1
|
Li H, E W, Zhao D, Liu H, Pei J, Du B, Liu K, Zhu X, Wang C. Response of Paenibacillus polymyxa SC2 to the stress of polymyxin B and a key ABC transporter YwjA involved. Appl Microbiol Biotechnol 2024; 108:17. [PMID: 38170316 DOI: 10.1007/s00253-023-12916-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 01/05/2024]
Abstract
Polymyxins are cationic peptide antibiotics and regarded as the "final line of defense" against multidrug-resistant bacterial infections. Meanwhile, some polymyxin-resistant strains and the corresponding resistance mechanisms have also been reported. However, the response of the polymyxin-producing strain Paenibacillus polymyxa to polymyxin stress remains unclear. The purpose of this study was to investigate the stress response of gram-positive P. polymyxa SC2 to polymyxin B and to identify functional genes involved in the stress response process. Polymyxin B treatment upregulated the expression of genes related to basal metabolism, transcriptional regulation, transport, and flagella formation and increased intracellular ROS levels, flagellar motility, and biofilm formation in P. polymyxa SC2. Adding magnesium, calcium, and iron alleviated the stress of polymyxin B on P. polymyxa SC2, furthermore, magnesium and calcium could improve the resistance of P. polymyxa SC2 to polymyxin B by promoting biofilm formation. Meanwhile, functional identification of differentially expressed genes indicated that an ABC superfamily transporter YwjA was involved in the stress response to polymyxin B of P. polymyxa SC2. This study provides an important reference for improving the resistance of P. polymyxa to polymyxins and increasing the yield of polymyxins. KEY POINTS: • Phenotypic responses of P. polymyxa to polymyxin B was performed and indicated by RNA-seq • Forming biofilm was a key strategy of P. polymyxa to alleviate polymyxin stress • ABC transporter YwjA was involved in the stress resistance of P. polymyxa to polymyxin B.
Collapse
Affiliation(s)
- Hui Li
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Wenhui E
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Dongying Zhao
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Haiyang Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jian Pei
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Binghai Du
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Kai Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chengqiang Wang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
2
|
Yuan P, Chen Z, Xu M, Cai W, Liu Z, Sun D. Microbial cell factories using Paenibacillus: status and perspectives. Crit Rev Biotechnol 2024; 44:1386-1402. [PMID: 38105503 DOI: 10.1080/07388551.2023.2289342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/03/2023] [Accepted: 04/22/2023] [Indexed: 12/19/2023]
Abstract
Considered a "Generally Recognized As Safe" (GRAS) bacterium, the plant growth-promoting rhizobacterium Paenibacillus has been widely applied in: agriculture, medicine, industry, and environmental remediation. Paenibacillus species not only accelerate plant growth and degrade toxic substances in wastewater and soil but also produce industrially-relevant enzymes and antimicrobial peptides. Due to a lack of genetic manipulation tools and methods, exploitation of the bioresources of naturally isolated Paenibacillus species has long been limited. Genetic manipulation tools and methods continue to improve in Paenibacillus, such as shuttle plasmids, promoters, and genetic tools of CRISPR. Furthermore, genetic transformation systems develop gradually, including: penicillin-mediated transformation, electroporation, and magnesium amino acid-mediated transformation. As genetic manipulation methods of homologous recombination and CRISPR-mediated editing system have developed gradually, Paenibacillus has come to be regarded as a promising microbial chassis for biomanufacturing, expanding its application scope, such as: industrial enzymes, bioremediation and bioadsorption, surfactants, and antibacterial agents. In this review, we describe the applications of Paenibacillus bioproducts, and then discuss recent advances and future challenges in the development of genetic manipulation systems in this genus. This work highlights the potential of Paenibacillus as a new microbial chassis for mining bioresources.
Collapse
Affiliation(s)
- Panhong Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Ziyan Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Mengtao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Wenfeng Cai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhizhi Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Huang Y, Liao M, Hu X, Hu H, Gong H. Advances in the clinical treatment of multidrug-resistant pathogens using polymyxins. J Antimicrob Chemother 2024:dkae344. [PMID: 39351975 DOI: 10.1093/jac/dkae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVES Polymyxins are a vital class of antibiotics used to combat multidrug-resistant Gram-negative bacteria. However, their use is limited due to potential nephrotoxicity and the availability of alternative antibiotics. This review aims to examine the properties of polymyxins and the clinical advances in their use for treating infections caused by carbapenem-resistant Gram-negative bacteria (CR-GNB). METHODS This review analyses literature on polymyxin properties and various clinical approaches, including intravenous drip infusion, nebulized or dry powder inhalation, and ointment application. Treatment efficacy in terms of bacterial eradication, cure rate and mortality rate are reviewed and evaluated. RESULTS Polymyxins have been reintroduced to treat critical infections due to the increasing prevalence of CR-GNB. Clinical trials and studies have confirmed that polymyxins can effectively treat CR-GNB infections when the formulation and administration are appropriate, with acceptable levels of nephrotoxicity. CONCLUSIONS In the future, the development of polymyxin formulations will aim to improve their clinical effectiveness while reducing toxicity and side effects and preventing the emergence of polymyxin-resistant strains. Enhanced efficacy and minimized potential side effects can be achieved by developing new polymyxin-delivery systems that provide a smart and controlled release or customized patient administration.
Collapse
Affiliation(s)
- Yizhen Huang
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Mingrui Liao
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Honghua Hu
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haoning Gong
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Fan Z, Li Z, Fu T, Feng Y, Chen Y, Liu H, Du B, Cui X, Zhao H, Xue G, Cui J, Yan C, Gan L, Feng J, Xu Z, Yu Z, Yuan J. Inhibition of the ATP synthase increases sensitivity of Escherichia coli carrying mcr-1 to polymyxin B. J Antibiot (Tokyo) 2024; 77:685-696. [PMID: 38914795 DOI: 10.1038/s41429-024-00753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024]
Abstract
Bacterial infections caused by multidrug-resistant (MDR) gram-negative strains carrying the mobile colistin resistance gene mcr-1 are serious threats to world public health due to the lack of effective treatments. Inhibition of the ATP synthase makes bacteria such as Staphylococcus aureus and Klebsiella pneumoniae more sensitive to polymyxin. This provides new strategies for treating infections caused by polymyxins-resistant bacteria carrying mcr-1. Six mcr-1-positive strains were isolated from clinical samples, and all were identified as Escherichia coli. Here we investigated several ATP synthase inhibitors, N,N'-dicyclohexylcarbodiimide (DCCD), resveratrol, and piceatannol, for their antibacterial effects against the mcr-1-positive strains combined with polymyxin B (POL). Checkerboard assay, time-kill assay, biofilm inhibition and eradication assay indicated the significant synergistic effect of ATP synthase inhibitors/POL combination in vitro. Meanwhile, mouse infection model experiment was also performed, showing a 5 log10 reduction of the pathogen after treatment with the resveratrol/POL combination. Moreover, adding adenosine disodium triphosphate (Na2ATP) could inhibit the antibacterial effect of the ATP synthase inhibitors/POL combination. In conclusion, our study confirmed that inhibition of ATP production could increase the susceptibility of bacteria carrying mcr-1 to polymyxins. This provides a new strategy against polymyxins-resistant bacteria infection.
Collapse
Affiliation(s)
- Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhoufei Li
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Tongtong Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yuchen Chen
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Hongbo Liu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Bing Du
- University of Edinburgh, Edinburgh, UK
| | - Xiaohu Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zihui Yu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
5
|
Rihane R, Hecini-Hannachi A, Bentchouala C, Benlabed K, Diene SM. Molecular Characterization of Carbapenem and Colistin Resistance in Klebsiella pneumoniae Isolates Obtained from Clinical Samples at a University Hospital Center in Algeria. Microorganisms 2024; 12:1942. [PMID: 39458252 PMCID: PMC11509410 DOI: 10.3390/microorganisms12101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
The current study aimed to determine the molecular mechanisms of carbapenem and colistin resistance among the clinical isolates of Klebsiella pneumoniae from hospitalized patients admitted to a university hospital in Eastern Algeria. In total, 124 non-duplicate isolates of K. pneumoniae were collected from September 2018 to April 2019. Bacterial identification was performed using MALDI-TOF MS. The presence of extended spectrum β-lactamase (ESBL) genes, carbapenemase genes, chromosomal mutation and mcr genes in colistin-resistant K. pneumoniae were evaluated by PCR. ESBLs represented a rate of 49.1% and harbored blaCTX-M, blaTEM and blaSHV genes. Concerning carbapenems, 12 strains (9.6%) were resistant to ertapenem (MIC: 1-32 μg/mL), of which one strain (0.8%) was also resistant to imipenem (MIC: 32 μg/mL). Among these strains, nine (75%) harbored blaOXA-48 gene. Seven strains (5.6%) expressed resistance to colistin (MIC: 2-32 μg/mL), of which two harbored mcr-8 and mgrB genes simultaneously. The existence of a double resistance to colistin in the same strain is new in Algeria, and this could raise concerns about the increase in levels of resistance to this antibiotic (MIC: 32 μg/mL). The mgrB gene alone was observed in five isolates (71.4%), including two strains harboring blaOXA-48. This is the first report revealing the presence of K. pneumoniae strains carrying the blaOXA-48 gene as well as a mutation in the mgrB gene. Large-scale surveillance and effective infection control measures are also urgently needed to prevent the outbreak of various carbapenem- and colistin-resistant isolates.
Collapse
Affiliation(s)
- Riyane Rihane
- Molecular and Cellular Biology Laboratory, University of Mentouri Brothers Constantine 1, Constantine 25000, Algeria
| | - Abla Hecini-Hannachi
- Department of Medicine, Faculty of Medicine, University of Salah Boubnider Constantine 3, Constantine 25000, Algeria; (C.B.); (K.B.)
| | - Chafia Bentchouala
- Department of Medicine, Faculty of Medicine, University of Salah Boubnider Constantine 3, Constantine 25000, Algeria; (C.B.); (K.B.)
- Bacteriology Laboratory, Benbadis University Hospital, Constantine 25000, Algeria
| | - Kaddour Benlabed
- Department of Medicine, Faculty of Medicine, University of Salah Boubnider Constantine 3, Constantine 25000, Algeria; (C.B.); (K.B.)
- Bacteriology Laboratory, Benbadis University Hospital, Constantine 25000, Algeria
| | - Seydina M. Diene
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), IHU-Méditerranée Infection, Faculté de Pharmacie, Aix-Marseille University, 13385 Marseille, France;
| |
Collapse
|
6
|
Salvaterra Pasquini JP, Queiroz PA, Rodrigues do Amaral PH, da Silva TC, de Souza Bonfim Mendonça P, Vandresen F, Carvalho Ceolis JP, de Lima Scodro RB, Caleffi-Ferracioli KR, Cardoso RF, Dias Siqueira VL. Polymyxin B adjuvants against polymyxin B- and carbapenem-resistant Gram-negative bacteria. Future Microbiol 2024; 19:1445-1454. [PMID: 39258398 PMCID: PMC11492663 DOI: 10.1080/17460913.2024.2398312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Aim: Polymyxin B (PMB) is one of the few therapeutic options for treating infections caused by carbapenem-resistant Gram-negative bacteria (CR-GNB). However, the emergence of PMB-resistant CR-GNB strains has prompted the exploration of antibiotic adjuvants as potential therapeutic avenues. Thus, this study evaluates the potential of 3,5-dinitrobenzoic acid derivatives (DNH01, DNH11, DNH13 and DNH20) and isoniazid-N-acylhydrazones (INZ1-7, INZ9 and INZ11) as adjuvants to enhance PMB efficacy against CR-GNB.Materials & methods: MIC, MBC and drug combination assays were conducted using multidrug-resistant clinical isolates of Enterobacterales and Acinetobacter baumannii. In addition, the effects of PMB and PMB + DNH derivatives were assessed through flow cytometry and scanning electron microscopy (SEM).Results: DNH01, DNH11 and DNH20, unlike the INH-acylhydrazones, significantly restored PMB activity (MIC ≤ 2 μg/ml) in 80% of the tested isolates. Flow cytometry and SEM assays confirmed that DNH derivatives rescued the activity of PMB, yielding results comparable to those expected for PMB alone but at 256-fold lower concentrations.Conclusion: These findings suggest DNH derivatives hold substantial promise as PMB adjuvants to combat PMB-resistant CR-GNB infections.
Collapse
Affiliation(s)
| | - Paula Assis Queiroz
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Maringa, Parana, Brazil
| | | | - Thalita Camilo da Silva
- Department of Clinical Analysis & Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | | | - Fábio Vandresen
- Department of Chemistry, Federal Technological University of Parana, Londrina, Parana, Brazil
| | | | - Regiane Bertin de Lima Scodro
- Postgraduate Program in Health Sciences, State University of Maringa, Parana, Brazil
- Department of Clinical Analysis & Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | - Katiany Rizzieri Caleffi-Ferracioli
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Maringa, Parana, Brazil
- Department of Clinical Analysis & Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Maringa, Parana, Brazil
- Department of Clinical Analysis & Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | - Vera Lúcia Dias Siqueira
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Maringa, Parana, Brazil
- Department of Clinical Analysis & Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| |
Collapse
|
7
|
Liu Y, Blanco-Toral C, Larrouy-Maumus G. The role of cyclic nucleotides in bacterial antimicrobial resistance and tolerance. Trends Microbiol 2024:S0966-842X(24)00218-X. [PMID: 39242230 DOI: 10.1016/j.tim.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Nucleotide signalling molecules - mainly cyclic 3',5'-adenosine phosphate (cAMP), bis-(3',5')-cyclic diguanosine monophosphate (c-di-GMP), and bis-(3',5')-cyclic diadenosine monophosphate (c-di-AMP) - contribute to the regulation of cellular pathways. Numerous recent works have focused on the involvement of these cyclic nucleotide phosphates (cNPs) in bacterial resistance and tolerance to antimicrobial treatment. Indeed, the rise of antimicrobial resistance (AMR) is a rising global threat to human health, while the rise of antimicrobial tolerance underlies the development of AMR and long-term infections, placing an additional burden on this problem. Here, we summarise the current understanding of cNP signalling in bacterial physiology with a focus on our understanding of how cNP signalling affects AMR and antimicrobial tolerance in different bacterial species. We also discuss additional cNP-related drug targets in bacterial pathogens that may have therapeutic potential.
Collapse
Affiliation(s)
- Yi Liu
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Claudia Blanco-Toral
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
8
|
Santos da Costa B, Peixoto RS, da Conceição Neto OC, da Silva Pontes L, Tavares E Oliveira TR, Tavares Teixeira CB, de Oliveira Santos IC, Silveira MC, Silva Rodrigues DC, Pribul BR, Rocha-de-Souza CM, D 'Alincourt Carvalho-Assef AP. Polymyxin resistance in Enterobacter cloacae complex in Brazil: phenotypic and molecular characterization. Braz J Microbiol 2024:10.1007/s42770-024-01464-1. [PMID: 39210190 DOI: 10.1007/s42770-024-01464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Enterobacter cloacae complex isolates have been reported as an important nosocomial multidrug resistance pathogen. In the present study, we investigated antimicrobial susceptibility and the colistin-resistance rates, their genetic determinants and clonality among clinical E. cloacae complex isolates from different Brazilian states. For this, an initial screening was carried out on 94 clinical isolates of E. clocacae complex received between 2016 and 2018 by LAPIH-FIOCRUZ, using EMB plates containing 4 μg/mL of colistin, followed MIC determination, resulting in the selection of 26 colistin-resistant isolates from the complex. The presence of carbapenemases encoding genes (blaKPC, blaNDM and blaOXA-48), plasmidial genes for resistance to polymyxins (mcr1-9) and mutations in chromosomal genes (pmrA, pmrB, phoP and phoQ) described as associated with resistance to polymyxin were screened by PCR and DNA sequencing. Finally, the hsp60 gene was sequenced to identify species of the E. cloacae complex and genetic diversity was evaluated by PFGE and MLST. The results have shown that among 94 E. cloacae complex isolates, 19 (20.2%) were colistin-resistant. The resistant strains exhibited MIC ranging from 4 to 128 µg / mL and E. hormaechei subsp. steigerwaltii was the prevalent species in the complex (31,6%), followed by E. cloacae subsp. cloacae (26,3%). The antimicrobials with the highest susceptibility rate were gentamicin (21%) and tigecycline (26%). Carbapenemases encoding genes (blaKPC n = 5, blaNDM n = 1) were detected in 6 isolates and mcr-9 in one. Among the modifications found in PmrA, PmrB, PhoP e PhoQ (two-component regulatory system), only the S175I substitution in PmrB found in E. cloacae subsp cloacae isolates were considered deleterious (according to the prediction of PROVEAN). By PFGE, 13 profiles were found among E. cloacae complex isolates, with EcD the most frequent. Furthermore, by MLST 10 ST's, and 1 new ST, were identified in E. cloacae. In conclusion, no prevalence of clones or association among carbapenemase production and polymyxin resistance was found between the E. cloacae. Thereby, the results suggest that the increased polymyxin-resistance is related to the selective pressure exerted by the indiscriminate use in hospitals. Lastly, this study highlights the urgent need to elucidate the mechanism involved in the resistance to polymyxin in the E. cloacae complex and the development of measures to control and prevent infections caused by these multiresistant bacteria.
Collapse
Affiliation(s)
- Bianca Santos da Costa
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Renata Stavracakis Peixoto
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Orlando Carlos da Conceição Neto
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Leilane da Silva Pontes
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Thamirys Rachel Tavares E Oliveira
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Camila Bastos Tavares Teixeira
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Ivson Cassiano de Oliveira Santos
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Melise Chaves Silveira
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Daiana Cristina Silva Rodrigues
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Bruno Rocha Pribul
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
- Coleção de Culturas de Bactérias de Origem Hospitalar (CCBH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, Rio de Janeiro,RJ, 436521045900, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
- Coleção de Culturas de Bactérias de Origem Hospitalar (CCBH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, Rio de Janeiro,RJ, 436521045900, Brazil
| | - Ana Paula D 'Alincourt Carvalho-Assef
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil.
| |
Collapse
|
9
|
Zhang H, Wu T, Ruan H. Identification and Functional Analysis of ncRNAs Regulating Intrinsic Polymyxin Resistance in Foodborne Proteus vulgaris. Microorganisms 2024; 12:1661. [PMID: 39203505 PMCID: PMC11356903 DOI: 10.3390/microorganisms12081661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Polymyxin, known as the "last line of defense" against bacterial infection, exerts a significant inhibitory effect on a wide range of Gram-negative pathogenic bacteria. The presence of strains, specifically Proteus vulgaris species, displaying intrinsic polymyxin resistance poses significant challenges to current clinical treatment. However, the underlying mechanism responsible for this intrinsic resistance remains unclear. Bacterial non-coding RNAs (ncRNAs) are abundant in genomes and have been demonstrated to have significant regulatory roles in antibiotic resistance across various bacterial species. However, it remains to be determined whether ncRNAs in Proteus vulgaris can regulate intrinsic polymyxin resistance. This study focused on investigating the foodborne Proteus vulgaris strain P3M and its intrinsic polymyxin resistance regulation mediated by ncRNAs. Through a combination of bioinformatics analysis, mutant construction, and phenotypic experimental verification, we successfully identified the ncRNAs involved and their potential target genes. These findings serve as an essential foundation for the precise identification of ncRNAs participating in the intricate regulation process of polymyxin resistance. Additionally, this study offers valuable insights into the efficient screening of bacterial ncRNAs that contribute positively to antibiotic resistance regulation.
Collapse
Affiliation(s)
| | | | - Haihua Ruan
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (H.Z.); (T.W.)
| |
Collapse
|
10
|
Resci I, Zavatta L, Piva S, Mondo E, Guerra I, Nanetti A, Bortolotti L, Cilia G. Using honey bee colonies to monitor phenotypic and genotypic resistance to colistin. CHEMOSPHERE 2024; 362:142717. [PMID: 38944352 DOI: 10.1016/j.chemosphere.2024.142717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Colistin is a polymyxin antimicrobic mainly used to treat infection caused by multi-drug resistant Gram-negative bacteria. Mechanisms of colistin resistance are linked to the mobile colistin resistance (mcr) genes, which are transferable within mobile plasmids. Currently, there is limited research on the environmental dissemination of these genes. The behavioural and morphological characteristics of Apis mellifera L. make honey bees effective environmental bioindicators for assessing the prevalence of antimicrobial-resistant bacteria. This study aims to evaluate the colistin phenotypic and genotypic resistance in environmental Gram-negative bacteria isolated from foraging honey bees, across a network of 33 colonies distributed across the Emilia-Romagna region in Italy. Phenotypic resistances were determined through a microdilution assay using the minimum inhibitory concentration (MIC) with dilutions ranging from 0.5 μg/ml to 256 μg/ml. Strains with MIC values gather than 2 μg/ml were classified as resistant. Also, the identification of the nine mcr genes was carried out using two separate multiplex PCR assays. The study found that 68.5% of isolates were resistant and the genus with the higher resistance rates observed in Enterobacter spp. (84.5%). At least one mcr gene was found in 137 strains (53.3%). The most detected gene was mcr5 (35.3%), which was the most frequently detected gene in the seven provinces, while the least observed was mcr4 (4.8%), detected only in two provinces. These results suggested the feasibility of detecting specific colistin resistance genes in environmentally spread bacteria and understanding their distribution at the environmental level, despite their restricted clinical use. In a One-Health approach, this capability enables valuable environmental monitoring, considering the significant role of colistin in the context of public health.
Collapse
Affiliation(s)
- Ilaria Resci
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy; Department of Veterinary Sciences, University of Bologna, Ozzano Dell'Emilia (BO), Italy; Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy; DISTAL-Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Silvia Piva
- Department of Veterinary Sciences, University of Bologna, Ozzano Dell'Emilia (BO), Italy
| | - Elisabetta Mondo
- Department of Veterinary Sciences, University of Bologna, Ozzano Dell'Emilia (BO), Italy
| | - Irene Guerra
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Antonio Nanetti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Laura Bortolotti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy.
| |
Collapse
|
11
|
Hancharova M, Halicka-Stępień K, Dupla A, Lesiak A, Sołoducho J, Cabaj J. Antimicrobial activity of metal-based nanoparticles: a mini-review. Biometals 2024; 37:773-801. [PMID: 38286956 DOI: 10.1007/s10534-023-00573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
The resistance of pathogenic microorganisms to antibiotics is one of the main problems of world health. Of particular concern are multidrug-resistant (MDR) bacteria. Infections caused by these microorganisms affect the appearance of acute or chronic diseases. In this regard, modern technologies, such as nanomaterials (NMs), especially promising nanoparticles (NPs), can possess antimicrobial properties or improve the effectiveness and delivery of known antibiotics. Their diversity and characteristics, combined with surface functionalization, enable multivalent interactions with microbial biomolecules. This article presents an overview of the most current research on replacing antibiotics with NPs, including the prospects and risks involved.
Collapse
Affiliation(s)
- Marharyta Hancharova
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kinga Halicka-Stępień
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Aleksandra Dupla
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anna Lesiak
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
- Laboratoire de Chimie, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie, 69364, Lyon, France
| | - Jadwiga Sołoducho
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
12
|
Maybin M, Ranade AM, Schombel U, Gisch N, Mamat U, Meredith TC. IS 1-mediated chromosomal amplification of the arn operon leads to polymyxin B resistance in Escherichia coli B strains. mBio 2024; 15:e0063424. [PMID: 38904391 PMCID: PMC11253626 DOI: 10.1128/mbio.00634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Polymyxins [colistin and polymyxin B (PMB)] comprise an important class of natural product lipopeptide antibiotics used to treat multidrug-resistant Gram-negative bacterial infections. These positively charged lipopeptides interact with lipopolysaccharide (LPS) located in the outer membrane and disrupt the permeability barrier, leading to increased uptake and bacterial cell death. Many bacteria counter polymyxins by upregulating genes involved in the biosynthesis and transfer of amine-containing moieties to increase positively charged residues on LPS. Although 4-deoxy-l-aminoarabinose (Ara4N) and phosphoethanolamine (PEtN) are highly conserved LPS modifications in Escherichia coli, different lineages exhibit variable PMB susceptibilities and frequencies of resistance for reasons that are poorly understood. Herein, we describe a mechanism prevalent in E. coli B strains that depends on specific insertion sequence 1 (IS1) elements that flank genes involved in the biosynthesis and transfer of Ara4N to LPS. Spontaneous and transient chromosomal amplifications mediated by IS1 raise the frequency of PMB resistance by 10- to 100-fold in comparison to strains where a single IS1 element located 90 kb away from the end of the arn operon has been deleted. Amplification involving IS1 becomes the dominant resistance mechanism in the absence of PEtN modification. Isolates with amplified arn operons gradually lose their PMB-resistant phenotype with passaging, consistent with classical PMB heteroresistance behavior. Analysis of the whole genome transcriptome profile showed altered expression of genes residing both within and outside of the duplicated chromosomal segment, suggesting complex phenotypes including PMB resistance can result from tandem amplification events.IMPORTANCEPhenotypic variation in susceptibility and the emergence of resistant subpopulations are major challenges to the clinical use of polymyxins. While a large database of genes and alleles that can confer polymyxin resistance has been compiled, this report demonstrates that the chromosomal insertion sequence (IS) content and distribution warrant consideration as well. Amplification of large chromosomal segments containing the arn operon by IS1 increases the Ara4N content of the lipopolysaccharide layer in Escherichia coli B lineages using a mechanism that is orthogonal to transcriptional upregulation through two-component regulatory systems. Altogether, our work highlights the importance of IS elements in modulating gene expression and generating diverse subpopulations that can contribute to phenotypic polymyxin B heteroresistance.
Collapse
Affiliation(s)
- Michael Maybin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Aditi M. Ranade
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ursula Schombel
- Division of Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Uwe Mamat
- Division of Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Leibniz Research Alliance INFECTIONS, Borstel, Germany
| | - Timothy C. Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
13
|
Wang Y, Sun D, Xu Z, Jiao X, Chen X. Mobile Colistin Resistance and Plasmid-Mediated Quinolone Resistance Genes in Escherichia coli from China, 1993-2019. Foodborne Pathog Dis 2024; 21:416-423. [PMID: 38629721 DOI: 10.1089/fpd.2023.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Plasmid-mediated quinolone resistance (PMQR) genes and mobile colistin resistance (MCR) genes in Escherichia coli (E. coli) have been widely identified, which is considered a global threat to public health. In the present study, we conducted an analysis of MCR genes (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5) and PMQR genes [qnrA, qnrB, qnrC, qnrD, qnrE1, qnrVC, qnrS, aac(6')-Ib-cr, qepA, and oqxAB] in E. coli from China, 1993-2019. From the 3,663 E. coli isolates examined, 1,613 (44.0%) tested positive for PMQR genes, either individually or in combination. Meanwhile, 262 isolates (7.0%) carried the MCR genes. Minimum inhibitory concentration (MIC) analyses of 17 antibiotics for the MCR gene-carrying strains revealed universal multidrug resistance. Resistance to polymyxin varied between 4 μg/mL and 64 μg/mL, with MIC50 and MIC90 at 8 μg/mL and 16 μg/mL, respectively. In addition, fluctuations in the detection rates of these resistant genes correlated with the introduction of antibiotic policies, host origin, temporal trends, and geographical distribution. Continuous surveillance of PMQR and MCR variants in bacteria is required to implement control and prevention strategies.
Collapse
Affiliation(s)
- Yujin Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Dewei Sun
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhengzhong Xu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Xin'an Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Yang S, Wang H, Zhao D, Zhang S, Hu C. Polymyxins: recent advances and challenges. Front Pharmacol 2024; 15:1424765. [PMID: 38974043 PMCID: PMC11224486 DOI: 10.3389/fphar.2024.1424765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Antibiotic resistance is a pressing global health challenge, and polymyxins have emerged as the last line of defense against multidrug-resistant Gram-negative (MDR-GRN) bacterial infections. Despite the longstanding utility of colistin, the complexities surrounding polymyxins in terms of resistance mechanisms and pharmacological properties warrant critical attention. This review consolidates current literature, focusing on polymyxins antibacterial mechanisms, resistance pathways, and innovative strategies to mitigate resistance. We are also investigating the pharmacokinetics of polymyxins to elucidate factors that influence their in vivo behavior. A comprehensive understanding of these aspects is pivotal for developing next-generation antimicrobials and optimizing therapeutic regimens. We underscore the urgent need for advancing research on polymyxins to ensure their continued efficacy against formidable bacterial challenges.
Collapse
Affiliation(s)
- Shan Yang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hairui Wang
- Institute of Respiratory Health, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Dan Zhao
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shurong Zhang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Roque-Borda CA, Primo LMDG, Franzyk H, Hansen PR, Pavan FR. Recent advances in the development of antimicrobial peptides against ESKAPE pathogens. Heliyon 2024; 10:e31958. [PMID: 38868046 PMCID: PMC11167364 DOI: 10.1016/j.heliyon.2024.e31958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Multi-drug resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are a global health threat. The severity of the problem lies in its impact on mortality, therapeutic limitations, the threat to public health, and the costs associated with managing infections caused by these resistant strains. Effectively addressing this challenge requires innovative approaches to research, the development of new antimicrobials, and more responsible antibiotic use practices globally. Antimicrobial peptides (AMPs) are a part of the innate immune system of all higher organisms. They are short, cationic and amphipathic molecules with broad-spectrum activity. AMPs interact with the negatively charged bacterial membrane. In recent years, AMPs have attracted considerable interest as potential antibiotics. However, AMPs have low bioavailability and short half-lives, which may be circumvented by chemical modification. This review presents recent in vitro and in silico strategies for the modification of AMPs to improve their stability and application in preclinical experiments.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, Brazil
- Universidad Católica de Santa María, Vicerrectorado de Investigación, Arequipa, Peru
| | | | - Henrik Franzyk
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, Denmark
| | - Paul Robert Hansen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, Denmark
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, Brazil
| |
Collapse
|
16
|
Kundu R, Baronia T, Sathe P. The Rise of Irrational Antimicrobial Combinations: Need for Clinical Jurisprudence? Indian J Crit Care Med 2024; 28:618-619. [PMID: 39130378 PMCID: PMC11310685 DOI: 10.5005/jp-journals-10071-24718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
How to cite this article: Kundu R, Baronia T, Sathe P. The Rise of Irrational Antimicrobial Combinations: Need for Clinical Jurisprudence? Indian J Crit Care Med 2024;28(6):618-619.
Collapse
Affiliation(s)
- Riddhi Kundu
- Department of Critical Care Medicine, Ruby Hall Clinic, Pune, Maharashtra, India
| | - Tanima Baronia
- Department of Critical Care Medicine, Ruby Hall Clinic, Pune, Maharashtra, India
| | - Prachee Sathe
- Department of Critical Care Medicine, Ruby Hall Clinic, Pune, Maharashtra, India
| |
Collapse
|
17
|
Zhuang J, Liu S, Du GF, Fang Z, Wu J, Li N, Zhong T, Xu J, He QY, Sun X. YjgM is a crotonyltransferase critical for polymyxin resistance of Escherichia coli. Cell Rep 2024; 43:114161. [PMID: 38678561 DOI: 10.1016/j.celrep.2024.114161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Lysine crotonylation has attracted widespread attention in recent years. However, little is known about bacterial crotonylation, particularly crotonyltransferase and decrotonylase, and its effects on antibiotic resistance. Our study demonstrates the ubiquitous presence of crotonylation in E. coli, which promotes bacterial resistance to polymyxin. We identify the crotonyltransferase YjgM and its regulatory pathways in E. coli with a focus on crotonylation. Further studies show that YjgM upregulates the crotonylation of the substrate protein PmrA, thereby boosting PmrA's affinity for binding to the promoter of eptA, which, in turn, promotes EptA expression and confers polymyxin resistance in E. coli. Additionally, we discover that PmrA's crucial crotonylation site and functional site is Lys 164. These significant discoveries highlight the role of crotonylation in bacterial drug resistance and offer a fresh perspective on creating antibacterial compounds.
Collapse
Affiliation(s)
- Jianpeng Zhuang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shiqin Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Gao-Fei Du
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China; Key Laboratory of Laboratory Diagnostics, Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuye Fang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiayi Wu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Tairan Zhong
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiayi Xu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
18
|
Xu HC, Cui Y, Wang XY, Wu HB, Li W, Wang D, Lin N, Lin L, Zhang YH. Clinical analysis of colistin sulfate in the treatment of pneumonia caused by carbapenem-resistant Gram-negative bacteria. World J Clin Cases 2024; 12:2173-2181. [PMID: 38808336 PMCID: PMC11129130 DOI: 10.12998/wjcc.v12.i13.2173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Multidrug-resistant Gram-negative bacteria, exacerbated by excessive use of antimicrobials and immunosuppressants, are a major health threat. AIM To study the clinical efficacy and safety of colistin sulfate in the treatment of carbapenem-resistant Gram-negative bacilli-induced pneumonia, and to provide theoretical reference for clinical diagnosis and treatment. METHODS This retrospective analysis involved 54 patients with Gram-negative bacilli pneumonia admitted to intensive care unit of The General Hospital of the Northern Theater Command of the People's Liberation Army of China from August 2020 to June 2022. After bacteriological culture, the patients' airway secretions were collected to confirm the presence of Gram-negative bacilli. The patients were divided into the experimental and control groups according to the medication used. The research group consisted of 28 patients who received polymyxin sulfate combined with other drugs through intravenous, nebulization, or intravenous combined with nebulization, with a daily dosage of 1.5-3.0 million units. The control group consisted of 26 patients who received standard dosages of other antibiotics (including sulbactam sodium for injection, cefoperazone sodium sulbactam for injection, tigecycline, meropenem, or vaborbactam). RESULTS Of the 28 patients included in the research group, 26 patients showed improvement, treatment was ineffective for two patients, and one patient died, with the treatment efficacy rate of 92.82%. Of the 26 patients in the control group, 18 patients improved, treatment was ineffective for eight patients, and two patients died, with the treatment efficacy rate of 54.9%; significant difference was observed between the two groups (P < 0.05). The levels of white blood cell (WBC), procalcitonin (PCT), and C-reactive protein (CRP) in both groups were significantly lower after treatment than before treatment (P < 0.05), and the levels of WBC, PCT, and CRP in the research group were significantly lower than those in the control group (P < 0.05). Compared with before treatment, there were no significant changes in aspartate aminotransferase, creatinine, and glomerular filtration rate in both groups, while total bilirubin and alanine aminotransferase decreased after treatment (P < 0.05) with no difference between the groups. In patients with good clinical outcomes, the sequential organ failure assessment (SOFA) score was low when treated with inhaled polymyxin sulfate, and specific antibiotic treatment did not improve the outcome. Sepsis and septic shock as well as a low SOFA score were independent factors associated with good clinical outcomes. CONCLUSION Polymyxin sulfate has a significant effect on the treatment of patients with multiple drug-resistant Gram-negative bacilli pneumonia and other infections in the lungs and is safe and reliable. Moreover, the administration route of low-dose intravenous injection combined with nebulization shows better therapeutic effects and lower adverse reactions, providing new ideas for clinical administration.
Collapse
Affiliation(s)
- Hai-Chang Xu
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Yan Cui
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Xue-Ying Wang
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Hai-Bo Wu
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Wei Li
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Dan Wang
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Na Lin
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Lin Lin
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Ying-Hui Zhang
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| |
Collapse
|
19
|
Slingerland C, Martin NI. Recent Advances in the Development of Polymyxin Antibiotics: 2010-2023. ACS Infect Dis 2024; 10:1056-1079. [PMID: 38470446 PMCID: PMC11019560 DOI: 10.1021/acsinfecdis.3c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 03/13/2024]
Abstract
The polymyxins are nonribosomal lipopeptides produced by Paenibacillus polymyxa and are potent antibiotics with activity specifically directed against Gram-negative bacteria. While the clinical use of polymyxins has historically been limited due to their toxicity, their use is on the rise given the lack of alternative treatment options for infections due to multidrug resistant Gram-negative pathogens. The Gram-negative specificity of the polymyxins is due to their ability to target lipid A, the membrane embedded LPS anchor that decorates the cell surface of Gram-negative bacteria. Notably, the mechanisms responsible for polymyxin toxicity, and in particular their nephrotoxicity, are only partially understood with most insights coming from studies carried out in the past decade. In parallel, many synthetic and semisynthetic polymyxin analogues have been developed in recent years in an attempt to mitigate the nephrotoxicity of the natural products. Despite these efforts, to date, no polymyxin analogues have gained clinical approval. This may soon change, however, as at the moment there are three novel polymyxin analogues in clinical trials. In this context, this review provides an update of the most recent insights with regard to the structure-activity relationships and nephrotoxicity of new polymyxin variants reported since 2010. We also discuss advances in the synthetic methods used to generate new polymyxin analogues, both via total synthesis and semisynthesis.
Collapse
Affiliation(s)
- Cornelis
J. Slingerland
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
20
|
VanOtterloo LM, Macias LA, Powers MJ, Brodbelt JS, Trent MS. Characterization of Acinetobacter baumannii core oligosaccharide synthesis reveals novel aspects of lipooligosaccharide assembly. mBio 2024; 15:e0301323. [PMID: 38349180 PMCID: PMC10936431 DOI: 10.1128/mbio.03013-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
A fundamental feature of Gram-negative bacteria is their outer membrane that protects the cell against environmental stressors. This defense is predominantly due to its asymmetry, with glycerophospholipids located in the inner leaflet and lipopolysaccharide (LPS) or lipooligosaccharide (LOS) confined to the outer leaflet. LPS consists of a lipid A anchor, a core oligosaccharide, and a distal O-antigen while LOS lacks O-antigen. While LPS/LOS is typically essential for growth, this is not the case for Acinetobacter baumannii. Despite this unique property, the synthesis of the core oligosaccharide of A. baumannii LOS is not well-described. Here, we characterized the LOS chemotypes of A. baumannii strains with mutations in a predicted core oligosaccharide locus via tandem mass spectrometry. This allowed for an extensive identification of genes required for core assembly that can be exploited to generate precise structural LOS modifications in many A. baumannii strains. We further investigated two chemotypically identical yet phenotypically distinct mutants, ∆2903 and ∆lpsB, that exposed a possible link between LOS and the peptidoglycan cell wall-two cell envelope components whose coordination has not yet been described in A. baumannii. Selective reconstruction of the core oligosaccharide via expression of 2903 and LpsB revealed that these proteins rely on each other for the unusual tandem transfer of two residues, KdoIII and N-acetylglucosaminuronic acid. The data presented not only allow for better usage of A. baumannii as a tool to study outer membrane integrity but also provide further evidence for a novel mechanism of core oligosaccharide assembly. IMPORTANCE Acinetobacter baumannii is a multidrug-resistant pathogen that produces lipooligosaccharide (LOS), a glycolipid that confers protective asymmetry to the bacterial outer membrane. The core oligosaccharide is a ubiquitous component of LOS that typically follows a well-established model of synthesis. In addition to providing an extensive analysis of the genes involved in the synthesis of the core region, we demonstrate that this organism has evidently diverged from the long-held archetype of core synthesis. Moreover, our data suggest that A. baumannii LOS assembly is important for cell division and likely intersects with the synthesis of the peptidoglycan cell wall, another essential component of the Gram-negative cell envelope. This connection between LOS and cell wall synthesis provides an intriguing foundation for a unique method of outer membrane biogenesis and cell envelope coordination.
Collapse
Affiliation(s)
- Leah M. VanOtterloo
- Department of Microbiology, College of Art and Sciences, University of Georgia, Athens, Georgia, USA
| | - Luis A. Macias
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | - Matthew J. Powers
- Department of Microbiology, College of Art and Sciences, University of Georgia, Athens, Georgia, USA
| | | | - M. Stephen Trent
- Department of Microbiology, College of Art and Sciences, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
21
|
Baijal K, Abramchuk I, Herrera CM, Mah TF, Trent MS, Lavallée-Adam M, Downey M. Polyphosphate kinase regulates LPS structure and polymyxin resistance during starvation in E. coli. PLoS Biol 2024; 22:e3002558. [PMID: 38478588 PMCID: PMC10962826 DOI: 10.1371/journal.pbio.3002558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/25/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Polyphosphates (polyP) are chains of inorganic phosphates that can reach over 1,000 residues in length. In Escherichia coli, polyP is produced by the polyP kinase (PPK) and is thought to play a protective role during the response to cellular stress. However, the molecular pathways impacted by PPK activity and polyP accumulation remain poorly characterized. In this work, we used label-free mass spectrometry to study the response of bacteria that cannot produce polyP (Δppk) during starvation to identify novel pathways regulated by PPK. In response to starvation, we found 92 proteins significantly differentially expressed between wild-type and Δppk mutant cells. Wild-type cells were enriched for proteins related to amino acid biosynthesis and transport, while Δppk mutants were enriched for proteins related to translation and ribosome biogenesis, suggesting that without PPK, cells remain inappropriately primed for growth even in the absence of the required building blocks. From our data set, we were particularly interested in Arn and EptA proteins, which were down-regulated in Δppk mutants compared to wild-type controls, because they play a role in lipid A modifications linked to polymyxin resistance. Using western blotting, we confirm differential expression of these and related proteins in K-12 strains and a uropathogenic isolate, and provide evidence that this mis-regulation in Δppk cells stems from a failure to induce the BasRS two-component system during starvation. We also show that Δppk mutants unable to up-regulate Arn and EptA expression lack the respective L-Ara4N and pEtN modifications on lipid A. In line with this observation, loss of ppk restores polymyxin sensitivity in resistant strains carrying a constitutively active basR allele. Overall, we show a new role for PPK in lipid A modification during starvation and provide a rationale for targeting PPK to sensitize bacteria towards polymyxin treatment. We further anticipate that our proteomics work will provide an important resource for researchers interested in the diverse pathways impacted by PPK.
Collapse
Affiliation(s)
- Kanchi Baijal
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Iryna Abramchuk
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carmen M. Herrera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Li YT, Xiao YH, Liu Y, Hu N, Wu C, Huang X, Zeng L. Characterisation of highly virulent and colistin-resistant ST367-KL1 Klebsiella quasipneumoniae subsp. similipneumoniae Strain. J Glob Antimicrob Resist 2024; 36:267-275. [PMID: 38272213 DOI: 10.1016/j.jgar.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVES To elucidate the characteristics of a colistin-resistant and hypervirulent Klebsiella quasipneumoniae subsp. similipneumoniae strain (KP8) using whole genome sequencing and various phenotypic assays. METHODS Antimicrobial susceptibility testing was performed using broth microdilution. Whole genome sequencing and comparative genomics were utilised to elucidate genomic characteristics. Phenotypic assays to evaluate virulence factors included measurements of mucosal viscosity, biofilm production, siderophore production, infection of A549 cells, serum-killing assays, and Galleria mellonella infection models. RESULTS Whole-genome sequencing revealed that the strain (KP8) belongs to sequence type 367 (ST367) and capsular type 1 (KL1), and it harbours several virulence genes, including regulator of mucoid phenotype (rmpA/A2), salmochelin (iroBCDN) and aerobactin (iucABCDiutA). Antibiotic susceptibility tests showed that KP8 was resistant to colistin. Genome analysis showed that the colistin resistance of KP8 might be related to amino acid insertions in pmrB (L215_D217, insL) and pagP (M1_S3, insV). Importantly, KP8 demonstrated comparable mucosal viscosity, biofilm production capacity, siderophore production levels to hvKP. Serum-killing experiments, A549 cell infection models, and G. mellonella infection models further indicated that KP8 displayed high virulence, akin to the hypervirulent strain NUTH-K2044. Notably, global genome analysis of the K. quasipneumoniae subsp. similipneumoniae strains highlighted that the ST367 lineage has a higher tendency to carry virulence-associated genes compared to other sequence types. The prevalence of virulence-associated factors concentrated within Chinese ST367 isolates reinforces this observation. CONCLUSION These findings further enhance our understanding of the resistance and pathogenicity of ST367 K. quasipneumoniae subsp. similipneumoniae strain and also providing a broader perspective on the global epidemiological landscape.
Collapse
Affiliation(s)
- Yu-Ting Li
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; School of Public Health, Nanchang University, Nanchang, China
| | - Yang-Hua Xiao
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; School of Public Health, Nanchang University, Nanchang, China
| | - Yanling Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Niya Hu
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chengwei Wu
- School of Public Health, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
23
|
Zhang L, Wang M, Qi R, Yang Y, Liu Y, Ren N, Feng Z, Liu Q, Cao G, Zong G. A novel major facilitator superfamily-type tripartite efflux system CprABC mediates resistance to polymyxins in Chryseobacterium sp. PL22-22A. Front Microbiol 2024; 15:1346340. [PMID: 38596380 PMCID: PMC11002906 DOI: 10.3389/fmicb.2024.1346340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/08/2024] [Indexed: 04/11/2024] Open
Abstract
Background Polymyxin B (PMB) and polymyxin E (colistin, CST) are polymyxin antibiotics, which are considered last-line therapeutic options against multidrug-resistant Gram-negative bacteria in serious infections. However, there is increasing risk of resistance to antimicrobial drugs. Effective efflux pump inhibitors (EPIs) should be developed to help combat efflux pump-mediated antibiotic resistance. Methods Chryseobacterium sp. PL22-22A was isolated from aquaculture sewage under selection with 8 mg/L PMB, and then its genome was sequenced using Oxford Nanopore and BGISEQ-500 platforms. Cpr (Chryseobacterium Polymyxins Resistance) genes encoding a major facilitator superfamily-type tripartite efflux system, were found in the genome. These genes, and the gene encoding a truncation mutant of CprB from which sequence called CprBc was deleted, were amplified and expressed/co-expressed in Escherichia coli DH5α. Minimum inhibitory concentrations (MICs) of polymyxins toward the various E. coli heterologous expression strains were tested in the presence of 2-128 mg/L PMB or CST. The pumping activity of CprABC was assessed via structural modeling using Discovery Studio 2.0 software. Moreover, the influence on MICs of baicalin, a novel MFS EPI, was determined, and the effect was analyzed based on homology modeling. Results Multidrug-resistant bacterial strain Chryseobacterium sp. PL22-22A was isolated in this work; it has notable resistance to polymyxin, with MICs for PMB and CST of 96 and 128 mg/L, respectively. A novel MFS-type tripartite efflux system, named CprABC, was identified in the genome of Chryseobacterium sp. PL22-22A. Heterologous expression and EPI assays indicated that the CprABC system is responsible for the polymyxin resistance of Chryseobacterium sp. PL22-22A. Structural modeling suggested that this efflux system provides a continuous conduit that runs from the CprB funnel through the CprC porin domain to pump polymyxins out of the cell. A specific C-terminal α-helix, CprBc, has an activation function on polymyxin excretion by CprB. The flavonoid compound baicalin was found to affect the allostery of CprB and/or obstruct the substrate conduit, and thus to inhibit extracellular polymyxin transport by CprABC. Conclusion Novel MFS-type tripartite efflux system CprABC in Chryseobacterium sp. PL22-22A mediates resistance to polymyxins, and baicalin is a promising EPI.
Collapse
Affiliation(s)
- Lu Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Miao Wang
- Shandong Fengjin Biopharmaceuticals Co., Ltd., Yantai, China
| | - Rui Qi
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Yilin Yang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Ya Liu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Nianqing Ren
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Zihan Feng
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Qihao Liu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Gongli Zong
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| |
Collapse
|
24
|
Gao W, Li C, Wang F, Yang Y, Zhang L, Wang Z, Chen X, Tan M, Cao G, Zong G. An efflux pump in genomic island GI-M202a mediates the transfer of polymyxin B resistance in Pandoraea pnomenusa M202. Int Microbiol 2024; 27:277-290. [PMID: 37316617 PMCID: PMC10266961 DOI: 10.1007/s10123-023-00384-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Polymyxin B is considered a last-line therapeutic option against multidrug-resistant gram-negative bacteria, especially in COVID-19 coinfections or other serious infections. However, the risk of antimicrobial resistance and its spread to the environment should be brought to the forefront. METHODS Pandoraea pnomenusa M202 was isolated under selection with 8 mg/L polymyxin B from hospital sewage and then was sequenced by the PacBio RS II and Illumina HiSeq 4000 platforms. Mating experiments were performed to evaluate the transfer of the major facilitator superfamily (MFS) transporter in genomic islands (GIs) to Escherichia coli 25DN. The recombinant E. coli strain Mrc-3 harboring MFS transporter encoding gene FKQ53_RS21695 was also constructed. The influence of efflux pump inhibitors (EPIs) on MICs was determined. The mechanism of polymyxin B excretion mediated by FKQ53_RS21695 was investigated by Discovery Studio 2.0 based on homology modeling. RESULTS The MIC of polymyxin B for the multidrug-resistant bacterial strain P. pnomenusa M202, isolated from hospital sewage, was 96 mg/L. GI-M202a, harboring an MFS transporter-encoding gene and conjugative transfer protein-encoding genes of the type IV secretion system, was identified in P. pnomenusa M202. The mating experiment between M202 and E. coli 25DN reflected the transferability of polymyxin B resistance via GI-M202a. EPI and heterogeneous expression assays also suggested that the MFS transporter gene FKQ53_RS21695 in GI-M202a was responsible for polymyxin B resistance. Molecular docking revealed that the polymyxin B fatty acyl group inserts into the hydrophobic region of the transmembrane core with Pi-alkyl and unfavorable bump interactions, and then polymyxin B rotates around Tyr43 to externally display the peptide group during the efflux process, accompanied by an inward-to-outward conformational change in the MFS transporter. Additionally, verapamil and CCCP exhibited significant inhibition via competition for binding sites. CONCLUSIONS These findings demonstrated that GI-M202a along with the MFS transporter FKQ53_RS21695 in P. pnomenusa M202 could mediate the transmission of polymyxin B resistance.
Collapse
Affiliation(s)
- Wenhui Gao
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, 250117, Shandong, China
| | - Congcong Li
- Shandong Quancheng Test & Technology Limited Company, Ji'nan, 250101, China
| | - Fengtian Wang
- Jinan Municipal Minzu Hospital, Ji'nan, 250012, China
| | - Yilin Yang
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, 250117, Shandong, China
| | - Lu Zhang
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, 250117, Shandong, China
| | - Zhongxue Wang
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Xi Chen
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Meixia Tan
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Guangxiang Cao
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China.
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, 250117, Shandong, China.
| | - Gongli Zong
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China.
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, 250117, Shandong, China.
| |
Collapse
|
25
|
Abdul-Mutakabbir JC, Opoku NS, Tan KK, Jorth P, Nizet V, Fletcher HM, Kaye KS, Rybak MJ. Determining Susceptibility and Potential Mediators of Resistance for the Novel Polymyxin Derivative, SPR206, in Acinetobacter baumannii. Antibiotics (Basel) 2024; 13:47. [PMID: 38247606 PMCID: PMC10812597 DOI: 10.3390/antibiotics13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
With the increase in carbapenem-resistant A. baumannii (CRAB) infections, there has been a resurgence in the use of polymyxins, specifically colistin (COL). Since the reintroduction of COL-based regimens in treating CRAB infections, several COL-resistant A. baumannii isolates have been identified, with the mechanism of resistance heavily linked with the loss of the lipopolysaccharide (LPS) layer of the bacterial outer membrane through mutations in lpxACD genes or the pmrCAB operon. SPR206, a novel polymyxin derivative, has exhibited robust activity against multidrug-resistant (MDR) A. baumannii. However, there is a dearth of knowledge regarding its efficacy in comparison with other A. baumannii-active therapeutics and whether traditional polymyxin (COL) mediators of A. baumannii resistance also translate to reduced SPR206 activity. Here, we conducted susceptibility testing using broth microdilution on 30 A. baumannii isolates (17 COL-resistant and 27 CRAB), selected 14 COL-resistant isolates for genomic sequencing analysis, and performed time-kill analyses on four COL-resistant isolates. In susceptibility testing, SPR206 demonstrated a lower range of minimum inhibitory concentrations (MICs) compared with COL, with a four-fold difference observed in MIC50 values. Mutations in lpxACD and/or pmrA and pmrB genes were detected in each of the 14 COL-resistant isolates; however, SPR206 maintained MICs ≤ 2 mg/L for 9/14 (64%) of the isolates. Finally, SPR206-based combination regimens exhibited increased synergistic and bactericidal activity compared with COL-based combination regimens irrespective of the multiple resistance genes detected. The results of this study highlight the potential utility of SPR206 in the treatment of COL-resistant A. baumannii infections.
Collapse
Affiliation(s)
- Jacinda C. Abdul-Mutakabbir
- Division of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA;
- Division of the Black Diaspora and African American Studies, University of California San Diego, La Jolla, CA 92093, USA
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92374, USA; (N.S.O.); (H.M.F.)
| | - Nana Sakyi Opoku
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92374, USA; (N.S.O.); (H.M.F.)
| | - Karen K. Tan
- Department of Pharmacy, Loma Linda University Medical Center, Loma Linda, CA 92374, USA;
| | - Peter Jorth
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Victor Nizet
- Division of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA;
| | - Hansel M. Fletcher
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92374, USA; (N.S.O.); (H.M.F.)
| | - Keith S. Kaye
- Department of Medicine, Rutgers University School of Medicine, New Brunswick, NJ 08854, USA;
| | - Michael J. Rybak
- Department of Pharmacy Practice, Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
- Department of Medicine, Division of Infectious Diseases, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
26
|
Kim SJ, Shin JH, Kim H, Ko KS. Roles of crrAB two-component regulatory system in Klebsiella pneumoniae: growth yield, survival in initial colistin treatment stage, and virulence. Int J Antimicrob Agents 2024; 63:107011. [PMID: 37863340 DOI: 10.1016/j.ijantimicag.2023.107011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVES Alternation of the colistin resistance-regulating two-component regulatory system (crrAB) is a colistin-resistance mechanism in Klebsiella pneumoniae (K. pneumoniae), but its role in bacteria is not fully understood. METHODS Twelve colistin-susceptible K. pneumoniae clinical isolates were included in this study: six crrAB-positive and six crrAB-negative. We deleted the crrAB genes from two crrAB-positive isolates and complemented them. We measured the growth yields by determining growth curves in lysogeny broth and minimal media with or without Fe2+. In vitro selection rates for colistin resistance were determined by exposure to colistin, and survival rates against high concentrations of colistin (20 mg/L) at the early stage of growth (20 min) were investigated. Virulence was determined using a serum bactericidal assay and Galleria mellonella larval infection. RESULTS The presence of crrAB was not associated with colistin resistance and did not increase the in vitro selection rate of colistin resistance after exposure. The growth yield of crrAB-positive isolates was higher in lysogeny broth media and increased when Fe2+ was added to minimal media. The crrAB-positive isolates showed higher survival rates in the early stages of exposure to high colistin concentrations. Decreased serum resistance was identified in the crrAB-deleted mutants. More G. mellonella larvae survived when infected by crrAB-deleted mutants, and higher survival rates of bacteria were identified within the larvae infected with wild-type than crrAB-deletant isolates. CONCLUSION Through rapid response to external signals, crrAB would provide advantages for K. pneumoniae survival by increasing the final growth yield and initial survival against colistin treatment. This may partly contribute to the bacterial virulence.
Collapse
Affiliation(s)
- Sun Ju Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong Hyun Shin
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyunkeun Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
27
|
Hu C, Zhang J, Cui R, Liu S, Huang Y, Zeng H, Cheng S, Zhou G, Li J, Sun L, Zhao Y, Wang X, Liu J, Zou Q, Huang W. The enhancement effect of small molecule Lyb24 reveals AzoR as a novel target of polymyxin B. Biomed Pharmacother 2023; 169:115856. [PMID: 37949698 DOI: 10.1016/j.biopha.2023.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Given the important role of polymyxin B (PB) in the treatment of drug-resistant Gram-negative bacterial infections, the emergence of PB resistance poses a serious threat to public health. Adjuvant development is a supplementary strategy that can compensate for the lack of novel antibiotics by protecting PB. In this study, we found a small molecule named Lyb24 that showed weak antibacterial activity (minimum inhibitory concentration ≥ 10 μg/ml) but potentiated and revitalized the efficacy of PB against Gram-negative pathogens, including mcr-1- and mgrB-deletion-mediated PB-resistant strains. Our results showed that Lyb24 inhibits the translational levels of genes associated with the modification of lipid A. In addition, Lyb24 increases the permeability, disrupts the integrity and induces the depolarization of the membrane. We further found that both Lyb24 and PB could directly bind to AzoR and inhibit its activity. Structural analysis showed that Lyb24 binds to the isoalloxazine ring of flavin mononucleotide (FMN) through pi-pi stacking and loop η4 of AzoR. A pneumonia model was used to confirm that the activity against clinical PB-resistant Klebsiella pneumoniae was enhanced due to Lyb24 on PB. In conclusion, we provide a potential therapeutic regimen by combining Lyb24 and PB to treat Gram-negative-resistant bacterial infections. Our findings not only explain the synergistic effect of Lyb24, but also expand our knowledge on the mechanism of action of PB.
Collapse
Affiliation(s)
- Chunxia Hu
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Shapingba District, 400038 Chongqing, China
| | - Ruiqin Cui
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Shiyi Liu
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Ying Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huan Zeng
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Shumin Cheng
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Guibao Zhou
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jingli Li
- Beijing Qinglian Biotech Co.,Ltd, Haidian District, 100094 Beijing, China
| | - Longqin Sun
- Beijing Qinglian Biotech Co.,Ltd, Haidian District, 100094 Beijing, China
| | - Yan Zhao
- Beijing Qinglian Biotech Co.,Ltd, Haidian District, 100094 Beijing, China
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jianhua Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Shapingba District, 400038 Chongqing, China.
| | - Wei Huang
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Division of Hepatobiliary and Pancreas surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| |
Collapse
|
28
|
Yan W, Wu J, Wang S, Zhang Q, Yuan Y, Jing N, Zhang J, He H, Li Y. Risk Factors and Outcomes for Isolation with Polymyxin B-Resistant Enterobacterales from 2018-2022: A Case-Control Study. Infect Drug Resist 2023; 16:7809-7817. [PMID: 38148770 PMCID: PMC10750491 DOI: 10.2147/idr.s435697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
Purpose To analyze the risk factors and clinical outcomes of patients isolated with polymyxin B-resistant (PR) Enterobacterales from various clinical specimens to prevent and control the spread of these strains. Methods This retrospective case-control study included 72 PR Enterobacterales-positive cases and 144 polymyxin B-susceptible (PS) Enterobacterales controls from 2018 to 2022. Patients with PR Enterobacterales isolated in various clinical cultures were defined as cases. Patients with PS Enterobacterales cultures at similar anatomic sites during the same period were randomly selected as controls. Data were collected from clinical and laboratory test records. Bivariable logistic regression and Pearson's chi-square tests were used to assess risk factors. Results PR strains were predominantly Klebsiella pneumoniae (72.2%) and Salmonella enteritidis (8.3%). Of the patients, 66.04% were admitted to an intensive care unit (ICU). Risk factors for isolation with PR strains included chronic heart disease (P = 0.012; odds ratio [OR] 1.15; 95% confidence interval [CI] 1.03-1.28), immunosuppressant use (P = 0.016; OR 1.04 [1.0-1.07), drainage tube [head] (P = 0.006; OR 1.1 [1.0-1.1]), and polymyxin B exposure (P = 0.007; OR 1.03 [1.0-1.06]. With respect to outcomes, admission to an ICU (P = 0.003; OR 7.1 [1.9-25.4]), hypertension (P = 0.035; OR 1.4 [1.02-1.83]), and drainage tube [head] (P = 0.044; OR 1.1 [1.0-1.15]) were associated with treatment failure. Additionally, treatment failure was more frequent in patients (45.83%) than in controls (14.58%). Conclusion The major risk factors for isolation with PR strains were chronic heart disease, exposure to immunosuppressants, use of drainage tubes, and polymyxin B exposure. The isolation of PR strains in patients was a predictor of unfavorable outcomes. These findings provide a basis for monitoring the spread of PR Enterobacterales.
Collapse
Affiliation(s)
- Wenjuan Yan
- Department of Clinical Microbiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, People’s Republic of China
| | - Jiaojiao Wu
- Department of Clinical Microbiology, Xiayi People’s Hospital, Shangqiu, Henan, People’s Republic of China
| | - Shanmei Wang
- Department of Clinical Microbiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, People’s Republic of China
| | - Qi Zhang
- Department of Clinical Microbiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, People’s Republic of China
| | - Youhua Yuan
- Department of Clinical Microbiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, People’s Republic of China
| | - Nan Jing
- Department of Clinical Microbiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, People’s Republic of China
| | - Jiangfeng Zhang
- Department of Clinical Microbiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, People’s Republic of China
| | - Hangchan He
- Department of Clinical Laboratory, Baofeng Traditional Chinese Medicine Hospital, Pingdingshan, Henan, People’s Republic of China
| | - Yi Li
- Department of Clinical Microbiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
29
|
Liu R, Xu H, Zhao J, Hu X, Wu L, Qiao J, Ge H, Guo X, Gou J, Zheng B. Emergence of mcr-8.2-harboring hypervirulent ST412 Klebsiella pneumoniae strain from pediatric sepsis: A comparative genomic survey. Virulence 2023; 14:233-245. [PMID: 36529894 PMCID: PMC9794005 DOI: 10.1080/21505594.2022.2158980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Emerging mobile colistin resistance (mcr) genes pose a significant threat to public health for colistin was used as the last resort to treat multidrug-resistant (MDR) pathogenic bacterial infections. Hypervirulent Klebsiella pneumoniae (hvKP) is a clinically significant pathogen resulting in highly invasive infections, often complicated by devastating dissemination. Worryingly, the untreatable and severe infections caused by mcr-harbouring hvKP leave the selection of antibiotics for clinical anti-infective treatment in a dilemma. Herein, we screened 3,461 isolates from a tertiary teaching hospital from November 2018 to March 2021, and an mcr-8.2-harbouring hvKP FAHZZU2591 with a conjugative plasmid was identified from paediatric sepsis. This is the first report of MCR-8-producing hvKP from paediatric sepsis to our best knowledge. The susceptibility, genetic features, and plasmid profiles of the isolate were investigated. Further, we assessed the virulence potential of FAHZZU2591 and verified its pathogenicity and invasive capacity using a mouse model. The phylogenetic analysis of mcr-8-bearing K. pneumoniae revealed that China is the predominant reservoir of the mcr-8 gene, and the clinic is the primary source. Our work highlights the risk for the spread of mcr-positive hvKP in clinical, especially in paediatric sepsis, and the persistent surveillance of colistin-resistance hvKP is urgent.
Collapse
Affiliation(s)
- Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine, Shandong Laboratory, Jinan, China
| | - Junhui Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Lingjiao Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,CONTACT Xiaobing Guo
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Jianjun Gou
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine, Shandong Laboratory, Jinan, China,Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Hangzhou, China,Beiwen Zheng
| |
Collapse
|
30
|
Myšková A, Sýkora D, Kuneš J, Maletínská L. Lipidization as a tool toward peptide therapeutics. Drug Deliv 2023; 30:2284685. [PMID: 38010881 PMCID: PMC10987053 DOI: 10.1080/10717544.2023.2284685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
Peptides, as potential therapeutics continue to gain importance in the search for active substances for the treatment of numerous human diseases, some of which are, to this day, incurable. As potential therapeutic drugs, peptides have many favorable chemical and pharmacological properties, starting with their great diversity, through their high affinity for binding to all sort of natural receptors, and ending with the various pathways of their breakdown, which produces nothing but amino acids that are nontoxic to the body. Despite these and other advantages, however, they also have their pitfalls. One of these disadvantages is the very low stability of natural peptides. They have a short half-life and tend to be cleared from the organism very quickly. Their instability in the gastrointestinal tract, makes it impossible to administer peptidic drugs orally. To achieve the best pharmacologic effect, it is desirable to look for ways of modifying peptides that enable the use of these substances as pharmaceuticals. There are many ways to modify peptides. Herein we summarize the approaches that are currently in use, including lipidization, PEGylation, glycosylation and others, focusing on lipidization. We describe how individual types of lipidization are achieved and describe their advantages and drawbacks. Peptide modifications are performed with the goal of reaching a longer half-life, reducing immunogenicity and improving bioavailability. In the case of neuropeptides, lipidization aids their activity in the central nervous system after the peripheral administration. At the end of our review, we summarize all lipidized peptide-based drugs that are currently on the market.
Collapse
Affiliation(s)
- Aneta Myšková
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
31
|
Wu Y, Wu P, Wu R, Li H, Duan Y, Cai C, Liu Z, She P, Zhang D. Simeprevir restores the anti-Staphylococcus activity of polymyxins. AMB Express 2023; 13:122. [PMID: 37917339 PMCID: PMC10622387 DOI: 10.1186/s13568-023-01634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection poses a severe threat to global public health due to its high mortality. Currently, polymyxins are mainly used for the treatment of Gram-negative bacterial-related infection, while exhibiting limited antibacterial activities against Staphylococcus aureus (S. aureus). However, the combination of antibiotics with antibiotic adjuvants is a feasible strategy for the hard-treated infection and toxicity reducing. We will investigate the antibacterial activity of simeprevir (SIM), which treated for genotype 1 and 4 chronic hepatitis C, combined with polymyxins against MRSA through high-throughput screening technology. In our study, the synergistic antibacterial effect of SIM and polymyxins against S. aureus in vitro was found by checkerboard assay and time-growth curve. The cytotoxicity of SIM combined with polymyxin B sulfate [PB(S)] or polymyxin E (PE) in vitro was evaluated using CCK-8, human RBC hemolysis and scratch assays. In addition, we investigated the eradication of biofilm formation of S. aureus by biofilm inhibition assay and the killing of persister cells. Moreover, we evaluated the therapeutic effect and in vivo toxicity of the combination against MRSA in murine subcutaneous abscess model. Furthermore, it was preliminarily found that SIM significantly enhanced the destruction of MRSA membrane by SYTOX Green and DISC3(5) probes. In summary, these results reveal that the therapy of SIM combined with polymyxins (especially PE) is promising for the treatment of MRSA infection.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Pingyun Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Ruolan Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Huilong Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Yao Duan
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Chaoni Cai
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Zixin Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Di Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
32
|
Chen S, Zhou P, Wu C, Wang J, Zhou Y, Zhang J, Wang B, Zhao H, Rao L, Li M, Yu F, Lin C. Polymyxin B and fusidic acid, a novel potent synergistic combination against Klebsiella pneumoniae and Escherichia coli isolates with polymyxin B resistance. Front Microbiol 2023; 14:1220683. [PMID: 37886061 PMCID: PMC10598591 DOI: 10.3389/fmicb.2023.1220683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The increasing prevalence of multidrug-resistant (MDR) Gram-negative bacteria and comparatively limited options of antibiotics pose a major threat to public health worldwide. Polymyxin B is the last resort against extensively resistant Gram-negative bacterial infections. However, a large number of Gram-negative bacteria exhibited high-level resistance to Polymyxin B, bringing challenges for antimicrobial chemotherapy. Combination therapies using polymyxins and other antibiotics are recommended to treat multidrug-resistant pathogens. In this study, we selected Gram-negative bacterial strains, including Klebsiella pneumoniae and Escherichia coli, to explore whether fusidic acid and polymyxin B have a synergistic killing effect. Through broth microdilution, we observed that minimum inhibitory concentrations (MICs) against polymyxin B in the isolates tested were significantly reduced by the addition of fusidic acid. Notably, chequerboard analysis indicated a synergistic effect between polymyxin B and fusidic acid. In addition, subsequent time-kill experiments showed that the combination of polymyxin B and fusidic acid was more effective than a single drug in killing bacteria. Finally, our investigation utilizing the murine model revealed a higher survival rate in the combination therapy group compared to the monotherapy group. Our research findings provide evidence of the synergistic effect between polymyxin B and fusidic acid. Fusidic acid was shown to increase the sensitivity of multi-drug resistant E. coli and K. pneumoniae to polymyxin B, thereby enhancing its bactericidal activity. This study provides new insights into a potential strategy for overcoming polymyxin B resistance, however, further investigations are required to evaluate their feasibility in real clinical settings.
Collapse
Affiliation(s)
- Shuying Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peiyao Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunyang Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Wang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huilin Zhao
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lulin Rao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meilan Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunchan Lin
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
33
|
Jia M, Li P, Zhang J, Chen Z, Gao L, Sun Y, Zhang X, Yan Y, Zhu G. Characteristics of Two mcr-1-Harboring IncHI2 Plasmids from Clinical Salmonella Isolates in Jiaxing City. Foodborne Pathog Dis 2023; 20:467-476. [PMID: 37699240 DOI: 10.1089/fpd.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Salmonella is a primary cause of foodborne diseases, and the increasing prevalence of mcr-1-carrying plasmids, which confer colistin resistance to Salmonella, poses significant global health concerns. As the frequency of occurrence of the mcr-1 gene is increasing globally, we studied the prevalence of mcr-1 in clinical Salmonella isolates by analyzing 195 clinical strains isolated in 2020. Of the 195 Salmonella isolates, 41 isolates were resistant to colistin. We found mcr-1 in two strains (Salmonella Typhimurium ZJJX20006 and Salmonella Kentucky ZJJX20014), which we analyzed in detail via whole-genome sequencing and antibiotic susceptibility testing. Two strains displayed resistance to ampicillin, ampicillin-sulbactam, tetracycline, chloramphenicol, and cotrimoxazole, while ZJJX20006 displayed resistance to colistin and ZJJX20014 was sensitive. Genomic analysis revealed that these strains had plasmid-encoded mcr-1 in IncHI2 plasmids, which were not similar to the mcr-1-IncX4 identified in 2016. These two strains also harbored other drug resistance genes, including blaOXA-1 and blaCTX-M-14. Our findings may help clarify the molecular mechanisms of mcr-1 dissemination among Salmonella strains in Jiaxing City and offer insights into the evolution of mcr-1 in Salmonella.
Collapse
Affiliation(s)
- Miaomiao Jia
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Ping Li
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Junyan Zhang
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhongwen Chen
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Lei Gao
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Yangming Sun
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Xiaofei Zhang
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Yong Yan
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Guoying Zhu
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| |
Collapse
|
34
|
Thai VC, Stubbs KA, Sarkar-Tyson M, Kahler CM. Phosphoethanolamine Transferases as Drug Discovery Targets for Therapeutic Treatment of Multi-Drug Resistant Pathogenic Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:1382. [PMID: 37760679 PMCID: PMC10525099 DOI: 10.3390/antibiotics12091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance caused by multidrug-resistant (MDR) bacteria is a major challenge to global public health. Polymyxins are increasingly being used as last-in-line antibiotics to treat MDR Gram-negative bacterial infections, but resistance development renders them ineffective for empirical therapy. The main mechanism that bacteria use to defend against polymyxins is to modify the lipid A headgroups of the outer membrane by adding phosphoethanolamine (PEA) moieties. In addition to lipid A modifying PEA transferases, Gram-negative bacteria possess PEA transferases that decorate proteins and glycans. This review provides a comprehensive overview of the function, structure, and mechanism of action of PEA transferases identified in pathogenic Gram-negative bacteria. It also summarizes the current drug development progress targeting this enzyme family, which could reverse antibiotic resistance to polymyxins to restore their utility in empiric therapy.
Collapse
Affiliation(s)
- Van C. Thai
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Mitali Sarkar-Tyson
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| | - Charlene M. Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| |
Collapse
|
35
|
Lu J, Han M, Yu HH, Bergen PJ, Liu Y, Zhao J, Wickremasinghe H, Jiang X, Hu Y, Du H, Zhu Y, Velkov T. Lipid A Modification and Metabolic Adaptation in Polymyxin-Resistant, New Delhi Metallo-β-Lactamase-Producing Klebsiella pneumoniae. Microbiol Spectr 2023; 11:e0085223. [PMID: 37432123 PMCID: PMC10433984 DOI: 10.1128/spectrum.00852-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/12/2023] [Indexed: 07/12/2023] Open
Abstract
Polymyxins are last-line antibiotics employed against multidrug-resistant (MDR) Klebsiella pneumoniae. Worryingly, polymyxin resistance is rapidly on the rise globally. Polymyxins initially target lipid A of lipopolysaccharides (LPSs) in the cell outer membrane (OM), causing disorganization and cell lysis. While most studies focus on how genetic variations confer polymyxin resistance, the mechanisms of membrane remodeling and metabolic changes in polymyxin-resistant strains remain unclear, thus hampering the development of effective therapies to treat severe K. pneumoniae infections. In the present study, lipid A profiling, OM lipidomics, genomics, and metabolomics were integrated to elucidate the global mechanisms of polymyxin resistance and metabolic adaptation in a polymyxin-resistant strain (strain S01R; MIC of >128 mg/L) obtained from K. pneumoniae strain S01, a polymyxin-susceptible (MIC of 2 mg/L), New Delhi metallo-β-lactamase (NDM)-producing MDR clinical isolate. Genomic analysis revealed a novel in-frame deletion at position V258 of PhoQ in S01R, potentially leading to lipid A modification with 4-amino-4-deoxy-l-arabinose (L-Ara4N) despite the absence of polymyxin B. Comparative metabolomic analysis revealed slightly elevated levels of energy production and amino acid metabolism in S01R compared to their levels in S01. Exposure to polymyxin B (4 mg/L for S01 and 512 mg/L for S01R) substantially altered energy, nucleotide, and amino acid metabolism and resulted in greater accumulation of lipids in both strains. Furthermore, the change induced by polymyxin B treatment was dramatic at both 1 and 4 h in S01 but only significant at 4 h in S01R. Overall, profound metabolic adaptation was observed in S01R following polymyxin B treatment. These findings contribute to our understanding of polymyxin resistance mechanisms in problematic NDM-producing K. pneumoniae strains and may facilitate the discovery of novel therapeutic targets. IMPORTANCE Antimicrobial resistance (AMR) is a major threat to global health. The emergence of resistance to the polymyxins that are the last line of defense in so-called Gram-negative "superbugs" has further increased the urgency to develop novel therapies. There are frequent outbreaks of K. pneumoniae infections in hospitals being reported, and polymyxin usage is increasing remarkably. Importantly, the polymyxin-resistant K. pneumoniae strains are imposing more severe consequences to health systems. Using metabolomics, lipid A profiling, and outer membrane lipidomics, our findings reveal (i) changes in the pentose phosphate pathway and amino acid and nucleotide metabolism in a susceptible strain following polymyxin treatment and (ii) how cellular metabolism, lipid A modification, and outer membrane remodeling were altered in K. pneumoniae following the acquisition of polymyxin resistance. Our study provides, for the first time, mechanistic insights into metabolic responses to polymyxin treatment in a multidrug-resistant, NDM-producing K. pneumoniae clinical isolate with acquired polymyxin resistance. Overall, these results will assist in identifying new therapeutic targets to combat and prevent polymyxin resistance.
Collapse
Affiliation(s)
- Jing Lu
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Meiling Han
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Heidi H. Yu
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Phillip J. Bergen
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yiyun Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinxin Zhao
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Hasini Wickremasinghe
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Xukai Jiang
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yang Hu
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Haiyan Du
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yan Zhu
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology, The Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Paredes-Amaya CC, Ulloa MT, García-Angulo VA. Fierce poison to others: the phenomenon of bacterial dependence on antibiotics. J Biomed Sci 2023; 30:67. [PMID: 37574554 PMCID: PMC10424368 DOI: 10.1186/s12929-023-00963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Beyond the development of resistance, the effects of antibiotics on bacteria and microbial communities are complex and far from exhaustively studied. In the context of the current global antimicrobial resistance crisis, understanding the adaptive and physiological responses of bacteria to antimicrobials is of paramount importance along with the development of new therapies. Bacterial dependence on antibiotics is a phenomenon in which antimicrobials instead of eliminating the pathogens actually provide a boost for their growth. This trait comprises an extreme example of the complexities of responses elicited by microorganisms to these drugs. This compelling evolutionary trait was readily described along with the first wave of antibiotics use and dependence to various antimicrobials has been reported. Nevertheless, current molecular characterizations have been focused on dependence on vancomycin, linezolid and colistin, three critically important antibiotics frequently used as last resource therapy for multi resistant pathogens. Outstanding advances have been made in understanding the molecular basis for the dependence to vancomycin, including specific mutations involved. Regarding linezolid and colistin, the general physiological components affected by the dependence, namely ribosomes and membrane function respectively, have been established. Nonetheless the implications of antibiotic dependence in clinically relevant features, such as virulence, epidemics, relationship with development of resistance, diagnostics and therapy effectiveness require clarification. This review presents a brief introduction of the phenomenon of bacterial dependence to antibiotics and a summary on early and current research concerning the basis for this trait. Furthermore, the available information on the effect of dependence in key clinical aspects is discussed. The studies performed so far underline the need to fully disclose the biological and clinical significance of this trait in pathogens to successfully assess its role in resistance and to design adjusted therapies.
Collapse
Affiliation(s)
- Claudia C Paredes-Amaya
- Microbiology Department, Escuela de Ciencias Básicas, Facultad de Salud, Universidad del Valle, Cali, Colombia
| | - María Teresa Ulloa
- Microbiology and Micology Program, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Independencia 1027, Independencia, RM, Santiago, Chile
- Vertebral I+D+i - Corporation for Assistance for Burned Children (Coaniquem), Santiago, Chile
| | - Víctor Antonio García-Angulo
- Microbiology and Micology Program, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Independencia 1027, Independencia, RM, Santiago, Chile.
| |
Collapse
|
37
|
Garvey M. Antimicrobial Peptides Demonstrate Activity against Resistant Bacterial Pathogens. Infect Dis Rep 2023; 15:454-469. [PMID: 37623050 PMCID: PMC10454446 DOI: 10.3390/idr15040046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
The antimicrobial resistance crisis is an ongoing major threat to public health safety. Low- and middle-income countries are particularly susceptible to higher fatality rates and the economic impact of antimicrobial resistance (AMR). As an increasing number of pathogens emerge with multi- and pan-drug resistance to last-resort antibiotics, there is an urgent need to provide alternative antibacterial options to mitigate disease transmission, morbidity, and mortality. As identified by the World Health Organization (WHO), critically important pathogens such as Klebsiella and Pseudomonas species are becoming resistant to last-resort antibiotics including colistin while being frequently isolated from clinical cases of infection. Antimicrobial peptides are potent amino acid sequences produced by many life forms from prokaryotic, fungal, plant, to animal species. These peptides have many advantages, including their multi-hit mode of action, potency, and rapid onset of action with low levels of resistance being evident. These innate defense mechanisms also have an immune-stimulating action among other activities in vivo, thus making them ideal therapeutic options. Large-scale production and formulation issues (pharmacokinetics, pharmacodynamics), high cost, and protease instability hinder their mass production and limit their clinical application. This review outlines the potential of these peptides to act as therapeutic agents in the treatment of multidrug-resistant infections considering the mode of action, resistance, and formulation aspects. Clinically relevant Gram-positive and Gram-negative pathogens are highlighted according to the WHO priority pathogen list.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91YW50 Sligo, Ireland
| |
Collapse
|
38
|
Ding Y, Hao J, Xiao W, Ye C, Xiao X, Jian C, Tang M, Li G, Liu J, Zeng Z. Role of efflux pumps, their inhibitors, and regulators in colistin resistance. Front Microbiol 2023; 14:1207441. [PMID: 37601369 PMCID: PMC10436536 DOI: 10.3389/fmicb.2023.1207441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Colistin is highly promising against multidrug-resistant and extensively drug-resistant bacteria clinically. Bacteria are resistant to colistin mainly through mcr and chromosome-mediated lipopolysaccharide (LPS) synthesis-related locus variation. However, the current understanding cannot fully explain the resistance mechanism in mcr-negative colistin-resistant strains. Significantly, the contribution of efflux pumps to colistin resistance remains to be clarified. This review aims to discuss the contribution of efflux pumps and their related transcriptional regulators to colistin resistance in various bacteria and the reversal effect of efflux pump inhibitors on colistin resistance. Previous studies suggested a complex regulatory relationship between the efflux pumps and their transcriptional regulators and LPS synthesis, transport, and modification. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP), 1-(1-naphthylmethyl)-piperazine (NMP), and Phe-Arg-β-naphthylamide (PAβN) all achieved the reversal of colistin resistance, highlighting the role of efflux pumps in colistin resistance and their potential for adjuvant development. The contribution of the efflux pumps to colistin resistance might also be related to specific genetic backgrounds. They can participate in colistin tolerance and heterogeneous resistance to affect the treatment efficacy of colistin. These findings help understand the development of resistance in mcr-negative colistin-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinbo Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
39
|
Zafer MM, Hussein AFA, Al-Agamy MH, Radwan HH, Hamed SM. Retained colistin susceptibility in clinical Acinetobacter baumannii isolates with multiple mutations in pmrCAB and lpxACD operons. Front Cell Infect Microbiol 2023; 13:1229473. [PMID: 37600939 PMCID: PMC10436201 DOI: 10.3389/fcimb.2023.1229473] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
The progressive increase in the resistance rates to first- and second-line antibiotics has forced the reuse of colistin as last-line treatment for Acinetobacter baumannii infections, but the emergence of colistin-resistant strains is not uncommon. This has been long linked to acquired chromosomal mutations in the operons pmrCAB and lpxACD. Hence, such mutations are routinely screened in colistin-resistant strains by most studies. The current study was designed to explore the possible existence of pmrCAB and lpxACD mutations in colistin-susceptible isolates. For this purpose, the whole genome sequences of eighteen multi-/extensively drug resistant A. baumannii were generated by Illumina sequencing and screened for missense mutations of the operons pmrCAB and lpxACD. Most of the isolates belonged to global clones (GCs) including GC1 (n=2), GC2 (n=7), GC7 (n=2), GC9 (n=3), and GC11 (n=1). The minimum inhibitory concentrations (MICs) of colistin were determined by the broth microdilution assay. Seventeen isolates were fully susceptible to colistin with MICs ranging from (≤0.125 to 0.5 µg/ml). Interestingly, all colistin-susceptible isolates carried missense mutations in pmrCAB and lpxACD operons with reference to A. baumannii ATCC 19606. Overall, 34 mutations were found. Most substitutions were detected in pmrC (n=20) while no mutations were found in pmrA or lpxA. Notably, the mutation pattern of the two operons was almost conserved among the isolates that belonged to the same sequence type (ST) or GC. This was also confirmed by expanding the analysis to include A. baumannii genomes deposited in public databases. Here, we demonstrated the possible existence of missense mutations in pmrCAB and lpxACD operons in colistin-susceptible isolates, shedding light on the importance of interpreting mutations with reference to colistin-susceptible isolates of the same ST/GC to avoid the misleading impact of the ST/GC-related polymorphism. In turn, this may lead to misinterpretation of mutations and, hence, overlooking the real players in colistin resistance that are yet to be identified.
Collapse
Affiliation(s)
- Mai M. Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Amira F. A. Hussein
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Faculty of Applied Health Science, Galala University, Cairo, Egypt
| | - Mohamed H. Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hesham H. Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samira M. Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Giza, Egypt
| |
Collapse
|
40
|
Sui B, Wang X, Zhao T, Zhen J, Ren H, Liu W, Zhang X, Zhang C. Design, Screening, and Characterization of Engineered Phage Endolysins with Extracellular Antibacterial Activity against Gram-Negative Bacteria. Appl Environ Microbiol 2023; 89:e0058123. [PMID: 37338346 PMCID: PMC10370328 DOI: 10.1128/aem.00581-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
Phage-encoded endolysins are emerging antibacterial agents based on their ability to efficiently degrade peptidoglycan on Gram-positive bacteria, but the envelope characteristics of Gram-negative bacteria limit their application. Engineering modifications of endolysins can improve the optimization of their penetrative and antibacterial properties. This study constructed a screening platform to screen for engineered Artificial-Bp7e (Art-Bp7e) endolysins with extracellular antibacterial activity against Escherichia coli. An oligonucleotide of 20 repeated NNK codons was inserted upstream of the endolysin gene Bp7e to construct a chimeric endolysin library in the pColdTF vector. The chimeric Art-Bp7e proteins were expressed by transforming the plasmid library into E. coli BL21 and released by chloroform fumigation, and the protein activities were evaluated by the spotting method and the colony-counting method to screen for promising proteins. Sequence analysis showed that all screened proteins with extracellular activities had a chimeric peptide with a positive charge and an α-helical structure. Also, a representative protein, Art-Bp7e6, was further characterized. It exhibited broad antibacterial activity against E. coli (7/21), Salmonella enterica serovar Enteritidis (4/10), Pseudomonas aeruginosa (3/10), and even Staphylococcus aureus (1/10). In the transmembrane process, the chimeric peptide of Art-Bp7e6 depolarized the host cell envelope, increased the permeability of the cell, and facilitated the movement of Art-Bp7e6 across the envelope to hydrolyze the peptidoglycan. In conclusion, the screening platform successfully screened for chimeric endolysins with extracellular antibacterial activities against Gram-negative bacteria, which provides methodological support for the further screening of engineered endolysins with high extracellular activities against Gram-negative bacteria. Also, the established platform showed broad application prospects and can be used to screen various proteins. IMPORTANCE The presence of the envelope in Gram-negative bacteria limits the use of phage endolysins, and engineering endolysins is an efficient way to optimize their penetrative and antibacterial properties. We built a platform for endolysin engineering and screening. A random peptide was fused with the phage endolysin Bp7e to construct a chimeric endolysin library, and engineered Artificial-Bp7e (Art-Bp7e) endolysins with extracellular activity against Gram-negative bacteria were successfully screened from the library. The purposeful Art-Bp7e had a chimeric peptide with an abundant positive charge and an α-helical structure, which led Bp7e to acquire the ability for the extracellular lysis of Gram-negative bacteria and showed a broad lysis spectrum. The platform provides a huge library capacity without the limitations of reported proteins or peptides. It can be utilized for the further screening of optimal endolysins against Gram-negative bacteria as well as for the screening of additional proteins with specific modifications.
Collapse
Affiliation(s)
- Bingrui Sui
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xinrui Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Tianyi Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jianyu Zhen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiaoxuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
41
|
Baijal K, Abramchuk I, Herrera CM, Stephen Trent M, Lavallée-Adam M, Downey M. Proteomics analysis reveals a role for E. coli polyphosphate kinase in membrane structure and polymyxin resistance during starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.546892. [PMID: 37461725 PMCID: PMC10350021 DOI: 10.1101/2023.07.06.546892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Polyphosphates (polyP) are chains of inorganic phosphates that can reach over 1000 residues in length. In Escherichia coli, polyP is produced by the polyP kinase (PPK) and is thought to play a protective role during the response to cellular stress. However, the molecular pathways impacted by PPK activity and polyP accumulation remain poorly characterized. In this work we used label-free mass spectrometry to study the response of bacteria that cannot produce polyP (∆ppk) during starvation to identify novel pathways regulated by PPK. In response to starvation, we found 92 proteins significantly differentially expressed between wild-type and ∆ppk mutant cells. Wild-type cells were enriched for proteins related to amino acid biosynthesis and transport, while Δppk mutants were enriched for proteins related to translation and ribosome biogenesis, suggesting that without PPK, cells remain inappropriately primed for growth even in the absence of required building blocks. From our dataset, we were particularly interested in Arn and EptA proteins, which were downregulated in ∆ppk mutants compared to wild-type controls, because they play a role in lipid A modifications linked to polymyxin resistance. Using western blotting, we confirm differential expression of these and related proteins, and provide evidence that this mis-regulation in ∆ppk cells stems from a failure to induce the BasS/BasR two-component system during starvation. We also show that ∆ppk mutants unable to upregulate Arn and EptA expression lack the respective L-Ara4N and pEtN modifications on lipid A. In line with this observation, loss of ppk restores polymyxin sensitivity in resistant strains carrying a constitutively active basR allele. Overall, we show a new role for PPK in lipid A modification during starvation and provide a rationale for targeting PPK to sensitize bacteria towards polymyxin treatment. We further anticipate that our proteomics work will provide an important resource for researchers interested in the diverse pathways impacted by PPK.
Collapse
Affiliation(s)
- Kanchi Baijal
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Iryna Abramchuk
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carmen M. Herrera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
42
|
Yang F, Zhou Y, Bai Y, Pan X, Ha UH, Cheng Z, Wu W, Jin Y, Bai F. MvfR Controls Tolerance to Polymyxin B by Regulating rfaD in Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0042623. [PMID: 37039709 PMCID: PMC10269820 DOI: 10.1128/spectrum.00426-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/18/2023] [Indexed: 04/12/2023] Open
Abstract
Polymyxins are currently the last-resort antibiotics for the treatment of multidrug-resistant Gram-negative bacterial infections. To expand the understanding of the intrinsic resistance mechanism against polymyxins, a laboratory strain of Pseudomonas aeruginosa PAO1 was subjected to serial passage in the presence of sublethal doses of polymyxin B over a period of 30 days. By whole-genome sequencing of successively isolated polymyxin B-resistant isolates, we identified a frameshift mutation (L183fs) in the mvfR gene that further increased polymyxin resistance in the pmrB mutant background. A ΔmvfR mutation alone showed higher tolerance to polymyxin B due to altered lipopolysaccharide (LPS) on the surface of bacterial cells, which decreases its outer membrane permeability. In the ΔmvfR mutant, polymyxin B treatment caused the upregulation of rfaD, the gene involved in LPS core oligosaccharide synthesis, which is responsible for polymyxin tolerance. To the best of our knowledge, this is the first report of mvfR mutation conferring polymyxin resistance in P. aeruginosa via increased integrity of bacterial outer membrane. IMPORTANCE Antibiotic resistance imposes a considerable challenge for the treatment of P. aeruginosa infections. Polymyxins are the last-resort antibiotics for the treatment of multidrug-resistant P. aeruginosa infections. Understanding the development and mechanisms of bacterial resistance to polymyxins may provide clues for the development of new or improved therapeutic strategies effective against P. aeruginosa. In this study, using an in vitro evolution assay in combination with whole-genome sequencing, we demonstrated that MvfR controls tolerance to polymyxin B by regulating the rfaD gene in P. aeruginosa. Our results reveal a novel mechanism employed by P. aeruginosa in the defense against polymyxin antibiotics.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuchen Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuxi Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
43
|
Xiao L, Qi Z, Song K, Lv R, Chen R, Zhao H, Wu H, Li C, Xin Y, Jin Y, Li X, Xu X, Tan Y, Du Z, Cui Y, Zhang X, Yang R, Zhao X, Song Y. Interplays of mutations in waaA, cmk, and ail contribute to phage resistance in Yersinia pestis. Front Cell Infect Microbiol 2023; 13:1174510. [PMID: 37305418 PMCID: PMC10254400 DOI: 10.3389/fcimb.2023.1174510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Plague caused by Yersinia pestis remains a public health threat worldwide. Because multidrug-resistant Y. pestis strains have been found in both humans and animals, phage therapy has attracted increasing attention as an alternative strategy against plague. However, phage resistance is a potential drawback of phage therapies, and the mechanism of phage resistance in Y. pestis is yet to be investigated. In this study, we obtained a bacteriophage-resistant strain of Y. pestis (S56) by continuously challenging Y. pestis 614F with the bacteriophage Yep-phi. Genome analysis identified three mutations in strain S56: waaA* (9-bp in-frame deletion 249GTCATCGTG257), cmk* (10-bp frameshift deletion 15CCGGTGATAA24), and ail* (1-bp frameshift deletion A538). WaaA (3-deoxy-D-manno-octulosonic acid transferase) is a key enzyme in lipopolysaccharide biosynthesis. The waaA* mutation leads to decreased phage adsorption because of the failure to synthesize the lipopolysaccharide core. The mutation in cmk (encoding cytidine monophosphate kinase) increased phage resistance, independent of phage adsorption, and caused in vitro growth defects in Y. pestis. The mutation in ail inhibited phage adsorption while restoring the growth of the waaA null mutant and accelerating the growth of the cmk null mutant. Our results confirmed that mutations in the WaaA-Cmk-Ail cascade in Y. pestis contribute to resistance against bacteriophage. Our findings help in understanding the interactions between Y. pestis and its phages.
Collapse
Affiliation(s)
- Lisheng Xiao
- Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- School of Basic Medicine, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zhizhen Qi
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Ruichen Lv
- Hua Dong Research Institute for Medicine and Biotechniques, Nanjing, China
| | - Rong Chen
- Department of Laboratory Medicine, First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Haihong Zhao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Hailian Wu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Cunxiang Li
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Youquan Xin
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Yong Jin
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Xiang Li
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Xiaoqing Xu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Xuefei Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Xilin Zhao
- Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yajun Song
- School of Basic Medicine, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| |
Collapse
|
44
|
Vintila BI, Arseniu AM, Butuca A, Sava M, Bîrluțiu V, Rus LL, Axente DD, Morgovan C, Gligor FG. Adverse Drug Reactions Relevant to Drug Resistance and Ineffectiveness Associated with Meropenem, Linezolid, and Colistin: An Analysis Based on Spontaneous Reports from the European Pharmacovigilance Database. Antibiotics (Basel) 2023; 12:antibiotics12050918. [PMID: 37237821 DOI: 10.3390/antibiotics12050918] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial resistance is considered one of the major threats to public health and is an important factor that influences the patient's outcome in the intensive care unit. Pharmacovigilance can help raise awareness of potential drug resistance (DR) or ineffectiveness (DI) through adverse drug reaction reports that are submitted to different spontaneous reporting systems. Based on spontaneous Individual Case Safety Reports from EudraVigilance, we conducted a descriptive analysis of adverse drug reactions associated with meropenem, colistin, and linezolid, with a focus on DR and DI. Of the total adverse drug reactions (ADRs) reported for each analyzed antibiotic by 31 December 2022, between 2.38-8.42% and 4.15-10.14% of the reports were related to DR and DI, respectively. A disproportionality analysis was conducted to evaluate the frequency of reporting adverse drug reactions relevant to the DR and DI of the analyzed antibiotics compared to other antimicrobials. Based on the analysis of the collected data, this study underlines the importance of post-marketing drug safety monitoring in raising a warning signal regarding antimicrobial resistance, thereby potentially contributing to the reduction in antibiotic treatment failure in an intensive care setting.
Collapse
Affiliation(s)
- Bogdan Ioan Vintila
- Clinical Surgical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
| | - Anca Maria Arseniu
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Mihai Sava
- Clinical Surgical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
| | - Victoria Bîrluțiu
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
- Clinical Medical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Luca Liviu Rus
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Dan Damian Axente
- Fifth Surgical Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| |
Collapse
|
45
|
Wu HJ, Xiao ZG, Lv XJ, Huang HT, Liao C, Hui CY, Xu Y, Li HF. Drug‑resistant Acinetobacter baumannii: From molecular mechanisms to potential therapeutics (Review). Exp Ther Med 2023; 25:209. [PMID: 37090073 PMCID: PMC10119666 DOI: 10.3892/etm.2023.11908] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/24/2023] [Indexed: 04/25/2023] Open
Abstract
Bacterial drug resistance is increasingly becoming an important problem that needs to be solved urgently in modern clinical practices. Infection caused by Acinetobacter baumannii is a serious threat to the life and health of patients. The drug resistance rate of Acinetobacter baumannii strains is increasing, thus research on the drug resistance of Acinetobacter baumannii has also seen an increase. When patients are infected with drug-resistant Acinetobacter baumannii, the availability of suitable antibiotics commonly used in clinical practices is becoming increasingly limited and the prognosis of patients is worsening. Studying the molecular mechanism of the drug resistance of Acinetobacter baumannii is fundamental to solving the problem of drug-resistant Acinetobacter baumannii and potentially other 'super bacteria'. Drug resistance mechanisms primarily include enzymes, membrane proteins, efflux pumps and beneficial mutations. Research on the underlying mechanisms provides a theoretical basis for the use and development of antibiotics and the development of novel treatment methods.
Collapse
Affiliation(s)
- Hao-Jia Wu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zhi-Gang Xiao
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Xiao-Juan Lv
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Hai-Tang Huang
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Chu Liao
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Chen-Yang Hui
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Yue Xu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Heng-Fei Li
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
- Correspondence to: Professor Heng-Fei Li, Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Room 4, Garden Hill, Wuchang, Wuhan, Hubei 430061, P.R. China
| |
Collapse
|
46
|
Castanheira M, Mendes RE, Gales AC. Global Epidemiology and Mechanisms of Resistance of Acinetobacter baumannii-calcoaceticus Complex. Clin Infect Dis 2023; 76:S166-S178. [PMID: 37125466 PMCID: PMC10150277 DOI: 10.1093/cid/ciad109] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Acinetobacter baumannii-calcoaceticus complex is the most commonly identified species in the genus Acinetobacter and it accounts for a large percentage of nosocomial infections, including bacteremia, pneumonia, and infections of the skin and urinary tract. A few key clones of A. baumannii-calcoaceticus are currently responsible for the dissemination of these organisms worldwide. Unfortunately, multidrug resistance is a common trait among these clones due to their unrivalled adaptive nature. A. baumannii-calcoaceticus isolates can accumulate resistance traits by a plethora of mechanisms, including horizontal gene transfer, natural transformation, acquisition of mutations, and mobilization of genetic elements that modulate expression of intrinsic and acquired genes.
Collapse
Affiliation(s)
| | | | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
47
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
48
|
Butler J, Handy RD, Upton M, Besinis A. Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics. ACS NANO 2023; 17:7064-7092. [PMID: 37027838 PMCID: PMC10134505 DOI: 10.1021/acsnano.2c12488] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review discusses topics relevant to the development of antimicrobial nanocoatings and nanoscale surface modifications for medical and dental applications. Nanomaterials have unique properties compared to their micro- and macro-scale counterparts and can be used to reduce or inhibit bacterial growth, surface colonization and biofilm development. Generally, nanocoatings exert their antimicrobial effects through biochemical reactions, production of reactive oxygen species or ionic release, while modified nanotopographies create a physically hostile surface for bacteria, killing cells via biomechanical damage. Nanocoatings may consist of metal nanoparticles including silver, copper, gold, zinc, titanium, and aluminum, while nonmetallic compounds used in nanocoatings may be carbon-based in the form of graphene or carbon nanotubes, or composed of silica or chitosan. Surface nanotopography can be modified by the inclusion of nanoprotrusions or black silicon. Two or more nanomaterials can be combined to form nanocomposites with distinct chemical or physical characteristics, allowing combination of different properties such as antimicrobial activity, biocompatibility, strength, and durability. Despite their wide range of applications in medical engineering, questions have been raised regarding potential toxicity and hazards. Current legal frameworks do not effectively regulate antimicrobial nanocoatings in matters of safety, with open questions remaining about risk analysis and occupational exposure limits not considering coating-based approaches. Bacterial resistance to nanomaterials is also a concern, especially where it may affect wider antimicrobial resistance. Nanocoatings have excellent potential for future use, but safe development of antimicrobials requires careful consideration of the "One Health" agenda, appropriate legislation, and risk assessment.
Collapse
Affiliation(s)
- James Butler
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Richard D. Handy
- School
of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Mathew Upton
- School
of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United
Kingdom
| | - Alexandros Besinis
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
- Peninsula
Dental School, Faculty of Health, University
of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| |
Collapse
|
49
|
Han X, Cui AL, Yang HX, Wu L, Wei R, Liu Q, Li ZR, Hu HY. Polymyxin-based fluorescent probes to combat Gram-negative antimicrobial resistance. Talanta 2023; 260:124576. [PMID: 37148689 DOI: 10.1016/j.talanta.2023.124576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
Reliable diagnostic approaches especially those targeting critical Gram-negative bacteria are urgently needed for the prevention of antimicrobial resistance. Polymyxin B (PMB) which specifically targets the outer membrane of Gram-negative bacteria is the last-line antibiotic against life-threatening multidrug-resistant Gram-negative bacteria. However, increasing number of studies have reported the spread of PMB-resistant strains. With the aim to specifically detect Gram-negative bacteria and potentially reduce the irrational use of antibiotics, we herein rationally designed two Gram-negative bacteria specific fluorescent probes based on our previous activity-toxicity optimization of PMB. The in vitro probe PMS-Dns showed fast and selective labeling of Gram-negative pathogens in complex biological cultures. Subsequently, we constructed the caged in vivo fluorescent probe PMS-Cy-NO2 by conjugating bacterial nitroreductase (NTR)-activatable positive charged hydrophobic near-infrared (NIR) fluorophore with polymyxin scaffold. Significantly, PMS-Cy-NO2 exhibited excellent Gram-negative bacterial detection capability with the differentiation between Gram-positive and Gram-negative in a mouse skin infection model.
Collapse
Affiliation(s)
- Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - A-Long Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - He-Xian Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lingling Wu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Rao Wei
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qian Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhuo-Rong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
50
|
Wang Q, Kim H, Halvorsen TM, Chen S, Hayes CS, Buie CR. Leveraging microfluidic dielectrophoresis to distinguish compositional variations of lipopolysaccharide in E. coli. Front Bioeng Biotechnol 2023; 11:991784. [PMID: 36873367 PMCID: PMC9979706 DOI: 10.3389/fbioe.2023.991784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Lipopolysaccharide (LPS) is the unique feature that composes the outer leaflet of the Gram-negative bacterial cell envelope. Variations in LPS structures affect a number of physiological processes, including outer membrane permeability, antimicrobial resistance, recognition by the host immune system, biofilm formation, and interbacterial competition. Rapid characterization of LPS properties is crucial for studying the relationship between these LPS structural changes and bacterial physiology. However, current assessments of LPS structures require LPS extraction and purification followed by cumbersome proteomic analysis. This paper demonstrates one of the first high-throughput and non-invasive strategies to directly distinguish Escherichia coli with different LPS structures. Using a combination of three-dimensional insulator-based dielectrophoresis (3DiDEP) and cell tracking in a linear electrokinetics assay, we elucidate the effect of structural changes in E. coli LPS oligosaccharides on electrokinetic mobility and polarizability. We show that our platform is sufficiently sensitive to detect LPS structural variations at the molecular level. To correlate electrokinetic properties of LPS with the outer membrane permeability, we further examined effects of LPS structural variations on bacterial susceptibility to colistin, an antibiotic known to disrupt the outer membrane by targeting LPS. Our results suggest that microfluidic electrokinetic platforms employing 3DiDEP can be a useful tool for isolating and selecting bacteria based on their LPS glycoforms. Future iterations of these platforms could be leveraged for rapid profiling of pathogens based on their surface LPS structural identity.
Collapse
Affiliation(s)
- Qianru Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Hyungseok Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tiffany M. Halvorsen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sijie Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Cullen R. Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|