1
|
Hu L, Li X, Li C, Wang L, Han L, Ni W, Zhou P, Hu S. Characterization of a novel multifunctional glycoside hydrolase family in the metagenome-assembled genomes of horse gut. Gene 2024; 927:148758. [PMID: 38977109 DOI: 10.1016/j.gene.2024.148758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/29/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
The gut microbiota is a treasure trove of carbohydrate-active enzymes (CAZymes). To explore novel and efficient CAZymes, we analyzed the 4,142 metagenome-assembled genomes (MAGs) of the horse gut microbiota and found the MAG117.bin13 genome (Bacteroides fragilis) contains the highest number of polysaccharide utilisation loci sites (PULs), indicating its high capability for carbohydrate degradation. Bioinformatics analysis indicate that the PULs region of the MAG117.bin13 genome encodes many hypothetical proteins, which are important sources for exploring novel CAZymes. Interestingly, we discovered a hypothetical protein (595 amino acids). This protein exhibits potential CAZymes activity and has a lower similarity to CAZymes, we named it BfLac2275. We purified the protein using prokaryotic expression technology and studied its enzymatic function. The hydrolysis experiment of the polysaccharide substrate showed that the BfLac2275 protein has the ability to degrade α-lactose (156.94 U/mg), maltose (92.59 U/mg), raffinose (86.81 U/mg), and hyaluronic acid (5.71 U/mg). The enzyme activity is optimal at pH 5.0 and 30 ℃, indicating that the hypothetical protein BfLac2275 is a novel and multifunctional CAZymes in the glycoside hydrolases (GHs). These properties indicate that BfLac2275 has broad application prospects in many fields such as plant polysaccharide decomposition, food industry, animal feed additives and enzyme preparations. This study not only serves as a reference for exploring novel CAZymes encoded by gut microbiota but also provides an example for further studying the functional annotation of hypothetical genes in metagenomic assembly genomes.
Collapse
Affiliation(s)
- Lingling Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
| | - Lin Han
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China.
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
2
|
Bhattacharjee M, Manoharan S, Sathisaran U, Tamatam A, Perumal E. MAO inhibiting phytochemicals from the roots of Glycyrrhiza glabra L. J Biomol Struct Dyn 2024; 42:3887-3905. [PMID: 37243713 DOI: 10.1080/07391102.2023.2216298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Glycyrrhizin, a natural compound that is substantially present in Glycyrrhiza glabra L. (Gg) root. Monoamine oxidase B (MAOB) inhibitor is used for the treatment of several important neuropsychological diseases like Parkinson's disease. Gg is known to possess psychoactive properties which relates to its MAO inhibitory potential. This study sought to determine the MAO inhibition property of glycyrrhizin from Gg root extract. The Aqueous extract containing glycyrrhizin was isolated from the root of Gg and characterized using TLC, HPLC, and LC-MS techniques. In silico docking was conducted using Extra precision Glide 2018, Schrödinger docking suite. In addition, the pharmacokinetic properties of the compounds were predicted using SwissADME. The binding energies of the glycyrrhizin correlated well with their in vitro MAO inhibitory potential. Glycyrrhizin exhibited potent inhibitory activity towards MAOB whereas, an aqueous extract of Gg root inhibits both A and B forms of MAO enzyme. Further, molecular docking and molecular dynamics simulation showed that liquiritigenin and methoxyglabridin showed higher stability than other inhibitor compounds from the Gg root extract. These observations suggest that the phytochemicals from the Gg root extract have potent MAO inhibition properties, which can be exploited for the treatment of neurodegenerative disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Monojit Bhattacharjee
- Defence Research and Development Organisation, Bharathiar University Center for Life Sciences (DRDO-BU CLS), Bharathiar University Campus, Coimbatore, Tamil Nadu, India
| | - Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Umamaheswari Sathisaran
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, India
| | - Anand Tamatam
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore, India
| | - Ekambaram Perumal
- Defence Research and Development Organisation, Bharathiar University Center for Life Sciences (DRDO-BU CLS), Bharathiar University Campus, Coimbatore, Tamil Nadu, India
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
4
|
Lucca MS, Bustamante-Filho IC, Ulguim RR, Gianluppi RDF, Evaristo JAM, Nogueira FCS, Timmers LFSM, Mellagi APG, Wentz I, Bortolozzo FP. Proteomic analysis of boar seminal plasma: Putative markers for fertility based on capacity of semen preservation at 17°C. Mol Reprod Dev 2024; 91:e23735. [PMID: 38282317 DOI: 10.1002/mrd.23735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/20/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024]
Abstract
Boar seminal plasma (SP) proteins were associated with differences on sperm resistance to cooling at 17°C. However, information about seminal plasma proteins in boars classified by capacity of semen preservation and in vivo fertility remains lacking. Thus, the objective was to evaluate the SP proteome in boars classified by capacity of semen preservation and putative biomarkers for fertility. The ejaculates from high-preservation (HP) showed higher progressive motility during all 5 days than the low-preservation (LP) boars. There was no difference for farrowing rate between ejaculates from LP (89.7%) and HP boars (88.4%). The LP boars presented lower total piglets born (14.0 ± 0.2) than HP (14.8 ± 0.2; p < 0.01). A total of 257 proteins were identified, where 184 were present in both classes of boar, and 41 and 32 were identified only in LP and HP boars, respectively. Nine proteins were differently expressed: five were more abundant in HP (SPMI, ZPBP1, FN1, HPX, and C3) and four in LP boars (B2M, COL1A1, NKX3-2, and MPZL1). The HP boars had an increased abundance of SP proteins related to sperm resistance and fecundation process which explains the better TPB. LP boars had a higher abundance of SP proteins associated with impaired spermatogenesis.
Collapse
Affiliation(s)
- Matheus S Lucca
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Rafael R Ulguim
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael D F Gianluppi
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| | - Joseph A M Evaristo
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luís F S M Timmers
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Brazil
| | - Ana P G Mellagi
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ivo Wentz
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando P Bortolozzo
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Song F, Li C, Zhang N, He X, Yang H, Yan Z, Tian H, Huang K. Alkalihalobacillus clausii PA21 transcriptome profiling and functional analysis revealed the metabolic pathway involved in glycoalkaloids degradation. Int J Biol Macromol 2023; 242:124682. [PMID: 37164133 DOI: 10.1016/j.ijbiomac.2023.124682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Glycoalkaloids (GAs), including α-solanine and α-chaconine, are secondary metabolites found in potato, which are toxic to higher animals. In a previous study, Alkalihalobacillus clausii PA21 showed the capacity to degrade GAs. Herein, the transcriptome response of PA21 to α-solanine or α-chaconine was evaluated. In total, 3170 and 2783 differential expressed genes (DEGs) were found in α-solanine- and α-chaconine-treated groups, respectively, with most DEGs upregulated. Moreover, GAs activated transmembrane transport, carbohydrate metabolism, transcription, quorum sensing, and bacterial chemotaxis in PA21 to withstand GA-induced stress and promote GAs degradation. Furthermore, qRT-PCR analysis confirmed the upregulation of degrading enzymes and components involved in GA degradation in PA21. In addition, the GAs-degrading enzymes were heterologous expressed, purified, and incubated with GAs to analyze the degradation products. The results showed that α-solanine was degraded to β1-solanine, β2-solanine, γ-solanine, and solanidine by β-glucosidase, α-rhamnosidase, and β-galactosidase. Meanwhile, α-chaconine was degraded to β1-chaconine, β2-chaconine, γ-chaconine, and solanidine by β-glucosidase and α-rhamnosidase. Overall, the molecular mechanism underlying GAs degradation by PA21 was revealed by RNAseq combined with protein expression and function studies, thus providing the basis for the development of engineered bacteria that can efficiently degrade GAs to promote their application in the control of GAs in potatoes.
Collapse
Affiliation(s)
- Fei Song
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; College of Biological Science and Engineering, Xingtai University, Xingtai, Hebei 054001, China
| | - Chen Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Na Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China; College of Biochemistry and Environmental Engineering, Baoding University, Baoding, Hebei 071000, China
| | - Xiaoyun He
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongru Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; College of Public Health, Hebei University, Baoding, Hebei 071000, China
| | - Ziru Yan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.
| | - Kunlun Huang
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Guo F, Islam MA, Lv C, Jin X, Sun L, Zhao K, Lu J, Yan R, Zhang W, Shi Y, Li N, Sun D. Insights into the Bioinformatics and Transcriptional Analysis of the Elongator Complexes ( ELPs) Gene Family of Wheat: TaELPs Contribute to Wheat Abiotic Stress Tolerance and Leaf Senescence. PLANTS (BASEL, SWITZERLAND) 2023; 12:952. [PMID: 36840300 PMCID: PMC9961319 DOI: 10.3390/plants12040952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Elongator complexes (ELPs) are the protein complexes that promote transcription through histone acetylation in eukaryotic cells and interact with elongating RNA polymerase II (RNAPII). ELPs' role in plant growth and development, signal transduction, and response to biotic and abiotic stresses have been confirmed in model plants. However, the functions of the wheat ELP genes are not well documented. The present study identified 18 members of the ELPs from the wheat genome with a homology search. Further, bioinformatics and transcription patterns in response to different stress conditions were analyzed to dissect their potential regulatory mechanisms in wheat. Gene duplication analysis showed that 18 pairs of ELP paralogous genes were derived from segmental duplication, which was divided into six clades by protein phylogenetic and cluster analysis. The orthologous analysis of wheat TaELP genes showed that TaELP genes may have evolved from orthologous genes of other plant species or closely related plants. Moreover, a variety of cis-acting regulatory elements (CAREs) related to growth and development, hormone response, and biotic and abiotic stresses were identified in the TaELPs' promoter regions. The qRT-PCR analysis showed that the transcription of TaELPs was induced under hormone, salt, and drought stress and during leaf senescence. The TaELP2 gene was silenced with BSMV-VIGS, and TaELP2 was preliminarily verified to be involved in the regulation of wheat leaf senescence. Overall, TaELP genes might be regulated by hormone signaling pathways and response to abiotic stress and leaf senescence, which could be investigated further as potential candidate genes for wheat abiotic stress tolerance and yield improvement.
Collapse
Affiliation(s)
- Feng Guo
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Md Ashraful Islam
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Chenxu Lv
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Xiujuan Jin
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Lili Sun
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Kai Zhao
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Juan Lu
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Rongyue Yan
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Wenjun Zhang
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Yugang Shi
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Ning Li
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Daizhen Sun
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
7
|
Modanwal S, Mishra N. Identification of common genes in obesity and cancer through network interaction and targeting those genes by virtual screening approach. J Biomol Struct Dyn 2023; 41:1109-1127. [PMID: 34961392 DOI: 10.1080/07391102.2021.2020169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Obesity may have an effect on cancer outcomes, resulting in global inequalities in cancer survival and death. Microarray data analysis was done to identify differentially expressed genes (DEGs) in obese and cancer patients. Total 1977 differentially expressed genes among obesity and gastric cancer, breast cancer, pancreatic cancer, and colorectal cancer were used to build a gene interaction network, which was then analyzed by using Cytoscape software. It has been identified that JUN, CXCL12, and LEP genes show a higher degree and stress, and play an important role in obesity and cancer progression. Further, CXCL12 and LEP were taken for virtual screening study with coumarin and its derivatives to develop a drug against obesity and cancer. The interactions of CXCL12 and LEP with coumarins were studied by molecular docking and it shows good interaction as well as docking score as compared to the standard one. The ADME properties were predicted to check the drug-likeness activity of coumarins and the most of the drug-likeness activities are in admire range. The Binding free energy of the docked complex was calculated by performing MM-GBSA. The molecular docking, ADME properties prediction, and MM-GBSA was performed on Maestro 12.6. The top docked score compounds were further subjected to molecular dynamic simulation to check the stability by using GROMACS. The MM-PBSA study was performed to calculate the binding energy components as well as the energy contributions of specific amino acids. The resultant compounds could be a potent anti-obesity and anti-cancer drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shristi Modanwal
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, U.P, India
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, U.P, India
| |
Collapse
|
8
|
Lactobacillus for ribosome peptide editing cancer. Clin Transl Oncol 2023; 25:1522-1544. [PMID: 36694080 PMCID: PMC9873400 DOI: 10.1007/s12094-022-03066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/24/2022] [Indexed: 01/25/2023]
Abstract
This study reviews newly discovered insect peptide point mutations as new possible cancer research targets. To interpret newly discovered peptide point mutations in insects as new possible cancer research targets, we focused on the numerous peptide changes found in the 'CSP' family on the sex pheromone gland of the female silkworm moth Bombyx mori. We predict that the Bombyx peptide modifications will have a significant effect on cancer CUP (cancers of unknown primary) therapy and that bacterial peptide editing techniques, specifically Lactobacillus combined to CRISPR, will be used to regulate ribosomes and treat cancer in humans.
Collapse
|
9
|
Lang D, Wang X, Liu C, Geng W, Irwin DM, Chen S, Li C, Yu L, Xiao H. Birth-and-death evolution of ribonuclease 9 genes in Cetartiodactyla. SCIENCE CHINA LIFE SCIENCES 2022; 66:1170-1182. [PMID: 36443512 DOI: 10.1007/s11427-022-2195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
RNase9 plays a reproductive function and has been recognized as an important member of the ribonuclease (RNase) A superfamily, a gene family that is widely used as a model for molecular evolutionary studies. Here, we identified 178 RNase9 genes from 95 Cetartiodactyla species that represent all four lineages and 21 families of this clade. Unexpectedly, RNase9 experienced an evolutionary scenario of "birth and death" in Ruminantia, and expression analyses showed that duplicated RNase9A and RNase9B genes are expressed in reproductive tissues (epididymis, vas deferens or prostate). This expression pattern combined with the estimate that these genes duplicated during the middle Eocene, a time when Ruminantia become a successful lineage, suggests that the RNase9 gene duplication might have been advantageous for promoting sperm motility and male fertility as an adaptation to climate seasonality changes of this period. In contrast, all RNase9 genes were lost in the Cetacean lineage, which might be associated with their high levels of prostatic lesions and lower reproductive rates as adaptations to a fully aquatic environment and a balance to the demands of ocean resources. This study reveals a complex and intriguing evolutionary history and functional divergence for RNase9 in Cetartiodactyla, providing new insights into the evolution of the RNaseA superfamily and molecular mechanisms for organismal adaptations to the environment.
Collapse
Affiliation(s)
- Datian Lang
- School of Life Sciences, Yunnan University, Kunming, 650500, China
- Biodiversity Research Center of Wumeng Mountain, Department of Agronomy and Life Science, Zhaotong University, Zhaotong, 657000, China
| | - Xiaoping Wang
- School of Life Sciences, Yunnan University, Kunming, 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Chunbing Liu
- School of Life Sciences, Yunnan University, Kunming, 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Weihang Geng
- School of Life Sciences, Yunnan University, Kunming, 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Shanyuan Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Chunqing Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Li Yu
- School of Life Sciences, Yunnan University, Kunming, 650500, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| | - Heng Xiao
- School of Life Sciences, Yunnan University, Kunming, 650500, China.
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
10
|
A SNP of the COX4I2 gene associated with environmental adaptation in Chinese cattle. Gene 2022; 851:147043. [DOI: 10.1016/j.gene.2022.147043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
|
11
|
Polino AJ, Miller JJ, Bhakat S, Mukherjee S, Bobba S, Bowman GR, Goldberg DE. The nepenthesin insert in the Plasmodium falciparum aspartic protease plasmepsin V is necessary for enzyme function. J Biol Chem 2022; 298:102355. [PMID: 35952758 PMCID: PMC9478907 DOI: 10.1016/j.jbc.2022.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022] Open
Abstract
Plasmepsin V (PM V) is a pepsin-like aspartic protease essential for growth of the malarial parasite Plasmodium falciparum. Previous work has shown PM V to be an endoplasmic reticulum-resident protease that processes parasite proteins destined for export into the host cell. Depletion or inhibition of the enzyme is lethal during asexual replication within red blood cells as well as during the formation of sexual stage gametocytes. The structure of the Plasmodium vivax PM V has been characterized by X-ray crystallography, revealing a canonical pepsin fold punctuated by structural features uncommon to secretory aspartic proteases; however, the function of this unique structure is unclear. Here, we used parasite genetics to probe these structural features by attempting to rescue lethal PM V depletion with various mutant enzymes. We found an unusual nepenthesin 1-type insert in the PM V gene to be essential for parasite growth and PM V activity. Mutagenesis of the nepenthesin insert suggests that both its amino acid sequence and one of the two disulfide bonds that undergird its structure are required for the insert's role in PM V function. Furthermore, molecular dynamics simulations paired with Markov state modeling suggest that mutations to the nepenthesin insert may allosterically affect PM V catalysis through multiple mechanisms. Taken together, these data provide further insights into the structure of the P. falciparum PM V protease.
Collapse
Affiliation(s)
- Alexander J Polino
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin J Miller
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Soumendranath Bhakat
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sumit Mukherjee
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suhas Bobba
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
12
|
Zhou Y, Ke F, Chen L, Lu Y, Zhu L, Chen X. Enhancing regioselectivity of sucrose phosphorylase by loop engineering for glycosylation of L-ascorbic acid. Appl Microbiol Biotechnol 2022; 106:4575-4586. [PMID: 35739344 DOI: 10.1007/s00253-022-12030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
Sucrose phosphorylase (SPase) has a remarkable capacity to synthesize numerous glucosides from abundantly available sucrose under mild conditions but suffers from specificity and regioselectivity issues. In this study, a loop engineering strategy was introduced to enhance the regioselectivity and substrate specificity of SPase for the efficient synthesis of 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G) via L-ascorbic acid (L-AA). P134, L341, and L343 were identified as "hotspots" for modulating the flexibility of loops, which significantly influenced the H-bonding network of L-AA in the active site, as well as the entrance of the substrate channel, thereby altering the regioselectivity and substrate specificity. Finally, the mutant L341V/L343F, with near-perfect control of the selectivity synthesis of the 2-OH group of L-AA (> 99%), was obtained. The AA-2G production by the mutant reached 244 g L-1 in a whole-cell biotransformation system, and the conversion rate of L-AA reached 64%, which is the highest level reported to date. Our work also provides a successful loop engineering case for modulating the regioselectivity and specificity of sucrose phosphorylase. KEY POINTS: • "Hotspots" were identified in the flexible loops of sucrose phosphorylase. • Mutants exhibited improved regioselectivity and specificity against L-ascorbic acid. • Synthesized AA-2G with high yield and regioselectivity by whole-cell of mutant.
Collapse
Affiliation(s)
- Yaoyao Zhou
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Feifei Ke
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Luyi Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Yuele Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China.
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| |
Collapse
|
13
|
Ezebuo FC, Uzochukwu IC. Drug repurposing for schistosomiasis: molecular docking and dynamics investigations. J Biomol Struct Dyn 2022; 40:995-1009. [DOI: 10.1080/07391102.2020.1820382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Fortunatus C. Ezebuo
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Ikemefuna C. Uzochukwu
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| |
Collapse
|
14
|
Zhou LJ, Guo LB, Wei W, Lv ZX, Zhang YW. A Novel Chondroitin AC Lyase With Broad Substrate Specificity From Pedobacter rhizosphaerae: Cloning, Expression, and Characterization. Front Bioeng Biotechnol 2022; 9:808872. [PMID: 35004658 PMCID: PMC8733870 DOI: 10.3389/fbioe.2021.808872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/03/2021] [Indexed: 12/01/2022] Open
Abstract
Chondroitin AC lyase (ChSaseAC) is one of the essential polysaccharides lyases in low molecular chondroitin sulfate production. In this work, a novel PrChSaseAC from Pedobacter rhizosphaerae was successfully cloned, expressed in Escherichia coli. After optimizing the induction, the recombinant PrChSaseAC could be expressed efficiently at 0.1 mM IPTG, 25°C, and 12 h induction. Then, it was purified with Ni-NTA affinity chromatography. The characterization of the purified PrChSaseAC showed that it had high specific activity and good storage stability, which would favor the production of low molecular weight chondroitin sulfate. It also displayed activity toward chondroitin sulfate C and hyaluronic acid. PrChSaseAC had the highest activity at pH 7.5, 37°C, 10 mM Ca2+, and 5 mg/ml of chondroitin sulfate A. Molecular docking of substrate and enzyme showed the interactions between the enzyme and substrate; it revealed that the enzyme showed high activity to CS-A and hyaluronic acid, but lower activity to CS-C attributed to the structure of the binding pocket. The high stability and specific activity of the enzyme will benefit the industrial production or clinical treatment.
Collapse
Affiliation(s)
- Li-Jian Zhou
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Li-Bin Guo
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Wei Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, China.,Zhongshiduqing Biotechnology Co. Ltd., Heze, China
| | - Zhi-Xiang Lv
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
In Silico and Transcription Analysis of Trehalose-6-phosphate Phosphatase Gene Family of Wheat: Trehalose Synthesis Genes Contribute to Salinity, Drought Stress and Leaf Senescence. Genes (Basel) 2021; 12:genes12111652. [PMID: 34828258 PMCID: PMC8618227 DOI: 10.3390/genes12111652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Trehalose-6-phosphate phosphatase (TPP) genes take part in trehalose metabolism and also in stress tolerance, which has been well documented in many species but poorly understood in wheat. The present research has identified a family of 31 TPP genes in Triticum aestivum L. through homology searches and classified them into five clades by phylogenetic tree analysis, providing evidence of an evolutionary status with Hordeum vulgare, Brachypodium distachyon and Oryza sativa. The exon-intron distribution revealed a discrete evolutionary history and projected possible gene duplication occurrences. Furthermore, different computational approaches were used to analyze the physical and chemical properties, conserved domains and motifs, subcellular and chromosomal localization, and three-dimensional (3-D) protein structures. Cis-regulatory elements (CREs) analysis predicted that TaTPP promoters consist of CREs related to plant growth and development, hormones, and stress. Transcriptional analysis revealed that the transcription levels of TaTPPs were variable in different developmental stages and organs. In addition, qRT-PCR analysis showed that different TaTPPs were induced under salt and drought stresses and during leaf senescence. Therefore, the findings of the present study give fundamental genomic information and possible biological functions of the TaTPP gene family in wheat and will provide the path for a better understanding of TaTPPs involvement in wheat developmental processes, stress tolerance, and leaf senescence.
Collapse
|
16
|
Leipart V, Montserrat-Canals M, Cunha ES, Luecke H, Herrero-Galán E, Halskau Ø, Amdam GV. Structure prediction of honey bee vitellogenin: a multi-domain protein important for insect immunity. FEBS Open Bio 2021; 12:51-70. [PMID: 34665931 PMCID: PMC8727950 DOI: 10.1002/2211-5463.13316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022] Open
Abstract
Vitellogenin (Vg) has been implicated as a central protein in the immunity of egg‐laying animals. Studies on a diverse set of species suggest that Vg supports health and longevity through binding to pathogens. Specific studies of honey bees (Apis mellifera) further indicate that the vitellogenin (vg) gene undergoes selection driven by local pathogen pressures. Determining the complete 3D structure of full‐length Vg (flVg) protein will provide insights regarding the structure–function relationships underlying allelic variation. Honey bee Vg has been described in terms of function, and two subdomains have been structurally described, while information about the other domains is lacking. Here, we present a structure prediction, restrained by experimental data, of flVg from honey bees. To achieve this, we performed homology modeling and used AlphaFold before using a negative‐stain electron microscopy map to restrict, orient, and validate our 3D model. Our approach identified a highly conserved Ca2+‐ion‐binding site in a von Willebrand factor domain that might be central to Vg function. Thereafter, we used rigid‐body fitting to predict the relative position of high‐resolution domains in a flVg model. This mapping represents the first experimentally validated full‐length protein model of a Vg protein and is thus relevant for understanding Vg in numerous species. Our results are also specifically relevant to honey bee health, which is a topic of global concern due to rapidly declining pollinator numbers.
Collapse
Affiliation(s)
- Vilde Leipart
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | | | - Eva S Cunha
- Norwegian Center for Molecular Medicine, University of Oslo, Norway
| | - Hartmut Luecke
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Elías Herrero-Galán
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Norway
| | - Gro V Amdam
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
17
|
Mafi A, Kim SK, Chou KC, Güthrie B, Goddard WA. Predicted Structure of Fully Activated Tas1R3/1R3' Homodimer Bound to G Protein and Natural Sugars: Structural Insights into G Protein Activation by a Class C Sweet Taste Homodimer with Natural Sugars. J Am Chem Soc 2021; 143:16824-16838. [PMID: 34585929 DOI: 10.1021/jacs.1c08839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Tas1R3 G protein-coupled receptor constitutes the main component of sweet taste sensory response in humans via forming a heterodimer with Tas1R2 or a homodimer with Tas1R3. The Tas1R3/1R3' homodimer serves as a low-affinity sweet taste receptor, stimulating gustducin G protein (GGust) signaling in the presence of a high concentration of natural sugars. This provides an additional means to detect the taste of natural sugars, thereby differentiating the flavors between natural sugars and artificial sweeteners. We report here the predicted 3D structure of active state Tas1R3/1R3' homodimer complexed with heterotrimeric GGust and sucrose. We discovered that the GGust makes ionic anchors to intracellular loops 1 and 2 of Tas1R3 while the Gα-α5 helix engages the cytoplasmic region extensively through salt bridge and hydrophobic interactions. We show that in the activation of this complex the Venus flytrap domains of the homodimer undergo a remarkable twist up to ∼100° rotation around the vertical axis to adopt a closed-closed conformation while the intracellular region relaxes to an open-open conformation. We find that binding of sucrose to the homodimer stabilizes a preactivated conformation with a largely open intracellular region that recruits and activates the GGust. Upon activation, the Gα subunit spontaneously opens up the nucleotide-binding site, making nucleotide exchange facile for signaling. This activation of GGust promotes the interdomain twist of the Venus flytrap domains. These structures and transformations could potentially be a basis for the design of new sweeteners with higher activity and less unpleasant flavors.
Collapse
Affiliation(s)
- Amirhossein Mafi
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Keng C Chou
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Brian Güthrie
- Cargill Global Food Research, Wayzata, Minnesota 55391, United States
| | - William A Goddard
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
18
|
Helmick H, Hartanto C, Bhunia A, Liceaga A, Kokini JL. Validation of Bioinformatic Modeling for the Zeta Potential of Vicilin, Legumin, and Commercial Pea Protein Isolate. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09686-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Tee YN, Kumar PV, Maki MAA, Elumalai M, Rahman SAKMEH, Cheah SC. Mucoadhesive Low Molecular Chitosan Complexes to Protect rHuKGF from Proteolysis: In-vitro Characterization and FHs 74 Int Cell Proliferation Studies. Curr Pharm Biotechnol 2021; 22:969-982. [PMID: 33342408 DOI: 10.2174/1389201021666201218124450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/15/2020] [Accepted: 10/24/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Recombinant Keratinocyte Growth Factor (rHuKGF) is a therapeutic protein used widely in oral mucositis after chemotherapy in various cancers, stimulating lung morphogenesis and gastrointestinal tract cell proliferation. In this research study, chitosan-rHuKGF polymeric complex was implemented to improve the stability of rHuKGF and used as rejuvenation therapy for the treatment of oral mucositis in cancer patients. OBJECTIVE Complexation of rHuKGF with mucoadhesive low molecular weight chitosan to protect rHuKGF from proteolysis and investigate the effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells. METHODS The interaction between chitosan and rHuKGF was studied by molecular docking. Malvern ZetaSizer Nano Zs and Fourier-Transform Infrared spectroscopy (FTIR) tests were carried out to characterize the chitosan-rHuKGF complex. In addition, SDS-PAGE was performed to investigate the interaction between chitosan-rHuKGF complex and pepsin. The effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells was studied by MTT assay. RESULTS Chitosan-rHuKGF complex was formed through the hydrogen bonding proven by the docking studies. A stable chitosan-rHuKGF complex was formed at pH 4.5 and was protected from proteolysis and assessed by SDS PAGE. According to the MTT assay results, chitosan-rHuKGF complex increased the cell proliferation rate of FHs 74 Int cells. CONCLUSION The developed complex improved the stability and the biological function of rHuKGF.
Collapse
Affiliation(s)
- Yi N Tee
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras 56000 Kuala Lumpur, Malaysia
| | - Palanirajan V Kumar
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras 56000 Kuala Lumpur, Malaysia
| | - Marwan A A Maki
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras 56000 Kuala Lumpur, Malaysia
| | - Manogaran Elumalai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras 56000 Kuala Lumpur, Malaysia
| | - Shiek A K M E H Rahman
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras 56000 Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine & Health Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Helmick H, Turasan H, Yildirim M, Bhunia A, Liceaga A, Kokini JL. Cold Denaturation of Proteins: Where Bioinformatics Meets Thermodynamics to Offer a Mechanistic Understanding: Pea Protein As a Case Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6339-6350. [PMID: 34029090 DOI: 10.1021/acs.jafc.0c06558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein structure can be altered with heat, but models which predict denaturation show that globular proteins also spontaneously unfold at low temperatures through cold denaturation. By an analysis of the primary structure of pea protein using bioinformatic modeling, a mechanism of pea protein cold denaturation is proposed. Pea protein is then fractionated into partially purified legumin and vicilin components, suspended in ethanol, and subjected to low temperatures (-10 to -20 °C). The structural characterizations of the purified fractions are conducted through FTIR, ζ potential, dynamic light scattering, and oil binding, and these are compared to the results of commercial protein isolates. The observed structural changes suggest that pea protein undergoes changes in structure as the result of low-temperature treatments, which could lead to innovative industrial processing techniques for functionalization by low-temperature processing.
Collapse
Affiliation(s)
- Harrison Helmick
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| | - Hazal Turasan
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| | - Merve Yildirim
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| | - Arun Bhunia
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| | - Andrea Liceaga
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| | - Jozef L Kokini
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins. Int J Mol Sci 2021; 22:ijms22052647. [PMID: 33808029 PMCID: PMC7961639 DOI: 10.3390/ijms22052647] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and functions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share similarities with transcriptional regulators and have positively charged electrostatic patches, which may indicate that they have previously unanticipated nucleic acid binding properties. Intrinsic dynamics analysis of Lim domains suggest that only Lim1 has similar internal dynamics properties, unlike Lim2/3. Furthermore, we analyzed protein expression and mutational frequency in various malignancies, as well as mapped protein-protein interaction networks they are involved in. Overall, our comprehensive bioinformatic analysis suggests that these proteins may play important roles in mediating protein-protein and protein-nucleic acid interactions.
Collapse
|
22
|
Ben Khalaf N, Pham S, Romeo G, Abdelghany S, Intagliata S, Sedillo P, Salerno L, Gonzales J, Fathallah DM, Perkins DJ, Hurwitz I, Pittalà V. A computer-aided approach to identify novel Leishmania major protein disulfide isomerase inhibitors for treatment of leishmaniasis. J Comput Aided Mol Des 2021; 35:297-314. [PMID: 33615401 DOI: 10.1007/s10822-021-00374-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022]
Abstract
Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania and transmitted by the bite of a sand fly. To date, most available drugs for treatment are toxic and beyond the economic means of those affected by the disease. Protein disulfide isomerase (PDI) is a chaperone protein that plays a major role in the folding of newly synthesized proteins, specifically assisting in disulfide bond formation, breakage, or rearrangement in all non-native proteins. In previous work, we demonstrated that Leishmania major PDI (LmPDI) has an essential role in pathogen virulence. Furthermore, inhibition of LmPDI further blocked parasite infection in macrophages. In this study, we utilized a computer-aided approach to design a series of LmPDI inhibitors. Fragment-based virtual screening allowed for the understanding of the inhibitors' modes of action on LmPDI active sites. The generated compounds obtained after multiple rounds of virtual screening were synthesized and significantly inhibited target LmPDI reductase activity and were shown to decrease in vitro parasite growth in human monocyte-derived macrophages. This novel cheminformatics and synthetic approach led to the identification of a new series of compounds that might be optimized into novel drugs, likely more specific and less toxic for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Noureddine Ben Khalaf
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, King Fahd Chair for Health Biotechnology, Arabian Gulf University, Road 2904 Building 293, Manama, 329, Kingdom of Bahrain.
| | - Susie Pham
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Giuseppe Romeo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Sara Abdelghany
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Sebastiano Intagliata
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Peter Sedillo
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Jessica Gonzales
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Dahmani M Fathallah
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, King Fahd Chair for Health Biotechnology, Arabian Gulf University, Road 2904 Building 293, Manama, 329, Kingdom of Bahrain
| | - Douglas J Perkins
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ivy Hurwitz
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
23
|
Jindani S, Ganguly B. Exploiting the role of stereoelectronic effects to design the antagonists of the human complement C3a receptor. NEW J CHEM 2021. [DOI: 10.1039/d1nj00730k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stereoelectronic effects are crucial in governing the conformational behaviour of small molecules bearing heterocyclic rings adjacent to amides.
Collapse
Affiliation(s)
- Sana Jindani
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility)
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar 364002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility)
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar 364002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
24
|
Gao LW, Zhu HT, Liu CY, Lv ZX, Fan XM, Zhang YW. A highly active heparinase I from Bacteroides cellulosilyticus: Cloning, high level expression, and molecular characterization. PLoS One 2020; 15:e0240920. [PMID: 33079966 PMCID: PMC7575093 DOI: 10.1371/journal.pone.0240920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
As one of the most extensively studied glycosaminoglycan lyases, heparinase I has been used in producing low or ultra-low molecular weight heparin. Its' important applications are to neutralize the heparin in human blood and analyze heparin structure in the clinic. However, the low productivity and activity of the enzyme have greatly hindered its applications. In this study, a novel Hep-I from Bacteroides cellulosilyticus (BcHep-I) was successfully cloned and heterologously expressed in E. coli BL21 (DE3) as a soluble protein. The molecular mass and isoelectric point (pI) of the enzyme are 44.42 kDa and 9.02, respectively. And the characterization of BcHep-I after purified with Ni-NTA affinity chromatography suggested that it is a mesophilic enzyme. BcHep-I can be activated by 1 mM Ca2+, Mg2+, and Mn2+, while severely inhibited by Zn2+, Co2+, and EDTA. The specific activity of the enzyme was 738.3 U·mg-1 which is the highest activity ever reported. The Km and Vmax were calculated as 0.17 mg·mL-1 and 740.58 U·mg-1, respectively. Besides, the half-life of 300 min at 30°C showed BcHep-I has practical applications. Homology modeling and substrate docking revealed that Gln15, Lys74, Arg76, Lys104, Arg149, Gln208, Tyr336, Tyr342, and Lys338 were mainly involved in the substrate binding of Hep-I, and 11 hydrogen bonds were formed between heparin and the enzyme. These results indicated that BcHep-I with high activity has great potential applications in the industrial production of heparin, especially in the clinic to neutralize heparin.
Collapse
Affiliation(s)
- Li-Wei Gao
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, China
| | - Hong-Tao Zhu
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, China
| | - Cai-Yun Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Zhi-Xiang Lv
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, China
| | - Xiao-Man Fan
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
- * E-mail:
| |
Collapse
|
25
|
Reidenbach AG, Mesleh MF, Casalena D, Vallabh SM, Dahlin JL, Leed AJ, Chan AI, Usanov DL, Yehl JB, Lemke CT, Campbell AJ, Shah RN, Shrestha OK, Sacher JR, Rangel VL, Moroco JA, Sathappa M, Nonato MC, Nguyen KT, Wright SK, Liu DR, Wagner FF, Kaushik VK, Auld DS, Schreiber SL, Minikel EV. Multimodal small-molecule screening for human prion protein binders. J Biol Chem 2020; 295:13516-13531. [PMID: 32723867 PMCID: PMC7521658 DOI: 10.1074/jbc.ra120.014905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Prion disease is a rapidly progressive neurodegenerative disorder caused by misfolding and aggregation of the prion protein (PrP), and there are currently no therapeutic options. PrP ligands could theoretically antagonize prion formation by protecting the native protein from misfolding or by targeting it for degradation, but no validated small-molecule binders have been discovered to date. We deployed a variety of screening methods in an effort to discover binders of PrP, including 19F-observed and saturation transfer difference (STD) NMR spectroscopy, differential scanning fluorimetry (DSF), DNA-encoded library selection, and in silico screening. A single benzimidazole compound was confirmed in concentration-response, but affinity was very weak (Kd > 1 mm), and it could not be advanced further. The exceptionally low hit rate observed here suggests that PrP is a difficult target for small-molecule binders. Whereas orthogonal binder discovery methods could yield high-affinity compounds, non-small-molecule modalities may offer independent paths forward against prion disease.
Collapse
Affiliation(s)
- Andrew G Reidenbach
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael F Mesleh
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Dominick Casalena
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - Sonia M Vallabh
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Prion Alliance, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Jayme L Dahlin
- Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alison J Leed
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alix I Chan
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Dmitry L Usanov
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jenna B Yehl
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Christopher T Lemke
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Arthur J Campbell
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rishi N Shah
- Undergraduate Research Opportunities Program (UROP), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Om K Shrestha
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - Joshua R Sacher
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Victor L Rangel
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jamie A Moroco
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Murugappan Sathappa
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Maria Cristina Nonato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kong T Nguyen
- Artificial Intelligence Molecular Screen (AIMS) Awards Program, Atomwise, San Francisco, California, USA
| | - S Kirk Wright
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - David R Liu
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Florence F Wagner
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Virendar K Kaushik
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Douglas S Auld
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Eric Vallabh Minikel
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Prion Alliance, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
26
|
Ezebuo FC, Uzochukwu IC. Schistosomal Sulfotransferase Interaction with Oxamniquine Involves Hybrid Mechanism of Induced-fit and Conformational Selection. Curr Comput Aided Drug Des 2020; 16:451-459. [DOI: 10.2174/1573409915666190708103132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/25/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022]
Abstract
Background:
Sulfotransferase family comprises key enzymes involved in drug metabolism. Oxamniquine
is a pro-drug converted into its active form by schistosomal sulfotransferase. The conformational
dynamics of side-chain amino acid residues at the binding site of schistosomal sulfotransferase towards
activation of oxamniquine has not received attention.
Objective:
The study investigated the conformational dynamics of binding site residues in free and oxamniquine
bound schistosomal sulfotransferase systems and their contribution to the mechanism of oxamniquine
activation by schistosomal sulfotransferase using molecular dynamics simulations and binding
energy calculations.
Methods:
Schistosomal sulfotransferase was obtained from Protein Data Bank and both the free and oxamniquine
bound forms were subjected to molecular dynamics simulations using GROMACS-4.5.5 after
modeling it’s missing amino acid residues with SWISS-MODEL. Amino acid residues at its binding site
for oxamniquine was determined and used for Principal Component Analysis and calculations of side-chain
dihedrals. In addition, binding energy of the oxamniquine bound system was calculated using g_MMPBSA.
Results:
The results showed that binding site amino acid residues in free and oxamniquine bound sulfotransferase
sampled different conformational space involving several rotameric states. Importantly,
Phe45, Ile145 and Leu241 generated newly induced conformations, whereas Phe41 exhibited shift in equilibrium
of its conformational distribution. In addition, the result showed binding energy of -130.091 ±
8.800 KJ/mol and Phe45 contributed -9.8576 KJ/mol.
Conclusion:
The results showed that schistosomal sulfotransferase binds oxamniquine by relying on hybrid
mechanism of induced fit and conformational selection models. The findings offer new insight into sulfotransferase
engineering and design of new drugs that target sulfotransferase.
Collapse
Affiliation(s)
- Fortunatus C. Ezebuo
- Drug Design and Informatics Group, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, PMB 5025 Awka 420281, Anambra State, Nigeria
| | - Ikemefuna C. Uzochukwu
- Drug Design and Informatics Group, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, PMB 5025 Awka 420281, Anambra State, Nigeria
| |
Collapse
|
27
|
Lin MH, Kuo PC, Chiu YC, Chang YY, Chen SC, Hsu CH. The crystal structure of protein-transporting chaperone BCP1 from Saccharomyces cerevisiae. J Struct Biol 2020; 212:107605. [PMID: 32805410 DOI: 10.1016/j.jsb.2020.107605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 11/25/2022]
Abstract
BCP1 is a protein enriched in the nucleus that is required for Mss4 nuclear export and identified as the chaperone of ribosomal protein Rpl23 in Saccharomyces cerevisiae. According to sequence homology, BCP1 is related to the mammalian BRCA2-interacting protein BCCIP and belongs to the BCIP protein family (PF13862) in the Pfam database. However, the BCIP family has no discernible similarity to proteins with known structure. Here, we report the crystal structure of BCP1, presenting an α/β fold in which the central antiparallel β-sheet is flanked by helices. Protein structural classification revealed that BCP1 has similarity to the GNAT superfamily but no conserved substrate-binding residues. Further modeling and protein-protein docking work provide a plausible model to explain the interaction between BCP1 and Rpl23. Our structural analysis presents the first structure of BCIP family and provides a foundation for understanding the molecular basis of BCP1 as a chaperone of Rpl23 for ribosome biosynthesis.
Collapse
Affiliation(s)
- Meng-Hsuan Lin
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Po-Chih Kuo
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chih Chiu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Yu-Yung Chang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Chia Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
28
|
Li M, Dong X, Chen S, Wang W, Yang C, Li B, Liang D, Yang W, Liu X, Yang X. Genetic polymorphisms and transcription profiles associated with intracranial aneurysm: a key role for NOTCH3. Aging (Albany NY) 2020; 11:5173-5191. [PMID: 31339861 PMCID: PMC6682524 DOI: 10.18632/aging.102111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
Intracranial aneurysm (IA) incidence is about 1~2%. However, the specific mechanisms of IA onset and development need further study. Our objective was to discover novel IA-related genes to determine possible etiologies further. We performed next-generation sequencing on nineteen Chinese patients with familial IA and one patient with sporadic IA. We obtained mRNA expression data of 129 samples from Gene Expression Omnibus (GEO) and made statistical computing to discover differentially expressed genes (DEGs). The screened IA-related gene NOTCH3 was determined by bioinformatic data mining. We verified the IA-related indicators of NOTCH3. Association was found between IA and the NOTCH3 SNPs rs779314594, rs200504060 and rs2285981. Levels of NOTCH3 mRNA were lower in IA tissue than in control tissue, but higher in peripheral blood neutrophils from IA patients than in neutrophils from controls. Levels of NOTCH3 protein were lower in IA tissue than in cerebral artery tissue. NOTCH3 also decreased the expression of angiogenesis factors in human umbilical vein endothelial cells. Variation in NOTCH3 and alteration of its expression in cerebral artery or neutrophils may contribute to IA. Our findings also describe a bioinformatic-experimental approach that may prove useful for probing the pathophysiology of other complex diseases.
Collapse
Affiliation(s)
- Mengqi Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China.,Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xinlong Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Shi Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China.,Department of Neurosurgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, China
| | - Weihan Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Chao Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Bochuan Li
- Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300052, China
| | - Degang Liang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Xiaozhi Liu
- Department of Neurosurgery, Tianjin Fifth Central Hospital, Tianjin 300450, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| |
Collapse
|
29
|
Li Z, Li W, Lu M, Bess J, Chao CW, Gorman J, Terry DS, Zhang B, Zhou T, Blanchard SC, Kwong PD, Lifson JD, Mothes W, Liu J. Subnanometer structures of HIV-1 envelope trimers on aldrithiol-2-inactivated virus particles. Nat Struct Mol Biol 2020; 27:726-734. [PMID: 32601441 PMCID: PMC8138683 DOI: 10.1038/s41594-020-0452-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
The HIV-1 envelope glycoprotein (Env) trimer, composed of gp120 and gp41 subunits, mediates viral entry into cells. Recombinant Env trimers have been studied structurally, but characterization of Env embedded in intact virus membranes has been limited to low resolution. Here, we deploy cryo-electron tomography and subtomogram averaging to determine the structures of Env trimers on aldrithiol-2 (AT-2)-inactivated virions in ligand-free, antibody-bound and CD4-bound forms at subnanometer resolution. Tomographic reconstructions document molecular features consistent with high-resolution structures of engineered soluble and detergent-solubilized Env trimers. One of three conformational states previously predicted by smFRET was not observed by cryo-ET, potentially owing to AT-2 inactivation. We did observe Env trimers to open in situ in response to CD4 binding, with an outward movement of gp120-variable loops and an extension of a critical gp41 helix. Overall features of Env trimer embedded in AT-2-treated virions appear well-represented by current engineered trimers.
Collapse
Affiliation(s)
- Ze Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Julian Bess
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
30
|
Cheng MH, Zhang S, Porritt RA, Arditi M, Bahar I. An insertion unique to SARS-CoV-2 exhibits superantigenic character strengthened by recent mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.21.109272. [PMID: 32511374 PMCID: PMC7263503 DOI: 10.1101/2020.05.21.109272] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C) associated with Coronavirus Disease 2019 (COVID-19) is a newly recognized condition in which children with recent SARS-CoV-2 infection present with a constellation of symptoms including hypotension, multiorgan involvement, and elevated inflammatory markers. These symptoms and the associated laboratory values strongly resemble toxic shock syndrome, an escalation of the cytotoxic adaptive immune response triggered upon the binding of pathogenic superantigens to MHCII molecules and T cell receptors (TCRs). Here, we used structure-based computational models to demonstrate that the SARS-CoV-2 spike (S) exhibits a high-affinity motif for binding TCR, interacting closely with both the α- and β-chains variable domains' complementarity-determining regions. The binding epitope on S harbors a sequence motif unique to SARS-CoV-2 (not present in any other SARS coronavirus), which is highly similar in both sequence and structure to bacterial superantigens. Further examination revealed that this interaction between the virus and human T cells is strengthened in the context of a recently reported rare mutation (D839Y/N/E) from a European strain of SARS-CoV-2. Furthermore, the interfacial region includes selected residues from a motif shared between the SARS viruses from the 2003 and 2019 pandemics, which has intracellular adhesion molecule (ICAM)-like character. These data suggest that the SARS-CoV-2 S may act as a superantigen to drive the development of MIS-C as well as cytokine storm in adult COVID-19 patients, with important implications for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - She Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Rebecca A. Porritt
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Moshe Arditi
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
31
|
Bucki A, Marcinkowska M, Śniecikowska J, Zagórska A, Jamrozik M, Pawłowski M, Głuch-Lutwin M, Siwek A, Jakubczyk M, Pytka K, Jastrzębska-Więsek M, Partyka A, Wesołowska A, Mierzejewski P, Kołaczkowski M. Multifunctional 6-fluoro-3-[3-(pyrrolidin-1-yl)propyl]-1,2-benzoxazoles targeting behavioral and psychological symptoms of dementia (BPSD). Eur J Med Chem 2020; 191:112149. [PMID: 32105980 DOI: 10.1016/j.ejmech.2020.112149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/24/2022]
Abstract
Patients suffering from dementia experience cognitive deficits and 90% of them show non-cognitive behavioral and psychological symptoms of dementia (BPSD). The spectrum of BPSD includes agitation, depression, anxiety and psychosis. Antipsychotics, e.g. quetiapine, have been commonly used off-label to control the burdensome symptoms, though they cause serious side effects and further cognitive impairment. Therefore, the development of targeted therapy for BPSD, suitable for elderly patients, remains relevant. A multitarget-directed ligand, acting on serotonin 5-HT2A and dopamine D2 receptors (R) and thus exerting anti-aggressive and antipsychotic activity, as well as on 5-HT6Rs and 5-HT7Rs (potential pro-cognitive, antidepressant and anxiolytic activity), poses a promising strategy for the treatment of BPSD. Antitargeting muscarinic M3R and hERG channel is expected to reduce the risk of side effects. We obtained a series of stereoisomeric compounds by combining 6-fluoro-1,2-benzoxazole moiety and arylsulfonamide fragment through pyrrolidin-1-yl-propyl linker. N-[(3R)-1-[3-(6-fluoro-1,2-benzoxazol-3-yl)propyl]pyrrolidin-3-yl]-1-benzothiophene-2-sulfonamide showed a substantial affinity for the targets of interest (pKi = 8.32-9.35) and no significant interaction with the antitargets. Functional studies revealed its antagonist efficacy (pKB = 7.41-9.03). The lead compound showed a promising profile of antipsychotic-like activity in amphetamine- and MK-801-induced hyperlocomotion (MED = 2.5 mg/kg), antidepressant-like, as well as anxiolytic-like activity in mice (MED = 0.312 and 1.25 mg/kg in the forced swim and four-plate tests, respectively). Notably, the novel compound didn't affect spontaneous locomotor activity, nor induced catalepsy or memory deficits (step-through passive avoidance test) in therapeutically relevant doses, which proved its benign safety profile. The overall pharmacological characteristics of the lead compound outperformed the reference drug quetiapine, making it a promising option for evaluation in the treatment of BPSD.
Collapse
Affiliation(s)
- Adam Bucki
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; Adamed Pharma S.A., Pienkow, 6A Mariana Adamkiewicza Street, 05-152, Czosnów, Poland.
| | - Monika Marcinkowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; Adamed Pharma S.A., Pienkow, 6A Mariana Adamkiewicza Street, 05-152, Czosnów, Poland
| | - Joanna Śniecikowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; Adamed Pharma S.A., Pienkow, 6A Mariana Adamkiewicza Street, 05-152, Czosnów, Poland
| | - Agnieszka Zagórska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Marek Jamrozik
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Maciej Pawłowski
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Magdalena Jakubczyk
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Karolina Pytka
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | | | - Anna Partyka
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Wesołowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Paweł Mierzejewski
- Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; Adamed Pharma S.A., Pienkow, 6A Mariana Adamkiewicza Street, 05-152, Czosnów, Poland
| |
Collapse
|
32
|
Huang Q, Zhang Z, Li H, Guo Y, Liao X, Li H, Zhou H, Xia W. Identification of a Novel Inhibitor of Catabolite Control Protein A from Staphylococcus aureus. ACS Infect Dis 2020; 6:347-354. [PMID: 32027109 DOI: 10.1021/acsinfecdis.9b00465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Catabolite control protein A is a highly conserved transcriptional regulator in Gram-positive bacteria. Herein, we report a specific small-molecule inhibitor of Staphylococcus aureus catabolite control protein A (SaCcpA). The compound abrogates the regulatory function of SaCcpA, resulting in decreased expression of an S. aureus major cytotoxin, α-hemolysin. The observed synergism between the compound and antibiotics against S. aureus suggests its potential application in a combination therapy to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Qi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, Guangdong 510275, China
| | - Zhemin Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, Guangdong 510275, China
| | - Huinan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, Guangdong 510275, China
| | - Yu Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, Guangdong 510275, China
| | - Xiangwen Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, Guangdong 510275, China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Outer Ring East Road, Guangzhou, Guangdong 510006, China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, Guangdong 510275, China
| |
Collapse
|
33
|
Abstract
Since the X-ray structure of the zebra fish P2X4 receptor in the closed state was published in 2009 homology modeling has been used to generate structural models for P2X receptors. In this chapter, we outline how to use the MODELLER software to generate such structural models for P2X receptors whose structures have not been solved yet.
Collapse
|
34
|
White MA, Tsalkova T, Mei FC, Cheng X. Conformational States of Exchange Protein Directly Activated by cAMP (EPAC1) Revealed by Ensemble Modeling and Integrative Structural Biology. Cells 2019; 9:cells9010035. [PMID: 31877746 PMCID: PMC7016869 DOI: 10.3390/cells9010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023] Open
Abstract
Exchange proteins directly activated by cAMP (EPAC1 and EPAC2) are important allosteric regulators of cAMP-mediated signal transduction pathways. To understand the molecular mechanism of EPAC activation, we performed detailed Small-Angle X-ray Scattering (SAXS) analysis of EPAC1 in its apo (inactive), cAMP-bound, and effector (Rap1b)-bound states. Our study demonstrates that we can model the solution structures of EPAC1 in each state using ensemble analysis and homology models derived from the crystal structures of EPAC2. The N-terminal domain of EPAC1, which is not conserved between EPAC1 and EPAC2, appears folded and interacts specifically with another component of EPAC1 in each state. The apo-EPAC1 state is a dynamic mixture of a compact (Rg = 32.9 Å, 86%) and a more extended (Rg = 38.5 Å, 13%) conformation. The cAMP-bound form of EPAC1 in the absence of Rap1 forms a dimer in solution; but its molecular structure is still compatible with the active EPAC1 conformation of the ternary complex model with cAMP and Rap1. Herein, we show that SAXS can elucidate the conformational states of EPAC1 activation as it proceeds from the compact, inactive apo conformation through a previously unknown intermediate-state, to the extended cAMP-bound form, and then binds to its effector (Rap1b) in a ternary complex.
Collapse
Affiliation(s)
- Mark Andrew White
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Correspondence: (M.A.W.); (X.C.); Tel.: +409-747-4747 (M.A.W.); +713-500-7487 (X.C.)
| | - Tamara Tsalkova
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Fang C. Mei
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Texas Therapeutics Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Texas Therapeutics Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Correspondence: (M.A.W.); (X.C.); Tel.: +409-747-4747 (M.A.W.); +713-500-7487 (X.C.)
| |
Collapse
|
35
|
Alonso-Valenteen F, Pacheco S, Srinivas D, Rentsendorj A, Chu D, Lubow J, Sims J, Miao T, Mikhael S, Hwang JY, Abrol R, Medina Kauwe LK. HER3-targeted protein chimera forms endosomolytic capsomeres and self-assembles into stealth nucleocapsids for systemic tumor homing of RNA interference in vivo. Nucleic Acids Res 2019; 47:11020-11043. [PMID: 31617560 PMCID: PMC6868389 DOI: 10.1093/nar/gkz900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/12/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
RNA interference represents a potent intervention for cancer treatment but requires a robust delivery agent for transporting gene-modulating molecules, such as small interfering RNAs (siRNAs). Although numerous molecular approaches for siRNA delivery are adequate in vitro, delivery to therapeutic targets in vivo is limited by payload integrity, cell targeting, efficient cell uptake, and membrane penetration. We constructed nonviral biomaterials to transport small nucleic acids to cell targets, including tumor cells, on the basis of the self-assembling and cell-penetrating activities of the adenovirus capsid penton base. Our recombinant penton base chimera contains polypeptide domains designed for noncovalent assembly with anionic molecules and tumor homing. Here, structural modeling, molecular dynamics simulations, and functional assays suggest that it forms pentameric units resembling viral capsomeres that assemble into larger capsid-like structures when combined with siRNA cargo. Pentamerization forms a barrel lined with charged residues mediating pH-responsive dissociation and exposing masked domains, providing insight on the endosomolytic mechanism. The therapeutic impact was examined on tumors expressing high levels of HER3/ErbB3 that are resistant to clinical inhibitors. Our findings suggest that our construct may utilize ligand mimicry to avoid host attack and target the siRNA to HER3+ tumors by forming multivalent capsid-like structures.
Collapse
Affiliation(s)
- Felix Alonso-Valenteen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sayuri Pacheco
- Department of Chemistry and Biochemistry, California State University, Northridge, CA 91330, USA
| | - Dustin Srinivas
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Altan Rentsendorj
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David Chu
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jay Lubow
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica Sims
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tianxin Miao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Simoun Mikhael
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jae Youn Hwang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Ravinder Abrol
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Chemistry and Biochemistry, California State University, Northridge, CA 91330, USA
| | - Lali K Medina Kauwe
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
36
|
Latka A, Leiman PG, Drulis-Kawa Z, Briers Y. Modeling the Architecture of Depolymerase-Containing Receptor Binding Proteins in Klebsiella Phages. Front Microbiol 2019; 10:2649. [PMID: 31803168 PMCID: PMC6872550 DOI: 10.3389/fmicb.2019.02649] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022] Open
Abstract
Klebsiella pneumoniae carries a thick polysaccharide capsule. This highly variable chemical structure plays an important role in its virulence. Many Klebsiella bacteriophages recognize this capsule with a receptor binding protein (RBP) that contains a depolymerase domain. This domain degrades the capsule to initiate phage infection. RBPs are highly specific and thus largely determine the host spectrum of the phage. A majority of known Klebsiella phages have only one or two RBPs, but phages with up to 11 RBPs with depolymerase activity and a broad host spectrum have been identified. A detailed bioinformatic analysis shows that similar RBP domains repeatedly occur in K. pneumoniae phages with structural RBP domains for attachment of an RBP to the phage tail (anchor domain) or for branching of RBPs (T4gp10-like domain). Structural domains determining the RBP architecture are located at the N-terminus, while the depolymerase is located in the center of protein. Occasionally, the RBP is complemented with an autocleavable chaperone domain at the distal end serving for folding and multimerization. The enzymatic domain is subjected to an intense horizontal transfer to rapidly shift the phage host spectrum without affecting the RBP architecture. These analyses allowed to model a set of conserved RBP architectures, indicating evolutionary linkages.
Collapse
Affiliation(s)
- Agnieszka Latka
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium.,Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Petr G Leiman
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
37
|
Ladrón-de-Guevara E, Dominguez L, Rangel-Yescas GE, Fernández-Velasco DA, Torres-Larios A, Rosenbaum T, Islas LD. The Contribution of the Ankyrin Repeat Domain of TRPV1 as a Thermal Module. Biophys J 2019; 118:836-845. [PMID: 31757360 DOI: 10.1016/j.bpj.2019.10.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022] Open
Abstract
The TRPV1 cation nonselective ion channel plays an essential role in thermosensation and perception of other noxious stimuli. TRPV1 can be activated by low extracellular pH, high temperature, or naturally occurring pungent molecules such as allicin, capsaicin, or resiniferatoxin. Its noxious thermal sensitivity makes it an important participant as a thermal sensor in mammals. However, details of the mechanism of channel activation by increases in temperature remain unclear. Here, we used a combination of approaches to try to understand the role of the ankyrin repeat domain (ARD) in channel behavior. First, a computational modeling approach by coarse-grained molecular dynamics simulation of the whole TRPV1 embedded in a phosphatidylcholine and phosphatidylethanolamine membrane provides insight into the dynamics of this channel domain. Global analysis of the structural ensemble shows that the ARD is a region that sustains high fluctuations during dynamics at different temperatures. We then performed biochemical and thermal stability studies of the purified ARD by the means of circular dichroism and tryptophan fluorescence and demonstrate that this region undergoes structural changes at similar temperatures that lead to TRPV1 activation. Our data suggest that the ARD is a dynamic module and that it may participate in controlling the temperature sensitivity of TRPV1.
Collapse
Affiliation(s)
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Mexico City, Mexico
| | | | | | - Alfredo Torres-Larios
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tamara Rosenbaum
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leon D Islas
- Facultad de Medicina, Departamento de Fisiología, Mexico City, Mexico.
| |
Collapse
|
38
|
Rybak MY, Rayevsky AV, Gudzera OI, Tukalo MA. Stereospecificity control in aminoacyl-tRNA-synthetases: new evidence of d-amino acids activation and editing. Nucleic Acids Res 2019; 47:9777-9788. [PMID: 31504788 PMCID: PMC6765224 DOI: 10.1093/nar/gkz756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 02/02/2023] Open
Abstract
The homochirality of amino acids is vital for the functioning of the translation apparatus. l-Amino acids predominate in proteins and d-amino acids usually represent diverse regulatory functional physiological roles in both pro- and eukaryotes. Aminoacyl-tRNA-synthetases (aaRSs) ensure activation of proteinogenic or nonproteinogenic amino acids and attach them to cognate or noncognate tRNAs. Although many editing mechanisms by aaRSs have been described, data about the protective role of aaRSs in d-amino acids incorporation remained unknown. Tyrosyl- and alanyl-tRNA-synthetases were represented as distinct members of this enzyme family. To study the potential to bind and edit noncognate substrates, Thermus thermophilus alanyl-tRNA-synthetase (AlaRS) and tyrosyl-tRNA-synthetase were investigated in the context of d-amino acids recognition. Here, we showed that d-alanine was effectively activated by AlaRS and d-Ala-tRNAAla, formed during the erroneous aminoacylation, was edited by AlaRS. On the other hand, it turned out that d-aminoacyl-tRNA-deacylase (DTD), which usually hydrolyzes d-aminoacyl-tRNAs, was inactive against d-Ala-tRNAAla. To support the finding about DTD, computational docking and molecular dynamics simulations were run. Overall, our work illustrates the novel function of the AlaRS editing domain in stereospecificity control during translation together with trans-editing factor DTD. Thus, we propose different evolutionary strategies for the maintenance of chiral selectivity during translation.
Collapse
Affiliation(s)
- Mariia Yu Rybak
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, 150 Zabolotnogo Street, 03143, Kyiv, Ukraine
| | - Alexey V Rayevsky
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, 150 Zabolotnogo Street, 03143, Kyiv, Ukraine
| | - Olga I Gudzera
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, 150 Zabolotnogo Street, 03143, Kyiv, Ukraine
| | - Michael A Tukalo
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, 150 Zabolotnogo Street, 03143, Kyiv, Ukraine
| |
Collapse
|
39
|
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2019; 46:W296-W303. [PMID: 29788355 PMCID: PMC6030848 DOI: 10.1093/nar/gky427] [Citation(s) in RCA: 7407] [Impact Index Per Article: 1481.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Homology modelling has matured into an important technique in structural biology, significantly contributing to narrowing the gap between known protein sequences and experimentally determined structures. Fully automated workflows and servers simplify and streamline the homology modelling process, also allowing users without a specific computational expertise to generate reliable protein models and have easy access to modelling results, their visualization and interpretation. Here, we present an update to the SWISS-MODEL server, which pioneered the field of automated modelling 25 years ago and been continuously further developed. Recently, its functionality has been extended to the modelling of homo- and heteromeric complexes. Starting from the amino acid sequences of the interacting proteins, both the stoichiometry and the overall structure of the complex are inferred by homology modelling. Other major improvements include the implementation of a new modelling engine, ProMod3 and the introduction a new local model quality estimation method, QMEANDisCo. SWISS-MODEL is freely available at https://swissmodel.expasy.org.
Collapse
Affiliation(s)
- Andrew Waterhouse
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Martino Bertoni
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Stefan Bienert
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Gabriel Studer
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Gerardo Tauriello
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Rafal Gumienny
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Florian T Heer
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Tjaart A P de Beer
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Christine Rempfer
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Lorenza Bordoli
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Rosalba Lepore
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| |
Collapse
|
40
|
Zahradník J, Kolářová L, Peleg Y, Kolenko P, Svidenská S, Charnavets T, Unger T, Sussman JL, Schneider B. Flexible regions govern promiscuous binding ofIL‐24 to receptorsIL‐20R1 andIL‐22R1. FEBS J 2019; 286:3858-3873. [DOI: 10.1111/febs.14945] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/05/2019] [Accepted: 05/30/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jiří Zahradník
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
- Weizmann Institute of Science Rehovot Israel
| | - Lucie Kolářová
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
| | - Yoav Peleg
- Weizmann Institute of Science Rehovot Israel
| | - Petr Kolenko
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Prague Czech Republic
| | - Silvie Svidenská
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
| | - Tatsiana Charnavets
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
| | - Tamar Unger
- Weizmann Institute of Science Rehovot Israel
| | | | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
| |
Collapse
|
41
|
Basotra N, Dhiman SS, Agrawal D, Sani RK, Tsang A, Chadha BS. Characterization of a novel Lytic Polysaccharide Monooxygenase from Malbranchea cinnamomea exhibiting dual catalytic behavior. Carbohydr Res 2019; 478:46-53. [DOI: 10.1016/j.carres.2019.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/27/2019] [Accepted: 04/23/2019] [Indexed: 10/26/2022]
|
42
|
Substrate-assisted mechanism of catalytic hydrolysis of misaminoacylated tRNA required for protein synthesis fidelity. Biochem J 2019; 476:719-732. [PMID: 30718305 DOI: 10.1042/bcj20180910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 11/17/2022]
Abstract
d-aminoacyl-tRNA-deacylase (DTD) prevents the incorporation of d-amino acids into proteins during translation by hydrolyzing the ester bond between mistakenly attached amino acids and tRNAs. Despite extensive study of this proofreading enzyme, the precise catalytic mechanism remains unknown. Here, a combination of biochemical and computational investigations has enabled the discovery of a new substrate-assisted mechanism of d-Tyr-tRNATyr hydrolysis by Thermus thermophilus DTD. Several functional elements of the substrate, misacylated tRNA, participate in the catalysis. During the hydrolytic reaction, the 2'-OH group of the А76 residue of d-Tyr-tRNATyr forms a hydrogen bond with a carbonyl group of the tyrosine residue, stabilizing the transition-state intermediate. Two water molecules participate in this reaction, attacking and assisting ones, resulting in a significant decrease in the activation energy of the rate-limiting step. The amino group of the d-Tyr aminoacyl moiety is unprotonated and serves as a general base, abstracting the proton from the assisting water molecule and forming a more nucleophilic ester-attacking species. Quantum chemical methodology was used to investigate the mechanism of hydrolysis. The DFT-calculated deacylation reaction is in full agreement with the experimental data. The Gibbs activation energies for the first and second steps were 10.52 and 1.05 kcal/mol, respectively, highlighting that the first step of the hydrolysis process is the rate-limiting step. Several amino acid residues of the enzyme participate in the coordination of the substrate and water molecules. Thus, the present work provides new insights into the proofreading details of misacylated tRNAs and can be extended to other systems important for translation fidelity.
Collapse
|
43
|
Truong AD, Hong Y, Rengaraj D, Lee J, Lee K, Hong YH. Identification and functional characterization, including cytokine production modulation, of the novel chicken Interleukin-11. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:51-63. [PMID: 29792901 DOI: 10.1016/j.dci.2018.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/18/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Interleukin (IL)-11 plays an important role in the immune system. However, IL-11 has not yet been characterized in avian species, including chickens. This study is the first to clone and functionally characterize chicken IL-11 (chIL-11). Multiple alignments and phylogenetic tree comparisons of chIL-11 with IL-11 proteins from other species revealed high levels of conservation and a close relationship between chicken and Japanese quail IL-11. Our results demonstrate that chIL-11 was a functional ligand of IL-11RA and IL-6ST in chicken HD11 and OU2 cell lines, as well as activated and regulated JAK-STAT, NF-κB, PI3K/AKT, and MAPK signaling pathways in chicken cell lines. In addition, chIL-11 inhibited nitric oxide production, affected proliferation of both tested cell lines, inhibited Type 1 and 17 T helper (Th) cytokine and IL-26, IL-12, and IL-17A-induced interferon-γ production, and enhanced Th2 cytokine (IL-4 and IL-10) production. Taken together, functional analysis of chIL-11 revealed it bound to IL-11RA and IL-6ST and activated the JAK-STAT, NF-κB, and MAPK signaling pathways, which resulted in modulation of Th1/Th17 and Th2 cytokine production in chicken HD11 and OU2 cell lines. Overall, this indicates chIL-11 has a role in both the innate and adaptive immune system.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Viet Nam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Deivendran Rengaraj
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Janggeun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Kyungbaek Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
44
|
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018. [PMID: 29788355 DOI: 10.1093/nar/gky427.pmid:29788355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Homology modelling has matured into an important technique in structural biology, significantly contributing to narrowing the gap between known protein sequences and experimentally determined structures. Fully automated workflows and servers simplify and streamline the homology modelling process, also allowing users without a specific computational expertise to generate reliable protein models and have easy access to modelling results, their visualization and interpretation. Here, we present an update to the SWISS-MODEL server, which pioneered the field of automated modelling 25 years ago and been continuously further developed. Recently, its functionality has been extended to the modelling of homo- and heteromeric complexes. Starting from the amino acid sequences of the interacting proteins, both the stoichiometry and the overall structure of the complex are inferred by homology modelling. Other major improvements include the implementation of a new modelling engine, ProMod3 and the introduction a new local model quality estimation method, QMEANDisCo. SWISS-MODEL is freely available at https://swissmodel.expasy.org.
Collapse
Affiliation(s)
- Andrew Waterhouse
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Martino Bertoni
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Stefan Bienert
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Gabriel Studer
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Gerardo Tauriello
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Rafal Gumienny
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Florian T Heer
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Tjaart A P de Beer
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Christine Rempfer
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Lorenza Bordoli
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Rosalba Lepore
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| |
Collapse
|
45
|
Kim Y, Benning N, Pham K, Baghdadi N, Caruso G, Colligan M, Grayson A, Hurley A, Ignatoski N, Mcclure S, Mckaig K, Neag E, Showers C, Tangalos A, Vanells J, Padmanabhan K, Burton ZF. Homology threading to generate RNA polymerase structures. Protein Expr Purif 2018; 147:13-16. [PMID: 29444461 DOI: 10.1016/j.pep.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/08/2018] [Indexed: 01/24/2023]
Abstract
Homology threading is a powerful technology for generating structural models based on homologous structures. Here we use threading to generate four complex RNA polymerase models. The models appear to be as useful as x-ray crystal structures or cryo-electron microscopy structures to support research projects.
Collapse
Affiliation(s)
- Yunsoo Kim
- Troy High School, Troy, MI, United States
| | | | - Kasey Pham
- Michigan State University, United States
| | | | | | | | | | | | | | | | | | - Emily Neag
- Michigan State University, United States
| | | | | | | | - Kaillathe Padmanabhan
- Macromolecular Computer Facility, Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, United States
| | - Zachary F Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, United States.
| |
Collapse
|
46
|
Abstract
In this review, we describe how the interplay among science, technology and community interests contributed to the evolution of four structural biology data resources. We present the method by which data deposited by scientists are prepared for worldwide distribution, and argue that data archiving in a trusted repository must be an integral part of any scientific investigation.
Collapse
Affiliation(s)
- Helen M. Berman
- Center for Integrative Proteomics Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, 174 Frelinghuysen Road, Piscataway New Jersey 08854
| | - Catherine L. Lawson
- Center for Integrative Proteomics Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, 174 Frelinghuysen Road, Piscataway New Jersey 08854
| | - Brinda Vallat
- Center for Integrative Proteomics Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, 174 Frelinghuysen Road, Piscataway New Jersey 08854
| | - Margaret J. Gabanyi
- Center for Integrative Proteomics Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, 174 Frelinghuysen Road, Piscataway New Jersey 08854
| |
Collapse
|
47
|
Bamdad K. Sequence-dependent dynamical instability of the human prion protein: a comparative simulation study. J Biomol Struct Dyn 2017; 36:3023-3033. [PMID: 28868991 DOI: 10.1080/07391102.2017.1375430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present study aimed to explore the most probable regions of the human prion protein backbone for which the initial steps of conformational transitions as a result of intrinsic and extrinsic perturbing factors on the protein structure can be assigned. A total of 0.3-μs molecular dynamics simulations on several analog structures of the protein have been performed. To mimic the impact of the extrinsic and intrinsic destructive parameters on the dynamical characteristics of the protein, mild acidic conditions and R208H mutation have been simulated. The findings indicated that distribution of conformational flexibilities along the protein chain was almost independent of the induced perturbing factors, and was mostly centralized on certain distinct parts of the structure comprising residues 132-145 and 187-203. Analyses also revealed that the segment comprising residues 187-203 may be considered as a peptide sequence, possessing high potential to start the initial steps of conformational rearrangements due to the induced physicochemical alterations. Sequence alignment and molecular dynamics data also revealed that segment 178-203 prefers to accommodate in extended structures rather than α-helices. Region 178-203 may be considered as a peptide switch capable of initiating the conformational transitions due to the introduced modifications and perturbing parameters.
Collapse
Affiliation(s)
- Kourosh Bamdad
- a Department of Biology, Faculty of Science , Payame Noor University (PNU) , 19395-3697 , Iran
| |
Collapse
|
48
|
Xie H, Zeng D, Chen X, Huo D, Liu L, Zhang D, Jin Q, Ke K, Hu M. Prediction on the risk population of idiosyncratic adverse reactions based on molecular docking with mutant proteins. Oncotarget 2017; 8:95568-95576. [PMID: 29221149 PMCID: PMC5707043 DOI: 10.18632/oncotarget.21509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/20/2017] [Indexed: 01/11/2023] Open
Abstract
Idiosyncratic adverse drug reactions are drug reactions that occur rarely and unpredictably among the population. These reactions often occur after a drug is marketed, which means that they are strongly related to the genotype of the population. The prediction of such adverse reactions is a major challenge because of the lack of appropriate test models during the drug development process. In this study, we chose withdrawn drugs because the reasons why they were withdrawn and from which countries or regions is easily obtained. We selected Dilevalol and its chiral drug (Labetalol) as the investigatory drugs, as they have been withdrawn from a European market (Britain) because of serious hepatotoxicity. First, we searched for and obtained the Dilevalol-induced- liver-injury related protein, multidrug resistance protein 1 (MDR1), from the Comparative Toxicogenomics Database (CTD). Then, we searched and extracted 477 non-synonymous single nucleotide polymorphisms (nsSNP) on MDR1 in the dbSNP database. Second, we used the VarMod tool to predict the functional changes of MDR1 induced by these nsSNPs, from which we extracted the nsSNPs that significantly change the functions of this protein. Third, we built the three-dimensional structures of those variant proteins and used AutoDock to perform a docking study, choosing the best model to determine the sites of nsSNPs. Finally, we used the data from the 1000 Genomes Project to verify the dominant population distribution of the risk SNP. We applied the same strategy to the post-marketing drug-induced liver injury drugs to further test the feasibility of our method.
Collapse
Affiliation(s)
- Hongbo Xie
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Diheng Zeng
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Xiujie Chen
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Diwei Huo
- The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Lei Liu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Denan Zhang
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Qing Jin
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Kehui Ke
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Ming Hu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| |
Collapse
|
49
|
Elucidation of pressure-induced lid movement and catalysis behavior of Rhizopus chinensis lipase. Int J Biol Macromol 2017; 103:360-365. [DOI: 10.1016/j.ijbiomac.2017.04.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022]
|
50
|
Discovery of a proteolytic flagellin family in diverse bacterial phyla that assembles enzymatically active flagella. Nat Commun 2017; 8:521. [PMID: 28900095 PMCID: PMC5595980 DOI: 10.1038/s41467-017-00599-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/12/2017] [Indexed: 01/01/2023] Open
Abstract
Bacterial flagella are cell locomotion and occasional adhesion organelles composed primarily of the polymeric protein flagellin, but to date have not been associated with any enzymatic function. Here, we report the bioinformatics-driven discovery of a class of enzymatic flagellins that assemble to form proteolytically active flagella. Originating by a metallopeptidase insertion into the central flagellin hypervariable region, this flagellin family has expanded to at least 74 bacterial species. In the pathogen, Clostridium haemolyticum, metallopeptidase-containing flagellin (which we termed flagellinolysin) is the second most abundant protein in the flagella and is localized to the extracellular flagellar surface. Purified flagellar filaments and recombinant flagellin exhibit proteolytic activity, cleaving nearly 1000 different peptides. With ~ 20,000 flagellin copies per ~ 10-μm flagella this assembles the largest proteolytic complex known. Flagellum-mediated extracellular proteolysis expands our understanding of the functional plasticity of bacterial flagella, revealing this family as enzymatic biopolymers that mediate interactions with diverse peptide substrates. So far no enzymatic activity has been attributed to flagellin, the major component of bacterial flagella. Here the authors use bioinformatic analysis and identify a metallopeptidase insertion in flagellins from 74 bacterial species and show that recombinant flagellin and flagellar filaments have proteolytic activity.
Collapse
|