1
|
Ding Y, Zhang Y, Zhang X, Shang M, Dong F. Association of lipid levels, adipokines and multiple myeloma: a two-sample multivariate Mendelian randomization study. Sci Rep 2024; 14:25961. [PMID: 39472615 PMCID: PMC11522568 DOI: 10.1038/s41598-024-74838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Many observational studies and experiments have found a strong association between lipid levels and adipokines and multiple myeloma (MM), but the causal relationship between lipid levels, adipokines and MM remains to be determined. We performed a two-sample and multivariate MR analysis to investigate the causal relationship between lipid levels, adipokines and MM. Total cholesterol(TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG) were used to represent lipid levels, and adiponectin, leptin, and resistin were used to represent adipokines. Genetic data for each index and MM were obtained from the Integrated Epidemiology Unit (IEU) Genome-Wide Association Study (GWAS) database, and two-sample MR analyses were performed, as well as multivariate MR analyses of adipokines for causality of MM using BMI as an adjusting factor. In the analyzed results, no significant causal association was found between adipokines, lipid levels and multiple myeloma, and after adjusting for BMI, an association between adipokines and MM was still not found. The results of this MR study do not support an association between genetically predicted adipokines, lipid levels, and risk of MM, but we cannot rule out the existence of a weak association. The mechanisms need to be further investigated.
Collapse
Affiliation(s)
- Yi Ding
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yudong Zhang
- Department of Peripheral Blood Vessel, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| | - Xiaoshan Zhang
- Department of Peripheral Blood Vessel, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Mingrong Shang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Fan Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| |
Collapse
|
2
|
Li G, Dong C, Song Y, Gao F. Large-scale genome-wide association studies reveal the genetic causal etiology between ankylosing spondylitis and risk of leukemia and lymphocytic malignancies. Front Oncol 2024; 14:1432664. [PMID: 39319060 PMCID: PMC11419960 DOI: 10.3389/fonc.2024.1432664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 09/26/2024] Open
Abstract
Background Evidence from multiple observational studies suggests that ankylosing spondylitis (AS) is associated with leukemia and lymphocytic malignancies. However, the obtained results are inconsistent, and the causal relationship still needs to be determined. In this context, we utilized two-sample Mendelian randomization (MR) to investigate potential causal associations between AS and leukemia and lymphocytic malignancies. Methods The analysis was conducted through published genome-wide association studies (GWAS). We obtained genetic data on AS as the exposure and leukemia, including lymphocytic leukemia, myeloid leukemia, and lymphocytic malignancies including lymphoma, multiple myeloma (MM) as the endpoint. The main method to evaluate causality in this analysis was the inverse variance weighting (IVW) technique. Additionally, we employed the weighted mode, weighted median, and MR-Egger regression for supplementary analyses. Finally, heterogeneity tests, sensitivity analyses, and multi-effect analyses are carried out. Results In a random-effects IVW analysis, we found that genetic susceptibility to AS was associated with an increased risk of leukemia (OR = 1.002; 95%CI, 1.001-1.003; p = 0.003) and an increased risk of lymphocytic leukemia [OR = 1.001; 95% CI, (1.000-1.002), p = 0.008]. There was no evidence that AS was associated with lymphoma, myeloid leukemia, and MM. Conclusion Our research indicates that AS was associated with an elevated risk of leukemia, and further analysis of specific types of leukemia showed that the risk of lymphocytic leukemia was associated with AS. Our findings highlight the importance of active intervention and monitoring to mitigate leukemia, especially lymphocytic leukemia risk in patients with AS.
Collapse
Affiliation(s)
- Guang Li
- Xi’an Institute of Hematology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an, China
| | - Changhu Dong
- Department of Hematology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yanping Song
- Xi’an Institute of Hematology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an, China
| | - Fei Gao
- Department of Hematology, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Le Maout C, Fahy L, Renou L, Devanand C, Duwat C, Barroca V, Le Gall M, Ballerini P, Petit A, Calvo J, Uzan B, Pflumio F, Petit V. T-cell acute lymphoblastic leukemia progression is supported by inflammatory molecules including hepatocyte growth factor. Biomed Pharmacother 2024; 177:117039. [PMID: 38955085 DOI: 10.1016/j.biopha.2024.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematological disorder characterized by an increased proliferation of immature T lymphocytes precursors. T-ALL treatment includes chemotherapy with strong side effects, and patients that undergo relapse display poor prognosis. Although cell-intrinsic oncogenic pathways are well-studied, the tumor microenvironment, like inflammatory cellular and molecular components is less explored in T-ALL. We sought to determine the composition of the inflammatory microenvironment induced by T-ALL, and its role in T-ALL progression. We show in two mouse T-ALL cell models that T-ALLs enhance blood neutrophils and resident monocytes, accompanied with a plasmatic acute secretion of inflammatory molecules. Depleting neutrophils using anti-Ly6G treatment or resident monocytes by clodronate liposomes treatment does not modulate plasmatic inflammatory molecule secretion and mice survival. However, inhibiting the secretion of inflammatory molecules by microenvironment with NECA, an agonist of adenosine receptors, diminishes T-ALL progression enhancing mouse survival. We uncovered Hepatocyte Growth Factor (HGF), T-ALL-driven and the most decreased molecule with NECA, as a potential therapeutic target in T-ALL. Altogether, we identified a signature of inflammatory molecules that can potentially be involved in T-ALL evolution and uncovered HGF/cMET pathway as important to target for limiting T-ALL progression.
Collapse
Affiliation(s)
- Charly Le Maout
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France
| | - Lucine Fahy
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France
| | - Laurent Renou
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France
| | - Caroline Devanand
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Plateforme d'expérimentation animale, Fontenay-aux-Roses, France
| | - Charlotte Duwat
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Plateforme d'expérimentation animale, Fontenay-aux-Roses, France
| | - Vilma Barroca
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Plateforme d'expérimentation animale, Fontenay-aux-Roses, France
| | - Morgane Le Gall
- Proteom'IC facility, Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris F-75014, France
| | - Paola Ballerini
- Service D'hématologie Pédiatrique, Assistance Publique - Hôpitaux de Paris, Hôpital A. Trousseau, Paris, France
| | - Arnaud Petit
- Service D'hématologie Pédiatrique, Assistance Publique - Hôpitaux de Paris, Hôpital A. Trousseau, Paris, France
| | - Julien Calvo
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France; Institut Carnot OPALE, Hôpital Saint Louis, Paris F-75020, France
| | - Benjamin Uzan
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France; Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - Françoise Pflumio
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; CEA, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Plateforme d'expérimentation animale, Fontenay-aux-Roses, France; Institut Carnot OPALE, Hôpital Saint Louis, Paris F-75020, France.
| | - Vanessa Petit
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France; Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), France.
| |
Collapse
|
4
|
Saluja S, Bansal I, Bhardwaj R, Beg MS, Palanichamy JK. Inflammation as a driver of hematological malignancies. Front Oncol 2024; 14:1347402. [PMID: 38571491 PMCID: PMC10987768 DOI: 10.3389/fonc.2024.1347402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that produces all adult blood cells and immune cells from multipotent hematopoietic stem cells (HSCs). HSCs usually remain quiescent, and in the presence of external stimuli like infection or inflammation, they undergo division and differentiation as a compensatory mechanism. Normal hematopoiesis is impacted by systemic inflammation, which causes HSCs to transition from quiescence to emergency myelopoiesis. At the molecular level, inflammatory cytokine signaling molecules such as tumor necrosis factor (TNF), interferons, interleukins, and toll-like receptors can all cause HSCs to multiply directly. These cytokines actively encourage HSC activation, proliferation, and differentiation during inflammation, which results in the generation and activation of immune cells required to combat acute injury. The bone marrow niche provides numerous soluble and stromal cell signals, which are essential for maintaining normal homeostasis and output of the bone marrow cells. Inflammatory signals also impact this bone marrow microenvironment called the HSC niche to regulate the inflammatory-induced hematopoiesis. Continuous pro-inflammatory cytokine and chemokine activation can have detrimental effects on the hematopoietic system, which can lead to cancer development, HSC depletion, and bone marrow failure. Reactive oxygen species (ROS), which damage DNA and ultimately lead to the transformation of HSCs into cancerous cells, are produced due to chronic inflammation. The biological elements of the HSC niche produce pro-inflammatory cytokines that cause clonal growth and the development of leukemic stem cells (LSCs) in hematological malignancies. The processes underlying how inflammation affects hematological malignancies are still not fully understood. In this review, we emphasize the effects of inflammation on normal hematopoiesis, the part it plays in the development and progression of hematological malignancies, and potential therapeutic applications for targeting these pathways for therapy in hematological malignancies.
Collapse
|
5
|
Pérez-Saldivar ML, Flores-García MK, Núñez-Villegas N, Fajardo-Gutiérrez A, Medina-Sanson A, Jiménez-Hernández E, Martín-Trejo JA, López-Santiago N, Peñaloza-González JG, Cortés-Herrera B, Merino-Pasaye LE, Amador-Sánchez R, García-López LR, Pérez-Lorenzana H, Román-Zepeda PF, Castañeda-Echevarría A, López-Caballero MG, Martínez-Silva SI, Rivera-González J, Granados-Kraulles J, Flores-Botello J, Medrano-López F, Rodríguez-Vázquez MA, Torres-Valle D, Mora-Rico K, Mora-Ríos FG, R.García‐Cortés L, Salcedo-Lozada P, Flores-Lujano J, Núñez-Enríquez JC, Bekker-Méndez VC, Mata-Rocha M, Rosas-Vargas H, Duarte-Rodríguez DA, Jiménez-Morales S, Hidalgo-Miranda A, López-Carrillo L, Mejía-Aranguré JM. Maternal diet in pregnancy and acute leukemia in infants: a case-control study in Mexico City. Front Oncol 2024; 13:1165323. [PMID: 38260836 PMCID: PMC10802844 DOI: 10.3389/fonc.2023.1165323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Epidemiological studies around the world on acute leukemia (AL) and risk factors in infants are scarce. Infant AL has been proposed to originate in utero, which facilitates its study by establishing a short exposure time in pregnant women to environmental and dietary factors that could contribute to the risk of or protection against leukemia. We hypothesized that maternal diet during pregnancy may be an important factor involved in AL in offspring. Methods We conducted a hospital-based case-control study from 2010 to 2019 on maternal diet during pregnancy in nine high-specialty public hospitals of different health institutions that diagnose and offer treatment to children with AL in Mexico City. Cases (n=109) were children ≤24 months of age with de novo diagnosis of AL, and controls (n=252) were children obtained in hospitals from second-level medical care matched for age, sex, and health institution. Maternal diet during pregnancy was obtained by a semiquantitative food frequency questionnaire. Unconditional logistic regression models were used to assess the association between food groups and infant AL. Potential confounders were assessed by constructing directed acyclic graphs (DAGs) with Dagitty software in which adjusted options were identified for the construction of unconditional logistic regression models. Results Cases were slightly predominantly female (52.3%). The years of education of the mother in cases and controls was 0-9 on average, and those who reported smoking cigarettes and consuming alcohol during pregnancy did so at a low frequency. Regarding the mother's diet, the main findings were that the consumption of allium vegetables during pregnancy was inversely associated with AL for medium and high consumption (OR=0.26, 95% CI 0.14-0.46; P-trend< 0.001). In contrast, the high consumption of high-fat dairy products had a positive association with AL (OR=2.37, 95% CI 1.30-4.34; P-trend<0.001). No association was found between consumption of topoisomerase II inhibitor foods during pregnancy and AL. Conclusion The results suggest that maternal intake during pregnancy of allium vegetables, specifically garlic, is inversely associated with the development of AL in children ≤24 months old. On the other hand, consumption of high-fat dairy products is positively associated with AL in children ≤24 months old.
Collapse
Affiliation(s)
- María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (Unidad Médica de Alta Especialidad (UMAE)) Hospital de Pediatría, Centro Médico Nacional (Centro Médico Nacional (CMN)) Siglo XXI, Instituto Mexicano del Seguro Social (Instituto Mexicano del Seguro Social (IMSS)), Mexico City, Mexico
| | | | - Nancy Núñez-Villegas
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Arturo Fajardo-Gutiérrez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (Unidad Médica de Alta Especialidad (UMAE)) Hospital de Pediatría, Centro Médico Nacional (Centro Médico Nacional (CMN)) Siglo XXI, Instituto Mexicano del Seguro Social (Instituto Mexicano del Seguro Social (IMSS)), Mexico City, Mexico
| | - Aurora Medina-Sanson
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Secretaria de Salud (Secretaría de Salud (SSA)), Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Oncología, Hospital Pediátrico Moctezuma, Secretaría de Salud de la Ciudad de México (Secretaría de Salud de la Ciudad de México (SSCDMX)), Mexico City, Mexico
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Norma López-Santiago
- Servicio de Hematología, Instituto Nacional de Pediatría (INP), Secretaría de Salud (SSA), Mexico City, Mexico
| | | | - Beatriz Cortés-Herrera
- Servicio de Hematología Pediátrica, Hospital General de México, Secretaría de Salud (SSA), Mexico City, Mexico
| | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN)”20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE)), Mexico City, Mexico
| | - Raquel Amador-Sánchez
- Servicio de Hematología Pediátrica, HGR No. 1 “Dr. Carlos Mac Gregor Sánchez Navarro” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Luis Ramiro García-López
- Servicio de Pediatría, Hospital Pediátrico de Tacubaya, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Héctor Pérez-Lorenzana
- Servicio de Cirugía Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Pedro Francisco Román-Zepeda
- Servicio de Cirugía Pediátrica, Hospital General Regional (HGR) No. 1 “Dr. Carlos Mac Gregor Sánchez Navarro” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Alejandro Castañeda-Echevarría
- Servicio de Pediatría, Hospital General de Zona Regional (HGZR) No. 25 Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María Guadalupe López-Caballero
- Coordinación Clínica y Pediatría, Hospital Pediátrico de Coyoacán, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Sofía Irene Martínez-Silva
- Hospital Pediátrico de Iztapalapa, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Juan Rivera-González
- Hospital General Dr. “Gustavo Baz Prada”, Instituto de Salud del Estado de México (ISEM), Estado de México, Mexico
| | - Jorge Granados-Kraulles
- Coordinación Clínica y Pediatría del Hospital General de Zona 76 Instituto Mexicano del Seguro Social (IMSS), Estado de México, Mexico
| | - Jesús Flores-Botello
- Coordinación Clínica y Pediatría, Hospital General “La Perla” ISEM, Estado de México, Mexico
| | - Francisco Medrano-López
- Coordinación Clínica y Pediatría, HGR No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Estado de México, Mexico
| | - María Adriana Rodríguez-Vázquez
- Coordinación Clínica y Pediatría del Hospital General de Zona 68, Instituto Mexicano del Seguro Social (IMSS), Estado de México, Mexico
| | - Delfino Torres-Valle
- Coordinación Clínica y Pediatría del Hospital General de Zona 71, Instituto Mexicano del Seguro Social (IMSS), Estado de México, Mexico
| | - Karina Mora-Rico
- Servicio de Cirugía Pediátrica, HGR 1° Octubre, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Félix G. Mora-Ríos
- Cirugía Pediátrica del Hospital Regional “General Ignacio Zaragoza”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Luis R.García‐Cortés
- Delegación Regional Estado de México Oriente, Instituto Mexicano del Seguro Social (IMSS), Estado de México, Mexico
| | | | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (Unidad Médica de Alta Especialidad (UMAE)) Hospital de Pediatría, Centro Médico Nacional (Centro Médico Nacional (CMN)) Siglo XXI, Instituto Mexicano del Seguro Social (Instituto Mexicano del Seguro Social (IMSS)), Mexico City, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (Unidad Médica de Alta Especialidad (UMAE)) Hospital de Pediatría, Centro Médico Nacional (Centro Médico Nacional (CMN)) Siglo XXI, Instituto Mexicano del Seguro Social (Instituto Mexicano del Seguro Social (IMSS)), Mexico City, Mexico
| | - Vilma Carolina Bekker-Méndez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología “Dr. Daniel Méndez Hernández”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Laboratorio de Biología Molecular de las Leucemias, Unidad de Investigación en Genética Humana, Unidad Médica de Alta Especialidad (UMAE), Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Laboratorio de Genética, Unidad Médica de Alta Especialidad (Unidad Médica de Alta Especialidad (UMAE)) Hospital de Pediatría, Centro Médico Nacional (Centro Médico Nacional (CMN)) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (Unidad Médica de Alta Especialidad (UMAE)) Hospital de Pediatría, Centro Médico Nacional (Centro Médico Nacional (CMN)) Siglo XXI, Instituto Mexicano del Seguro Social (Instituto Mexicano del Seguro Social (IMSS)), Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Innovación y Medicina de Precisión, Núcleo A. Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Innovación y Medicina de Precisión, Núcleo A. Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | | | - Juan Manuel Mejía-Aranguré
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Laboratorio Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
6
|
Levison LS, Thomsen RW, Andersen H. Hospital-diagnosed morbidities and recent surgery as risk factors for developing Guillain-Barré syndrome. Eur J Neurol 2023; 30:3277-3285. [PMID: 37368224 DOI: 10.1111/ene.15955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND AND PURPOSE This study was undertaken to determine the association of hospital-diagnosed morbidity and recent surgery with risk of subsequent Guillain-Barré syndrome (GBS) development. METHODS We conducted a nationwide population-based case-control study of all patients with first-time hospital-diagnosed GBS in Denmark between 2004 and 2016 and 10 age-, sex-, and index date-matched population controls per case. Hospital-diagnosed morbidities included in the Charlson Comorbidity Index were assessed as GBS risk factors up to 10 years prior to the GBS index date. Incident major surgery was assessed within 5 months prior. RESULTS In the 13-year study period, there were 1086 incident GBS cases, whom we compared with 10,747 matched controls. Any pre-existing hospital-diagnosed morbidity was observed in 27.5% of GBS cases and 20.0% of matched controls, yielding an overall matched odds ratio (OR) of 1.6 (95% confidence interval [CI] = 1.4-1.9). The strongest associations were found for leukemia, lymphoma, diabetes, liver disease, myocardial infarction, congestive heart failure, and cerebrovascular disease, with 1.6- to 4.6-fold increased risks of subsequent GBS. GBS risk was strongest for morbidities newly diagnosed during the past 5 months (OR = 4.1, 95% CI = 3.0-5.6). Surgical procedures within 5 months prior were observed in 10.6% of cases and 5.1% of controls, resulting in a GBS OR of 2.2 (95% CI = 1.8-2.7). Risk of developing GBS was highest during the first month following surgery (OR = 3.7, 95% CI = 2.6-5.2). CONCLUSIONS In this large nationwide study, individuals with hospital-diagnosed morbidity and recent surgery had a considerably increased risk of GBS.
Collapse
Affiliation(s)
- Lotte S Levison
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Reimar W Thomsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Alves-Hanna FS, Crespo-Neto JA, Nogueira GM, Pereira DS, Lima AB, Ribeiro TLP, Santos VGR, Fonseca JRF, Magalhães-Gama F, Sadahiro A, Costa AG. Insights Regarding the Role of Inflammasomes in Leukemia: What Do We Know? J Immunol Res 2023; 2023:5584492. [PMID: 37577033 PMCID: PMC10421713 DOI: 10.1155/2023/5584492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Inflammation is a physiological mechanism of the immune response and has an important role in maintaining the hematopoietic cell niche in the bone marrow. During this process, the participation of molecules produced by innate immunity cells in response to a variety of pathogen-associated molecular patterns and damage-associated molecular patterns is observed. However, chronic inflammation is intrinsically associated with leukemogenesis, as it induces DNA damage in hematopoietic stem cells and contributes to the creation of the preleukemic clone. Several factors influence the malignant transformation within the hematopoietic microenvironment, with inflammasomes having a crucial role in this process, in addition to acting in the regulation of hematopoiesis and its homeostasis. Inflammasomes are intracellular multimeric complexes responsible for the maturation and secretion of the proinflammatory cytokines interleukin-1β and interleukin-18 and the cell death process via pyroptosis. Therefore, dysregulation of the activation of these complexes may be a factor in triggering several diseases, including leukemias, and this has been the subject of several studies in the area. In this review, we summarized the current knowledge on the relationship between inflammation and leukemogenesis, in particular, the role of inflammasomes in different types of leukemias, and we describe the potential therapeutic targets directed at inflammasomes in the leukemic context.
Collapse
Affiliation(s)
- Fabíola Silva Alves-Hanna
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Juniel Assis Crespo-Neto
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Glenda Menezes Nogueira
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Daniele Sá Pereira
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Amanda Barros Lima
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Thaís Lohana Pereira Ribeiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | | | - Joey Ramone Ferreira Fonseca
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Aya Sadahiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
8
|
Gao R, Du K, Liang J, Xia Y, Wu J, Li Y, Pan B, Wang L, Li J, Xu W. Low Serum Cholesterol Level Is a Significant Prognostic Factor That Improves CLL-IPI in Chronic Lymphocytic Leukaemia. Int J Mol Sci 2023; 24:ijms24087396. [PMID: 37108556 PMCID: PMC10138885 DOI: 10.3390/ijms24087396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Hypocholesterolaemia is associated with elevated cancer risk and mortality, yet the relation between chronic lymphocytic leukaemia (CLL) and serum lipid profile remains unclear. Our study aims to evaluate the prognostic value of cholesterol levels in CLL and develop a prognostic nomogram that incorporates lipid metabolism. We enrolled 761 newly diagnosed CLL patients and separated them into either derivation (n = 507) or validation (n = 254) cohorts. The prognostic nomogram was constructed through multivariate Cox regression analyses, with performance evaluated using C-index, the area under the curve, calibration, and decision curve analyses. Decreased total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) at diagnosis were significantly associated with worse time to first treatment (TTFT) and cancer-specific survival (CSS), and simultaneously, low HDL-C with low LDL-C was identified as an independent prognostic indicator for both TTFT and CSS. CLL patients achieving complete or partial remission post-chemotherapy had significantly increased TC, HDL-C, and LDL-C levels compared with the baseline, and post-therapeutic HDL-C and LDL-C elevation correlated with favourable survival. The prognostic nomogram augmenting the CLL international prognostic index with low cholesterol levels yielded higher predictive accuracy and discrimination capacity for both 3-year and 5-year CSS. In conclusion, cholesterol profiles can be used as a cheap and readily accessible tool for predicting prognosis in CLL practice.
Collapse
Affiliation(s)
- Rui Gao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Kaixin Du
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jinhua Liang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Yi Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jiazhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Bihui Pan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| |
Collapse
|
9
|
Kobyakova M, Lomovskaya Y, Senotov A, Lomovsky A, Minaychev V, Fadeeva I, Shtatnova D, Krasnov K, Zvyagina A, Odinokova I, Akatov V, Fadeev R. The Increase in the Drug Resistance of Acute Myeloid Leukemia THP-1 Cells in High-Density Cell Culture Is Associated with Inflammatory-like Activation and Anti-Apoptotic Bcl-2 Proteins. Int J Mol Sci 2022; 23:ijms23147881. [PMID: 35887226 PMCID: PMC9324792 DOI: 10.3390/ijms23147881] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
It is known that cell culture density can modulate the drug resistance of acute myeloid leukemia (AML) cells. In this work, we studied the drug sensitivity of AML cells in high-density cell cultures (cell lines THP-1, HL-60, MV4-11, and U937). It was shown that the AML cells in high-density cell cultures in vitro were significantly more resistant to DNA-damaging drugs and recombinant ligand izTRAIL than those in low-density cell cultures. To elucidate the mechanism of the increased drug resistance of AML cells in high-density cell cultures, we studied the activation of Bcl-2, Hif-1alpha, and NF-kB proteins, as well as cytokine secretion, the inflammatory immunophenotype, and the transcriptome for THP-1 cells in the low-density and high-density cultures. The results indicated that the increase in the drug resistance of proliferating THP-1 cells in high-density cell cultures was associated with the accumulation of inflammatory cytokines in extracellular medium, and the formation of NF-kB-dependent inflammatory-like cell activation with the anti-apoptotic proteins Bcl-2 and Bcl-xl. The increased drug resistance of THP-1 cells in high-density cultures can be reduced by ABT-737, an inhibitor of Bcl-2 family proteins, and by inhibitors of NF-kB. The results suggest a mechanism for increasing the drug resistance of AML cells in the bone marrow and are of interest for developing a strategy to suppress this resistance.
Collapse
Affiliation(s)
- Margarita Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (M.K.); (Y.L.); (A.S.); (A.L.); (V.M.); (I.F.); (D.S.); (K.K.); (A.Z.); (I.O.); (V.A.)
| | - Yana Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (M.K.); (Y.L.); (A.S.); (A.L.); (V.M.); (I.F.); (D.S.); (K.K.); (A.Z.); (I.O.); (V.A.)
| | - Anatoly Senotov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (M.K.); (Y.L.); (A.S.); (A.L.); (V.M.); (I.F.); (D.S.); (K.K.); (A.Z.); (I.O.); (V.A.)
| | - Alexey Lomovsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (M.K.); (Y.L.); (A.S.); (A.L.); (V.M.); (I.F.); (D.S.); (K.K.); (A.Z.); (I.O.); (V.A.)
| | - Vladislav Minaychev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (M.K.); (Y.L.); (A.S.); (A.L.); (V.M.); (I.F.); (D.S.); (K.K.); (A.Z.); (I.O.); (V.A.)
| | - Irina Fadeeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (M.K.); (Y.L.); (A.S.); (A.L.); (V.M.); (I.F.); (D.S.); (K.K.); (A.Z.); (I.O.); (V.A.)
- Pushchino State Institute of Natural Science, 142290 Pushchino, Moscow Region, Russia
| | - Daria Shtatnova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (M.K.); (Y.L.); (A.S.); (A.L.); (V.M.); (I.F.); (D.S.); (K.K.); (A.Z.); (I.O.); (V.A.)
- Pushchino State Institute of Natural Science, 142290 Pushchino, Moscow Region, Russia
| | - Kirill Krasnov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (M.K.); (Y.L.); (A.S.); (A.L.); (V.M.); (I.F.); (D.S.); (K.K.); (A.Z.); (I.O.); (V.A.)
- Pushchino State Institute of Natural Science, 142290 Pushchino, Moscow Region, Russia
| | - Alena Zvyagina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (M.K.); (Y.L.); (A.S.); (A.L.); (V.M.); (I.F.); (D.S.); (K.K.); (A.Z.); (I.O.); (V.A.)
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (M.K.); (Y.L.); (A.S.); (A.L.); (V.M.); (I.F.); (D.S.); (K.K.); (A.Z.); (I.O.); (V.A.)
| | - Vladimir Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (M.K.); (Y.L.); (A.S.); (A.L.); (V.M.); (I.F.); (D.S.); (K.K.); (A.Z.); (I.O.); (V.A.)
- Pushchino State Institute of Natural Science, 142290 Pushchino, Moscow Region, Russia
| | - Roman Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (M.K.); (Y.L.); (A.S.); (A.L.); (V.M.); (I.F.); (D.S.); (K.K.); (A.Z.); (I.O.); (V.A.)
- Pushchino State Institute of Natural Science, 142290 Pushchino, Moscow Region, Russia
- Correspondence: ; Tel.: +7-977-706-65-67
| |
Collapse
|
10
|
Association between Cholesterol Level and the Risk of Hematologic Malignancy According to Menopausal Status: A Korean Nationwide Cohort Study. Biomedicines 2022; 10:biomedicines10071617. [PMID: 35884921 PMCID: PMC9313203 DOI: 10.3390/biomedicines10071617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 12/05/2022] Open
Abstract
Recent studies have revealed the possible association between serum cholesterol levels and hematologic malignancy (HM). However, limited information is available about how reproductive factors interact with this association. Therefore, we investigated the roles of serum cholesterol in the risk of HM according to the menopausal status. We finally identified 1,189,806 premenopausal and 1,621,604 postmenopausal women who underwent a national health screening program in 2009 using data from the Korean National Health Insurance Service database. Overall, 5449 (0.19%) developed HM. Among postmenopausal women, the inverse associations were observed between total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) levels, and the risk of overall HM. In premenopausal women, the highest quartile of HDL-C was associated with a reduced risk of HM compared with the lowest quartile of HDL-C consistent with results in postmenopausal women (adjusted hazard ratio [aHR] 0.80, 95% confidence interval [CI] [0.68–0.95]), whereas the highest quartile of triglyceride (TG) showed an increased risk of HM compared to the lowest quartile of TG, (aHR 1.22, 95% CI [1.02,1.44]) only in premenopausal women. Our finding suggests that lipid profiles are differently associated with HM risk by menopausal status.
Collapse
|
11
|
Tang Y, Xu X, Li J, Deng L, Mu S. Synthesis and Antileukemia Activity Evaluation of Benzophenanthridine Alkaloid Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123934. [PMID: 35745057 PMCID: PMC9227418 DOI: 10.3390/molecules27123934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Thirty-three benzophenanthridine alkaloid derivatives (1a–1u and 2a–2l) were synthesized, and their cytotoxic activities against two leukemia cell lines (Jurkat Clone E6-1 and THP-1) were evaluated in vitro using a Cell Counting Kit-8 (CCK-8) assay. Nine of these derivatives (1i–l, 2a, and 2i–l) with IC50 values in the range of 0.18–7.94 μM showed significant inhibitory effects on the proliferation of both cancer cell lines. Analysis of the primary structure–activity relationships revealed that different substituent groups at the C-6 position might have an effect on the antileukemia activity of the corresponding compounds. In addition, the groups at the C-7 and C-8 positions could influence the antileukemia activity. Among these compounds, 2j showed the strongest in vitro antiproliferative activity against Jurkat Clone E6-1 and THP-1 cells with good IC50 values (0.52 ± 0.03 μM and 0.48 ± 0.03 μM, respectively), slightly induced apoptosis, and arrested the cell-cycle, all of which suggests that compound 2j may represent a potentially useful start point to undergo further optimization toward a lead compound.
Collapse
Affiliation(s)
- Yaling Tang
- College of Pharmacy, Guizhou University, Guiyang 550025, China;
| | - Xinglian Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (X.X.); (J.L.)
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Jiang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (X.X.); (J.L.)
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Lulu Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (X.X.); (J.L.)
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (L.D.); (S.M.)
| | - Shuzhen Mu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (X.X.); (J.L.)
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (L.D.); (S.M.)
| |
Collapse
|
12
|
Ng MG, Ng KY, Koh RY, Chye SM. Potential role of melatonin in prevention and treatment of leukaemia. Horm Mol Biol Clin Investig 2021; 42:445-461. [PMID: 34355548 DOI: 10.1515/hmbci-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022]
Abstract
Leukaemia is a haematological malignancy originated from the bone marrow. Studies have shown that shift work could disrupt the melatonin secretion and eventually increase leukaemia incidence risk. Melatonin, a pineal hormone, has shown promising oncostatic properties on a wide range of cancers, including leukaemia. We first reviewed the relationship between shift work and the incidence rate of leukaemia and then discussed the role of melatonin receptors (MT1 and MT2) and their functions in leukaemia. Moreover, the connection between inflammation and leukaemia, and melatonin-induced anti-leukaemia mechanisms including anti-proliferation, apoptosis induction and immunomodulation are comprehensively discussed. Apart from that, the synergistic effects of melatonin with other anticancer compounds are also included. In short, this review article has compiled the evidence of anti-leukaemia properties displayed by melatonin and discuss its potential to act as adjunct for anti-leukaemia treatment. This review may serve as a reference for future studies or experimental research to explore the possibility of melatonin serving as a novel therapeutic agent for leukaemia.
Collapse
Affiliation(s)
- Ming Guan Ng
- School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Bousounis P, Bergo V, Trompouki E. Inflammation, Aging and Hematopoiesis: A Complex Relationship. Cells 2021; 10:1386. [PMID: 34199874 PMCID: PMC8227236 DOI: 10.3390/cells10061386] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
All vertebrate blood cells descend from multipotent hematopoietic stem cells (HSCs), whose activity and differentiation depend on a complex and incompletely understood relationship with inflammatory signals. Although homeostatic levels of inflammatory signaling play an intricate role in HSC maintenance, activation, proliferation, and differentiation, acute or chronic exposure to inflammation can have deleterious effects on HSC function and self-renewal capacity, and bias their differentiation program. Increased levels of inflammatory signaling are observed during aging, affecting HSCs either directly or indirectly via the bone marrow niche and contributing to their loss of self-renewal capacity, diminished overall functionality, and myeloid differentiation skewing. These changes can have significant pathological consequences. Here, we provide an overview of the current literature on the complex interplay between HSCs and inflammatory signaling, and how this relationship contributes to age-related phenotypes. Understanding the mechanisms and outcomes of this interaction during different life stages will have significant implications in the modulation and restoration of the hematopoietic system in human disease, recovery from cancer and chemotherapeutic treatments, stem cell transplantation, and aging.
Collapse
Affiliation(s)
- Pavlos Bousounis
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; (P.B.); (V.B.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Veronica Bergo
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; (P.B.); (V.B.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; (P.B.); (V.B.)
- Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
14
|
Söder B, Källmén H, Yucel-Lindberg T, Meurman JH. Periodontal microorganisms and diagnosis of malignancy: A cross-sectional study. Tumour Biol 2021; 43:1-9. [PMID: 33935124 DOI: 10.3233/tub-200066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Oral infections associate statistically with cancer. OBJECTIVE We hypothesized that certain periodontal microorganisms might specifically link to malignancies in general and set out to investigate this in our ongoing cohort study. METHODS A sample of 99 clinically examined patients from our cohort of 1676 subjects was used to statistically investigate the associations between harboring periodontal microorganisms Aggregatibacter actinomycetemcomitans (A.a), Porphyromonas gingivalis (P.g), Prevotella intermedia (P.i), Tannerella forsythia (T.f) and Treponema denticola (T.d). We used oral infection indexes and the incidence figures of malignancies as registered in 2008-2016 in the Swedish National Cancer Register. RESULTS The pathogen A.a showed strong association with malignancy in 32 out of the 99 patients while P.g and P.i were more prevalent among patients without malignancy. In principal component analyses, A.a appeared in the strongest component while the second strongest component consisted of a combination of T.f and T.d. The third component consisted of a combination of P.g and P.i, respectively. Of basic and oral health variables, gingival index appeared to be the strongest expression of inflammation (Eigen value 4.11 and Explained Variance 68.44 percent). CONCLUSIONS The results partly confirmed our hypothesis by showing that harboring certain periodontal bacteria might link to malignancy. However, the associations are statistical and no conclusions can be drawn about causality.
Collapse
Affiliation(s)
- Birgitta Söder
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Källmén
- Center for psychiatry research Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | | | - Jukka H Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
15
|
Simioni C, Conti I, Varano G, Brenna C, Costanzi E, Neri LM. The Complexity of the Tumor Microenvironment and Its Role in Acute Lymphoblastic Leukemia: Implications for Therapies. Front Oncol 2021; 11:673506. [PMID: 34026651 PMCID: PMC8131840 DOI: 10.3389/fonc.2021.673506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
The microenvironment that surrounds a tumor, in addition to the tumor itself, plays an important role in the onset of resistance to molecularly targeted therapies. Cancer cells and their microenvironment interact closely between them by means of a molecular communication that mutually influences their biological characteristics and behavior. Leukemia cells regulate the recruitment, activation and program of the cells of the surrounding microenvironment, including those of the immune system. Studies on the interactions between the bone marrow (BM) microenvironment and Acute Lymphoblastic Leukemia (ALL) cells have opened a scenario of potential therapeutic targets which include cytokines and their receptors, signal transduction networks, and hypoxia-related proteins. Hypoxia also enhances the formation of new blood vessels, and several studies show how angiogenesis could have a key role in the pathogenesis of ALL. Knowledge of the molecular mechanisms underlying tumor-microenvironment communication and angiogenesis could contribute to the early diagnosis of leukemia and to personalized molecular therapies. This article is part of a Special Issue entitled: Innovative Multi-Disciplinary Approaches for Precision Studies in Leukemia edited by Sandra Marmiroli (University of Modena and Reggio Emilia, Modena, Italy) and Xu Huang (University of Glasgow, Glasgow, United Kingdom).
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA) - Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Ilaria Conti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Eva Costanzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Laboratory for Technologies of Advanced Therapies (LTTA) - Electron Microscopy Center, University of Ferrara, Ferrara, Italy.,Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Lipid Level, Lipid Variability, and Risk of Multiple Myeloma: A Nationwide Population-Based Study of 3,527,776 Subjects. Cancers (Basel) 2021; 13:cancers13030540. [PMID: 33572660 PMCID: PMC7866996 DOI: 10.3390/cancers13030540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary There is preclinical evidence that abnormalities in lipid metabolism promote cancer development, and a few studies show the association between lipid levels and multiple myeloma (MM). However, to our knowledge, the role of lipid variability as a risk factor for MM has not been evaluated. We investigated whether lipid level and its variability are associated with the development of MM at a population level. Lower baseline lipid levels of total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglycerides, and high variability in high-density lipoprotein cholesterol were all associated with increased risk of developing MM. These findings support the role of lipid metabolism in MM risk. Abstract (1) Background: There is evidence that abnormality in lipid metabolism promotes cancer development. This study investigated whether lipid level and its variability are associated with the development of MM at a population level. (2) Methods: A retrospective cohort study included a total of 3,527,776 subjects aged 40 and above who participated in ≥3 health examinations within the previous five years, including the index year (2012–2013). Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) were measured, and visit-to-visit lipid variability were calculated by variability independent of the mean (VIM) method. The study population was followed from the health examination date in the index year until the diagnosis of MM, death, or the last follow-up date (31 December 2017). (3) Results: During a median (5–95%) 5.1 years of follow-up, 969 subjects developed MM. A lower risk of MM was observed with higher quartiles of baseline lipid levels compared to the lowest quartile group (Q4 vs. Q1: adjusted hazard ratios (aHRs) 0.51, 95% confidence interval (CI) (0.42–0.61) for TC; 0.50 (0.41–0.61) for HDL-C; 0.65 (0.54–0.77) for LDL-C; and 0.72 (0.60–0.87) for TG in model (3). Among all lipid measures, only variability in HDL-C was associated with risk of MM: aHRs (95% CI) were 1.12 (0.91–1.38), 1.19 (0.97–1.46), and 1.34 (1.09–1.65) in the Q2, Q3, and Q4, respectively, compared to the Q1 of VIM of HDL-C. (4) Conclusions: This study shows that patients with lower lipid levels and high HDL-C variability are at increased risk of developing MM.
Collapse
|
17
|
Association between high-density lipoprotein cholesterol level and risk of hematologic malignancy. Leukemia 2020; 35:1356-1364. [PMID: 33268820 DOI: 10.1038/s41375-020-01081-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/28/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022]
Abstract
This study investigated the relationships between HDL-C and major types of blood cancers. Competing risks regression was used to examine the hazard ratios of hematologic malignancies in 9,596,145 individuals (≥20 years) using data from the Korean National Health Insurance Service (2009-2017). The incidence of the following hematologic cancers was determined based on the International Classification of Diseases 10th revision: Multiple Myeloma (MM), Hodgkin Lymphoma (HL), Non-Hodgkin Lymphoma (NHL), Lymphoid Leukemia (LL), and Myeloid Leukemia (ML). During an average of 8.3 years of follow-up (79,179,225 person-years), 15,864 incident hematologic malignancies were identified. Compared to those in the highest HDL-C quartile, subjects in the lowest HDL-C quartile had the highest risk of all hematologic cancers combined (adjusted hazard ratio [HR], 95% confidence interval [95% CI] = 1.31, 1.25-1.37) and of each respective type of blood cancer, as follows: MM (HR 1.61, 95% CI, 1.46-1.76), HL (HR 1.35, 95% CI 1.07-1.70), NHL (HR 1.12, 95%CI 1.04-1.21), LL (HR 1.36, 95% CI 1.16-1.61), and ML (HR 1.33, 95% CI 1.22-1.45). Low HDL-C level was significantly associated with increased risk of hematologic malignancy, suggesting that a low HDL-C level is an independent risk factor and preclinical marker for hematologic malignancy.
Collapse
|
18
|
Liu Z, Mahale P, Engels EA. Sepsis and Risk of Cancer Among Elderly Adults in the United States. Clin Infect Dis 2020; 68:717-724. [PMID: 29982318 DOI: 10.1093/cid/ciy530] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sepsis is an important cause of mortality among older adults in the United States. The association between sepsis and subsequent risk of cancer is poorly understood. METHODS Using the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database, we conducted a case-control study in US adults. We included 1801156 cases with a first cancer diagnosis in SEER during 1992-2013 (ages 66-115 years) and 200000 cancer-free controls from a 5% random sample of Medicare beneficiaries. Sepsis was identified using inpatient Medicare claims. Associations with sepsis were estimated using logistic regression. RESULTS After correction for multiple comparisons, sepsis was significantly associated with increased risk for cancers of the colon (adjusted odds ratio [aOR] = 1.12), rectum (1.13), liver (1.47), lung (1.17), and cervix (1.52), as well as acute myeloid leukemia (AML, 1.19), chronic myeloid leukemia (1.54), and myelodysplastic syndrome (1.30). Inverse associations were observed for cancers of the breast (aOR = 0.86), prostate (0.75), kidney (0.90), and thyroid (0.68) and for melanoma (0.83), diffuse large B-cell lymphoma (0.89), and follicular lymphoma (0.65). Sepsis was significantly associated with the following 9 types of cancer in the period >5 years following sepsis diagnosis: thyroid, prostate, colon, rectum, lung, and liver and follicular lymphoma, melanoma, and AML. CONCLUSIONS Sepsis is associated with increased or decreased risks for a small group of cancers. Factors that may explain these associations include etiologic effects. Other associations may reflect the presence of precursor conditions or patterns in ascertainment of cancer and screening.
Collapse
Affiliation(s)
- Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Parag Mahale
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Eric A Engels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
19
|
Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes. Leukemia 2018; 32:2374-2387. [PMID: 29743719 DOI: 10.1038/s41375-018-0112-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/27/2022]
Abstract
Interleukin-1 receptor-associated kinase 1 (IRAK1), an essential mediator of innate immunity and inflammatory responses, is constitutively active in multiple cancers. We evaluated the role of IRAK1 in acute myeloid leukemia (AML) and assessed the inhibitory activity of multikinase inhibitor pacritinib on IRAK1 in AML. We demonstrated that IRAK1 is overexpressed in AML and provides a survival signal to AML cells. Genetic knockdown of IRAK1 in primary AML samples and xenograft model showed a significant reduction in leukemia burden. Kinase profiling indicated pacritinib has potent inhibitory activity against IRAK1. Computational modeling combined with site-directed mutagenesis demonstrated high-affinity binding of pacritinib to the IRAK1 kinase domain. Pacritinib exposure reduced IRAK1 phosphorylation in AML cells. A higher percentage of primary AML samples showed robust sensitivity to pacritinib, which inhibits FLT3, JAK2, and IRAK1, relative to FLT3 inhibitor quizartinib or JAK1/2 inhibitor ruxolitinib, demonstrating the importance of IRAK1 inhibition. Pacritinib inhibited the growth of AML cells harboring a variety of genetic abnormalities not limited to FLT3 and JAK2. Pacritinib treatment reduced AML progenitors in vitro and the leukemia burden in AML xenograft model. Overall, IRAK1 contributes to the survival of leukemic cells, and the suppression of IRAK1 may be beneficial among heterogeneous AML subtypes.
Collapse
|
20
|
Jin X, Su R, Li R, Cheng L, Li Z. Crucial role of pro-inflammatory cytokines from respiratory tract upon PM 2.5 exposure in causing the BMSCs differentiation in cells and animals. Oncotarget 2018; 9:1745-1759. [PMID: 29416728 PMCID: PMC5788596 DOI: 10.18632/oncotarget.23158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
Fine particulate matter exposure may cause health risk, including cardiovascular diseases and cancer. Bone marrow mesenchymal stem cell (BMSC), a typical model for evaluating pollutant toxicity, has been closely linked to these diseases, due to its characteristics of differentiation. We therefore studied the BMSCs differentiation and its roles in inflammatory activation in the respiratory tract upon PM2.5 exposure using both in vitro and in vivo models. BMSCs differentiation into endothelial-like cells (ELCs) and cancer-associated fibroblasts cells (CAFs) was enhanced in response to conditioned medium from PM2.5-treated 16HBE cells. PM2.5 elevated inflammatory cytokines' expression and secretion in 16HBE cells. However, induction of differentiation markers was reduced when IL-1β, IL-6 and COX-2 neutralizing antibodies were added to the conditioned medium. Furthermore, PM2.5 induced ROS formation and NADPH oxidase (NOX) expression in 16HBE cells. DPI (inhibitor of ROS from NOX) or NAC (inhibitor of ROS) supplement reduced PM2.5-induced inflammatory activation and BMSCs differentiation. Likewise, a concomitant disorder of mitochondrial morphology and respiratory chain was observed. In addition, Rot or AA (inhibitor of mitochondrial complex I or III) supplement restored PM2.5-induced toxic effects. Moreover, the results coincided with the in vitro data obtained from SD rats post-exposed to different doses of PM2.5 for 30 days. PM2.5 enhanced the BMSCs differentiation and inflammatory cytokines' expression in respiratory organs of SD rats, including lung and trachea tissue. This study uncovers that PM2.5 promotes the BMSCs differentiation via inflammatory activation mediated by ROS induction from NOX and mitochondria in the respiratory tract.
Collapse
Affiliation(s)
- Xiaoting Jin
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Ruijun Su
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Long Cheng
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Zhuoyu Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
21
|
Enciso J, Mayani H, Mendoza L, Pelayo R. Modeling the Pro-inflammatory Tumor Microenvironment in Acute Lymphoblastic Leukemia Predicts a Breakdown of Hematopoietic-Mesenchymal Communication Networks. Front Physiol 2016; 7:349. [PMID: 27594840 PMCID: PMC4990565 DOI: 10.3389/fphys.2016.00349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/02/2016] [Indexed: 01/10/2023] Open
Abstract
Lineage fate decisions of hematopoietic cells depend on intrinsic factors and extrinsic signals provided by the bone marrow microenvironment, where they reside. Abnormalities in composition and function of hematopoietic niches have been proposed as key contributors of acute lymphoblastic leukemia (ALL) progression. Our previous experimental findings strongly suggest that pro-inflammatory cues contribute to mesenchymal niche abnormalities that result in maintenance of ALL precursor cells at the expense of normal hematopoiesis. Here, we propose a molecular regulatory network interconnecting the major communication pathways between hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) within the BM. Dynamical analysis of the network as a Boolean model reveals two stationary states that can be interpreted as the intercellular contact status. Furthermore, simulations describe the molecular patterns observed during experimental proliferation and activation. Importantly, our model predicts instability in the CXCR4/CXCL12 and VLA4/VCAM1 interactions following microenvironmental perturbation due by temporal signaling from Toll like receptors (TLRs) ligation. Therefore, aberrant expression of NF-κB induced by intrinsic or extrinsic factors may contribute to create a tumor microenvironment where a negative feedback loop inhibiting CXCR4/CXCL12 and VLA4/VCAM1 cellular communication axes allows for the maintenance of malignant cells.
Collapse
Affiliation(s)
- Jennifer Enciso
- Oncology Research Unit, Mexican Institute for Social SecurityMexico City, Mexico; Biochemistry Sciences Program, Universidad Nacional Autónoma de MexicoMexico City, Mexico
| | - Hector Mayani
- Oncology Research Unit, Mexican Institute for Social Security Mexico City, Mexico
| | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, Mexican Institute for Social Security Mexico City, Mexico
| |
Collapse
|
22
|
Desmarais G, Charest G, Therriault H, Shi M, Fortin D, Bujold R, Mathieu D, Paquette B. Infiltration of F98 glioma cells in Fischer rat brain is temporary stimulated by radiation. Int J Radiat Biol 2016; 92:444-50. [DOI: 10.1080/09553002.2016.1175682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Guillaume Desmarais
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gabriel Charest
- Department of Radiation Oncology, Stanford School of Medicine, Stanford University, Palo Alto, California, USA
| | - Hélène Therriault
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Minghan Shi
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David Fortin
- Department of Surgery, Service of Neurosurgery/Neuro-oncology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Rachel Bujold
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Service of Radiation Oncology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - David Mathieu
- Department of Radiation Oncology, Stanford School of Medicine, Stanford University, Palo Alto, California, USA
| | - Benoit Paquette
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
23
|
Jin XT, Chen ML, Li RJ, An Q, Song L, Zhao Y, Xiao H, Cheng L, Li ZY. Progression and inflammation of human myeloid leukemia induced by ambient PM2.5 exposure. Arch Toxicol 2015; 90:1929-38. [PMID: 26486797 DOI: 10.1007/s00204-015-1610-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/23/2015] [Indexed: 01/29/2023]
Abstract
PM2.5 (aerodynamic diameter ≤2.5 μm) has been a dominating and ubiquitous air pollutant and has become a global concern. Emerging evidences suggest a positive correlation between PM2.5 and leukemia, but the underlying molecular mechanisms remain unclear and need to be elucidated. Here, we assessed the impacts of PM2.5 on the progression and inflammation of human myeloid leukemia at lower environmental doses and explored the possible pathway. We showed that PM2.5 exposure significantly induced the leukemia cell growth and enhanced the release of inflammatory mediators in both in vitro and in vivo models. Additionally, NF-κB p65 and p-STAT3 were activated in PM2.5-treated leukemia cells, with a concomitant increase in both ROS formation and NADPH oxidase expressions. Strikingly, the supplement of inhibitors, including NAC (ROS), PDTC (NF-κB), or WP1066 (STAT3), contributed to a decline in leukemia cell growth. Furthermore, enhanced expressions of inflammatory cytokines were attenuated by the addition of NAC or PDTC, but not affected by WP1066. This study demonstrates that PM2.5 promotes leukemia progression, identifies a potential intervention target, and provides further understanding of the detrimental effect of PM2.5 exposure on human health.
Collapse
Affiliation(s)
- Xiao-Ting Jin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Mei-Lan Chen
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Rui-Jin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Quan An
- China Institute for Radiation Protection, Taiyuan, China
| | - Li Song
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Yi Zhao
- Biology Institute of Shanxi, Taiyuan, China
| | - Hong Xiao
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Long Cheng
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhuo-Yu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China.
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
24
|
Vilchis-Ordoñez A, Contreras-Quiroz A, Vadillo E, Dorantes-Acosta E, Reyes-López A, Quintela-Nuñez del Prado HM, Venegas-Vázquez J, Mayani H, Ortiz-Navarrete V, López-Martínez B, Pelayo R. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates. BIOMED RESEARCH INTERNATIONAL 2015; 2015:386165. [PMID: 26090405 PMCID: PMC4450234 DOI: 10.1155/2015/386165] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintenance of neoplastic cells. We report here that hematopoietic cells from bone marrow B-ALL have the ability to produce proinflammatory and growth factors, including TNFα, IL-1β, IL-12, and GM-CSF that stimulate proliferation and differentiation of normal stem and progenitor cells. Our findings suggest an apparently distinct CD13(+)CD33(+) population of leukemic cells contributing to a proinflammatory microenvironment that may be detrimental to long-term normal hematopoiesis within B-ALL bone marrow.
Collapse
Affiliation(s)
- Armando Vilchis-Ordoñez
- “Federico Gómez” Children's Hospital, 06720 Mexico City, DF, Mexico
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtemoc 330, Colonia Doctores, 06720 Mexico City, DF, Mexico
- Clinical Biochemistry Program, National Autonomous University of Mexico, 04510 Mexico City, DF, Mexico
| | - Adriana Contreras-Quiroz
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtemoc 330, Colonia Doctores, 06720 Mexico City, DF, Mexico
- Molecular Biomedicine Department, CINVESTAV, 07360 Mexico City, DF, Mexico
| | - Eduardo Vadillo
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtemoc 330, Colonia Doctores, 06720 Mexico City, DF, Mexico
| | | | | | | | - Jorge Venegas-Vázquez
- UMAE “Dr. Victorio de la Fuente Narvaéz”, Mexican Institute for Social Security, 07760 Mexico City, DF, Mexico
| | - Hector Mayani
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtemoc 330, Colonia Doctores, 06720 Mexico City, DF, Mexico
| | | | | | - Rosana Pelayo
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtemoc 330, Colonia Doctores, 06720 Mexico City, DF, Mexico
| |
Collapse
|