of the cytomegalovirus (CMV)-specific T cell response in hematopoietic stem cell transplant (HCT) recipients have not yet been fully assessed. We evaluated these kinetics of CMV-specific T cell response and factors associated with high CMV-specific T cell responses 1 year after HCT. In HCT recipients, CMV pp65 and IE1-specific ELISPOT assay were performed before HCT (D0), and at 30 (D30), 90 (D90), 180 (D180), and 360 (D360) days after HCT. Of the 51 HCT recipients with donor-positive (D+)/recipient-positive (R+) serology, 26 (51%) developed CMV infections after HCT. The patterns of post-transplantation reconstitution for CMV-specific T cell response were classified into 4 types: 1) an initial decrease at D30 followed by gradual T cell reconstitution without CMV infection (35%), 2) an initial decrease at D30 followed by gradual T cell reconstitution preceded by CMV infection (35%), 3) failure of gradual or constant T cell reconstitution (26%), and 4) no significant T cell reconstitution (4%). There was no significant difference between ELISPOT counts of D360 and those of D0. High CMV-specific T cell responses at D360 were not associated with high CMV-specific T cell response at D0, CMV infection, ganciclovir therapy, graft versus host disease (GVHD), and immunosuppressant use. In conclusion, there are 4 distinct patterns of reconstitution of the CMV-specific T cell response after HCT. In addition, reconstituted donor-origin CMV-specific T cell responses appeared to be constant until day 360 after HCT, regardless of the level of the pre-transplant CMV-specific T cell response, CMV infection, and immunosuppressant use.
Collapse
Affiliation(s)
- Seongman Bae
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Jiwon Jung
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.,Division of Infectious Diseases, Department of Internal Medicine, Ulsan University Hospital, Ulsan 44033, Korea
| | - Sun-Mi Kim
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Young-Ah Kang
- Department of Hematology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Young-Shin Lee
- Department of Hematology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Jun Hee Woo
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Jung-Hee Lee
- Department of Hematology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Je-Hwan Lee
- Department of Hematology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Kyoo-Hyung Lee
- Department of Hematology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
29
|
Lehmann A, Megyesi Z, Przybyla A, Lehmann PV. Reagent Tracker Dyes Permit Quality Control for Verifying Plating Accuracy in ELISPOT Tests. Cells 2018; 7:E3. [PMID: 29301355 PMCID: PMC5789276 DOI: 10.3390/cells7010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/25/2017] [Accepted: 12/29/2017] [Indexed: 12/04/2022] Open
Abstract
ELISPOT assays enable the detection of the frequency of antigen-specific T cells in the blood by measuring the secretion of cytokines, or combinations of cytokines, in response to antigenic challenges of a defined population of PBMC. As such, these assays are suited to establish the magnitude and quality of T cell immunity in infectious, allergic, autoimmune and transplant settings, as well as for measurements of anti-tumor immunity. The simplicity, robustness, cost-effectiveness and scalability of ELISPOT renders it suitable for regulated immune monitoring. In response to the regulatory requirements of clinical and pre-clinical immune monitoring trials, tamper-proof audit trails have been introduced to all steps of ELISPOT analysis: from capturing the raw images of assay wells and counting of spots, to all subsequent quality control steps involved in count verification. A major shortcoming of ELISPOT and other related cellular assays is presently the lack of audit trails for the wet laboratory part of the assay, in particular, the assurance that no pipetting errors have occurred during the plating of antigens and cells. Here, we introduce a dye-based reagent tracking platform that fills this gap, thereby increasing the transparency and documentation of ELISPOT test results.
Collapse
Affiliation(s)
- Alexander Lehmann
- Research and Development Department, CTL, Shaker Heights, OH 44122, USA.
| | - Zoltan Megyesi
- Research and Development Department, CTL, Shaker Heights, OH 44122, USA.
| | - Anna Przybyla
- Research and Development Department, CTL, Shaker Heights, OH 44122, USA.
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznan, Poland.
| | - Paul V Lehmann
- Research and Development Department, CTL, Shaker Heights, OH 44122, USA.
| |
Collapse
|
30
|
Lima-Junior JDC, Morgado FN, Conceição-Silva F. How Can Elispot Add Information to Improve Knowledge on Tropical Diseases? Cells 2017; 6:cells6040031. [PMID: 28961208 PMCID: PMC5755491 DOI: 10.3390/cells6040031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/04/2023] Open
Abstract
Elispot has been used as an important tool for detecting immune cells' products and functions and has facilitated the understanding of host-pathogen interaction. Despite the incredible diversity of possibilities, two main approaches have been developed: the immunopathogenesis and diagnosis/prognosis of infectious diseases as well as cancer research. Much has been described on the topics of allergy, autoimmune diseases, and HIV-Aids, however, Elispot can also be applied to other infectious diseases, mainly leishmaniasis, malaria, some viruses, helminths and mycosis usually classified as tropical diseases. The comprehension of the function, concentration and diversity of the immune response in the infectious disease is pointed out as crucial to the development of infection or disease in humans and animals. In this review we will describe the knowledge already obtained using Elispot as a method for accessing the profile of immune response as well as the recent advances in information about host-pathogen interaction in order to better understand the clinical outcome of a group of tropical and neglected diseases.
Collapse
Affiliation(s)
- Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz/FIOCRUZ, Pavilhão 26-4° andar, sala 406-C, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| | - Fernanda Nazaré Morgado
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz/FIOCRUZ, Pavilhão 26-5° andar, sala 509, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| | - Fátima Conceição-Silva
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz/FIOCRUZ, Pavilhão 26-4° andar, sala 406-C, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| |
Collapse
|
31
|
Delayed Activation Kinetics of Th2- and Th17 Cells Compared to Th1 Cells. Cells 2017; 6:cells6030029. [PMID: 28895901 PMCID: PMC5617975 DOI: 10.3390/cells6030029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 01/12/2023] Open
Abstract
During immune responses, different classes of T cells arise: Th1, Th2, and Th17. Mobilizing the right class plays a critical role in successful host defense and therefore defining the ratios of Th1/Th2/Th17 cells within the antigen-specific T cell repertoire is critical for immune monitoring purposes. Antigen-specific Th1, Th2, and Th17 cells can be detected by challenging peripheral blood mononuclear cells (PBMC) with antigen, and establishing the numbers of T cells producing the respective lead cytokine, IFN-γ and IL-2 for Th1 cells, IL-4 and IL-5 for Th2, and IL-17 for Th-17 cells, respectively. Traditionally, these cytokines are measured within 6 h in flow cytometry. We show here that 6 h of stimulation is sufficient to detect peptide-induced production of IFN-γ, but 24 h are required to reveal the full frequency of protein antigen-specific Th1 cells. Also the detection of IL-2 producing Th1 cells requires 24 h stimulation cultures. Measurements of IL-4 producing Th2 cells requires 48-h cultures and 96 h are required for frequency measurements of IL-5 and IL-17 secreting T cells. Therefore, accounting for the differential secretion kinetics of these cytokines is critical for the accurate determination of the frequencies and ratios of antigen-specific Th1, Th2, and Th17 cells.
Collapse
|
32
|
Abstract
Celiac disease has advanced from a medical rarity to a highly prevalent disorder. Patients with the disease show varying degrees of chronic inflammation within the small intestine due to an aberrant immune response to the digestion of gliadin found in wheat. As a result, cytokines and antibodies are produced in celiac patients that can be used as specific biomarkers for developing diagnostic tests. This review paper describes celiac disease in terms of its etiological cause, pathological effects, current diagnostic tests based on mucosal biopsy, and the genetic basis for the disease. In addition, it discusses the use of gliadin-induced cytokines, antibodies and autoantibodies as a diagnostic tool for celiac disease. Despite good initial results in terms of sensitivity and specificity, when these immunological tests were used on a large scale, even in combination with genetic testing, the results showed lower predictive value. This review addresses that issue and ends with an outlook on future work required to develop diagnostic tests with greater accuracy in predicting celiac disease in the general public, thus avoiding the need for endoscopy and mucosal biopsy.
Collapse
Affiliation(s)
- Anantdeep Kaur
- Institute for Biomedical Materials and Devices (IBMD), The University of Technology Sydney, Broadway, PO Box 123, Sydney, NSW, 2007, Australia
| | - Olga Shimoni
- Institute for Biomedical Materials and Devices (IBMD), The University of Technology Sydney, Broadway, PO Box 123, Sydney, NSW, 2007, Australia.
| | - Michael Wallach
- School of Life Sciences, The University of Technology Sydney, Broadway, PO Box 123, Sydney, NSW, 2007, Australia
| |
Collapse
|
33
|
Barabas S, Spindler T, Kiener R, Tonar C, Lugner T, Batzilla J, Bendfeldt H, Rascle A, Asbach B, Wagner R, Deml L. An optimized IFN-γ ELISpot assay for the sensitive and standardized monitoring of CMV protein-reactive effector cells of cell-mediated immunity. BMC Immunol 2017; 18:14. [PMID: 28270111 PMCID: PMC5339961 DOI: 10.1186/s12865-017-0195-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/10/2017] [Indexed: 12/04/2022] Open
Abstract
Background In healthy individuals, Cytomegalovirus (CMV) infection is efficiently controlled by CMV-specific cell-mediated immunity (CMI). Functional impairment of CMI in immunocompromized individuals however can lead to uncontrolled CMV replication and severe clinical complications. Close monitoring of CMV-specific CMI is therefore clinically relevant and might allow a reliable prognosis of CMV disease as well as assist personalized therapeutic decisions. Methods Objective of this work was the optimization and technical validation of an IFN-γ ELISpot assay for a standardized, sensitive and reliable quantification of CMV-reactive effector cells. T-activated® immunodominant CMV IE-1 and pp65 proteins were used as stimulants. All basic assay parameters and reagents were tested and optimized to establish a user-friendly protocol and maximize the signal-to-noise ratio of the ELISpot assay. Results Optimized and standardized ELISpot revealed low intra-assay, inter-assay and inter-operator variability (coefficient of variation CV below 22%) and CV inter-site was lower than 40%. Good assay linearity was obtained between 6 × 104 and 2 × 105 PBMC per well upon stimulation with T-activated® IE-1 (R2 = 0.97) and pp65 (R2 = 0.99) antigens. Remarkably, stimulation of peripheral blood mononuclear cells (PBMC) with T-activated® IE-1 and pp65 proteins resulted in the activation of a broad range of CMV-reactive effector cells, including CD3+CD4+ (Th), CD3+CD8+ (CTL), CD3−CD56+ (NK) and CD3+CD56+ (NKT-like) cells. Accordingly, the optimized IFN-γ ELISpot assay revealed very high sensitivity (97%) in a cohort of 45 healthy donors, of which 32 were CMV IgG-seropositive. Conclusion The combined use of T-activated® IE-1 and pp65 proteins for the stimulation of PBMC with the optimized IFN-γ ELISpot assay represents a highly standardized, valuable tool to monitor the functionality of CMV-specific CMI with great sensitivity and reliability. Electronic supplementary material The online version of this article (doi:10.1186/s12865-017-0195-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sascha Barabas
- Lophius Biosciences GmbH, Am BioPark 13, 93053, Regensburg, Germany
| | - Theresa Spindler
- Lophius Biosciences GmbH, Am BioPark 13, 93053, Regensburg, Germany
| | - Richard Kiener
- Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Charlotte Tonar
- Lophius Biosciences GmbH, Am BioPark 13, 93053, Regensburg, Germany
| | - Tamara Lugner
- Lophius Biosciences GmbH, Am BioPark 13, 93053, Regensburg, Germany
| | - Julia Batzilla
- Lophius Biosciences GmbH, Am BioPark 13, 93053, Regensburg, Germany
| | - Hanna Bendfeldt
- Lophius Biosciences GmbH, Am BioPark 13, 93053, Regensburg, Germany
| | - Anne Rascle
- Lophius Biosciences GmbH, Am BioPark 13, 93053, Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Ludwig Deml
- Lophius Biosciences GmbH, Am BioPark 13, 93053, Regensburg, Germany. .,Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
34
|
Chêne A, Houard S, Nielsen MA, Hundt S, D'Alessio F, Sirima SB, Luty AJF, Duffy P, Leroy O, Gamain B, Viebig NK. Clinical development of placental malaria vaccines and immunoassays harmonization: a workshop report. Malar J 2016; 15:476. [PMID: 27639691 PMCID: PMC5027113 DOI: 10.1186/s12936-016-1527-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/08/2016] [Indexed: 01/01/2023] Open
Abstract
Placental malaria caused by Plasmodium falciparum infection constitutes a major health problem manifesting as severe disease and anaemia in the mother, impaired fetal development, low birth weight or spontaneous abortion. Prevention of placental malaria currently relies on two key strategies that are losing efficacy due to spread of resistance: long-lasting insecticide-treated nets and intermittent preventive treatment during pregnancy. A placental malaria vaccine would be an attractive, cost-effective complement to the existing control tools. Two placental malaria vaccine candidates are currently in Phase Ia/b clinical trials. During two workshops hosted by the European Vaccine Initiative, one in Paris in April 2014 and the other in Brussels in November 2014, the main actors in placental malaria vaccine research discussed the harmonization of clinical development plans and of the immunoassays with a goal to define standards that will allow comparative assessment of different placental malaria vaccine candidates. The recommendations of these workshops should guide researchers and clinicians in the further development of placental malaria vaccines.
Collapse
Affiliation(s)
- Arnaud Chêne
- Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, Institut National de la Transfusion Sanguine, Paris, France
| | - Sophie Houard
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Sophia Hundt
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Flavia D'Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou 01, Burkina Faso
| | - Adrian J F Luty
- IRD MERIT UMR 216, 75006, Paris, France.,COMUE Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75270, Paris, France
| | - Patrick Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA
| | - Odile Leroy
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Benoit Gamain
- Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, Institut National de la Transfusion Sanguine, Paris, France
| | - Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany.
| |
Collapse
|
35
|
Abstract
The quantification of single cell interferon-gamma (IFN-γ) release for assessing cellular immune responses using the Enzyme-linked immunospot (ELISPOT) assay is an invaluable technique in immunology. Peripheral blood mononuclear cells (PBMC) are stimulated in vitro with recombinant proteins, peptides and recently whole malaria organisms. Stimulation may be short term (20-36 h) or long term (cultured ELISpot, up to 7 days). ELISpot is also able to quantify other cytokines secreted by antigen-specific T-cells, such as interleukin-2, interleukin-5, and other interleukins. ELISpot is playing an important role especially in vaccine research studies.
Collapse
Affiliation(s)
- Martha Sedegah
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| |
Collapse
|
36
|
Körber N, Behrends U, Hapfelmeier A, Protzer U, Bauer T. Validation of an IFNγ/IL2 FluoroSpot assay for clinical trial monitoring. J Transl Med 2016; 14:175. [PMID: 27297580 PMCID: PMC4906590 DOI: 10.1186/s12967-016-0932-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/31/2016] [Indexed: 11/29/2022] Open
Abstract
Background The FluoroSpot assay, an advancement of the ELISpot assay, enables simultaneous measurement of different analytes secreted at a single-cell level. This allows parallel detection of several cytokines secreted by immune cells upon antigen recognition. Easier standardization, higher sensitivity and reduced labour intensity render FluoroSpot assays an interesting alternative to flow-cytometry based assays for analysis of clinical samples. While the use of immunoassays to study immunological primary and secondary endpoints becomes increasingly attractive, assays used require pre-trial validation. Here we describe the assay validation (precision, specificity and linearity) of a FluoroSpot immunological endpoint assay detecting Interferon γ (IFNγ) and Interleukin 2 (IL2) for use in clinical trial immune monitoring. Methods We validated an IFNγ/IL2 FluoroSpot assay to determine Epstein-Barr virus (EBV)-specific cellular immune responses (IFNγ, IL2 and double positive IFNγ + IL2 responses), using overlapping peptide pools corresponding to EBV-proteins BZLF1 and EBNA3A. Assay validation was performed using cryopreserved PBMC of 16 EBV-seropositive and 6 EBV-seronegative donors. Precision was assessed by (i) testing 16 donors using three replicates per assay (intra-assay precision/repeatability) (ii) using two plates in parallel (intermediate precision/plate-to-plate variability) and (iii) by performing the assays on three different days (inter-assay precision/reproducibility). In addition, we determined specificity, linearity and quantification limits of the assay. Further we tested precision across the two assay systems, IFNγ/IL2 FluoroSpot and the corresponding enzymatic single cytokine ELISpot. Results The validation revealed: (1) a high intra-assay precision (coefficient of variation (CV) 9.96, 8.85 and 13.05 %), intermediate precision (CV 6.48, 10.20 and 12.97 %) and reproducibility (CV 20.81 %, 12,75 % and 12.07 %) depending on the analyte and antigen used; (2) a specificity of 100 %; (3) a linearity with R2 values from 0.93 to 0.99 depending on the analyte. The testing of the precision across the two assay systems, adduced a concordance correlation coefficient pc = 0.99 for IFNγ responses and pc = 0.93 for IL2 responses, indicating a large agreement between both assay methods. Conclusions The validated primary endpoint assay, an EBV peptide pool specific IFNγ/IL2 FluoroSpot assay was found to be suitable for the detection of EBV-specific immune responses subject to the requirement of standardized assay procedure and data analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0932-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nina Körber
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Schneckenburgerstr. 8, 81675, Munich, Germany
| | - Uta Behrends
- Clinical Cooperation Group Pediatric Tumor Immunology, Children's Hospital, Technische Universität München/Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Alexander Hapfelmeier
- Institute of Medical Statistics and Epidemiology, Technische Universität München, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Schneckenburgerstr. 8, 81675, Munich, Germany.,Clinical Cooperation Group, Immune Monitoring, Helmholtz Zentrum München/Technische Universität München, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Tanja Bauer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Schneckenburgerstr. 8, 81675, Munich, Germany. .,Clinical Cooperation Group, Immune Monitoring, Helmholtz Zentrum München/Technische Universität München, Munich, Germany. .,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
37
|
Cabanelas E, Lopez C, Diaz P, Perez-Creo A, Morrondo MP, Diez-Banos P, Panadero R. Evaluation of IFN-γ production in bovine hypodermosis using ELISPOT and ELISA. ACTA ACUST UNITED AC 2016. [DOI: 10.7243/2054-3425-4-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Higuchi Y, Koya T, Yuzawa M, Yamaoka N, Mizuno Y, Yoshizawa K, Hirabayashi K, Kobayashi T, Sano K, Shimodaira S. Enzyme-Linked Immunosorbent Spot Assay for the Detection of Wilms' Tumor 1-Specific T Cells Induced by Dendritic Cell Vaccination. Biomedicines 2015; 3:304-315. [PMID: 28536414 PMCID: PMC5344226 DOI: 10.3390/biomedicines3040304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Despite recent advances in cancer immunotherapy and the development of various assays for T cell assessment, a lack of universal standards within immune monitoring remains. The objective of this study was to evaluate the enzyme-linked immunosorbent spot (ELISpot) assay in comparison with major histocompatibility complex-tetramer analysis in the context of dendritic cell (DC)-based cancer immunotherapy. METHODS The ELISpot assay was performed on peripheral blood mononuclear cells to assess reproducibility, daily precision, and linearity using HLA-A*24:02-restricted Cytomegalovirus peptide. Wilms' tumor 1 (WT1) antigen-specific cytotoxic T cells were then evaluated by both the ELISpot assay and WT1 tetramer analysis in peripheral blood from 46 cancer patients who received DC vaccinations pulsed with human leukocyte antigen (HLA)-A*24:02-restricted modified WT1 peptides. RESULTS The ELISpot assay was proven to have reproducibility (coefficient of variation (CV) ranged from 7.4% to 16.3%), daily precision (CV ranged from 5.0% to 17.3%), and linearity (r = 0.96-0.98). WT1-specific immune responses were detected by the ELISpot assay in 34 out of 46 patients (73.9%) post-vaccination. A Spearman's rank-correlation coefficient of 0.82 between the ELISpot assay and WT1 tetramer analysis was obtained. CONCLUSION This is the first report of a comparison of an ELISpot assay and tetramer analysis in the context of dendritic cell (DC)-based cancer immunotherapy. The ELISpot assay has reproducibility, linearity, and excellent correlation with the WT1 tetramer analysis. These findings suggest that the validated ELISpot assay is useful to monitor the acquired immunity by DC vaccination targeting WT1.
Collapse
Affiliation(s)
- Yumiko Higuchi
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan.
| | - Terutsugu Koya
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Miki Yuzawa
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Naoko Yamaoka
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Yumiko Mizuno
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Kiyoshi Yoshizawa
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Koichi Hirabayashi
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Takashi Kobayashi
- Shinshu Cancer Center, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Kenji Sano
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Shigetaka Shimodaira
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| |
Collapse
|
39
|
Ciáurriz M, Zabalza A, Beloki L, Mansilla C, Pérez-Valderrama E, Lachén M, Bandrés E, Olavarría E, Ramírez N. The immune response to cytomegalovirus in allogeneic hematopoietic stem cell transplant recipients. Cell Mol Life Sci 2015; 72:4049-62. [PMID: 26174234 PMCID: PMC11113937 DOI: 10.1007/s00018-015-1986-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/22/2015] [Accepted: 07/03/2015] [Indexed: 02/08/2023]
Abstract
Approximately, up to 70 % of the human population is infected with cytomegalovirus (CMV) that persists for life in a latent state. In healthy people, CMV reactivation induces the expansion of CMV-specific T cells up to 10 % of the entire T cell repertoire. On the contrary, CMV infection is a major opportunistic viral pathogen that remains a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Due to the delayed CMV-specific immune recovery, the incidence of CMV reactivation during post-transplant period is very high. Several methods are currently available for the monitoring of CMV-specific responses that help in clinical monitoring. In this review, essential aspects in the immune recovery against CMV are discussed to improve the better understanding of the immune system relying on CMV infection and, thereby, helping the avoidance of CMV disease or reactivation following hematopoietic stem cell transplantation with severe consequences for the transplanted patients.
Collapse
Affiliation(s)
- Miriam Ciáurriz
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Amaya Zabalza
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
- Hematology Department, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Navarra, Spain
| | - Lorea Beloki
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Cristina Mansilla
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Estela Pérez-Valderrama
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Mercedes Lachén
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Eva Bandrés
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
- Hematology Department, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Navarra, Spain
- Immunity Unit, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Navarra, Spain
| | - Eduardo Olavarría
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
- Hammersmith Hospital-Imperial College Healthcare NHS, London, UK
| | - Natalia Ramírez
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain.
| |
Collapse
|
40
|
Pre-transplant donor-specific Interferon-gamma-producing cells and acute rejection of the kidney allograft. Transpl Immunol 2015; 33:63-8. [PMID: 26254561 DOI: 10.1016/j.trim.2015.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Our retrospective study included a cohort of 47 patients who underwent living donor kidney transplantation.The pre-transplant frequencies of donor-specific Interferon-gamma (IFN-γ) producing cells were define dusing enzyme-linked immunosorbent spot (ELISpot) assay and correlated with incidence of acute cellular(ACR), antibody-mediated rejection (AMR) and kidney graft survival up to one year after transplantation. RESULTS We found a statistically significant correlation between the frequencies of IFN-γ-producing cells and the number of mismatches in HLA antigens between patients and their respective donors – for Class I – A and B (r = 0.399, p b 0.01) and for Class I and Class II antigens – A, B and DR (r = 0.409, p b 0.01). No significant relationship was observed between the numbers of IFN-γ-secreting cells and incidence of acute rejection (neither ACR, nor AMR). However, there was a trend of elevated frequencies of IFN-γ-producing cells in patients who developed ACR or AMR in comparison with kidney recipients free of rejection (91 ± 82 and 114 ± 75 vs. 72 ± 70/5 × 10(4) peripheral blood mononuclear cells respectively). Patients with concurrent acute cellular and antibody-mediated rejection had also higher numbers of IFN-γ-producing memory/effector cells compared to patients with cellular rejection only. CONCLUSION Pre-transplant determination of the numbers of IFN-γ-producing donor-specific memory cells using the ELISpot technique may provide clinically relevant results when evaluating the risk of development of acute cellular and antibody-mediated rejection. These frequencies are influenced by the degree of HLA mismatching between patients and their respective kidney donors.
Collapse
|
41
|
Maggioli MF, Palmer MV, Vordermeier HM, Whelan AO, Fosse JM, Nonnecke BJ, Waters WR. Application of Long-term cultured Interferon-γ Enzyme-linked Immunospot Assay for Assessing Effector and Memory T Cell Responses in Cattle. J Vis Exp 2015:e52833. [PMID: 26275095 PMCID: PMC4544920 DOI: 10.3791/52833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Effector and memory T cells are generated through developmental programing of naïve cells following antigen recognition. If the infection is controlled up to 95 % of the T cells generated during the expansion phase are eliminated (i.e., contraction phase) and memory T cells remain, sometimes for a lifetime. In humans, two functionally distinct subsets of memory T cells have been described based on the expression of lymph node homing receptors. Central memory T cells express C-C chemokine receptor 7 and CD45RO and are mainly located in T-cell areas of secondary lymphoid organs. Effector memory T cells express CD45RO, lack CCR7 and display receptors associated with lymphocyte homing to peripheral or inflamed tissues. Effector T cells do not express either CCR7 or CD45RO but upon encounter with antigen produce effector cytokines, such as interferon-γ. Interferon-γ release assays are used for the diagnosis of bovine and human tuberculosis and detect primarily effector and effector memory T cell responses. Central memory T cell responses by CD4(+) T cells to vaccination, on the other hand, may be used to predict vaccine efficacy, as demonstrated with simian immunodeficiency virus infection of non-human primates, tuberculosis in mice, and malaria in humans. Several studies with mice and humans as well as unpublished data on cattle, have demonstrated that interferon-γ ELISPOT assays measure central memory T cell responses. With this assay, peripheral blood mononuclear cells are cultured in decreasing concentration of antigen for 10 to 14 days (long-term culture), allowing effector responses to peak and wane; facilitating central memory T cells to differentiate and expand within the culture.
Collapse
Affiliation(s)
- Mayara F Maggioli
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture; Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University;
| | - Mitchell V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture
| | | | | | - James M Fosse
- Visual Services, National Centers for Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture
| | - Brian J Nonnecke
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture
| | - W Ray Waters
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture
| |
Collapse
|
42
|
ELISPOTs Produced by CD8 and CD4 Cells Follow Log Normal Size Distribution Permitting Objective Counting. Cells 2015; 4:56-70. [PMID: 25612115 PMCID: PMC4381209 DOI: 10.3390/cells4010056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/14/2015] [Indexed: 11/24/2022] Open
Abstract
Each positive well in ELISPOT assays contains spots of variable sizes that can range from tens of micrometers up to a millimeter in diameter. Therefore, when it comes to counting these spots the decision on setting the lower and the upper spot size thresholds to discriminate between non-specific background noise, spots produced by individual T cells, and spots formed by T cell clusters is critical. If the spot sizes follow a known statistical distribution, precise predictions on minimal and maximal spot sizes, belonging to a given T cell population, can be made. We studied the size distributional properties of IFN-γ, IL-2, IL-4, IL-5 and IL-17 spots elicited in ELISPOT assays with PBMC from 172 healthy donors, upon stimulation with 32 individual viral peptides representing defined HLA Class I-restricted epitopes for CD8 cells, and with protein antigens of CMV and EBV activating CD4 cells. A total of 334 CD8 and 80 CD4 positive T cell responses were analyzed. In 99.7% of the test cases, spot size distributions followed Log Normal function. These data formally demonstrate that it is possible to establish objective, statistically validated parameters for counting T cell ELISPOTs.
Collapse
|
43
|
High Reproducibility of ELISPOT Counts from Nine Different Laboratories. Cells 2015; 4:21-39. [PMID: 25585297 PMCID: PMC4381207 DOI: 10.3390/cells4010021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/26/2014] [Indexed: 11/17/2022] Open
Abstract
The primary goal of immune monitoring with ELISPOT is to measure the number of T cells, specific for any antigen, accurately and reproducibly between different laboratories. In ELISPOT assays, antigen-specific T cells secrete cytokines, forming spots of different sizes on a membrane with variable background intensities. Due to the subjective nature of judging maximal and minimal spot sizes, different investigators come up with different numbers. This study aims to determine whether statistics-based, automated size-gating can harmonize the number of spot counts calculated between different laboratories. We plated PBMC at four different concentrations, 24 replicates each, in an IFN-γ ELISPOT assay with HCMV pp65 antigen. The ELISPOT plate, and an image file of the plate was counted in nine different laboratories using ImmunoSpot® Analyzers by (A) Basic Count™ relying on subjective counting parameters set by the respective investigators and (B) SmartCount™, an automated counting protocol by the ImmunoSpot® Software that uses statistics-based spot size auto-gating with spot intensity auto-thresholding. The average coefficient of variation (CV) for the mean values between independent laboratories was 26.7% when counting with Basic Count™, and 6.7% when counting with SmartCount™. Our data indicates that SmartCount™ allows harmonization of counting ELISPOT results between different laboratories and investigators.
Collapse
|
44
|
Ontiveros N, Tye-Din JA, Hardy MY, Anderson RP. Ex-vivo whole blood secretion of interferon (IFN)-γ and IFN-γ-inducible protein-10 measured by enzyme-linked immunosorbent assay are as sensitive as IFN-γ enzyme-linked immunospot for the detection of gluten-reactive T cells in human leucocyte antigen (HLA)-DQ2·5(+) -associated coeliac disease. Clin Exp Immunol 2014; 175:305-15. [PMID: 24192268 DOI: 10.1111/cei.12232] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2013] [Indexed: 01/22/2023] Open
Abstract
T cell cytokine release assays are used to diagnose infectious diseases, but not autoimmune or allergic disease. Coeliac disease (CD) is a common T cell-mediated disease diagnosed by the presence of gluten-dependent intestinal inflammation and serology. Many patients cannot be diagnosed with CD because they reduce dietary gluten before medical workup. Oral gluten challenge in CD patients treated with gluten-free diet (GFD) mobilizes gluten-reactive T cells measurable by interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) or major histocompatibility complex (MHC) class II tetramers. Immunodominant peptides are quite consistent in the 90% of patients who possess HLA-DQ2·5. We aimed to develop whole blood assays to detect gluten-specific T cells. Blood was collected before and after gluten challenge from GFD donors confirmed to have CD (n = 27, all HLA-DQ2·5(+) ), GFD donors confirmed not to have CD (n = 6 HLA-DQ2·5(+) , 11 HLA-DQ2·5(-) ) and donors with CD not following GFD (n = 4, all HLA-DQ2·5(+) ). Plasma IFN-γ and IFN-γ inducible protein-10 (IP-10) were measured by enzyme-linked immunosorbent assay (ELISA) after whole blood incubation with peptides or gliadin, and correlated with IFN-γ ELISPOT. No T cell assay could distinguish between CD patients and controls prior to gluten challenge, but after gluten challenge the whole blood IFN-γ ELISA and the ELISPOT were both 85% sensitive and 100% specific for HLA-DQ2·5(+) CD patients; the whole blood IP-10 ELISA was 94% sensitive and 100% specific. We conclude that whole blood cytokine release assays are sensitive and specific for detection of gluten-reactive T cells in CD; further clinical studies addressing the utility of these tests in patients with an uncertain diagnosis of CD is warranted.
Collapse
Affiliation(s)
- N Ontiveros
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia; Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | | | | | | |
Collapse
|
45
|
Tools and methods for identification and analysis of rare antigen-specific T lymphocytes. EXPERIENTIA SUPPLEMENTUM (2012) 2014; 104:73-88. [PMID: 24214619 DOI: 10.1007/978-3-0348-0726-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T lymphocytes are essential as effector and memory cells for immune defense against infections and as regulatory T cells in the establishment and maintenance of immune tolerance. However, they are also involved in immune pathology being effectors in autoimmune and allergic diseases or suppressors of immunity in cancer, and they often cause problems in transplantation. Therefore, strategies are being developed that allow the in vivo amplification or isolation, in vitro expansion and genetic manipulation of beneficial T cells for adoptive cell therapies or for the tolerization, or elimination of pathogenic T cells. The major goal is to make use of the exquisite antigen specificity of T cells to develop targeted strategies and to develop techniques that allow for the identification and depletion or enrichment of very often rare antigen-specific naïve as well as effector and memory T cells. Such techniques are very useful for immune monitoring of T cell responses in diagnostics and vaccination and for the development of T cell-based assays for the replacement of animal testing in immunotoxicology to identify contact allergens and drugs that cause adverse reactions.
Collapse
|
46
|
Abstract
The enzyme-linked immunospot (ELISPOT) assay is a widely used method for enumerating antigen-specific cytokine-producing or antibody-secreting immune cells. It is one of the most effective immunological and diagnostic approaches to detect and quantify low-frequency cytokine- or antibody-producing cells in human and animal tissues, such as peripheral blood, lymph nodes, and spleen. Detection and quantification of specific cytokine-producing cells by the ELISPOT assay is based on the formation of visible spots at the site of cytokine release by the cells under investigation (e.g., T cells) using pairs of different capture and detection antibodies under optimized conditions.Here we focus mainly on practical, optimized protocols for cytokine ELISPOT assays for detection of mouse and human cytokine-producing immune cells (e.g., peripheral blood mononuclear cells, PBMC), including suggestions for trouble-shooting and optimizing steps for problematic tissue samples.
Collapse
Affiliation(s)
- Niannian Ji
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | | |
Collapse
|
47
|
Borchers S, Ogonek J, Varanasi PR, Tischer S, Bremm M, Eiz-Vesper B, Koehl U, Weissinger EM. Multimer monitoring of CMV-specific T cells in research and in clinical applications. Diagn Microbiol Infect Dis 2013; 78:201-12. [PMID: 24331953 DOI: 10.1016/j.diagmicrobio.2013.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/11/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Multimer monitoring has become a standard technique for detection of antigen-specific T cells. The term "multimer" refers to a group of reagents based on the multimerisation of molecules in order to raise avidity and thus stabilize binding to their ligand. Multimers for detection of antigen-specific T-cell responses are based on major histocompatibility complex class I peptide complexes. Multimer staining enables fast and direct visualization of antigen-specific T cells; thus, it is widely applied to assess antiviral immunity, e.g., monitor patients in vaccination trials or confirm purity of cell products for adoptive transfer. Assessment of T-cell immunity against persistent pathogens like cytomegalovirus (CMV) is of major importance in immunosuppressed patients. Recent advancements of multimers facilitate reversible labeling and allow isolation of epitope-specific T cells for adoptive transfer. Here, we give an overview on the different multimers and their applications, with an emphasis on CMV-specific T-cell responses.
Collapse
Affiliation(s)
- Sylvia Borchers
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany; Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover, Germany; German Centre for Infection Research (DZIF), Partnerside Hannover-Braunschweig, Germany.
| | - Justyna Ogonek
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
| | - Pavankumar R Varanasi
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany; Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover, Germany; German Centre for Infection Research (DZIF), Partnerside Hannover-Braunschweig, Germany.
| | - Sabine Tischer
- Institute of Transfusion Medicine, MHH, Hannover, Germany.
| | - Melanie Bremm
- Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany.
| | - Britta Eiz-Vesper
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover, Germany; Institute of Transfusion Medicine, MHH, Hannover, Germany.
| | - Ulrike Koehl
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover, Germany; Institute for Cellular Therapeutics, MHH, Hannover, Germany.
| | - Eva M Weissinger
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany; Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover, Germany; German Centre for Infection Research (DZIF), Partnerside Hannover-Braunschweig, Germany.
| |
Collapse
|
48
|
Enumeration and characterization of human memory T cells by enzyme-linked immunospot assays. Clin Dev Immunol 2013; 2013:637649. [PMID: 24319467 PMCID: PMC3844203 DOI: 10.1155/2013/637649] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/07/2013] [Indexed: 11/27/2022]
Abstract
The enzyme-linked immunospot (ELISPOT) assay has advanced into a useful and widely applicable tool for the evaluation of T-cell responses in both humans and animal models of diseases and/or vaccine candidates. Using synthetic peptides (either individually or as overlapping peptide mixtures) or whole antigens, total lymphocyte or isolated T-cell subset responses can be assessed either after short-term stimulation (standard ELISPOT) or after their expansion during a 10-day culture (cultured ELISPOT). Both assays detect different antigen-specific immune responses allowing the analysis of effector memory T cells and central memory T cells. This paper describes the principle of ELISPOT assays and discusses their application in the evaluation of immune correlates of clinical interest with a focus on the vaccine field.
Collapse
|
49
|
Fuji S, Kapp M, Einsele H. Monitoring of pathogen-specific T-cell immune reconstitution after allogeneic hematopoietic stem cell transplantation. Front Immunol 2013; 4:276. [PMID: 24062744 PMCID: PMC3775001 DOI: 10.3389/fimmu.2013.00276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/29/2013] [Indexed: 11/13/2022] Open
Abstract
The clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT) has been significantly improved during the last decades with regard to the reduction in organ failure, infection, and severe acute graft-versus-host disease. However, severe complications due to infectious diseases are still one of the major causes of morbidity and mortality after allogeneic HSCT, in particular in patients receiving haploidentical HSCT or cord blood transplant due to a slow and often incomplete immune reconstitution. In order to improve the immune control of pathogens without an increased risk of alloreactivity, adoptive immunotherapy using highly enriched pathogen-specific T cells offers a promising approach. In order to identify patients who are at high risk for infectious diseases, several monitoring assays have been developed with potential for the guidance of immunosuppressive drugs and adoptive immunotherapy in clinical practice. In this article, we aim to give a comprehensive overview regarding current developments of T-cell monitoring techniques focusing on T cells against viruses and fungi. In particular, we will focus on rather simple, fast, non-labor-intensive, cellular assays which could be integrated in routine clinical screening approaches.
Collapse
Affiliation(s)
- Shigeo Fuji
- Department of Internal Medicine II, Division of Hematology, University Hospital of Würzburg , Würzburg , Germany ; Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital , Tokyo , Japan
| | | | | |
Collapse
|
50
|
Jin C, Roen DR, Lehmann PV, Kellermann GH. An Enhanced ELISPOT Assay for Sensitive Detection of Antigen-Specific T Cell Responses to Borrelia burgdorferi. Cells 2013; 2:607-20. [PMID: 24709800 PMCID: PMC3972671 DOI: 10.3390/cells2030607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/30/2013] [Accepted: 09/04/2013] [Indexed: 11/17/2022] Open
Abstract
Lyme Borreliosis is an infectious disease caused by the spirochete Borrelia burgdorferi that is transmitted through the bite of infected ticks. Both B cell-mediated humoral immunity and T cell immunity develop during natural Borrelia infection. However, compared with humoral immunity, the T cell response to Borrelia infection has not been well elucidated. In this study, a novel T cell-based assay was developed and validated for the sensitive detection of antigen-specific T cell response to B. burgdorferi. Using interferon-γ as a biomarker, we developed a new enzyme-linked immunospot method (iSpot LymeTM) to detect Borrelia antigen-specific effector/memory T cells that were activated in vivo by exposing them to recombinant Borrelia antigens ex vivo. To test this new method as a potential laboratory diagnostic tool, we performed a clinical study with a cohort of Borrelia positive patients and healthy controls. We demonstrated that the iSpot Lyme assay has a significantly higher specificity and sensitivity compared with the Western Blot assay that is currently used as a diagnostic measure. A comprehensive evaluation of the T cell response to Borrelia infection should, therefore, provide new insights into the pathogenesis, diagnosis, treatment and monitoring of Lyme disease.
Collapse
Affiliation(s)
- Chenggang Jin
- Department of Immunology, Pharmasan Labs, Inc., Osceola, WI 54020, USA.
| | - Diana R Roen
- Department of Immunology, Pharmasan Labs, Inc., Osceola, WI 54020, USA.
| | - Paul V Lehmann
- Cellular Technology Limited, Shaker Heights, OH 44122, USA.
| | | |
Collapse
|