1
|
Vera J, Lai X, Baur A, Erdmann M, Gupta S, Guttà C, Heinzerling L, Heppt MV, Kazmierczak PM, Kunz M, Lischer C, Pützer BM, Rehm M, Ostalecki C, Retzlaff J, Witt S, Wolkenhauer O, Berking C. Melanoma 2.0. Skin cancer as a paradigm for emerging diagnostic technologies, computational modelling and artificial intelligence. Brief Bioinform 2022; 23:6761961. [PMID: 36252807 DOI: 10.1093/bib/bbac433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/28/2022] [Accepted: 09/08/2022] [Indexed: 12/19/2022] Open
Abstract
We live in an unprecedented time in oncology. We have accumulated samples and cases in cohorts larger and more complex than ever before. New technologies are available for quantifying solid or liquid samples at the molecular level. At the same time, we are now equipped with the computational power necessary to handle this enormous amount of quantitative data. Computational models are widely used helping us to substantiate and interpret data. Under the label of systems and precision medicine, we are putting all these developments together to improve and personalize the therapy of cancer. In this review, we use melanoma as a paradigm to present the successful application of these technologies but also to discuss possible future developments in patient care linked to them. Melanoma is a paradigmatic case for disruptive improvements in therapies, with a considerable number of metastatic melanoma patients benefiting from novel therapies. Nevertheless, a large proportion of patients does not respond to therapy or suffers from adverse events. Melanoma is an ideal case study to deploy advanced technologies not only due to the medical need but also to some intrinsic features of melanoma as a disease and the skin as an organ. From the perspective of data acquisition, the skin is the ideal organ due to its accessibility and suitability for many kinds of advanced imaging techniques. We put special emphasis on the necessity of computational strategies to integrate multiple sources of quantitative data describing the tumour at different scales and levels.
Collapse
Affiliation(s)
- Julio Vera
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Xin Lai
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Andreas Baur
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Michael Erdmann
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock 18051, Germany
| | - Cristiano Guttà
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Lucie Heinzerling
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany.,Department of Dermatology, LMU University Hospital, Munich, Germany
| | - Markus V Heppt
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | | | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, 04103 Leipzig, Germany
| | - Christopher Lischer
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Christian Ostalecki
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Jimmy Retzlaff
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | | | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock 18051, Germany
| | - Carola Berking
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| |
Collapse
|
2
|
Lai X, Schmitz U, Vera J. The Role of MicroRNAs in Cancer Biology and Therapy from a Systems Biology Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:1-22. [DOI: 10.1007/978-3-031-08356-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Mesenchymal-Epithelial Transition in Fibroblasts of Human Normal Lungs and Interstitial Lung Diseases. Biomolecules 2021; 11:biom11030378. [PMID: 33806618 PMCID: PMC8000192 DOI: 10.3390/biom11030378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/02/2022] Open
Abstract
In passages above ten and growing very actively, we observed that some human lung fibroblasts cultured under standard conditions were transformed into a lineage of epithelial-like cells (ELC). To systematically evaluate the possible mesenchymal–epithelial transition (MET) occurrence, fibroblasts were obtained from normal lungs and also from lungs affected by idiopathic interstitial diseases. When an unusual epithelial-like phenotypic change was observed, cultured cells were characterized by confocal immunofluorescence microscopy, immunoblotting, immunocytochemistry, cytofluorometry, gelatin zymography, RT-qPCR, and hybridization in a whole-transcript human microarray. Additionally, microvesicles fraction (MVs) from ELC and fibroblasts were used to induce MET, while the microRNAs (miRNAs) contained in the MVs were identified. Pattern-gene expression of the original fibroblasts and the derived ELC revealed profound changes, upregulating characteristic epithelial-cell genes and downregulating mesenchymal genes, with a marked increase of E-cadherin, cytokeratin, and ZO-1, and the loss of expression of α-SMA, collagen type I, and Thy-1 cell surface antigen (CD90). Fibroblasts, exposed to culture media or MVs from the ELC, acquired ELC phenotype. The miRNAs in MVs shown six expressed exclusively in fibroblasts, and three only in ELC; moreover, twelve miRNAs were differentially expressed between fibroblasts and ELC, all of them but one was overexpressed in fibroblasts. These findings suggest that the MET-like process can occur in human lung fibroblasts, either from normal or diseased lungs. However, the biological implication is unclear.
Collapse
|
4
|
Deep dive on the proteome of salivary extracellular vesicles: comparison between ultracentrifugation and polymer-based precipitation isolation. Anal Bioanal Chem 2020; 413:365-375. [PMID: 33159572 DOI: 10.1007/s00216-020-03004-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/26/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
Salivary extracellular vesicles (EVs), as novel functional carriers and potential biomarkers, are usually obtained by ultracentrifugation (UC) and polyethylene glycol (PEG)-based precipitation methods. However, salivary EVs obtained by these two methods have not been systematically compared. Here, we perform an in-depth analysis on EVs isolated by these two methods using proteomics. Both methods obtain EVs ranging from 40 to 210 nm, with the PEG method resulting in a wider size distribution. PEG-separated products were irregularly shaped and aggregated, while UC-separated ones were monodispersed and teacup-shaped. Additionally, the expression of EV-specific markers was higher in UC-separated EVs. Using tandem mass spectrometry proteomics, we identified and quantified 1217 kinds of saliva exosomal proteins and 361 kinds of differential proteins, showing that UC can isolate more EV-related proteins. These results offer some guidance for EV separating and provide potential direction for the use of EVs in non-invasive diagnosis.
Collapse
|
5
|
Cheng Y, Qu X, Dong Z, Zeng Q, Ma X, Jia Y, Li R, Jiang X, Williams C, Wang T, Xia W. Comparison of serum exosome isolation methods on co-precipitated free microRNAs. PeerJ 2020; 8:e9434. [PMID: 32923177 PMCID: PMC7457927 DOI: 10.7717/peerj.9434] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Exosomes are nano-sized extracellular vesicles containing different biomolecules such as proteins and microRNAs (miRNAs) that mediate intercellular communication. Recently, numerous studies have reported the important functions of exosomal miRNAs in disease development and the potential clinical application as diagnostic biomarkers. Up to now, the most commonly used methods to extract exosomes are ultracentrifugation (UC) and precipitation-based commercial kit (e.g., ExoQuick). Generally, both UC and ExoQuick method could co-isolate contaminating proteins along with exosomes, with the UC method yielding even purer exosomes than ExoQuick. However, the comparison of these two methods on co-precipitated free miRNAs is still unknown. Methods In this study, we isolated exosomes from the human serum with exogenously added cel-miR-39 by UC and ExoQuick and compared the proportion of cel-miR-39 co-precipitated with exosomes extracted by these two methods. Results Using exogenous cel-miR-39 as free miRNAs in serum, we concluded that ExoQuick co-isolates a small proportion of free miRNAs while UC hardly precipitates any free miRNAs. We also found that incubation at 37 °C for 1 h could decrease the proportion of free miRNAs, and exosomal miRNAs like miR-126 and miR-152 also decreased when RNase A was used. In conclusion, our findings provide essential information about the details of serum exosome isolation methods for further research on exosomal miRNAs.
Collapse
Affiliation(s)
- Yirui Cheng
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyun Qu
- Jiangsu Cancer Molecular Diagnostics Engineering Research Center, Suzhou MicroDiag Biomedicine Co., Ltd, Suzhou, China
| | - Zhaonan Dong
- Jiangsu Cancer Molecular Diagnostics Engineering Research Center, Suzhou MicroDiag Biomedicine Co., Ltd, Suzhou, China
| | - Qingyu Zeng
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Ma
- Jiangsu Cancer Molecular Diagnostics Engineering Research Center, Suzhou MicroDiag Biomedicine Co., Ltd, Suzhou, China
| | - Yunli Jia
- Jiangsu Cancer Molecular Diagnostics Engineering Research Center, Suzhou MicroDiag Biomedicine Co., Ltd, Suzhou, China
| | - Ruochen Li
- Jiangsu Cancer Molecular Diagnostics Engineering Research Center, Suzhou MicroDiag Biomedicine Co., Ltd, Suzhou, China
| | - Xiaoxu Jiang
- Jiangsu Cancer Molecular Diagnostics Engineering Research Center, Suzhou MicroDiag Biomedicine Co., Ltd, Suzhou, China
| | - Cecilia Williams
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Tao Wang
- Jiangsu Cancer Molecular Diagnostics Engineering Research Center, Suzhou MicroDiag Biomedicine Co., Ltd, Suzhou, China
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Rejali NA, Zuiter AM, Quackenbush JF, Wittwer CT. Reverse transcriptase kinetics for one-step RT-PCR. Anal Biochem 2020; 601:113768. [PMID: 32416095 DOI: 10.1016/j.ab.2020.113768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 01/09/2023]
Abstract
Understanding reverse transcriptase (RT) activity is critical for designing fast one-step RT-PCRs. We report a stopped-flow assay that monitors SYBR Green I fluorescence to investigate RT activity in PCR conditions. We studied the influence of PCR conditions on RT activity and assessed the accuracy of cDNA synthesis predictions for one-step RT-PCR. Nucleotide incorporation increased from 26 to 89 s-1 between 1.5 and 6 mM MgCl2 but was largely unaffected by changes in KCl. Conversely, increasing KCl from 15 to 75 mM increased apparent rate constants for RT-oligonucleotide binding (0.010-0.026 nM-1 s-1) and unbinding (0.2-1.5 s-1). All rate constants increased between 22 and 42 °C. When evaluated by PCR quantification cycle, cDNA predictions differed from experiments using RNase H+ RT (average 1.7 cycles) and RNase H- (average 4.5 cycles). Decreasing H+ RT concentrations 10 to 104-fold from manufacturer recommendations improved cDNA predictions (average 0.8 cycles) and increased RT-PCR assay efficiency. RT activity assays and models can be used to aid assay design and improve the speed of RT-PCRs. RT type and concentration must be selected to promote rapid cDNA synthesis but minimize nonspecific amplification. We demonstrate 2-min one-step RT-PCR of a Zika virus target using reduced RT concentrations and extreme PCR.
Collapse
Affiliation(s)
- Nick A Rejali
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, 84132, USA
| | - Aisha M Zuiter
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, 84132, USA
| | - John F Quackenbush
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, 84132, USA
| | - Carl T Wittwer
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
7
|
The miRNAs Role in Melanoma and in Its Resistance to Therapy. Int J Mol Sci 2020; 21:ijms21030878. [PMID: 32013263 PMCID: PMC7037367 DOI: 10.3390/ijms21030878] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the less common but the most malignant skin cancer. Since the survival rate of melanoma metastasis is about 10–15%, many different studies have been carried out in order to find a more effective treatment. Although the development of target-based therapies and immunotherapeutic strategies has improved chances for patient survival, melanoma treatment still remains a big challenge for oncologists. Here, we collect recent data about the emerging role of melanoma-associated microRNAs (miRNAs) currently available treatments, and their involvement in drug resistance. We also reviewed miRNAs as prognostic factors, because of their chemical stability and resistance to RNase activity, in melanoma progression. Moreover, despite miRNAs being considered small conserved regulators with the limitation of target specificity, we outline the dual role of melanoma-associated miRNAs, as oncogenic and/or tumor suppressive factors, compared to other tumors.
Collapse
|
8
|
Lim TB, Aliwarga E, Luu TDA, Li YP, Ng SL, Annadoray L, Sian S, Ackers-Johnson MA, Foo RSY. Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy. Cardiovasc Res 2019; 115:1998-2007. [DOI: 10.1093/cvr/cvz130] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
AbstractAimsWe and others have previously described the expression landscape of circular RNA (circRNA) in mouse and human hearts. However, the functional relevance of many of these abundantly expressed cardiomyocyte circRNA remains to be fully explored. Among the most abundant circRNA, one stems from the sodium-calcium exchanger gene, Slc8a1, exon 2 locus. Because of its very high abundance in cardiomyocytes we investigated the possible role of circSlc8a1 in the heart.Methods and resultsWe performed a miRNA screen using an array of 752 miRNAs with RNA recovered from a pull-down of endogenous cardiomyocyte circSlc8a1. MicroRNA-133a (miR-133a), with a prior well-recognized role in cardiac hypertrophy, was highly enriched in the fraction of circSlc8a1 pull-down (adjusted P-value < 0.001). We, therefore, followed-up validation of the functional interaction between circSlc8a1 and miR-133 using luciferase assays and reciprocal pull-down assays. In vivo, AAV9-mediated RNAi knockdown of circSlc8a1 attenuates cardiac hypertrophy from pressure-overload, whereas forced cardiomyocyte specific overexpression of circSlc8a1 resulted in heart failure. Molecular analyses showed targets of miR-133a including serum response factor (Srf), connective tissue growth factor (Ctgf), adrenoceptor beta 1 (Adrb1), and adenylate cyclase 6 (Adcy6) to be regulated by circSlc8a1-directed intervention of knockdown and overexpression.ConclusionIn summary, circSlc8a1 can function as an endogenous sponge for miR-133a in cardiomyocytes. We propose that circSlc8a1 may serve as a novel therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Tingsen Benson Lim
- Cardiovascular Research Institute, National University Health Systems, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore, Singapore
- Genome Institute of Singapore, Genome, 60 Biopolis Street, Singapore, Singapore
| | - Edita Aliwarga
- Cardiovascular Research Institute, National University Health Systems, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore, Singapore
- Genome Institute of Singapore, Genome, 60 Biopolis Street, Singapore, Singapore
| | - Tuan Danh Anh Luu
- Cardiovascular Research Institute, National University Health Systems, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore, Singapore
| | - Yiqing Peter Li
- Cardiovascular Research Institute, National University Health Systems, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore, Singapore
| | - Shi Ling Ng
- Cardiovascular Research Institute, National University Health Systems, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore, Singapore
- Genome Institute of Singapore, Genome, 60 Biopolis Street, Singapore, Singapore
| | - Lavenniah Annadoray
- Cardiovascular Research Institute, National University Health Systems, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore, Singapore
- Genome Institute of Singapore, Genome, 60 Biopolis Street, Singapore, Singapore
| | - Stephanie Sian
- Cancer Science Institute, National University Health Systems, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore, Singapore
| | - Matthew Andrew Ackers-Johnson
- Cardiovascular Research Institute, National University Health Systems, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore, Singapore
| | - Roger Sik-Yin Foo
- Cardiovascular Research Institute, National University Health Systems, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore, Singapore
- Genome Institute of Singapore, Genome, 60 Biopolis Street, Singapore, Singapore
| |
Collapse
|
9
|
Tang YT, Huang YY, Zheng L, Qin SH, Xu XP, An TX, Xu Y, Wu YS, Hu XM, Ping BH, Wang Q. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med 2017; 40:834-844. [PMID: 28737826 PMCID: PMC5548045 DOI: 10.3892/ijmm.2017.3080] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/11/2017] [Indexed: 12/20/2022] Open
Abstract
Exosomes are cell-derived vesicles and are abundant in biological fluids; they contain RNA molecules which may serve as potential diagnostic biomarkers in 'precision medicine'. To promote the clinical application of exosomal RNA (exoRNA), many isolation methods must be compared and validated. Exosomes in cell culture medium (CCM) and serum may be isolated using ultracentrifugation (UC), ExoQuick or Total Exosome Isolation Reagent (TEI), and exoRNA may be extracted using TRIzol-LS, SeraMir, Total Exosome RNA Isolation (TER), HiPure Liquid RNA/miRNA kit (HLR), miRNeasy or exoRNeasy. ExoRNA was assessed using NanoDrop, Bioanalyzer 2100, quantitative polymerase chain reaction and high-throughput sequencing. UC showed the lowest recovery of particles, but the highest protein purity for exosome isolation. For isolation of exoRNA, we found that combinations of the TEI and TER methods resulted in high extraction efficiency and purity of small RNA obtained using CCM. High yield and a narrow size distribution pattern of small RNA were shown in exoRNA isolated by exoRNeasy from serum. In RNA profile analysis, the small RNA constituent ratio, miRNA content and amount varied as a result of methodological differences. This study showed that different methods may introduce variations in the concentration, purity and size of exosomes and exoRNA. Herein we discuss the advantages and disadvantages of each method and their application to different materials, therefore providing a reference according to research design.
Collapse
Affiliation(s)
- Yue-Ting Tang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yi-Yao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Si-Hua Qin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xu-Ping Xu
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Tai-Xue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong Xu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying-Song Wu
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiu-Mei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bao-Hong Ping
- Department of Hui Qiao, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
10
|
Cosme J, Guo H, Hadipour-Lakmehsari S, Emili A, Gramolini AO. Hypoxia-Induced Changes in the Fibroblast Secretome, Exosome, and Whole-Cell Proteome Using Cultured, Cardiac-Derived Cells Isolated from Neonatal Mice. J Proteome Res 2017. [PMID: 28641008 DOI: 10.1021/acs.jproteome.7b00144] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiac fibroblasts (CFs) represent a major subpopulation of cells in the developing and adult heart. Cardiomyocyte (CM) and CF intercellular communication occurs through paracrine interactions and modulate myocyte development and stress response. Detailed proteomic analysis of the CF secretome in normal and stressed conditions may offer insights into the role of CF in heart development and disease. Primary neonatal mouse CFs were isolated and cultured for 24 h in 21% (normoxic) or 2% (hypoxic) O2. Conditioned medium was separated to obtain exosomes (EXO) and EXO-depleted secretome fractions. Multidimensional protein identification technology was performed on secreted fractions. Whole cell lysate data were also generated to provide subcellular context to the secretome. Proteomic analysis identified 6163 unique proteins in total. Statistical (QSpec) analysis identified 494 proteins differentially expressed between fractions and oxygen conditions. Gene Ontology enrichment analysis revealed hypoxic conditions selectively increase expression of proteins with extracellular matrix and signaling annotations. Finally, we subjected CM pretreated with CF secreted factors to hypoxia/reoxygenation. Viability assays suggested altered viability due to CF-derived factors. CF secretome proteomics revealed differential expression based on mode of secretion and oxygen levels in vitro.
Collapse
Affiliation(s)
- Jake Cosme
- Department of Physiology and Translational Biology and Engineering Program (TBEP), University of Toronto , Toronto, Ontario M5G 1M1, Canada
| | - Hongbo Guo
- The Donnelly Centre for Cellular and Biomolecular Research, Ted Rogers Centre for Heart Research, University of Toronto , Toronto, Ontario M5S 3E1, Canada
| | - Sina Hadipour-Lakmehsari
- Department of Physiology and Translational Biology and Engineering Program (TBEP), University of Toronto , Toronto, Ontario M5G 1M1, Canada
| | - Andrew Emili
- The Donnelly Centre for Cellular and Biomolecular Research, Ted Rogers Centre for Heart Research, University of Toronto , Toronto, Ontario M5S 3E1, Canada
| | - Anthony O Gramolini
- Department of Physiology and Translational Biology and Engineering Program (TBEP), University of Toronto , Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
11
|
András IE, Leda A, Contreras MG, Bertrand L, Park M, Skowronska M, Toborek M. Extracellular vesicles of the blood-brain barrier: Role in the HIV-1 associated amyloid beta pathology. Mol Cell Neurosci 2016; 79:12-22. [PMID: 28040512 DOI: 10.1016/j.mcn.2016.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 11/20/2022] Open
Abstract
HIV-infected brains are characterized by increased amyloid beta (Aβ) deposition. It is believed that the blood-brain barrier (BBB) is critical for Aβ homeostasis and contributes to Aβ accumulation in the brain. Extracellular vesicles (ECV), like exosomes, recently gained a lot of attention as potentially playing a significant role in Aβ pathology. In addition, HIV-1 hijacks the exosomal pathway for budding and release. Therefore, we investigated the involvement of BBB-derived ECV in the HIV-1-induced Aβ pathology in the brain. Our results indicate that HIV-1 increases ECV release from brain endothelial cells as well as elevates their Aβ cargo when compared to controls. Interestingly, brain endothelial cell-derived ECV transferred Aβ to astrocytes and pericytes. Infusion of brain endothelial ECV carrying fluorescent Aβ into the internal carotid artery of mice resulted in Aβ fluorescence associated with brain microvessels and in the brain parenchyma. These results suggest that ECV carrying Aβ can be successfully transferred across the BBB into the brain. Based on these observations, we conclude that HIV-1 facilitates the shedding of brain endothelial ECV carrying Aβ; a process that may increase Aβ exposure of cells of neurovascular unit, and contribute to amyloid deposition in HIV-infected brain.
Collapse
Affiliation(s)
- Ibolya E András
- Department of Biochemistry and Molecular Biology, 1011 NW 15th Street, Gautier Building, Room 528, University of Miami School of Medicine, Miami, FL 33136-1019, USA.
| | - Ana Leda
- Department of Biochemistry and Molecular Biology, 1011 NW 15th Street, Gautier Building, Room 528, University of Miami School of Medicine, Miami, FL 33136-1019, USA
| | - Marta Garcia Contreras
- Diabetes Research Institute, 1450 NW 10th Ave, University of Miami School of Medicine, Miami, FL 33136-1011, USA
| | - Luc Bertrand
- Department of Biochemistry and Molecular Biology, 1011 NW 15th Street, Gautier Building, Room 528, University of Miami School of Medicine, Miami, FL 33136-1019, USA
| | - Minseon Park
- Department of Biochemistry and Molecular Biology, 1011 NW 15th Street, Gautier Building, Room 528, University of Miami School of Medicine, Miami, FL 33136-1019, USA
| | - Marta Skowronska
- Department of Biochemistry and Molecular Biology, 1011 NW 15th Street, Gautier Building, Room 528, University of Miami School of Medicine, Miami, FL 33136-1019, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, 1011 NW 15th Street, Gautier Building, Room 528, University of Miami School of Medicine, Miami, FL 33136-1019, USA.
| |
Collapse
|
12
|
Varamo C, Occelli M, Vivenza D, Merlano M, Lo Nigro C. MicroRNAs role as potential biomarkers and key regulators in melanoma. Genes Chromosomes Cancer 2016; 56:3-10. [PMID: 27561079 DOI: 10.1002/gcc.22402] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma (MM) is a highly aggressive skin cancer with high incidence worldwide. It originates from melanocytes and is characterized by invasion, early metastasis and despite the use of new drugs it is still characterized by high mortality. Since an early diagnosis determines a better prognosis, it is important to explore novel prognostic markers in the management of patients with MM. microRNAs (miRNAs) are small (∼22 nucleotides) single-stranded non-coding RNAs that negatively regulate the expression of more than 60% of human genes.miRNAs alterations are involved in several cancers, including MM, where a differential expression for some of them has been reported between healthy controls and MM patients. Moreover, since miRNAs are stable and easily detectable in body fluids, they might be considered as robust candidate biomarkers useful to identify risk of MM, to diagnose an early lesion and/or an early metastatic disease. This review highlights the importance of miRNAs as risk factors, prognostic factors and their role as molecular regulator in the development and progression of MM. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chiara Varamo
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Marcella Occelli
- Medical Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Daniela Vivenza
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Marco Merlano
- Medical Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Cristiana Lo Nigro
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| |
Collapse
|
13
|
Markowitz J, Abrams Z, Jacob NK, Zhang X, Hassani JN, Latchana N, Wei L, Regan KE, Brooks TR, Uppati SR, Levine KM, Bekaii-Saab T, Kendra KL, Lesinski GB, Howard JH, Olencki T, Payne PR, Carson WE. MicroRNA profiling of patient plasma for clinical trials using bioinformatics and biostatistical approaches. Onco Targets Ther 2016; 9:5931-5941. [PMID: 27729802 PMCID: PMC5047719 DOI: 10.2147/ott.s106288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background MicroRNAs (miRNAs) are short noncoding RNAs that function to repress translation of mRNA transcripts and contribute to the development of cancer. We hypothesized that miRNA array-based technologies work best for miRNA profiling of patient-derived plasma samples when the techniques and patient populations are precisely defined. Methods Plasma samples were obtained from five sources: melanoma clinical trial of interferon and bortezomib (12), purchased normal donor plasma samples (four), gastrointestinal tumor bank (nine), melanoma tumor bank (ten), or aged-matched normal donors (eight) for the tumor bank samples. Plasma samples were purified for miRNAs and quantified using NanoString® arrays or by the company Exiqon. Standard biostatistical array approaches were utilized for data analysis and compared to a rank-based analytical approach. Results With the prospectively collected samples, fewer plasma samples demonstrated visible hemolysis due to increased attention to eliminating factors, such as increased pressure during phlebotomy, small gauge needles, and multiple punctures. Cancer patients enrolled in a melanoma clinical study exhibited the clearest pattern of miRNA expression as compared to normal donors in both the rank-based analytical method and standard biostatistical array approaches. For the patients from the tumor banks, fewer miRNAs (<5) were found to be differentially expressed and the false positive rate was relatively high. Conclusion In order to obtain consistent results for NanoString miRNA arrays, it is imperative that patient cohorts have similar clinical characteristics with a uniform sample preparation procedure. A clinical workflow has been optimized to collect patient samples to study plasma miRNAs.
Collapse
Affiliation(s)
- Joseph Markowitz
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL; Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Department of Oncologic Sciences, USF Morsani School of Medicine, Tampa, FL; Division of Medical Oncology, The Ohio State University Wexner Medical Center
| | - Zachary Abrams
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Department of Biomedical Informatics
| | - Naduparambil K Jacob
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Department of Radiation Oncology
| | - Xiaoli Zhang
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Center for Biostatistics
| | - John N Hassani
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL
| | | | - Lai Wei
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Center for Biostatistics
| | - Kelly E Regan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Department of Biomedical Informatics
| | - Taylor R Brooks
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Sarvani R Uppati
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Kala M Levine
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Tanios Bekaii-Saab
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Division of Medical Oncology, The Ohio State University Wexner Medical Center
| | - Kari L Kendra
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Division of Medical Oncology, The Ohio State University Wexner Medical Center
| | - Gregory B Lesinski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Division of Medical Oncology, The Ohio State University Wexner Medical Center
| | - J Harrison Howard
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Thomas Olencki
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Division of Medical Oncology, The Ohio State University Wexner Medical Center
| | - Philip R Payne
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Department of Biomedical Informatics
| | - William E Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Department of Surgery, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM, Hill MM, Nelson CC. Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. Oncotarget 2016; 8:52237-52255. [PMID: 28881726 PMCID: PMC5581025 DOI: 10.18632/oncotarget.11111] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 07/16/2016] [Indexed: 02/06/2023] Open
Abstract
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by steroid hormones, particularly androgens, and the extracellular environment. Herein, we identify the secretion of CD9 positive extracellular vesicles (EV) by LNCaP and DUCaP PCa cells in response to dihydrotestosterone (DHT) and use nano-LC–MS/MS to identify the proteins present in these EV. Subsequent bioinformatic and pathway analyses of the mass spectrometry data identified pathologically relevant pathways that may be altered by EV contents. Western blot and CD9 EV TR-FIA assay confirmed a specific increase in the amount of CD9 positive EV in DHT-treated LNCaP and DUCaP cells and treatment of cells with EV enriched with CD9 after DHT exposure can induce proliferation in androgen-deprived conditions. siRNA knockdown of endogenous CD9 in LNCaPs reduced cellular proliferation and expression of AR and prostate specific antigen (PSA) however knockdown of AR did not alter CD9 expression, also implicating CD9 as an upstream regulator of AR. Moreover CD9 positive EV were also found to be significantly higher in plasma from prostate cancer patients in comparison with benign prostatic hyperplasia patients. We conclude that CD9 positive EV are involved in mediating paracrine signalling and contributing toward prostate cancer progression.
Collapse
Affiliation(s)
- Carolina Soekmadji
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - James D Riches
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Pamela J Russell
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Jayde E Ruelcke
- Translational Research Institute, Brisbane, Queensland, Australia.,The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Stephen McPherson
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Chenwei Wang
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Chris M Hovens
- Australian Prostate Cancer Research Centre Epworth, and Department of Surgery, University of Melbourne, Australia
| | - Niall M Corcoran
- Australian Prostate Cancer Research Centre Epworth, and Department of Surgery, University of Melbourne, Australia
| | | | - Michelle M Hill
- Translational Research Institute, Brisbane, Queensland, Australia.,The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Fu M, Zou C, Pan L, Liang W, Qian H, Xu W, Jiang P, Zhang X. Long noncoding RNAs in digestive system cancers: Functional roles, molecular mechanisms, and clinical implications (Review). Oncol Rep 2016; 36:1207-18. [PMID: 27431376 DOI: 10.3892/or.2016.4929] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/04/2016] [Indexed: 01/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as new players in various diseases including cancer. LncRNAs have been shown to play multifaceted roles in the development, progression, and metastasis of cancer. In this review, we highlight the lncRNAs that are critically involved in the pathogenesis of digestive system cancers (DSCs). We summarize the roles of the lncRNAs in DSCs and the underlying mechanisms responsible for their functions. The DSC-associated lncRNAs interact with a wide spectrum of molecules to regulate gene expression at transcriptional, post-transcriptional, and translational levels. We also provide new insights into the clinical significance of these lncRNAs, which are found to be closely associated with the aggressiveness of DSCs and could predict the prognosis of DSC patients. Moreover, lncRNAs have been suggested as promising therapeutic targets in DSCs. Therefore, better understanding of the functional roles of lncRNAs will provide new biomarkers for DSC diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Min Fu
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Chen Zou
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Lei Pan
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Wei Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Pengcheng Jiang
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
16
|
Detection of Exosomal miRNAs in the Plasma of Melanoma Patients. J Clin Med 2015; 4:2012-27. [PMID: 26694476 PMCID: PMC4693157 DOI: 10.3390/jcm4121957] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of 22–25 nucleotide RNAs that control gene expression at the post-transcriptional level. MiRNAs have potential as cancer biomarkers. Melanoma is a highly aggressive form of skin cancer accounting for almost 4% of cancers among men and women, and ~80% of skin cancer-related deaths in the US. In the present study we analyzed plasma-derived exosomal miRNAs from clinically affected and unaffected familial melanoma patients (CDKN2A/p16 gene carriers) and compared them with affected (nonfamilial melanoma) and unaffected control subjects in order to identify novel risk biomarkers for melanoma. Intact miRNAs can be isolated from the circulation because of their presence in exosomes. A number of differentially regulated miRNAs identified by NanoString human V2 miRNA array were validated by quantitative PCR. Significantly, miR-17, miR-19a, miR-21, miR-126, and miR-149 were expressed at higher levels in patients with metastatic sporadic melanoma as compared with familial melanoma patients or unaffected control subjects. Surprisingly, no substantial differences in miRNA expression were detected between familial melanoma patients (all inclusive) and unaffected control subjects. The miRNAs differentially expressed in the different patient cohorts, especially in patients with metastatic melanoma, may play important roles in tumor progression and metastasis, and may be used as predictive biomarkers to monitor remission as well as relapse following therapeutic intervention.
Collapse
|
17
|
Aravalli RN, Steer CJ. Circulating microRNAs: novel biomarkers for early detection of colorectal cancer. Transl Res 2015; 166:219-24. [PMID: 25940044 DOI: 10.1016/j.trsl.2015.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Rajagopal N Aravalli
- Department of Radiology, University of Minnesota Medical School, Minneapolis, Minn.
| | - Clifford J Steer
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minn; Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minn.
| |
Collapse
|
18
|
Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep 2015; 5:11516. [PMID: 26096073 PMCID: PMC4476094 DOI: 10.1038/srep11516] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/28/2015] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are regarded as useful tools for cancer detection, particularly for the early stage; however, little is known about their diagnostic impact on gastric cancer (GC). We hypothesized that GC-related lncRNAs might release into the circulation during tumor initiation and could be utilized to detect and monitor GC. 8 lncRNAs which previously found to be differently expressed in GC were selected as candidate targets for subsequent circulating lncRNA assay. After validating in 20 pairs of tissues and plasma in training set, H19 was selected for further analysis in another 70 patients and 70 controls. Plasma level of H19 was significantly higher in GC patients compared with normal controls (p < 0.0001). By receiver operating characteristic curve (ROC) analysis, the area under the ROC curve (AUC) was 0.838; p < 0.001; sensitivity, 82.9%; specificity, 72.9%). Furthermore, H19 expression enabled the differentiation of early stage GC from controls with AUC of 0.877; sensitivity, 85.5%; specificity, 80.1%. Besides, plasma levels of H19 were significantly lower in postoperative samples than preoperative samples (p = 0.001). In conclusion, plasma H19 could serve as a potential biomarker for diagnosis of GC, in particular for early tumor screening.
Collapse
|
19
|
Madison MN, Jones PH, Okeoma CM. Exosomes in human semen restrict HIV-1 transmission by vaginal cells and block intravaginal replication of LP-BM5 murine AIDS virus complex. Virology 2015; 482:189-201. [PMID: 25880110 DOI: 10.1016/j.virol.2015.03.040] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/20/2015] [Accepted: 03/23/2015] [Indexed: 11/17/2022]
Abstract
Exosomes are membranous extracellular nanovesicles secreted by diverse cell types. Exosomes from healthy human semen have been shown to inhibit HIV-1 replication and to impair progeny virus infectivity. In this study, we examined the ability of healthy human semen exosomes to restrict HIV-1 and LP-BM5 murine AIDS virus transmission in three different model systems. We show that vaginal cells internalize exosomes with concomitant transfer of functional mRNA. Semen exosomes blocked the spread of HIV-1 from vaginal epithelial cells to target cells in our cell-to-cell infection model and suppressed transmission of HIV-1 across the vaginal epithelial barrier in our trans-well model. Our in vivo model shows that human semen exosomes restrict intravaginal transmission and propagation of murine AIDS virus. Our study highlights an antiretroviral role for semen exosomes that may be harnessed for the development of novel therapeutic strategies to combat HIV-1 transmission.
Collapse
Affiliation(s)
- Marisa N Madison
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Philip H Jones
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Chioma M Okeoma
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA; Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
Rice J, Roberts H, Burton J, Pan J, States V, Rai SN, Galandiuk S. Assay reproducibility in clinical studies of plasma miRNA. PLoS One 2015; 10:e0121948. [PMID: 25853871 PMCID: PMC4390277 DOI: 10.1371/journal.pone.0121948] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022] Open
Abstract
There are increasing reports of plasma miRNAs as biomarkers of human disease but few standards in methodologic reporting, leading to inconsistent data. We systematically reviewed plasma miRNA studies published between July 2013-June 2014 to assess methodology. Six parameters were investigated: time to plasma extraction, methods of RNA extraction, type of miRNA, quantification, cycle threshold (Ct) setting, and methods of statistical analysis. We compared these data with a proposed standard methodologic technique. Beginning with initial screening for 380 miRNAs using microfluidic array technology and validation in an additional cohort of patients, we compared 11 miRNAs that exhibited differential expression between 16 patients with benign colorectal neoplasms (advanced adenomas) and 16 patients without any neoplasm (controls). Plasma was isolated immediately, 12, 24, 48, or 72 h following phlebotomy. miRNA was extracted using two different techniques (Trizol LS with pre-amplification or modified miRNeasy). We performed Taqman-based RT-PCR assays for the 11 miRNAs with subsequent analyses using a variable Ct setting or a fixed Ct set at 0.01, 0.03, 0.05, or 0.5. Assays were performed in duplicate by two different operators. RNU6 was the internal reference. Systematic review yielded 74 manuscripts meeting inclusion criteria. One manuscript (1.4%) documented all 6 methodological parameters, while < 5% of studies listed Ct setting. In our proposed standard technique, plasma extraction ≤12 h provided consistent ΔCt. miRNeasy extraction yielded higher miRNA concentrations and fewer non-expressed miRNAs compared to Trizol LS (1/704 miRNAs [0.14%] vs 109/704 miRNAs [15%], not expressed, respectively). A fixed Ct bar setting of 0.03 yielded the most reproducible data, provided that <10% miRNA were non-expressed. There was no significant intra-operator variability. There was significant inter-operator variation using Trizol LS extraction, while this was negligible using modified miRNeasy. For standardized reporting, we recommend plasma extraction ≤ 12 h, using modified miRNeasy extraction and utilizing a 0.03 Ct.
Collapse
Affiliation(s)
- Jonathan Rice
- Price Institute of Surgical Research, Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Henry Roberts
- Price Institute of Surgical Research, Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - James Burton
- Price Institute of Surgical Research, Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Jianmin Pan
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, United States of America
| | - Vanessa States
- Price Institute of Surgical Research, Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Shesh N. Rai
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, United States of America
| | - Susan Galandiuk
- Price Institute of Surgical Research, Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
- * E-mail:
| |
Collapse
|
21
|
Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Korvala J, Salo T, Sormunen R, Vered M. Human saliva-derived exosomes: comparing methods of isolation. J Histochem Cytochem 2014; 63:181-9. [PMID: 25473095 DOI: 10.1369/0022155414564219] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ExoQuick-TC(TM) (EQ), a chemical-based agent designed to precipitate exosomes, was calibrated for use on saliva collected from healthy individuals. The morphological and molecular features of the precipitations were compared with those obtained using the classical, physical-based method of ultracentrifugation (UC). Electron microscopy and immunoelectron microscopy with anti-CD63 showed vesicular nanoparticles surrounded by bi-layered membrane, compatible with exosomes in EQ, similar to that observed with UC. Atomic force microscopy highlighted larger, irregularly shaped/aggregated EQ nanoparticles that contrasted with the single, round-shaped UC nanoparticles. ELISA (performed on 0.5 ml of saliva) revealed a tendency for a higher expression of the specific exosomal markers (CD63, CD9, CD81) in EQ than in UC (p>0.05). ELISA for epithelial growth factor receptor, a non-exosomal-related marker, showed a significantly higher concentration in EQ than in UC (p=0.04). Western blotting of equal total-protein concentrations revealed bands of CD63, CD9 and CD81 in both types of preparations, although they were less pronounced in EQ compared with UC. This may be related to a higher fraction of non-exosomal proteins in EQ. In conclusion, EQ is suitable and efficient for precipitation of salivary exosomes from small volumes of saliva; however, EQ tends to be associated with considerably more biological impurities (non-exosomal-related proteins/microvesicles) as compared with UC.
Collapse
Affiliation(s)
- Ayelet Zlotogorski-Hurvitz
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel (AZH, DD, MV)
| | - Dan Dayan
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel (AZH, DD, MV)
| | - Gavriel Chaushu
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel (GC),Department of Oral and Maxillofacial Surgery, Rabin Medical Center, Petah Tikva, Israel (GC)
| | - Johanna Korvala
- Departments of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Finland (JK, TS),Medical Research Center, Oulu University Hospital, Oulu, Finland (JK, TS)
| | - Tuula Salo
- Departments of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Finland (JK, TS),Medical Research Center, Oulu University Hospital, Oulu, Finland (JK, TS),Institute of Dentistry, University of Helsinki, Helsinki, Finland (TS)
| | - Raija Sormunen
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel (AZH, DD, MV),Biocenter Oulu Department of Pathology, Oulu University Hospital, Oulu, Finland (RS)
| | - Marilena Vered
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel (AZH, DD, MV),Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Israel (MV)
| |
Collapse
|
22
|
Madison MN, Roller RJ, Okeoma CM. Human semen contains exosomes with potent anti-HIV-1 activity. Retrovirology 2014; 11:102. [PMID: 25407601 PMCID: PMC4245725 DOI: 10.1186/s12977-014-0102-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/31/2014] [Indexed: 11/16/2022] Open
Abstract
Background Exosomes are membranous nanovesicles secreted into the extracellular milieu by diverse cell types. Exosomes facilitate intercellular communication, modulate cellular pheno/genotype, and regulate microbial pathogenesis. Although human semen contains exosomes, their role in regulating infection with viruses that are sexually transmitted remains unknown. In this study, we used semen exosomes purified from healthy human donors to evaluate the role of exosomes on the infectivity of different strains of HIV-1 in a variety of cell lines. Results We show that human semen contains a heterologous population of exosomes, enriched in mRNA encoding tetraspanin exosomal markers and various antiviral factors. Semen exosomes are internalized by recipient cells and upon internalization, inhibit replication of a broad array of HIV-1 strains. Remarkably, the anti-HIV-1 activity of semen exosomes is specific to retroviruses because semen exosomes blocked replication of the murine AIDS (mAIDS) virus complex (LP-BM5). However, exosomes from blood had no effect on HIV-1 or LP-BM5 replication. Additionally, semen and blood exosomes had no effect on replication of herpes simplex virus; types 1 and 2 (HSV1 and HSV2). Mechanistic studies indicate that semen exosomes exert a post-entry block on HIV-1 replication by orchestrating deleterious effects on particle-associated reverse transcriptase activity and infectivity. Conclusions These illuminating findings i) improve our knowledge of the cargo of semen exosomes, ii) reveal that semen exosomes possess anti-retroviral activity, and iii) suggest that semen exosome-mediated inhibition of HIV-1 replication may provide novel opportunities for the development of new therapeutics for HIV-1.
Collapse
Affiliation(s)
- Marisa N Madison
- Department of Microbiology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242-1109, USA.
| | - Richard J Roller
- Department of Microbiology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242-1109, USA.
| | - Chioma M Okeoma
- Department of Microbiology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242-1109, USA. .,Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
23
|
Matuszcak C, Haier J, Hummel R, Lindner K. MicroRNAs: Promising chemoresistance biomarkers in gastric cancer with diagnostic and therapeutic potential. World J Gastroenterol 2014; 20:13658-13666. [PMID: 25320504 PMCID: PMC4194550 DOI: 10.3748/wjg.v20.i38.13658] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/29/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer worldwide and ranks second in global cancer mortality statistics. Perioperative chemotherapy plays an important role in the management and treatment of advanced stage disease. However, response to chemotherapy varies widely, with some patients presenting no or only minor response to treatment. Hence, chemotherapy resistance is a major clinical problem that impacts on outcome. Unfortunately, to date there are no reliable biomarkers available that predict response to chemotherapy before the start of the treatment, or that allow modification of chemotherapy resistance. MicroRNAs (miRNAs) could provide an answer to this problem. miRNAs are involved in the initiation and progression of a variety of cancer types, and there is evidence that miRNAs impact on resistance towards chemotherapeutic drugs as well. This current review aims to provide an overview about the potential clinical applicability of miRNAs as biomarkers for chemoresistance in GC. The authors focus in this context on the potential of miRNAs to predict sensitivity towards different chemotherapeutics, and on the potential of miRNAs to modulate sensitivity and resistance towards chemotherapy in GC.
Collapse
|
24
|
The impact of extracellular vesicle-encapsulated circulating microRNAs in lung cancer research. BIOMED RESEARCH INTERNATIONAL 2014; 2014:486413. [PMID: 25295261 PMCID: PMC4176915 DOI: 10.1155/2014/486413] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/25/2014] [Indexed: 02/06/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths. Biomarkers for lung cancer have raised great expectations in their clinical applications for early diagnosis, survival, and therapeutic responses. MicroRNAs (miRNAs), a family of short endogenous noncoding RNAs, play critical roles in cell growth, differentiation, and the development of various types of cancers. Current studies have shown that miRNAs are present in the extracellular spaces, packaged into various membrane-bound vesicles. Tumor-specific circulating miRNAs have been developed as early diagnostic biomarkers for lung cancer. Remarkably, some studies have succeeded in discovering circulating miRNAs with prognostic or predictive significance. Extracellular vesicles (EVs), such as exosomes and microvesicles, are recognized as novel tools for cell-cell communication and as biomarkers for various diseases. Their vesicle composition and miRNA content have the ability to transfer biological information to recipient cells and play an important role in cancer metastasis and prognosis. This review provides an in-depth summary of current findings on circulating miRNAs in lung cancer patients used as diagnostic biomarkers. We also discuss the role of EV miRNAs in cell-cell communication and explore the effectiveness of these contents as predictive biomarkers for cancer malignancy.
Collapse
|
25
|
Lukasik A, Zielenkiewicz P. In silico identification of plant miRNAs in mammalian breast milk exosomes--a small step forward? PLoS One 2014; 9:e99963. [PMID: 24933019 PMCID: PMC4059707 DOI: 10.1371/journal.pone.0099963] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/20/2014] [Indexed: 01/28/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small RNA molecules that regulate gene expression by inhibiting the protein translation or targeting the mRNA cleavage. They play many important roles in living organism cells; however, the knowledge on miRNAs functions has become more extensive upon their identification in biological fluids and recent reports on plant-origin miRNAs abundance in human plasma and serum. Considering these findings, we performed a rigorous bioinformatics analysis of publicly available, raw data from high-throughput sequencing studies on miRNAs composition in human and porcine breast milk exosomes to identify the fraction of food-derived miRNAs. Several processing and filtering steps were applied to increase the accuracy, and to avoid false positives. Through aforementioned analysis, 35 and 17 miRNA species, belonging to 25 and 11 MIR families, were identified, respectively. In the human samples the highest abundance levels yielded the ath-miR166a, pab-miR951, ptc-miR472a and bdi-miR168, while in the porcine breast milk exosomes, the zma-miR168a, zma-miR156a and ath-miR166a have been identified in the largest amounts. The consensus prediction and annotation of potential human targets for select plant miRNAs suggest that the aforementioned molecules may interact with mRNAs coding several transcription factors, protein receptors, transporters and immune-related proteins, thus potentially influencing human organism. Taken together, the presented analysis shows proof of abundant plant miRNAs in mammal breast milk exosomes, pointing at the same time to the new possibilities arising from this discovery.
Collapse
Affiliation(s)
- Anna Lukasik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Department of Plant Molecular Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
26
|
Chevillet JR, Lee I, Briggs HA, He Y, Wang K. Issues and prospects of microRNA-based biomarkers in blood and other body fluids. Molecules 2014; 19:6080-105. [PMID: 24830712 PMCID: PMC6271291 DOI: 10.3390/molecules19056080] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 12/21/2022] Open
Abstract
Cell-free circulating microRNAs (miRNAs) in the blood are good diagnostic biomarker candidates for various physiopathological conditions, including cancer, neurodegeneration, diabetes and other diseases. Since their discovery in 2008 as blood biomarkers, the field has expanded rapidly with a number of important findings. Despite the initial optimistic views of their potential for clinical application, there are currently no circulating miRNA-based diagnostics in use. In this article, we review the status of circulating miRNAs, examine different analytical approaches, and address some of the challenges and opportunities.
Collapse
Affiliation(s)
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Hilary A Briggs
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY 10065, USA
| | - Yuqing He
- Institute of Medical Systems Biology, Guangdong Medical College, Dongguan, Guangdong 523808, China.
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA.
| |
Collapse
|
27
|
Wang J, Zhang KY, Liu SM, Sen S. Tumor-associated circulating microRNAs as biomarkers of cancer. Molecules 2014; 19:1912-38. [PMID: 24518808 PMCID: PMC6271223 DOI: 10.3390/molecules19021912] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs), the 17- to 25-nucleotide long noncoding RNAs that modulate the expression of mRNAs and proteins, have emerged as critical players in cancer initiation and progression processes. Deregulation of tissue miRNA expression levels associated with specific genetic alterations has been demonstrated in cancer, where miRNAs function either as oncogenes or as tumor-suppressor genes and are shed from cancer cells into circulation. The present review summarizes and evaluates recent advances in our understanding of the characteristics of tumor tissue miRNAs, circulating miRNAs, and the stability of miRNAs in tissues and their varying expression profiles in circulating tumor cells, and body fluids including blood plasma. These advances in knowledge have led to intense efforts towards discovery and validation of differentially expressing tumor-associated miRNAs as biomarkers and therapeutic targets of cancer. The development of tumor-specific miRNA signatures as cancer biomarkers detectable in malignant cells and body fluids should help with early detection and more effective therapeutic intervention for individual patients.
Collapse
Affiliation(s)
- Jin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ke-Yong Zhang
- Department of orthopedics, Daye People's Hospital, Daye, Hubei 435100, China
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|