1
|
Tsou SC, Chuang CJ, Hsu CL, Chen TC, Yeh JH, Wang M, Wang I, Chang YY, Lin HW. The Novel Application of EUK-134 in Retinal Degeneration: Preventing Mitochondrial Oxidative Stress-Triggered Retinal Pigment Epithelial Cell Apoptosis by Suppressing MAPK/p53 Signaling Pathway. ENVIRONMENTAL TOXICOLOGY 2025; 40:88-100. [PMID: 39268877 DOI: 10.1002/tox.24416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024]
Abstract
Age-related macular degeneration (AMD), a leading cause of blindness, is characterized by mitochondrial dysfunction of retinal pigment epithelium (RPE) cells. EUK-134 is a mimetic of SOD2 and catalase, widely used for its antioxidant properties in models of light-induced damage or oxidative stress. However, its effects on the retina are not yet clear. Here, we investigated the capability of EUK-134 in averting AMD using sodium iodate (NaIO3)-induced Balb/c mouse and ARPE-19 cells (adult RPE cell line). In vivo, EUK-134 effectively antagonized NaIO3-induced retinal deformation and prevented outer and inner nuclear layer thinning. In addition, it was found that the EUK-134-treated group significantly down-regulated the expression of cleaved caspase-3 compared with the group treated with NaIO3 alone. Our results found that EUK-134 notably improved cell viability by preventing mitochondrial ROS accumulation-induced membrane potential depolarization-mediated apoptosis in NaIO3-inducted ARPE-19 cells. Furthermore, we found that EUK-134 could inhibit p-ERK, p-p38, p-JNK, p-p53, Bax, cleaved caspase-9, cleaved caspase-3, and cleaved PARP by increasing Bcl-2 protein expression. Additionally, we employed MAPK pathway inhibitors by SB203580 (a p38 inhibitor), U0126 (an ERK inhibitor), and SP600125 (a JNK inhibitor) to corroborate the aforementioned observation. The results support that EUK-134 may effectively prevent mitochondrial oxidative stress-mediated retinal apoptosis in NaIO3-induced retinopathy.
Collapse
Affiliation(s)
- Shang-Chun Tsou
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chen-Ju Chuang
- Emergency Department, St. Martin De Porres Hospital, Chiayi, Taiwan
| | - Chin-Lin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Chun Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jui-Hsuan Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Inga Wang
- Rehabilitation Sciences & Technology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Wen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
| |
Collapse
|
2
|
Vidal-Oliver L, Fernández-Avellaneda P, Fragiotta S, Corradetti G, Borrelli E, Dolz-Marco R. Non-exudative OCT findings in neovascular AMD. Eye (Lond) 2024:10.1038/s41433-024-03461-y. [PMID: 39587331 DOI: 10.1038/s41433-024-03461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/13/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
In this narrative review we describe the main optical coherence tomography biomarkers appearing in eyes with neovascular age-related macular degeneration (AMD) that do not directly correspond to exudation. We highlight those signs that may mimic exudation and therefore do not require active treatment, such as outer retinal tubulations, pseudocysts, lipid globules, or hyporeflective wedges. Other signs may indicate impending exudation such as hyperreflective foci or shallow irregular retinal pigment epithelium elevation, and therefore should be carefully monitored. We also review and summarize the different origins of subretinal hyperreflective material and describe the main signs of degeneration seen in eyes with AMD, such as outer retinal tubulation, thinning of the retinal layers, outer retinal atrophy, and choroidal changes.
Collapse
Affiliation(s)
- Lourdes Vidal-Oliver
- Unit of Macula, Oftalvist Clinic, Valencia, Spain
- Ophthalmology Department, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Serena Fragiotta
- Ophthalmology Unit, Department NESMOS, S. Andrea Hospital, University of Rome "La Sapienza", Rome, Italy
| | - Giulia Corradetti
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, CA, USA
| | - Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | | |
Collapse
|
3
|
Heinke A, Zhang H, Broniarek K, Michalska-Małecka K, Elsner W, Galang CMB, Deussen DN, Warter A, Kalaw F, Nagel I, Agnihotri A, Mehta NN, Klaas JE, Schmelter V, Kozak I, Baxter SL, Bartsch DU, Cheng L, An C, Nguyen T, Freeman WR. Cross-instrument optical coherence tomography-angiography (OCTA)-based prediction of age-related macular degeneration (AMD) disease activity using artificial intelligence. Sci Rep 2024; 14:27085. [PMID: 39511248 PMCID: PMC11544254 DOI: 10.1038/s41598-024-78327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
This study investigates the efficacy of predicting age-related macular degeneration (AMD) activity through deep neural networks (DNN) using a cross-instrument training dataset composed of Optical coherence tomography-angiography (OCTA) images from two different manufacturers. A retrospective cross-sectional study analyzed 2D vascular en-face OCTA images from Heidelberg Spectralis (1478 samples: 1102 training, 276 validation, 100 testing) and Optovue Solix (1003 samples: 754 training, 189 validation, 60 testing). OCTA scans were labeled based on clinical diagnoses and adjacent B-scan OCT fluid information, categorizing activity into normal, dry AMD, active wet AMD, and wet AMD in remission. Experiments explored cross-instrument disease classification using separate and combined datasets for training the DNN. Testing involved 100 Heidelberg and 60 Optovue samples. Training on Heidelberg data alone yielded 73% accuracy on Heidelberg images and 60% on Optovue images. Training on Optovue data alone resulted in 34% accuracy on Heidelberg and 85% on Optovue images. Combined training data from both instruments achieved 78% accuracy on Heidelberg and 76% on Optovue test sets. Results indicate that cross-instrument classifier training demonstrates high classification prediction accuracy, making cross-instrument training viable for future clinical applications. This implies that vascular morphology in OCTA can predict disease progression.
Collapse
Affiliation(s)
- Anna Heinke
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA.
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA.
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA.
| | - Haochen Zhang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | | | | | - Wyatt Elsner
- The Department of Cognitive Science, University of California San Diego, San Diego, USA
| | - Carlo Miguel B Galang
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
| | - Daniel N Deussen
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Warter
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
| | - Fritz Kalaw
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
| | - Ines Nagel
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
| | - Akshay Agnihotri
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
| | - Nehal N Mehta
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
| | - Julian Elias Klaas
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Valerie Schmelter
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Igor Kozak
- Moorfields Eye Hospital, Dubai, United Arab Emirates
- Department of Ophthalmology and Vision Science, University of Arizona, Tucson, USA
| | - Sally L Baxter
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dirk-Uwe Bartsch
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
| | - Lingyun Cheng
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
| | - Cheolhong An
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Truong Nguyen
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - William R Freeman
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res 2024; 248:110111. [PMID: 39326776 DOI: 10.1016/j.exer.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
5
|
Bresciani G, Manai F, Felszeghy S, Smedowski A, Kaarniranta K, Amadio M. VEGF and ELAVL1/HuR protein levels are increased in dry and wet AMD patients. A new tile in the pathophysiologic mechanisms underlying RPE degeneration? Pharmacol Res 2024; 208:107380. [PMID: 39216841 DOI: 10.1016/j.phrs.2024.107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Age-related macular degeneration (AMD) is a common retinal pathology characterized by degeneration of macula's retinal pigment epithelium (RPE) and photoreceptors, visual impairment, or loss. Compared to wet AMD, dry AMD is more common, but lacks cures; therefore, identification of new potential therapeutic targets and treatments is urgent. Increased oxidative stress and declining antioxidant, detoxifying systems contribute to the pathophysiologic mechanisms underlying AMD. The present work shows that the Embryonic Lethal Abnormal Vision-Like 1/Human antigen R (ELAVL1/HuR) and the Vascular Endothelial Growth Factor (VEGF) protein levels are higher in the RPE of both dry and wet AMD patients compared to healthy subjects. Moreover, increased HuR protein levels are detected in the retina, and especially in the RPE layer, of a dry AMD model, the nuclear factor erythroid 2-related factor 2 (Nrf2) / peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) double knock-out mouse. The crosstalk among Nrf2, HuR and VEGF has been also studied in ARPE-19 cells in basal and stressful conditions related to the AMD context (i.e., oxidative stress, autophagy impairment, Nrf2 deficit), offering new evidence of the mutual influence between Nrf2 and HuR, of the dependence of VEGF expression and secretion by these two factors, and of the increased susceptibility of cells to stressful conditions in Nrf2- or HuR-impaired contexts. Overall, this study shows evidence of the interplay among Nrf2, HuR and VEGF, essential factors for RPE homeostasis, and represents an additional piece in the understanding of the complex pathophysiologic mechanisms underlying AMD.
Collapse
Affiliation(s)
| | - Federico Manai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Szabolcs Felszeghy
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland; Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Adrian Smedowski
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland; GlaucoTech Co., Katowice, Poland; Department of Ophthalmology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | | |
Collapse
|
6
|
Spaide RF. PATHWAYS TO GEOGRAPHIC ATROPHY IN NONNEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina 2024; 44:1655-1665. [PMID: 39121492 DOI: 10.1097/iae.0000000000004242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
PURPOSE To characterize and quantify the precursor lesions of geographic atrophy in eyes with age-related macular degeneration. METHODS A retrospective study of eyes with a minimum of 6-month follow-up before developing geographic atrophy. Evaluations included color and autofluorescence imaging, along with spectral-domain optical coherence tomography, employing definitions from the Consensus of Atrophy Meeting Group and Consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group. RESULTS There were 55 eyes of 44 patients, who had a mean age of 81.3 years at onset of atrophy; 35 (63.6%) were female. The mean duration of follow-up before and after the advent of geographic atrophy was 4.9 years and 1.2 years, respectively. Geographic atrophy was preceded by collapse of a druse in 41 eyes (74.5%). Of these, 29 (70.7%) were drusenoid pigment epithelial detachments. Among the eyes with regressing drusen, there were 9 with overlying vitelliform deposit, and all had concurrent subretinal drusenoid deposit; however, 19 of 30 eyes with no vitelliform deposit overlying the druse had concurrent subretinal drusenoid deposit, a difference that was significant ( P < 0.001). Regression of subretinal drusenoid deposit was found in 4 eyes (7.3%), regression of vitelliform deposit associated with subretinal drusenoid deposit in 5 (9.1%), and regression of vitelliform deposit in eyes concurrently harboring drusen was found in 3 (5.4%) and regression of vitelliform deposit alone in 2 (3.6%) at the site of eventual development of geographic atrophy. CONCLUSION Geographic atrophy appears to develop from multiple pathways as manifested by the many precursor lesions, all various forms of extracellular deposit, that upon regression, result in a common end-stage appearance.
Collapse
Affiliation(s)
- Richard F Spaide
- Vitreous, Retina, Macula Consultants of New York, New York, New York
| |
Collapse
|
7
|
Cheng JY, Santina A, Margines JB, Voichanski S, Ramtohul P, Bousquet E, Bijon J, Freund KB, Yannuzzi L, Sarraf D. ACUTE POSTERIOR MULTIFOCAL PLACOID PIGMENT EPITHELIOPATHY AND PLACOID VARIANT DISEASES MASQUERADING AS AGE-RELATED MACULAR DEGENERATION IN THE ELDERLY: A Case Series. Retina 2024; 44:1666-1678. [PMID: 39027974 DOI: 10.1097/iae.0000000000004191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
PURPOSE To report eight cases of acute posterior multifocal placoid pigment epitheliopathy (APMPPE) or persistent placoid maculopathy (PPM) initially masquerading as age-related macular degeneration in elderly individuals. METHODS APMPPE or PPM eyes in patients above age 55 years with macular retinal pigment epithelium disruption including drusenoid lesions on macular examination and/or with multimodal imaging were included. At least one method of multimodal imaging including fluorescein angiography (FA), indocyanine green angiography, optical coherence tomography (OCT), and OCT angiography (OCTA) was performed in all eyes for diagnosis and to monitor for macular neovascularization. RESULTS Eight elderly male patients presented with vision loss and were all initially diagnosed with non-neovascular or neovascular age-related macular degeneration. With the aid of multimodal retinal imaging, a final diagnosis of either APMPPE or PPM was rendered. With FA and indocyanine green angiography, choroidal hypoperfusion was detected in all but one eye. With OCT, the angular sign of Henle fiber layer hyperreflectivity was identified in >50% of eyes. With OCTA, inner choroidal flow deficits were detected in all eyes. Macular neovascularization requiring anti-vascular endothelial growth factor injection therapy complicated three of eight cases. CONCLUSION Both APMPPE and PPM may develop in elderly individuals and may masquerade as age-related macular degeneration on presentation. Multimodal imaging including FA, indocyanine green angiography, and OCTA are important diagnostic modalities to assess for inner choroidal hypoperfusion to arrive at an accurate diagnosis and to detect macular neovascularization, which frequently complicates APMPPE and PPM. In these patients, serial anti-vascular endothelial growth factor intravitreal injections are essential in treating macular neovascularization and in preventing significant vision loss.
Collapse
Affiliation(s)
- John Yu Cheng
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles
| | - Ahmad Santina
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles
| | - J Ben Margines
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles
| | - Shilo Voichanski
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles
| | - Prithvi Ramtohul
- Vitreous Retina Macula Consultants of New York, New York, New York; and
| | - Elodie Bousquet
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles
| | - Jacques Bijon
- Vitreous Retina Macula Consultants of New York, New York, New York; and
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York; and
| | - Lawrence Yannuzzi
- Vitreous Retina Macula Consultants of New York, New York, New York; and
| | - David Sarraf
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles
- Greater Los Angeles VA Healthcare Center, Los Angeles, California
| |
Collapse
|
8
|
Sbai O, Torrisi F, Fabrizio FP, Rabbeni G, Perrone L. Effect of the Mediterranean Diet (MeDi) on the Progression of Retinal Disease: A Narrative Review. Nutrients 2024; 16:3169. [PMID: 39339769 PMCID: PMC11434766 DOI: 10.3390/nu16183169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Worldwide, the number of individuals suffering from visual impairment, as well as those affected by blindness, is about 600 million and it will further increase in the coming decades. These diseases also seriously affect the quality of life in working-age individuals. Beyond the characterization of metabolic, genetic, and environmental factors related to ocular pathologies, it is important to verify how lifestyle may participate in the induction of the molecular pathways underlying these diseases. On the other hand, scientific studies are also contributing to investigations as to whether lifestyle could intervene in modulating pathophysiological cellular responses, including the production of metabolites and neurohormonal factors, through the intake of natural compounds capable of interfering with molecular mechanisms that lead to ocular diseases. Nutraceuticals are promising in ameliorating pathophysiological complications of ocular disease such as inflammation and neurodegeneration. Moreover, it is important to characterize the nutritional patterns and/or natural compounds that may be beneficial against certain ocular diseases. The adherence to the Mediterranean diet (MeDi) is proposed as a promising intervention for the prevention and amelioration of several eye diseases. Several characteristic compounds and micronutrients of MeDi, including vitamins, carotenoids, flavonoids, and omega-3 fatty acids, are proposed as adjuvants against several ocular diseases. In this review, we focus on studies that analyze the effects of MeDi in ameliorating diabetic retinopathy, macular degeneration, and glaucoma. The analysis of knowledge in this field is requested in order to provide direction on recommendations for nutritional interventions aimed to prevent and ameliorate ocular diseases.
Collapse
Affiliation(s)
- Oualid Sbai
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Institut Pasteur de Tunis, Tunis 1068, Tunisia
| | - Filippo Torrisi
- Faculty of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| | | | - Graziella Rabbeni
- Faculty of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| | - Lorena Perrone
- Faculty of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| |
Collapse
|
9
|
Wang T, Huang C, Li J, Wu X, Fu X, Hu Y, Wu G, Yang C, Chen S. Causal influence of plasma metabolites on age-related macular degeneration: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39400. [PMID: 39287235 PMCID: PMC11404906 DOI: 10.1097/md.0000000000039400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Using genome-wide association study data from European populations, this research clarifies the causal relationship between plasma metabolites and age-related macular degeneration (AMD) and employs Metabo Analyst 5.0 for enrichment analysis to investigate their metabolic pathways. Employing Mendelian randomization analysis, this study leveraged single nucleotide polymorphisms significantly associated with plasma metabolites as instrumental variables. This approach established a causal link between metabolites and AMD. Analytical methods such as inverse-variance weighted, Mendelian randomization-Egger, and weighted median were applied to validate causality. Mendelian Randomization Pleiotropy Residual Sum and Outlier was utilized for outlier detection and correction, and Cochran's Q test was conducted to assess heterogeneity. To delve deeper into the metabolic characteristics of AMD, metabolic enrichment analysis was performed using Metabo Analyst 5.0. These combined methods provided a robust framework for elucidating the metabolic underpinnings of AMD. The 2-sample MR analysis, after meticulous screening, identified causal relationships between 88 metabolites and AMD. Of these, 16 metabolites showed a significant causal association. Following false discovery rate correction, 3 metabolites remained significantly associated, with androstenediol (3 beta, 17 beta) disulfate (2) exhibiting the most potent protective effect against AMD. Further exploration using Metabo Analyst 5.0 highlighted 4 metabolic pathways potentially implicated in AMD pathogenesis. This pioneering MR study has unraveled the causal connections between plasma metabolites and AMD. It identified several metabolites with a causal impact on AMD, with 3 maintaining significance after FDR correction. These insights offer robust causal evidence for future clinical applications and underscore the potential of these metabolites as clinical biomarkers in AMD screening, treatment, and prevention strategies.
Collapse
Affiliation(s)
- Tao Wang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Chun Huang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jinshuai Li
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiangjian Wu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaoyan Fu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yimin Hu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Geping Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chunfeng Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Sheng Chen
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Feng J, Xie F, Wu Z, Wu Y. Age-related macular degeneration and cardiovascular disease in US population: an observational study. Acta Cardiol 2024; 79:665-671. [PMID: 38126346 DOI: 10.1080/00015385.2023.2295103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND As far as we know, age-related macular degeneration (AMD) has become one of the predominant causes of visual impairments. Previous studies have revealed that AMD and many cardiovascular diseases (CVDs) share the same pathologic and genotypic factors, making the connection between AMD and CVD a hot topic. However, the conclusions of the available studies on the relationship between them are somewhat divergent. METHODS We screened 5523 eligible participants from the National Health and Nutrition Examination Survey (NHANES) database from 2005 through 2008 for an observational clinical study design. Binary logistic regression modelling was used to estimate the relations between AMD and various CVDs with and without adjustment for demographics, health status, and behaviours related to health. RESULTS Binary logistic regression analyses showed that AMD was able to increase the risk of CVDs in patients both unadjusted and after adjusting for confounding variables. CONCLUSIONS Within this study, preventing the development of AMD might cut down the incidence of several CVDs, in particular, significantly lowering the stroke risk. These findings indicate that interventions to prevent AMD may also help to prevent CVDs. In general, late AMD has a more severe impact on the risk of CVDs compared with early AMD. These results could help clinical ophthalmology and cardiovascular medicine in their clinical education and interventions.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Feng Xie
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhijian Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Xu B, Hu Y, Di J, Liu Z, Yu Z, Han L, Ning Y. The negative association between the docosapentaenoic acid intake and the incidence of AMD based on NHANES 2005-2008. Front Nutr 2024; 11:1435775. [PMID: 39119460 PMCID: PMC11306050 DOI: 10.3389/fnut.2024.1435775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Age-related macular degeneration (AMD) is an ophthalmic disease that causes visual impairment and is one of the leading causes of blindness in the elderly. Fatty acids are essential nutrients required by the body and play a cornerstone role in the life activities of the body. Many studies have reported that fatty acids are involved in the development of AMD. To confirm this association, we conducted the present study. Methods We analyzed the association between all fatty acid intake and AMD using National Health and Nutrition Examination Survey (NHANES) data from 2005-2008. Quantile regression was performed to assess the effect of fatty acids on AMD at different intake levels. Results After adjusting for covariates, only saturated fatty acids showed no significant difference between AMD patients and non-AMD patients (23.64 g vs. 26.03 g, p = 0.052). Total fat (70.88 g vs. 78.86 g, p = 0.024), monounsaturated fatty acids (25.87 g vs. 28.95 g, p = 0.019), polyunsaturated fatty acids (15.10 g vs. 17.07 g, p = 0.017) showed significant differences between the two groups. When AMD was considered as an outcome, the association between AMD and docosaentaenoic acid (DPA) was negative in the multivariate logic model (model 1: OR = <0.001, 95% CI = <0.001 ~ 0.734; model 2: OR = <0.001, 95% CI = <0.001 ~ 0.002; model 3: OR = <0.001, 95% CI = <0.001 ~ 0.002). In the quantile regression, DPA was shown to be negatively associated with the presence of AMD only in the fourth quartile in model 2 and model 3 (model 2: OR = <0.001, 95% CI = <0.001 ~ 0.927; model 3: OR = <0.001, 95% CI = <0.001 ~ 0.775). Discussion Therefore, based on above results, we concluded that DPA intake could prevent the development of AMD.
Collapse
Affiliation(s)
- Baiwei Xu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Eye Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Yi Hu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Eye Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Jie Di
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Eye Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Zhongwei Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyan Yu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Eye Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Lin Han
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Eye Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Yuan Ning
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Eye Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| |
Collapse
|
12
|
Samacá-Samacá D, Hernández-Castillo C, Prieto-Pinto L, Rodríguez F, Sardi C, Ocampo H, Kock J, Hernández F. Efficacy and safety of faricimab for neovascular age-related macular degeneration: a systematic review and network meta-analysis. BMJ Open Ophthalmol 2024; 9:e001702. [PMID: 39043575 PMCID: PMC11268043 DOI: 10.1136/bmjophth-2024-001702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024] Open
Abstract
OBJECTIVE To evaluate the efficacy and safety of faricimab compared with other anti-vascular endothelial growth factor (anti-VEGF) agents in treating neovascular age-related macular degeneration (nAMD) patients. METHODS AND ANALYSIS A systematic review (SR) was conducted up to January 2023. Network meta-analyses (NMA) were performed, including sensitivity and subgroup analyses for naïve population. Outcomes included changes in visual acuity (Early Treatment of Diabetic Retinopathy Study [ETDRS] letters), anatomical changes, frequency of injections and adverse events. The Cochrane Collaboration guidelines and the Confidence in Network Meta-Analysis framework were used for the SR and the certainty of evidence, respectively. RESULTS From 4128 identified records through electronic databases and complementary searches, 63 randomised controlled trials (RCTs) met the eligibility criteria, with 42 included in the NMA. Faricimab showed a significant reduction in the number of annual injections compared with most fixed and flexible anti-VEGF treatment regimens, while showing no statistically significant differences in visual acuity through ETDRS letter gain, demonstrating a comparable efficacy. Retinal thickness results showed comparable efficacy to other anti-VEGF agents, and inferior only to brolucizumab. Results also showed that more patients treated with faricimab were free from post-treatment retinal fluid compared with aflibercept every 8 weeks, and both ranibizumab and bevacizumab, in the fixed and pro re nata (PRN) assessed schedules. Faricimab showed a comparable safety profile regarding the risk of ocular adverse events and serious ocular adverse events (SOAE), except for the comparison with brolucizumab quarterly, in which faricimab showed a significant reduction for SOAE risk. CONCLUSION Faricimab showed a comparable clinical benefit in efficacy and safety outcomes, with a reduction in annual injections compared with fixed and flexible anti-VEGF drug regimens, representing a valuable treatment option for nAMD patients. PROSPERO REGISTRATION NUMBER CRD42023394226.
Collapse
Affiliation(s)
| | | | | | - Francisco Rodríguez
- FUNDONAL, Bogota, Colombia
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá D.C, Colombia
| | - Carolina Sardi
- Instituto Nacional de Investigación en Oftalmología, Medellín, Colombia
| | | | - Joshua Kock
- Evidence Generation, Roche Colombia, Bogotá D.C, Colombia
| | | |
Collapse
|
13
|
Nanji K, Kennedy K, Fung M, Xie J, Hatamnejad A, Garg SJ, Wykoff CC, Chaudhary V. Impact of COVID-19 on a real-world treat-and-extend regimen with aflibercept for neovascular age-related macular degeneration. CANADIAN JOURNAL OF OPHTHALMOLOGY 2024:S0008-4182(24)00169-8. [PMID: 39033785 DOI: 10.1016/j.jcjo.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE To assess the effect of the COVID-19 pandemic on injection intervals among patients treated for neovascular age-related macular degeneration. DESIGN Retrospective cohort study. PARTICIPANTS Patients treated at a single practice using a treat-and-extend regimen with intravitreal aflibercept between December 2018 and April 2021. METHODS The primary outcome was the change in injection intervals. Secondary outcomes included differences in best-recorded visual acuity (BRVA) and central subfield thickness (CST). Associations were evaluated with linear mixed-effects modelling. RESULTS This study included 1839 injections from 185 eyes (141 patients). The median (interquartile range) injection intervals in the pre-COVID-19 and COVID-19 periods were 60 (42-70) and 70 (49-90) days, respectively. The pandemic was associated with a mean injection interval lengthening of 7.2 days (P < 0.001), a decrease in BRVA of 3.1 Early Treatment Diabetic Retinopathy Study letters (P < 0.001), and a reduction in CST of 14.7 μm (P = 0.003). The presence of exudative intraretinal fluid was associated with a reduction in treatment intervals of 11.1 days (P < 0.001), a reduction in BRVA of 1.9 Early Treatment Diabetic Retinopathy Study letters (P < 0.001), and an increase in CST of 52.4 μm (P < 0.001). The presence of subretinal fluid was associated with a reduction in treatment intervals of 8.5 days (P < 0.001) and an increase in CST of 21.6 μm (P < 0.001). CONCLUSIONS This real-world study estimated that the severe acute respiratory syndrome coronavirus 2 pandemic resulted in an injection extension of 7.2 days with associated decreases in BRVA and CST that are unlikely clinically significant on a population basis. This builds on evidence suggesting that long-term vascular endothelial growth factor suppression can facilitate meaningful interval extensions while maintaining visual acuity.
Collapse
Affiliation(s)
- Keean Nanji
- Department of Surgery, Division of Ophthalmology, McMaster University, Hamilton, ON; Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON.
| | - Kevin Kennedy
- School of Population and Public Health, University of British Columbia, Vancouver, BC
| | - Matthew Fung
- Department of Surgery, Division of Ophthalmology, McMaster University, Hamilton, ON; University of Calgary, Calgary, AB
| | - Jim Xie
- Department of Surgery, Division of Ophthalmology, McMaster University, Hamilton, ON
| | - Amin Hatamnejad
- Department of Surgery, Division of Ophthalmology, McMaster University, Hamilton, ON
| | - Sunir J Garg
- Mid-Atlantic Retina, The Retina Service of Wills Eye Hospital, Philadelphia, PA
| | - Charles C Wykoff
- Retina Consultants of Texas, Houston, TX; Blanton Eye Institute, Houston Methodist Hospital, Houston, TX
| | - Varun Chaudhary
- Department of Surgery, Division of Ophthalmology, McMaster University, Hamilton, ON; Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON
| |
Collapse
|
14
|
Wu J, Wang Y, Zhang M, Sun X. Publication trends of vascular endothelial growth factor (VEGF) and anti-VEGF treatment in neovascular age-related macular degeneration during 2001-2020: a 20-year bibliometric study. Int Ophthalmol 2024; 44:295. [PMID: 38951350 DOI: 10.1007/s10792-024-02914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/24/2023] [Indexed: 07/03/2024]
Abstract
PURPOSE This study sought to provide an overview of the current research and further analyze publication trends in the field of vascular endothelial growth factor (VEGF) and anti-VEGF treatment for neovascular age-related macular degeneration (NVAMD). METHODS We downloaded all related publications from 2001 to 2020 from the Web of Science Core Collection and conducted a bibliometric analysis using the bibiometrix package in R programming software. RESULTS A total of 3717 publications were included in the analysis. The USA contributed the largest number of publications (1443), and achieved the highest number of citations (74,946) and H-index value (28). Johns Hopkins University, USA, was the top institution with the most publications, and Peter A. Campochiaro was the most productive professor at The Wilmer Eye Institute, USA. 9.60% of the total publications were from the Journal of Retinal and Vitreous Diseases. Trend analysis demonstrated that anti-VEGF therapy was introduced in early 2000 after steroids, and the last 2 decades have witnessed the blossom of several anti-VEGF agents. "Treat-and-extend" and "resistance" were two popular trend topics in recent years. CONCLUSIONS The USA occupies a dominant position in the research field of VEGF and anti-VEGF treatments in NVAMD. Steroid administration, photodynamic therapy, and anti-VEGF therapy have been pivotal advances in the treatment of NVAMD patients over the past 2 decades. Limited acting period and resistance are potential investigation directions in future studies.
Collapse
Affiliation(s)
- Jiali Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Wujing Road No. 85, Hongkou District, Shanghai, 200080, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yimin Wang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Wujing Road No. 85, Hongkou District, Shanghai, 200080, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Wujing Road No. 85, Hongkou District, Shanghai, 200080, China.
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China.
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| |
Collapse
|
15
|
Liyanage W, Kale N, Kannan S, Kannan RM. Journey from lab to clinic: Design, preclinical, and clinical development of systemic, targeted dendrimer-N-acetylcysteine (D-NAC) nanomedicines. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:119-155. [PMID: 39034050 DOI: 10.1016/bs.apha.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Drug discovery is challenging task with numerous obstacles in translating drug candidates into clinical products. Dendrimers are highly adaptable nanostructured polymers with significant potential to improve the chances of clinical success for drugs. Yet, dendrimer-based drug products are still in their infancy. However, Hydroxyl polyamidoamine (PAMAM) dendrimers showed significant promise in drug discovery efforts, owning their remarkable potential to selectively target and deliver drugs specifically to activated microglia and astrocytes at the site of brain injury in several preclinical models. After a decade's worth of academic research and pre-clinical efforts, the hydroxyl PAMAM dendrimer-N-acetyl cysteine conjugate (OP-101) nanomedicine has made a significant advancement in the field of nanomedicine and targeted delivery. The OP-101 conjugate, primarily developed and validated in academic labs, has now entered clinical trials as a potential treatment for hyperinflammation in hospitalized adults with severe COVID-19 through Ashvattha Therapeutics. This chapter, we delve into the journey of the hydroxyl PAMAM dendrimer-N-acetylcysteine (NAC) OP-101 formulation from the laboratory to the clinic. It will specifically focus on the design, synthesis, preclinical, and clinical development of OP-101, highlighting the potential it holds for the future of medicine and the positive Phase 2a results for treating severe COVID-19.
Collapse
Affiliation(s)
- Wathsala Liyanage
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Narendra Kale
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Hugo W. Moser Research Institute, Kennedy Krieger, Inc., Baltimore, MD, United States; Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Hugo W. Moser Research Institute, Kennedy Krieger, Inc., Baltimore, MD, United States; Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
16
|
Deussen DN, Heinke A, Elsner W, Galang CMB, Kalaw FGP, Warter A, Bartsch DU, Cheng L, Freeman WR. Effect of manual OCTA segmentation correction to improve image quality and visibility of choroidal neovascularization in AMD. Sci Rep 2024; 14:13990. [PMID: 38886462 PMCID: PMC11183238 DOI: 10.1038/s41598-024-61551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
In this retrospective case series on neovascular age-related macular degeneration (nAMD), we aimed to improve Choroidal Neovascularization (CNV) visualization in Optical Coherence Tomography Angiography (OCTA) scans by addressing segmentation errors. Out of 198 eyes, 73 OCTA scans required manual segmentation correction. We compared uncorrected scans to those with minimal (2 corrections), moderate (10 corrections), and detailed (50 corrections) efforts targeting falsely segmented Bruch's Membrane (BM). Results showed that 55% of corrected OCTAs exhibited improved quality after manual correction. Notably, minimal correction (2 scans) already led to significant improvements, with additional corrections (10 or 50) not further enhancing expert grading. Reduced background noise and improved CNV identification were observed, with the most substantial improvement after two corrections compared to baseline uncorrected images. In conclusion, our approach of correcting segmentation errors effectively enhances image quality in OCTA scans of nAMD. This study demonstrates the efficacy of the method, with 55% of resegmented OCTA images exhibiting enhanced quality, leading to a notable increase in the proportion of high-quality images from 63 to 83%.
Collapse
Affiliation(s)
- Daniel N Deussen
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians-University, 80336, Munich, Germany
| | - Anna Heinke
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA.
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA.
| | - Wyatt Elsner
- The Department of Cognitive Science, University of California San Diego, San Diego, USA
| | - Carlo Miguel B Galang
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
| | - Fritz Gerald P Kalaw
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
| | - Alexandra Warter
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
| | - Dirk-Uwe Bartsch
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
| | - Lingyun Cheng
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
| | - William R Freeman
- Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92037, USA
| |
Collapse
|
17
|
Luo P, Zhang F, Li X, Wan J, Bian W. Exploring the factors influencing nutritional literacy based on the socioecological model among patients with age-related macular degeneration: a qualitative study from China. BMJ Open 2024; 14:e081468. [PMID: 38806439 PMCID: PMC11138290 DOI: 10.1136/bmjopen-2023-081468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVES Although nutritional support is beneficial to the visual rehabilitation of patients with age-related macular degeneration (AMD), a large gap continues to exist between the relevant guidelines and the actual practices of AMD patients; this gap can be attributed to a lack of nutritional literacy. Therefore, this study explored the factors affecting nutritional literacy among AMD patients. DESIGN A qualitative study was carried out based on individual in-person interviews with 15 AMD patients; a semistructured interview guide was used for data collection. The socioecological model (SEM) was employed for data analysis. SETTING The Southwest Hospital in Chongqing Province, China. PARTICIPANTS A purposive sample of 15 AMD patients was recruited between May and June 2023. RESULTS The social ecosystem of patients with AMD has not been positive. At the intrapersonal level, the factors affecting the nutritional literacy of such patients are lack of knowledge, nutrition self-efficacy, economic burdens, dietary preferences and health status. At the interpersonal level, the factors that can influence patients' nutritional literacy are social support and social roles. At the institutional level, the relevant factors are doctor-patient trust and interdisciplinary-team consistency. Finally, at the policy level, a powerful factor is the large gap between policy and implementation. DISCUSSION Nutritional literacy focuses on the changes in an individual's knowledge and behaviour concerning nutrition. To inform the development of nutritional-literacy interventions for people with AMD, medical staff should consider multiple perspectives that can remove the barriers to the SEM at all levels.
Collapse
Affiliation(s)
- Peilin Luo
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
| | - Feng Zhang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
| | - Xin Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
| | - Junli Wan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
| | - Wei Bian
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
18
|
Katipoğlu Z, Abay RN. May the prognostic nutritional index (PNI) play a role in predicting age-related macular degeneration? Int Ophthalmol 2024; 44:228. [PMID: 38780873 DOI: 10.1007/s10792-024-03059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/16/2024] [Indexed: 05/25/2024]
Abstract
AIM It is known that a healthy and balanced diet plays an important role in the etiopathogenesis of age-related macular degeneration (AMD). The aim of this study is to show the possible relationship between the prognostic nutritional index (PNI) and AMD. METHODS This observational longitudinal study included 50 patients who were diagnosed with AMD and 100 participants as control group in the Ophthalmology Polyclinic of Kırşehir Ahi Evran Training and Research Hospital between December 2022 and February 2023. The PNI scores of the patients were calculated with the formula (10 × albumin (g/L) + (0.005 × total lymphocyte count), using routine hemogram and biochemical assays. RESULTS One hundred fifty participants were included in the study (average age: 73.7 ± 8.6 years, male: 53.3%). When adjusted for age, sex, and total comorbidity index score via multivariate logistic regression analysis, the association between AMD and PNI scores (OR = 0.3; CI: 0.2-0.4; p = 0.01) and Charlson Comorbidity Index (CCI) scores (OR = 6.8; CI: 2.8-16.6; p = 0.01) was statistically significant. CONCLUSION The use of PNI scores may be practical and useful in routine clinical practice for predicting AMD.
Collapse
Affiliation(s)
- Zeynep Katipoğlu
- Department of Ophtalmatology, Balıkesir Atatürk City Hospital, Altıeylül, Balıkesir, Turkey.
| | - Rafiye Nur Abay
- Kırşehir Ahi Evran Training and Research Hospital, Kırşehir, Turkey
| |
Collapse
|
19
|
Iliescu DA, Ghita AC, Ilie LA, Voiculescu SE, Geamanu A, Ghita AM. Non-Neovascular Age-Related Macular Degeneration Assessment: Focus on Optical Coherence Tomography Biomarkers. Diagnostics (Basel) 2024; 14:764. [PMID: 38611677 PMCID: PMC11011935 DOI: 10.3390/diagnostics14070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The imagistic evaluation of non-neovascular age-related macular degeneration (AMD) is crucial for diagnosis, monitoring progression, and guiding management of the disease. Dry AMD, characterized primarily by the presence of drusen and retinal pigment epithelium atrophy, requires detailed visualization of the retinal structure to assess its severity and progression. Several imaging modalities are pivotal in the evaluation of non-neovascular AMD, including optical coherence tomography, fundus autofluorescence, or color fundus photography. In the context of emerging therapies for geographic atrophy, like pegcetacoplan, it is critical to establish the baseline status of the disease, monitor the development and expansion of geographic atrophy, and to evaluate the retina's response to potential treatments in clinical trials. The present review, while initially providing a comprehensive description of the pathophysiology involved in AMD, aims to offer an overview of the imaging modalities employed in the evaluation of non-neovascular AMD. Special emphasis is placed on the assessment of progression biomarkers as discerned through optical coherence tomography. As the landscape of AMD treatment continues to evolve, advanced imaging techniques will remain at the forefront, enabling clinicians to offer the most effective and tailored treatments to their patients.
Collapse
Affiliation(s)
- Daniela Adriana Iliescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Ana Cristina Ghita
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Larisa Adriana Ilie
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Suzana Elena Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
| | - Aida Geamanu
- Ophthalmology Department, Bucharest University Emergency Hospital, 169 Independence Street, 050098 Bucharest, Romania;
| | - Aurelian Mihai Ghita
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
- Ophthalmology Department, Bucharest University Emergency Hospital, 169 Independence Street, 050098 Bucharest, Romania;
| |
Collapse
|
20
|
Kim J, Eygeris Y, Ryals RC, Jozić A, Sahay G. Strategies for non-viral vectors targeting organs beyond the liver. NATURE NANOTECHNOLOGY 2024; 19:428-447. [PMID: 38151642 DOI: 10.1038/s41565-023-01563-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/01/2023] [Indexed: 12/29/2023]
Abstract
In recent years, nanoparticles have evolved to a clinical modality to deliver diverse nucleic acids. Rising interest in nanomedicines comes from proven safety and efficacy profiles established by continuous efforts to optimize physicochemical properties and endosomal escape. However, despite their transformative impact on the pharmaceutical industry, the clinical use of non-viral nucleic acid delivery is limited to hepatic diseases and vaccines due to liver accumulation. Overcoming liver tropism of nanoparticles is vital to meet clinical needs in other organs. Understanding the anatomical structure and physiological features of various organs would help to identify potential strategies for fine-tuning nanoparticle characteristics. In this Review, we discuss the source of liver tropism of non-viral vectors, present a brief overview of biological structure, processes and barriers in select organs, highlight approaches available to reach non-liver targets, and discuss techniques to accelerate the discovery of non-hepatic therapies.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Renee C Ryals
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Antony Jozić
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA.
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA.
- Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
21
|
Kim JG, Kim YC, Kang KT. Two-Year Follow-Up Study of Patients with Neovascular Age-Related Macular Degeneration Undergoing Anti-VEGF Treatment during the COVID-19 Pandemic. J Clin Med 2024; 13:867. [PMID: 38337561 PMCID: PMC10856664 DOI: 10.3390/jcm13030867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND regular intravitreal anti-vascular endothelial growth factor (VEGF) treatment is crucial for patients with neovascular age-related macular degeneration (nAMD), and delayed treatment can exacerbate disease progression. METHODS we compared the outcomes of on-time versus delayed intravitreal anti-VEGF treatment for patients with nAMD. This study was conducted during the coronavirus disease 2019 (COVID-19) pandemic with a 2-year follow-up period. The best-corrected visual acuity (BCVA) and anatomical findings were evaluated before the pandemic, during the pandemic, and at 6-, 12-, 18-, and 24-months post-pandemic. RESULTS The delayed and on-time groups comprised 54 and 72 patients, respectively. After the pandemic, the injection interval increased by 0.65 ± 1.51 months (p = 0.003), with 22.2% of the patients in the delayed group switching to the treat-and-extended regimen (p < 0.001). The delayed group showed greater mean BCVA deterioration (p = 0.027) and central subfield thickness (p = 0.037) at 6 months and worse maximum subretinal fluid height (p = 0.022) at 18 months than the on-time group. No difference was observed between the groups in the second year. CONCLUSION the negative effects of delaying anti-VEGF treatment because of the COVID-19 pandemic can be ameliorated by changing the treatment regimen and shortening treatment intervals.
Collapse
Affiliation(s)
- Jae-Gon Kim
- Department of Ophthalmology, Keimyung University School of Medicine, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea; (J.-G.K.); (Y.C.K.)
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yu Cheol Kim
- Department of Ophthalmology, Keimyung University School of Medicine, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea; (J.-G.K.); (Y.C.K.)
| | - Kyung Tae Kang
- Department of Ophthalmology, Keimyung University School of Medicine, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea; (J.-G.K.); (Y.C.K.)
| |
Collapse
|
22
|
Zhi X, Lu H, Ma D, Liu J, Luo L, Wang L, Qin Y. Melatonin protects photoreceptor cells against ferroptosis in dry AMD disorder by inhibiting GSK-3B/Fyn-dependent Nrf2 nuclear translocation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166969. [PMID: 38008231 DOI: 10.1016/j.bbadis.2023.166969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Ferroptosis is a type of non-apoptotic cell death that relies on iron ions and reactive oxygen species to induce lipid peroxidation. This study aimed to determine whether ferroptosis exists in the pathogenesis of dry age-related macular degeneration (AMD) and to confirm that melatonin (MLT) suppresses the photoreceptor cell ferroptosis signaling pathway. METHODS We exposed 661W cells to sodium iodate (NaIO3) in vitro and treated them with different concentrations of MLT. In vivo, C57BL/6 mice were given a single caudal vein injection of NaIO3, followed by an intraperitoneal injection of MLT, and eyeballs were taken for subsequent trials. RESULTS We found that NaIO3 could induce photoreceptor cell death and lipid peroxide accumulation, and result in changes in the expression of ferroptosis-related factors and iron maintenance proteins, which were treated by MLT. We further demonstrated that MLT can block Fyn-dependent Nrf2 nuclear translocation by suppressing the GSK-3β signaling pathway. In addition, the therapeutic effect of MLT was significantly inhibited when Nrf2 was silenced. CONCLUSIONS Our findings provide a novel insight that NaIO3 induces photoreceptor cell ferroptosis in dry AMD and suggest that MLT has therapeutic effects by suppressing GSK-3β/Fyn-dependent Nrf2 nuclear translocation.
Collapse
Affiliation(s)
- Xinyu Zhi
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Haojie Lu
- Cooperation of Chinese and Western medicine branch, Jiangsu Rongjun Hospital, Wuxi, Jiangsu, PR China
| | - Dongyue Ma
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Jinxia Liu
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Li Luo
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Ludi Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Yu Qin
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China.
| |
Collapse
|
23
|
Li X, Ma L. From biological aging to functional decline: Insights into chronic inflammation and intrinsic capacity. Ageing Res Rev 2024; 93:102175. [PMID: 38145874 DOI: 10.1016/j.arr.2023.102175] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Intrinsic capacity is the sum of an individual's physical and mental capacities, which helps determine functional ability. Intrinsic capacity decline is an important predictor of adverse health outcomes and can identify individuals at higher risk of functional decline. Aging is characterized by a decrease in physiological reserves and functional abilities. Chronic inflammation, a mechanism of aging, is associated with decreased intrinsic capacity, which may mirror the broader relationship between aging and functional ability. Therefore, it is crucial for maintaining functional ability and promoting healthy aging to study the mechanisms of intrinsic capacity decline, identify easily available markers, and make targets for intervention from the perspective of chronic inflammation. We reviewed the current research on chronic inflammation, inflammation-related markers, and intrinsic capacity. To date, there is still no inflammatory markers with high specificity and sensitivity to monitor intrinsic capacity decline. Interleukin-6, C-reactive protein, and tumor necrosis factor-alpha may potentially indicate changes in intrinsic capacity, but their results with intrinsic capacity or each intrinsic capacity domain are inconsistent. Considering the variations in individual responses to changes in inflammatory markers, it may be beneficial to explore the use of multiple analytes instead of relying on a single marker. This approach could be valuable in monitoring the decline of intrinsic capacity in the future.
Collapse
Affiliation(s)
- Xiaxia Li
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
24
|
Tolentino MJ, Tolentino AJ, Tolentino EM, Krishnan A, Genead MA. Sialic Acid Mimetic Microglial Sialic Acid-Binding Immunoglobulin-like Lectin Agonism: Potential to Restore Retinal Homeostasis and Regain Visual Function in Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2023; 16:1735. [PMID: 38139861 PMCID: PMC10747662 DOI: 10.3390/ph16121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Age-related macular degeneration (AMD), a leading cause of visual loss and dysfunction worldwide, is a disease initiated by genetic polymorphisms that impair the negative regulation of complement. Proteomic investigation points to altered glycosylation and loss of Siglec-mediated glyco-immune checkpoint parainflammatory and inflammatory homeostasis as the main determinant for the vision impairing complications of macular degeneration. The effect of altered glycosylation on microglial maintained retinal para-inflammatory homeostasis and eventual recruitment and polarization of peripheral blood monocyte-derived macrophages (PBMDMs) into the retina can explain the phenotypic variability seen in this clinically heterogenous disease. Restoring glyco-immune checkpoint control with a sialic acid mimetic agonist targeting microglial/macrophage Siglecs to regain retinal para-inflammatory and inflammatory homeostasis is a promising therapeutic that could halt the progression of and improve visual function in all stages of macular degeneration.
Collapse
Affiliation(s)
- Michael J. Tolentino
- Department of Ophthalmology, University of Central Florida College of Medicine, Orlando, FL 32827, USA
- Department of Ophthalmology, Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (M.A.G.)
| | - Andrew J. Tolentino
- Department of Biology, University of California Berkeley, Berkeley, CA 94720, USA;
| | | | - Anitha Krishnan
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (M.A.G.)
| | | |
Collapse
|
25
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
26
|
Lad EM, Finger RP, Guymer R. Biomarkers for the Progression of Intermediate Age-Related Macular Degeneration. Ophthalmol Ther 2023; 12:2917-2941. [PMID: 37773477 PMCID: PMC10640447 DOI: 10.1007/s40123-023-00807-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of severe vision loss worldwide, with a global prevalence that is predicted to substantially increase. Identifying early biomarkers indicative of progression risk will improve our ability to assess which patients are at greatest risk of progressing from intermediate AMD (iAMD) to vision-threatening late-stage AMD. This is key to ensuring individualized management and timely intervention before substantial structural damage. Some structural biomarkers suggestive of AMD progression risk are well established, such as changes seen on color fundus photography and more recently optical coherence tomography (drusen volume, pigmentary abnormalities). Emerging biomarkers identified through multimodal imaging, including reticular pseudodrusen, hyperreflective foci, and drusen sub-phenotypes, are being intensively explored as risk factors for progression towards late-stage disease. Other structural biomarkers merit further research, such as ellipsoid zone reflectivity and choriocapillaris flow features. The measures of visual function that best detect change in iAMD and correlate with risk of progression remain under intense investigation, with tests such as dark adaptometry and cone-specific contrast tests being explored. Evidence on blood and plasma markers is preliminary, but there are indications that changes in levels of C-reactive protein and high-density lipoprotein cholesterol may be used to stratify patients and predict risk. With further research, some of these biomarkers may be used to monitor progression. Emerging artificial intelligence methods may help evaluate and validate these biomarkers; however, until we have large and well-curated longitudinal data sets, using artificial intelligence effectively to inform clinical trial design and detect outcomes will remain challenging. This is an exciting area of intense research, and further work is needed to establish the most promising biomarkers for disease progression and their use in clinical care and future trials. Ultimately, a multimodal approach may yield the most accurate means of monitoring and predicting future progression towards vision-threatening, late-stage AMD.
Collapse
Affiliation(s)
- Eleonora M Lad
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA.
| | - Robert P Finger
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| |
Collapse
|
27
|
Razavi SMS, Daneshvar R. Possible dose-dependent effect of eplerenone on intraocular pressure. Indian J Ophthalmol 2023; 71:3357-3360. [PMID: 37787235 PMCID: PMC10683679 DOI: 10.4103/ijo.ijo_175_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/20/2023] [Accepted: 06/08/2023] [Indexed: 10/04/2023] Open
Abstract
Purpose Intraocular pressure (IOP) is the main modifiable risk factor for glaucoma. Current therapies target the anterior outflow of aqueous humor or its production. This study aims to demonstrate eplerenone could reduce IOP through a possible posterior outflow path via retinal pigment epithelium (RPE). Methods In this retrospective study, IOP changes in patients undergoing eplerenone treatment were investigated. Inclusion criteria were IOP data immediately before and during treatment. Exclusion criteria included ophthalmic procedures, changes in topical glaucoma treatment, or taking systemic medications affecting IOP. After reviewing 162 charts, 41 subjects were eligible. Pearson correlation test was used to investigate the correlation between continuous IOP and eplerenone dosage. Results The mean ± SD IOP before eplerenone treatment was 14.31 ± 3.73 mmHg and decreased to 13.50 ± 4.04 mmHg; however, this was not statistically significant (P = 0.39). In subset of patients with eplerenone dose of more than 25 mg/day and baseline IOP equal to or less than 15 mmHg, the mean IOP before eplerenone treatment was 12.33 ± 2.59 mmHg and decreased to 10.33 ± 2.99, which is a trend toward IOP reduction with a 16% reduction in IOP (P = 0.055). Conclusion A possible dose-dependent decrease in IOP with eplerenone provides indirect evidence for the posterior flow model and suggests the mineralocorticoid receptors (MRs) in RPE play a role in the posterior flow of aqueous humor. It can be deduced that the RPE pumps responsible for the posterior flow of aqueous humor are MR-regulated and their function can be enhanced with MR antagonists.
Collapse
Affiliation(s)
| | - Ramin Daneshvar
- Department of Ophthalmology, University of Florida College of Medicine, Florida, USA
| |
Collapse
|
28
|
Kwa FAA, Bui BV, Thompson BR, Ayton LN. Preclinical investigations on broccoli-derived sulforaphane for the treatment of ophthalmic disease. Drug Discov Today 2023; 28:103718. [PMID: 37467881 DOI: 10.1016/j.drudis.2023.103718] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Vision loss causes a significant burden on individuals and communities on a financial, emotional and social level. Common causes include age-related macular degeneration (AMD), diabetic retinopathy (DR), glaucoma and retinitis pigmentosa (RP; also known as 'rod-cone dystrophy'). As the population continues to grow and age globally, an increasing number of people will experience vision loss. Hence, there is an urgent need to develop therapies that can curb early pathological events. The broccoli-derived compound, sulforaphane (SFN), is reported to have multiple health benefits and modes of action. In this review, we outline the preclinical findings on SFN in ocular diseases and discuss the future clinical testing of this compound.
Collapse
Affiliation(s)
- Faith A A Kwa
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Bang V Bui
- Department of Optometry & Vision Sciences, Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia
| | - Bruce R Thompson
- School of Health Sciences, Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia
| | - Lauren N Ayton
- Department of Optometry & Vision Sciences, Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia; Department of Surgery (Ophthalmology), Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| |
Collapse
|
29
|
Tian Y, Zhang T, Li J, Tao Y. Advances in development of exosomes for ophthalmic therapeutics. Adv Drug Deliv Rev 2023; 199:114899. [PMID: 37236425 DOI: 10.1016/j.addr.2023.114899] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Exosomes contain multiple bioactive molecules and maintain the connection between cells. Recent advances in exosome-based therapeutics have witnessed unprecedented opportunities in treating ophthalmic diseases, including traumatic diseases, autoimmune diseases, chorioretinal diseases and others. Utilization of exosomes as delivery vectors to encapsulate both drugs and therapeutic genes could yield higher efficacy and avoid the unnecessary immune responses. However, exosome-based therapies also come with some potential ocular risks. In this review, we first present a general introduction to exosomes. Then we provide an overview of available applications and discuss their potential risks. Moreover, we review recently reported exosomes as delivery vectors for ophthalmic diseases. Finally, we put forward future perspectives to grapple with its translation and underlying issues.
Collapse
Affiliation(s)
- Ying Tian
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Tao Zhang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
30
|
Velazquez-Soto H, Groman-Lupa S, Cruz-Aguilar M, Salazar AL, Zenteno JC, Jimenez-Martinez MC. Exogenous CFH Modulates Levels of Pro-Inflammatory Mediators to Prevent Oxidative Damage of Retinal Pigment Epithelial Cells with the At-Risk CFH Y402H Variant. Antioxidants (Basel) 2023; 12:1540. [PMID: 37627535 PMCID: PMC10451625 DOI: 10.3390/antiox12081540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex, progressive degenerative retinal disease. Retinal pigment epithelial (RPE) cells play an important role in the immune defense of the eye and their dysfunction leads to the progressive irreversible degeneration of photoreceptors. Genetic factors, chronic inflammation, and oxidative stress have been implicated in AMD pathogenesis. Oxidative stress causes RPE injury, resulting in a chronic inflammatory response and cell death. The Y402H polymorphism in the complement factor H (CFH) protein is an important risk factor for AMD. However, the functional significance of CFH Y402H polymorphism remains unclear. In the present study, we investigated the role of CFH in the pro-inflammatory response using an in vitro model of oxidative stress in the RPE with the at-risk CFH Y402H variant. ARPE-19 cells with the at-risk CFH Y402H variant were highly susceptible to damage caused by oxidative stress, with increased levels of inflammatory mediators and pro-apoptotic factors that lead to cell death. Pretreatment of the ARPE-19 cell cultures with exogenous CFH prior to the induction of oxidative stress prevented damage and cell death. This protective effect may be related to the negative regulation of pro-inflammatory cytokines. CFH contributes to cell homeostasis and is required to modulate the pro-inflammatory cytokine response under oxidative stress in the ARPE-19 cells with the at-risk CFH Y402H variant.
Collapse
Affiliation(s)
- Henry Velazquez-Soto
- Department of Immunology, Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (H.V.-S.)
| | - Sergio Groman-Lupa
- Department of Immunology, Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (H.V.-S.)
| | - Marisa Cruz-Aguilar
- Department of Immunology, Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (H.V.-S.)
| | - Alberto L. Salazar
- Department of Immunology, Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (H.V.-S.)
| | - Juan C. Zenteno
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Maria C. Jimenez-Martinez
- Department of Immunology, Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (H.V.-S.)
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
31
|
Riazi Esfahani P, Reddy AJ, Nawathey N, Ghauri MS, Min M, Wagh H, Tak N, Patel R. Deep Learning Classification of Drusen, Choroidal Neovascularization, and Diabetic Macular Edema in Optical Coherence Tomography (OCT) Images. Cureus 2023; 15:e41615. [PMID: 37565126 PMCID: PMC10411652 DOI: 10.7759/cureus.41615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 08/12/2023] Open
Abstract
Background Age-related macular degeneration (AMD), diabetic retinopathy (DR), drusen, choroidal neovascularization (CNV), and diabetic macular edema (DME) are significant causes of visual impairment globally. Optical coherence tomography (OCT) imaging has emerged as a valuable diagnostic tool for these ocular conditions. However, subjective interpretation and inter-observer variability highlight the need for standardized diagnostic approaches. Methods This study aimed to develop a robust deep learning model using artificial intelligence (AI) techniques for the automated detection of drusen, CNV, and DME in OCT images. A diverse dataset of 1,528 OCT images from Kaggle.com was used for model training. The performance metrics, including precision, recall, sensitivity, specificity, F1 score, and overall accuracy, were assessed to evaluate the model's effectiveness. Results The developed model achieved high precision (0.99), recall (0.962), sensitivity (0.985), specificity (0.987), F1 score (0.971), and overall accuracy (0.987) in classifying diseased and healthy OCT images. These results demonstrate the efficacy and efficiency of the model in distinguishing between retinal pathologies. Conclusion The study concludes that the developed deep learning model using AI techniques is highly effective in the automated detection of drusen, CNV, and DME in OCT images. Further validation studies and research efforts are necessary to evaluate the generalizability and integration of the model into clinical practice. Collaboration between clinicians, policymakers, and researchers is essential for advancing diagnostic tools and management strategies for AMD and DR. Integrating this technology into clinical workflows can positively impact patient care, particularly in settings with limited access to ophthalmologists. Future research should focus on collecting independent datasets, addressing potential biases, and assessing real-world effectiveness. Overall, the use of machine learning algorithms in conjunction with OCT imaging holds great potential for improving the detection and management of drusen, CNV, and DME, leading to enhanced patient outcomes and vision preservation.
Collapse
Affiliation(s)
| | - Akshay J Reddy
- Medicine, California University of Science and Medicine, Colton, USA
| | - Neel Nawathey
- Ophthalmology, California Northstate University, Rancho Cordova, USA
| | - Muhammad S Ghauri
- Neurosurgery, California University of Science and Medicine, Colton, USA
| | - Mildred Min
- Dermatology, California Northstate University College of Medicine, Elk Grove, USA
| | - Himanshu Wagh
- Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Nathaniel Tak
- Medicine, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, USA
| | - Rakesh Patel
- Internal Medicine, East Tennessee State University, Quillen College of Medicine, Johnson City, USA
| |
Collapse
|
32
|
Ferro Desideri L, Traverso CE, Nicolò M, Munk MR. Faricimab for the Treatment of Diabetic Macular Edema and Neovascular Age-Related Macular Degeneration. Pharmaceutics 2023; 15:pharmaceutics15051413. [PMID: 37242655 DOI: 10.3390/pharmaceutics15051413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Nowadays; intravitreal anti-vascular endothelial growth factor (VEGF) drugs are considered the first-line therapeutic strategy for treating macular exudative diseases; including wet age-related macular degeneration (w-AMD) and diabetic macular edema (DME). Despite the important clinical achievements obtained by anti-VEGF drugs in the management of w-AMD and DME; some limits still remain; including high treatment burden; the presence of unsatisfactory results in a certain percentage of patients and long-term visual acuity decline due to complications such as macular atrophy and fibrosis. Targeting the angiopoietin/Tie (Ang/Tie) pathway beyond the VEGF pathway may be a possible therapeutic strategy; which may has the potential to solve some of the previous mentioned challenges. Faricimab is a new; bispecific antibody targeting both VEGF-A and the Ang-Tie/pathway. It was approved by FDA and; more recently; by EMA for treating w-AMD and DME. Results from phase III trials TENAYA and LUCERNE (w-AMD) and RHINE and YOSEMITE (DME) have shown the potential of faricimab to maintain clinical efficacy with more prolonged treatment regimens compared to aflibercept (12 or 16 weeks) with a a good safety profile.
Collapse
Affiliation(s)
- Lorenzo Ferro Desideri
- IRCCS Ospedale Policlinico San Martino, University Eye Clinic of Genoa, 16132 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16126 Genoa, Italy
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Carlo Enrico Traverso
- IRCCS Ospedale Policlinico San Martino, University Eye Clinic of Genoa, 16132 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16126 Genoa, Italy
| | - Massimo Nicolò
- IRCCS Ospedale Policlinico San Martino, University Eye Clinic of Genoa, 16132 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16126 Genoa, Italy
| | - Marion R Munk
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
33
|
Jung W, Han K, Kim B, Hwang S, Yoon JM, Park J, Lim DH, Shin DW. Age-Related Macular Degeneration With Visual Disability Is Associated With Cardiovascular Disease Risk in the Korean Nationwide Cohort. J Am Heart Assoc 2023; 12:e028027. [PMID: 37119082 PMCID: PMC10227218 DOI: 10.1161/jaha.122.028027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/15/2023] [Indexed: 04/30/2023]
Abstract
Background Age-related macular degeneration (AMD) is the leading cause of visual disability. AMD shares some risk factors with the pathogenesis of cardiovascular disease (CVD). However, previous studies examining the association between AMD and the risk of CVD provide conflicting results. Hence, we investigated the association between AMD, visual disability, and the risk of CVD. Methods and Results This is a nationwide cohort study using data from the Korean National Health Insurance System database (2009-2019) on subjects who underwent a national health screening program in 2009. A total of 3 789 963 subjects were categorized by the presence of AMD and visual disability. Visual disability was defined as a best-corrected visual acuity of ≤20/100 by validated documentation from a specialist physician. Cox regression hazard model was used to examine the hazard ratios (HRs) of CVD, including myocardial infarction and ischemic stroke, after adjusting for potential confounders. During a mean 9.77 years of follow-up, AMD was associated with a 5% higher risk of myocardial infarction (adjusted HR [aHR], 1.05 [95% CI, 1.01-1.10]) but not associated with increased risk of overall CVD (aHR, 1.02 [95% CI, 1.00-1.05]) or ischemic stroke (aHR, 1.02 [95% CI, 0.98-1.06]). However, when AMD was accompanied by visual disability, there was increased risk of CVD (aHR, 1.17 [95% CI, 1.06-1.29]), myocardial infarction (aHR, 1.18 [95% CI, 1.01-1.37]), and ischemic stroke (aHR, 1.20 [95% CI, 1.06-1.35]). These trends were more evident in women and subjects with cardiometabolic comorbidities. Conclusions AMD with visual disability, but not all AMD, was associated with an increased risk of CVD. Patients with AMD who have visual disability should be targeted for CVD prevention.
Collapse
Affiliation(s)
- Wonyoung Jung
- Department of Family Medicine/Supportive Care CenterSamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of MedicineSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial ScienceSoongsil UniversitySeoulRepublic of Korea
| | - Bongseong Kim
- Department of Statistics and Actuarial ScienceSoongsil UniversitySeoulRepublic of Korea
| | - Sungsoon Hwang
- Department of OphthalmologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Clinical Research Design and EvaluationSamsung Advanced Institute for Health Science and TechnologySungkyunkwan UniversitySeoulRepublic of Korea
| | - Je Moon Yoon
- Department of OphthalmologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Junhee Park
- Department of Family Medicine/Supportive Care CenterSamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of MedicineSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Dong Hui Lim
- Department of OphthalmologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Clinical Research Design and EvaluationSamsung Advanced Institute for Health Science and TechnologySungkyunkwan UniversitySeoulRepublic of Korea
| | - Dong Wook Shin
- Department of Family Medicine/Supportive Care CenterSamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Clinical Research Design and EvaluationSamsung Advanced Institute for Health Science and TechnologySungkyunkwan UniversitySeoulRepublic of Korea
| |
Collapse
|
34
|
Zhou X, Zhang J, Ding Y, Huang H, Li Y, Chen W. Predicting late-stage age-related macular degeneration by integrating marginally weak SNPs in GWA studies. Front Genet 2023; 14:1075824. [PMID: 37065470 PMCID: PMC10101437 DOI: 10.3389/fgene.2023.1075824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction: Age-related macular degeneration (AMD) is a progressive neurodegenerative disease and the leading cause of blindness in developed countries. Current genome-wide association studies (GWAS) for late-stage age-related macular degeneration are mainly single-marker-based approaches, which investigate one Single-Nucleotide Polymorphism (SNP) at a time and postpone the integration of inter-marker Linkage-disequilibrium (LD) information in the downstream fine mappings. Recent studies showed that directly incorporating inter-marker connection/correlation into variants detection can help discover novel marginally weak single-nucleotide polymorphisms, which are often missed in conventional genome-wide association studies, and can also help improve disease prediction accuracy. Methods: Single-marker analysis is performed first to detect marginally strong single-nucleotide polymorphisms. Then the whole-genome linkage-disequilibrium spectrum is explored and used to search for high-linkage-disequilibrium connected single-nucleotide polymorphism clusters for each strong single-nucleotide polymorphism detected. Marginally weak single-nucleotide polymorphisms are selected via a joint linear discriminant model with the detected single-nucleotide polymorphism clusters. Prediction is made based on the selected strong and weak single-nucleotide polymorphisms. Results: Several previously identified late-stage age-related macular degeneration susceptibility genes, for example, BTBD16, C3, CFH, CFHR3, HTARA1, are confirmed. Novel genes DENND1B, PLK5, ARHGAP45, and BAG6 are discovered as marginally weak signals. Overall prediction accuracy of 76.8% and 73.2% was achieved with and without the inclusion of the identified marginally weak signals, respectively. Conclusion: Marginally weak single-nucleotide polymorphisms, detected from integrating inter-marker linkage-disequilibrium information, may have strong predictive effects on age-related macular degeneration. Detecting and integrating such marginally weak signals can help with a better understanding of the underlying disease-development mechanisms for age-related macular degeneration and more accurate prognostics.
Collapse
Affiliation(s)
- Xueping Zhou
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jipeng Zhang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Heng Huang
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yanming Li
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas, KS, United States
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
35
|
Fortress AM, Miyagishima KJ, Reed AA, Temple S, Clegg DO, Tucker BA, Blenkinsop TA, Harb G, Greenwell TN, Ludwig TE, Bharti K. Stem cell sources and characterization in the development of cell-based products for treating retinal disease: An NEI Town Hall report. Stem Cell Res Ther 2023; 14:53. [PMID: 36978104 PMCID: PMC10053463 DOI: 10.1186/s13287-023-03282-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
National Eye Institute recently issued a new Strategic Plan outlining priority research areas for the next 5 years. Starting cell source for deriving stem cell lines is as an area with gaps and opportunities for making progress in regenerative medicine, a key area of emphasis within the NEI Strategic Plan. There is a critical need to understand how starting cell source affects the cell therapy product and what specific manufacturing capabilities and quality control standards are required for autologous vs allogeneic stem cell sources. With the goal of addressing some of these questions, in discussion with the community-at-large, NEI hosted a Town Hall at the Association for Research in Vision and Ophthalmology annual meeting in May 2022. This session leveraged recent clinical advances in autologous and allogeneic RPE replacement strategies to develop guidance for upcoming cell therapies for photoreceptors, retinal ganglion cells, and other ocular cell types. Our focus on stem cell-based therapies for RPE underscores the relatively advanced stage of RPE cell therapies to patients with several ongoing clinical trials. Thus, this workshop encouraged lessons learned from the RPE field to help accelerate progress in developing stem cell-based therapies in other ocular tissues. This report provides a synthesis of the key points discussed at the Town Hall and highlights needs and opportunities in ocular regenerative medicine.
Collapse
Affiliation(s)
- Ashley M Fortress
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | - Amberlynn A Reed
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Dennis O Clegg
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA, USA
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Timothy A Blenkinsop
- Ophthalmology Cell Development and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Thomas N Greenwell
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | - Kapil Bharti
- Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
36
|
Muniyandi A, Martin M, Sishtla K, Motolani A, Sun M, Jensen NR, Qi X, Boulton ME, Prabhu L, Lu T, Corson TW. PRMT5 is a therapeutic target in choroidal neovascularization. Sci Rep 2023; 13:1747. [PMID: 36720900 PMCID: PMC9889383 DOI: 10.1038/s41598-023-28215-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
Ocular neovascular diseases including neovascular age-related macular degeneration (nvAMD) are widespread causes of blindness. Patients' non-responsiveness to currently used biologics that target vascular endothelial growth factor (VEGF) poses an unmet need for novel therapies. Here, we identify protein arginine methyltransferase 5 (PRMT5) as a novel therapeutic target for nvAMD. PRMT5 is a well-known epigenetic enzyme. We previously showed that PRMT5 methylates and activates a proangiogenic and proinflammatory transcription factor, the nuclear factor kappa B (NF-κB), which has a master role in tumor progression, notably in pancreatic ductal adenocarcinoma and colorectal cancer. We identified a potent and specific small molecule inhibitor of PRMT5, PR5-LL-CM01, that dampens the methylation and activation of NF-κB. Here for the first time, we assessed the antiangiogenic activity of PR5-LL-CM01 in ocular cells. Immunostaining of human nvAMD sections revealed that PRMT5 is highly expressed in the retinal pigment epithelium (RPE)/choroid where neovascularization occurs, while mouse eyes with laser induced choroidal neovascularization (L-CNV) showed PRMT5 is overexpressed in the retinal ganglion cell layer and in the RPE/choroid. Importantly, inhibition of PRMT5 by PR5-LL-CM01 or shRNA knockdown of PRMT5 in human retinal endothelial cells (HRECs) and induced pluripotent stem cell (iPSC)-derived choroidal endothelial cells (iCEC2) reduced NF-κB activity and the expression of its target genes, such as tumor necrosis factor α (TNF-α) and VEGF-A. In addition to inhibiting angiogenic properties of proliferation and tube formation, PR5-LL-CM01 blocked cell cycle progression at G1/S-phase in a dose-dependent manner in these cells. Thus, we provide the first evidence that inhibition of PRMT5 impedes angiogenesis in ocular endothelial cells, suggesting PRMT5 as a potential therapeutic target to ameliorate ocular neovascularization.
Collapse
Affiliation(s)
- Anbukkarasi Muniyandi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew Martin
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kamakshi Sishtla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Aishat Motolani
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mengyao Sun
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nathan R Jensen
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Michael E Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Lakshmi Prabhu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tao Lu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Timothy W Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
37
|
Paguaga ME, Penn JS, Uddin MDI. A novel optical imaging probe for targeted visualization of NLRP3 inflammasomes in a mouse model of age-related macular degeneration. Front Med (Lausanne) 2023; 9:1047791. [PMID: 36703888 PMCID: PMC9871584 DOI: 10.3389/fmed.2022.1047791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose Wet form of age-related macular degeneration (wet AMD) is a progressive vascular disease that mainly affects older adults and causes severe and irreversible vision loss. A key complication of wet AMD is choroidal neovascularization (CNV), which may be driven in part by NLRP3 inflammasomes that are associated with macrophages migration to CNV lesions. Since activated NLRP3 is correlated with CNV, visualizing NLRP3 inflammasomes and their associated macrophages is of great interest to monitor wet AMD progression and develop effective therapies against it. However, to the best of our knowledge, current ophthalmic imaging systems do not permit such targeted imaging. Therefore, in this study, we developed InflammaProbe-1, an optical imaging probe for targeted visualization of NLRP3 inflammasomes in CNV lesions. Methods InflammaProbe-1 was synthesized by conjugating a clinically relevant fluorophore, Oregon Green® 488, to the selective NLRP3 inhibitor, CY-09. The ability of InflammaProbe-1 to target NLRP3 was assessed with an enzyme-linked immunosorbent assay by comparing its ability to inhibit NLRP3-mediated secretion of IL-1β to that of CY-09 in LPS-primed and nigericin-stimulated BMDMs. In vitro confocal imaging of NLRP3 was performed on InflammaProbe-1-stained BMDMs that had been induced to express NLRP3 with LPS. In vivo imaging of NLRP3 was conducted on mouse laser induced choroidal neovascularization (LCNV), a model of AMD, 6 h after an intraperitoneal injection of InflammaProbe-1 at 10 mg/kg on day 4 post-LCNV. Results InflammaProbe-1 was just as effective as CY-09 at inhibiting IL-1β secretion (p < 0.01 at 10 μM for both the InflammaProbe-1 and CY-09 groups relative to the control). InflammaProbe-1-stained BMDMs that had been induced to express NLRP3 showed significantly brighter fluorescence than untreated cells (p < 0.0001 for LPS treatment group and p < 0.001 for LPS and nigericin treatment group). Furthermore, in vivo molecular imaging of NLRP3 was achieved in mouse LCNV. Conclusion We propose that InflammaProbe-1 may be a useful molecular imaging probe to monitor the onset, progression, and therapeutic response of AMD and other NLRP3-mediated diseases.
Collapse
Affiliation(s)
- Marcell E. Paguaga
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - John S. Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - MD Imam Uddin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States,*Correspondence: MD Imam Uddin,
| |
Collapse
|
38
|
Increased end-stage renal disease risk in age-related macular degeneration: a nationwide cohort study with 10-year follow-up. Sci Rep 2023; 13:183. [PMID: 36604459 PMCID: PMC9814881 DOI: 10.1038/s41598-022-26964-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Common etiologies between age-related macular degeneration (AMD) and kidney disease advocate a close link between AMD and end-stage renal disease (ESRD). However, the risk of ESRD in people with AMD was not reported. Here, we investigated the association between AMD and the risk of ESRD by using a nationwide, population-based cohort data in Korea. 4,206,862 participants aged 50 years or older were categorized by presence of AMD and visual disability. Risk of ESRD was the primary outcome. Cox regression hazard model was used to examine the hazard ratios (HRs) with adjustment for potential confounders. Stratified analyses by age, sex, baseline kidney function, and cardiometabolic comorbidities were performed. During the mean 9.95 years of follow-up, there were 21,759 incident ESRD events (0.52%). AMD was associated with 33% increased risk of ESRD (adjusted HR [aHR] 1.33, 95% confidence interval [CI] 1.24-1.44), and the risk was even higher when accompanied by visual disability (aHR 2.05, 95% CI 1.68-2.50) than when not (aHR 1.26, 95% CI 1.17-1.37). Age, baseline kidney function, and cardiometabolic comorbidities significantly interact between AMD and the risk of ESRD. Our findings have clinical implications on disease prevention and risk factor management of ESRD in patients with AMD.
Collapse
|
39
|
Li S, Jakobs TC. Secreted phosphoprotein 1 slows neurodegeneration and rescues visual function in mouse models of aging and glaucoma. Cell Rep 2022; 41:111880. [PMID: 36577373 PMCID: PMC9847489 DOI: 10.1016/j.celrep.2022.111880] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
Aging causes an irreversible, cumulative decline in neuronal function. Using the visual system as a model, we show that astrocytes play a critical role in maintaining retinal ganglion cell health and that deletion of SPP1 (secreted phosphoprotein 1, or osteopontin) from astrocytes leads to increased vulnerability of ganglion cells to age, elevated intraocular pressure, and traumatic optic nerve damage. Overexpression of SPP1 slows the age-related decline in ganglion cell numbers and is highly protective of visual function in a mouse model of glaucoma. SPP1 acts by promoting phagocytosis and secretion of neurotrophic factors while inhibiting production of neurotoxic and pro-inflammatory factors. SPP1 up-regulates transcription of genes related to oxidative phosphorylation, functionally enhances mitochondrial respiration, and promotes the integrity of mitochondrial microstructure. SPP1 increases intracellular ATP concentration via up-regulation of VDAC1.
Collapse
Affiliation(s)
- Song Li
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA.
| | - Tatjana C Jakobs
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA.
| |
Collapse
|
40
|
Zhou H, Zhao X, Chen Y. Plasma Cytokine Profiles in Patients With Polypoidal Choroidal Vasculopathy and Neovascular Age-Related Macular Degeneration. Asia Pac J Ophthalmol (Phila) 2022; 11:536-542. [PMID: 36417678 DOI: 10.1097/apo.0000000000000577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The concentrations of cytokines in plasma may be different between neovascular age-related macular degeneration (nAMD) and polypoidal choroidal vasculopathy (PCV). We studied plasma levels of cytokines in patients with nAMD and PCV and compared them with control individuals. METHODS This was a prospective, clinic-based, case-control study of treatment-naive participants (n=49) with PCV (n=24), nAMD (n=11), and cataract controls (n=14). We sampled fresh venous blood and isolated plasma for analysis. Plasma concentrations of 34 angiogenic and inflammatory cytokines were determined by Luminex bead-based multiplex array. RESULTS After adjusting for gender and age using multivariate logistic analysis, we found that the plasma concentrations of monocyte chemoattractant protein-1, vascular endothelial growth factor (VEGF)-A, and VEGF-D significantly higher in both nAMD and PCV patients than those in controls (all P<0.05, times in nAMD: 3.5, 4.3, and 13.8, respectively, times in PCV: 4.1, 4.0, and 11.5, respectively). In contrast, the plasma concentration of platelet-derived growth factor-BB was significantly lower in nAMD and PCV patients than those in controls (all P<0.05, times in nAMD: 1.6, times in PCV: 1.7). The plasma levels of leukemia inhibitory factor in nAMD group were significantly higher compared with PCV group (P<0.0167). CONCLUSIONS Multiple cytokines involved in systemic inflammation and angiogenesis including monocyte chemoattractant protein-1, platelet-derived growth factor-BB, VEGF-A, and VEGF-D may contribute to the pathogenesis of nAMD and PCV. Measurement of leukemia inhibitory factor in the plasma may help differentiate nAMD from PCV. This finding suggests that the 2 disorders may have different molecular mechanisms, and additional longitudinal studies will be needed to determine whether these findings have clinical relevance to influence treatment algorithms or provide novel targets for medical therapy.
Collapse
Affiliation(s)
- Huiying Zhou
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinyu Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Jung W, Yoon JM, Han K, Kim B, Hwang S, Lim DH, Shin DW. Association between Age-Related Macular Degeneration and the Risk of Diabetes Mellitus: A Nationwide Cohort Study. Biomedicines 2022; 10:biomedicines10102435. [PMID: 36289698 PMCID: PMC9599121 DOI: 10.3390/biomedicines10102435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is a degenerative and progressive disease of the macula, the part of the retina that is responsible for central vision. AMD shares some risk factors with diabetes mellitus (DM), but little is known about the risk of DM in individuals with AMD. With the goal of establishing novel perspectives, this study aimed to investigate the association between AMD and the risk of DM using the Korean Nationwide Health Insurance Database. Individuals aged ≥ 50 years who underwent a national health screening program in 2009 were enrolled. Participants were categorized by the presence of AMD and visual disability (VD). The Cox hazard regression model was used to examine hazard ratios (HRs) of DM with adjustment for potential confounders. Stratified analyses by age, sex, and comorbidities (hypertension or dyslipidemia) were also performed. During a mean follow-up of 8.61 years, there were 403,367 (11.76%) DM incidences among the final 3,430,532 participants. The crude HR (95% confidence interval (CI)) was 1.16 (1.13–1.20) for AMD. After adjusting for potential confounders, AMD was associated with a 3% decreased risk of DM (aHR 0.97, 95% CI 0.95–1.00), but no significant association with the risk of DM was found in AMD with VD (aHR 1.03, 95% CI 0.93–1.14). In summary, we did not find an increased risk of DM in individuals with AMD. A 3% decreased risk of DM in patients with AMD is not clinically meaningful. Our study suggests that the association between AMD and the risk of DM is weak, considering the potential confounders. Further studies examining this association are needed to extend our knowledge.
Collapse
Affiliation(s)
- Wonyoung Jung
- Department of Family Medicine and Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Je Moon Yoon
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (J.M.Y.); (D.W.S.); Tel.: +82-2-3410-3563 (J.M.Y.); +82-2-3410-5252 (D.W.S.); Fax: +82-2-3410-0074 (J.M.Y.); +82-2-3410-0388 (D.W.S.)
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul 06978, Korea
| | - Bongseong Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul 06978, Korea
| | - Sungsoon Hwang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Korea
| | - Dong Hui Lim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Korea
| | - Dong Wook Shin
- Department of Family Medicine and Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Korea
- Correspondence: (J.M.Y.); (D.W.S.); Tel.: +82-2-3410-3563 (J.M.Y.); +82-2-3410-5252 (D.W.S.); Fax: +82-2-3410-0074 (J.M.Y.); +82-2-3410-0388 (D.W.S.)
| |
Collapse
|
42
|
Fehér J, Élő Á, István L, Nagy ZZ, Radák Z, Scuderi G, Artico M, Kovács I. Microbiota mitochondria disorders as hubs for early age-related macular degeneration. GeroScience 2022; 44:2623-2653. [PMID: 35978068 PMCID: PMC9385247 DOI: 10.1007/s11357-022-00620-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/01/2022] [Indexed: 01/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegenerative disease affecting the central area (macula lutea) of the retina. Research on the pathogenic mechanism of AMD showed complex cellular contribution governed by such risk factors as aging, genetic predisposition, diet, and lifestyle. Recent studies suggested that microbiota is a transducer and a modifier of risk factors for neurodegenerative diseases, and mitochondria may be one of the intracellular targets of microbial signaling molecules. This review explores studies supporting a new concept on the contribution of microbiota-mitochondria disorders to AMD. We discuss metabolic, vascular, immune, and neuronal mechanism in AMD as well as key alterations of photoreceptor cells, retinal pigment epithelium (RPE), Bruch's membrane, choriocapillaris endothelial, immune, and neuronal cells. Special attention was paid to alterations of mitochondria contact sites (MCSs), an organelle network of mitochondria, endoplasmic reticulum, lipid droplets (LDs), and peroxisomes being documented based on our own electron microscopic findings from surgically removed human eyes. Morphometry of Bruch's membrane lipids and proteoglycans has also been performed in early AMD and aged controls. Microbial metabolites (short-chain fatty acids, polyphenols, and secondary bile acids) and microbial compounds (lipopolysaccharide, peptidoglycan, and bacterial DNA)-now called postbiotics-in addition to local effects on resident microbiota and mucous membrane, regulate systemic metabolic, vascular, immune, and neuronal mechanisms in normal conditions and in various common diseases. We also discuss their antioxidant, anti-inflammatory, and metabolic effects as well as experimental and clinical observations on regulating the main processes of photoreceptor renewal, mitophagy, and autophagy in early AMD. These findings support an emerging concept that microbiota-mitochondria disorders may be a crucial pathogenic mechanism of early AMD; and similarly, to other age-related neurodegenerative diseases, new treatment approaches should be targeted at these disorders.
Collapse
Affiliation(s)
- János Fehér
- PRIMAVERA Program, Nutripharma Hungaria Ltd., Budapest, Hungary
| | - Ágnes Élő
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lilla István
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltán Zsolt Nagy
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zsolt Radák
- grid.472475.70000 0000 9243 1481Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Gianluca Scuderi
- grid.7841.aOphthalmology Unit, NESMOS Department, Sant’Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Marco Artico
- grid.417007.5Department of Sensory Organs, “Sapienza” University of Rome, Roma, Italy
| | - Illés Kovács
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary ,grid.5386.8000000041936877XDepartment of Ophthalmology, Weill Cornell Medical College, New York City, NY USA
| |
Collapse
|
43
|
Wu A, Lu R, Lee E. Tissue engineering in age-related macular degeneration: a mini-review. J Biol Eng 2022; 16:11. [PMID: 35578246 PMCID: PMC9109377 DOI: 10.1186/s13036-022-00291-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Age-related macular degeneration (AMD) is a progressive, degenerative disease of the macula, leading to severe visual loss in the elderly population. There are two types of AMD: non-exudative ('dry') AMD and exudative ('wet') AMD. Non-exudative AMD is characterized by drusen formation and macular atrophy, while the blood vessels are not leaky. Exudative AMD is a more advanced form of the disease, featured with abnormal blood vessel growth and vascular leakage. Even though anti-angiogenic therapies have been effective in treating wet AMD by normalizing blood vessels, there is no treatment available to prevent or treat dry AMD. Currently, the mechanisms of drusen formation and macular atrophy in the dry AMD are poorly understood, in part because the currently available in vivo models of AMD could not decouple and isolate the complex biological and biophysical factors in the macular region for a detailed mechanism study, including the complement system, angiogenesis factors, extracellular matrix, etc. In the present review article, we describe the biological background of AMD and the key cells and structures in AMD, including retinal epithelium, photoreceptor, Bruch's membrane, and choriocapillaris. We also discuss pre-clinical animal models of AMD and in vivo tissue-engineered approaches, including cell suspension injection and organoid-derived cell sheet transplantation. We also discuss in vitro tissue-engineered models for AMD research. Specifically, we evaluate and compare currently available two- and three-dimensional AMD tissue-engineered models that mimic key anatomical players in AMD progression, including pathophysiological characteristics in Bruch's membrane, photoreceptor, and choriocapillaris. Finally, we discuss the limitation of current AMD models and future directions.
Collapse
Affiliation(s)
- Andres Wu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Ann S. Bowers College of Computing and Information Science, Cornell University, Ithaca, NY, 14853, USA
| | - Renhao Lu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
44
|
Kim JG, Kim YC, Kang KT. Impact of Delayed Intravitreal Anti-Vascular Endothelial Growth Factor (VEGF) Therapy Due to the Coronavirus Disease Pandemic on the Prognosis of Patients with Neovascular Age-Related Macular Degeneration. J Clin Med 2022; 11:jcm11092321. [PMID: 35566445 PMCID: PMC9100166 DOI: 10.3390/jcm11092321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
This study estimated the outcome of delayed intravitreal anti-vascular endothelial growth factor (VEGF) therapy due to the coronavirus (COVID-19) disease pandemic on the prognosis of patients with neovascular age-related macular degeneration (nAMD). This study retrospectively enrolled 57 nAMD patients whose intravitreal anti-VEGF injections were delayed for >2 weeks between February and June 2020. Best-corrected visual acuity (BCVA), central subfield thickness (CST), and anatomical characteristics were evaluated before (baseline), on the day, and at 2, 4, and 6 months after the delayed injection, and risk factors were identified. The average injection interval before and after treatment delay was 3.05 ± 1.45 and 2.41 ± 1.46 months, respectively (p = 0.002). The CST at baseline and on the day of delayed injection was 227.82 ± 62.46 and 267.26 ± 77.74 µm, respectively (p < 0.001). The average BCVA decreased from 0.29 ± 0.29 logMAR (baseline) to 0.38 ± 0.31 logMAR (6 months) (p = 0.001). The maximum subretinal fluid (SRF) height increased from 84.32 ± 89.33 µm (baseline) to 121.38 ± 103.36 µm (6 months) (p = 0.027). A higher baseline maximum SRF height was associated with less SRF height deterioration 6 months later (p < 0.001). Delayed intravitreal anti-VEGF therapy caused by the COVID-19 pandemic has worsened BCVA and residual SRF in nAMD patients after a temporary recovery. The baseline SRF reduce the degree of SRF height deterioration.
Collapse
|