1
|
Ying J, Zhou H, Wang Z, You Q, Chen J, Lu H, Zhang J. Aspirin increases chemosensitivity of colorectal cancer cells and inhibits the expression of toll-like receptor 4. Cancer Cell Int 2023; 23:6. [PMID: 36647071 PMCID: PMC9843993 DOI: 10.1186/s12935-023-02847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Chemotherapy resistance is an important bottleneck affecting the efficacy of chemotherapy in colon cancer. Therefore, improving the chemotherapy sensitivity of colorectal cancer cells is of great significance for improving the prognosis of patients with colon cancer. METHODS CCK-8 assay was employed to examine the cell viability of colorectal cancer cell lines. Realtime-PCR and western blot were used to explore toll-like receptor 4 (TLR4) expression in colorectal cancer cell lines. The functions of TLR4 in the stemness of the colorectal cancer cell lines were analyzed by infecting cells with lentivirus containing TLR4 siRNA. RESULTS We found that aspirin could effectively enhance the chemosensitivity of CT26 and HCT116 colorectal cancer cell lines. Aspirin can also inhibit the stemness of colorectal cancer cell including inhibiting the number of clone formation and reducing the volume and number of cell spheres and inducing the down-regulation of stemness-related genes. Besides that, aspirin also lead to down-regulation of TLR4 expression in colorectal cancer cells. The TLR4 positive colorectal cancer cells demonstrated a higher chemotherapy resistance potential than TLR4 negative colorectal cancer cells. In addition, the stemness of TLR4 positive colorectal cancer cells is stronger than TLR4 negative colorectal cancer cells. CONCLUSION The results of our study indicate that aspirin increases chemosensitivity of colorectal cancer cells and inhibits the expression of toll-like receptor 4.
Collapse
Affiliation(s)
- Jun Ying
- grid.73113.370000 0004 0369 1660Division of Colorectal Surgery, Department of Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003 China
| | - Haiyang Zhou
- grid.73113.370000 0004 0369 1660Division of Colorectal Surgery, Department of Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003 China
| | - Zhiguo Wang
- grid.73113.370000 0004 0369 1660Division of Colorectal Surgery, Department of Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003 China
| | - Qing You
- grid.73113.370000 0004 0369 1660Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Junnan Chen
- grid.73113.370000 0004 0369 1660Division of Colorectal Surgery, Department of Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003 China
| | - Hao Lu
- grid.73113.370000 0004 0369 1660Division of Colorectal Surgery, Department of Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003 China
| | - Jian Zhang
- grid.73113.370000 0004 0369 1660Division of Colorectal Surgery, Department of Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003 China
| |
Collapse
|
2
|
Singh D, Khan MA, Siddique HR. Therapeutic implications of probiotics in microbiota dysbiosis: A special reference to the liver and oral cancers. Life Sci 2021; 285:120008. [PMID: 34606851 DOI: 10.1016/j.lfs.2021.120008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
The microbiota plays an important role in maintaining the body's homeostasis. Imbalance in the microbiota is referred to as microbiota dysbiosis. Microbiota dysbiosis leads to pro-inflammatory immune response and progression of cancer- one of the leading causes of mortality globally. Accumulating evidence suggest the role of microbiota-dysbiosis in the liver and oral carcinogenesis and the therapeutic role of probiotic strains against these diseases. Probiotics are active microbial strains that have recently gained clinical importance due to their beneficial effects on the human body associated with the prevention and treatment of different diseases, including cancer. Multiple researchers have reported the use of probiotic strains in the modulation of microbiota and immune responses for cancer prevention and management. Clinical trials have also highlighted the efficacy of probiotic strains in reducing the side effects of microbiota dysbiosis related to cancer. In this context, the probiotic-mediated modulation to reverse microbiota dysbiosis is now considered one of the possible novel strategies for cancer prevention and management. In this article, we review the association between microbiota dysbiosis and liver/oral cancer. This review highlights the research advances on the anti-cancer activity of probiotic strains and their metabolites in the management of liver and oral cancers.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
3
|
Rodriguez FD, Coveñas R. Biochemical Mechanisms Associating Alcohol Use Disorders with Cancers. Cancers (Basel) 2021; 13:cancers13143548. [PMID: 34298760 PMCID: PMC8306032 DOI: 10.3390/cancers13143548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Of all yearly deaths attributable to alcohol consumption globally, approximately 12% are due to cancers, representing approximately 0.4 million deceased individuals. Ethanol metabolism disturbs cell biochemistry by targeting the structure and function of essential biomolecules (proteins, nucleic acids, and lipids) and by provoking alterations in cell programming that lead to cancer development and cancer malignancy. A better understanding of the metabolic and cell signaling realm affected by ethanol is paramount to designing effective treatments and preventive actions tailored to specific neoplasias. Abstract The World Health Organization identifies alcohol as a cause of several neoplasias of the oropharynx cavity, esophagus, gastrointestinal tract, larynx, liver, or female breast. We review ethanol’s nonoxidative and oxidative metabolism and one-carbon metabolism that encompasses both redox and transfer reactions that influence crucial cell proliferation machinery. Ethanol favors the uncontrolled production and action of free radicals, which interfere with the maintenance of essential cellular functions. We focus on the generation of protein, DNA, and lipid adducts that interfere with the cellular processes related to growth and differentiation. Ethanol’s effects on stem cells, which are responsible for building and repairing tissues, are reviewed. Cancer stem cells (CSCs) of different origins suffer disturbances related to the expression of cell surface markers, enzymes, and transcription factors after ethanol exposure with the consequent dysregulation of mechanisms related to cancer metastasis or resistance to treatments. Our analysis aims to underline and discuss potential targets that show more sensitivity to ethanol’s action and identify specific metabolic routes and metabolic realms that may be corrected to recover metabolic homeostasis after pharmacological intervention. Specifically, research should pay attention to re-establishing metabolic fluxes by fine-tuning the functioning of specific pathways related to one-carbon metabolism and antioxidant processes.
Collapse
Affiliation(s)
- Francisco D. Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-677-510-030
| | - Rafael Coveñas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Tam C, Rao S, Waye MMY, Ng TB, Wang CC. Autophagy signals orchestrate chemoresistance of gynecological cancers. Biochim Biophys Acta Rev Cancer 2021; 1875:188525. [PMID: 33600824 DOI: 10.1016/j.bbcan.2021.188525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Gynecological cancers are characterized by a high mortality rate when chemoresistance develops. Autophagy collaborates with apoptosis and participates in homeostasis of chemoresistance. Recent findings supported that crosstalk of necrotic, apoptotic and autophagic factors, and chemotherapy-driven hypoxia, oxidative stress and ER stress play critical roles in chemoresistance in gynecological cancers. Meanwhile, current studies have shown that autophagy could be regulated by and cooperate with metabolic regulator, survival factors, stemness factors and specific post-translation modification in chemoresistant tumor cells. Meanwhile, non-coding RNA and autophagy crosstalk also contribute to the chemoresistance. Until now, analysis of individual autophagy factors towards the clinical significance and chemoresistance in gynecological cancer is still lacking. We suggest comprehensive integrated analysis of cellular homeostasis and tumor microenvironment to clarify the role of autophagy and the associated factors in cancer progression and chemoresistance. Panel screening of pan-autophagic factors will pioneer the development of risk models for predicting efficacy of chemotherapy and guidelines for systematic treatment and precision medicine.
Collapse
Affiliation(s)
- Chit Tam
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Shitao Rao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; School of Medical Technology and Engineering, Fujian Medical University, Fujian, China
| | - Mary Miu Yee Waye
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Reproduction and Development Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Dai X, Guo Y, Hu Y, Bao X, Zhu X, Fu Q, Zhang H, Tong Z, Liu L, Zheng Y, Zhao P, Fang W. Immunotherapy for targeting cancer stem cells in hepatocellular carcinoma. Theranostics 2021; 11:3489-3501. [PMID: 33537099 PMCID: PMC7847682 DOI: 10.7150/thno.54648] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
The rapid development and remarkable success of checkpoint inhibitors have provided significant breakthroughs in cancer treatment, including hepatocellular carcinoma (HCC). However, only 15-20% of HCC patients can benefit from checkpoint inhibitors. Cancer stem cells (CSCs) are responsible for recurrence, metastasis, and local and systemic therapy resistance in HCC. Accumulating evidence has suggested that HCC CSCs can create an immunosuppressive microenvironment through certain intrinsic and extrinsic mechanisms, resulting in immune evasion. Intrinsic evasion mechanisms mainly include activation of immune-related CSC signaling pathways, low-level expression of antigen presenting molecules, and high-level expression of immunosuppressive molecules. External evasion mechanisms are mainly related to HBV/HCV infection, alcoholic/nonalcoholic steatohepatitis, hypoxia stimulation, abnormal angiogenesis, and crosstalk between CSCs and immune cells. A better understanding of the complex mechanisms of CSCs involved in immune evasion will contribute to therapies for HCC. Here we will outline the detailed mechanisms of immune evasion for CSCs, and provide an overview of the current immunotherapies targeting CSCs in HCC.
Collapse
|
6
|
Chen T, Oh S, Gregory S, Shen X, Diehl AM. Single-cell omics analysis reveals functional diversification of hepatocytes during liver regeneration. JCI Insight 2020. [DOI: 10.1172/jci.insight.141024 33208554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
7
|
Chen T, Oh S, Gregory S, Shen X, Diehl AM. Single-cell omics analysis reveals functional diversification of hepatocytes during liver regeneration. JCI Insight 2020; 5:141024. [PMID: 33208554 PMCID: PMC7710279 DOI: 10.1172/jci.insight.141024] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/08/2020] [Indexed: 01/07/2023] Open
Abstract
Adult liver has enormous regenerative capacity; it can regenerate after losing two-thirds of its mass while sustaining essential metabolic functions. How the liver balances dual demands for increased proliferative activity with maintenance of organ function is unknown but essential to prevent liver failure. Using partial hepatectomy (PHx) in mice to model liver regeneration, we integrated single-cell RNA- and ATAC-Seq to map state transitions in approximately 13,000 hepatocytes at single-cell resolution as livers regenerated, and validated key findings with IHC, to uncover how the organ regenerates hepatocytes while simultaneously fulfilling its vital tissue-specific functions. After PHx, hepatocytes rapidly and transiently diversified into multiple distinct populations with distinct functional bifurcation: some retained the chromatin landscapes and transcriptomes of hepatocytes in undamaged adult livers, whereas others transitioned to acquire chromatin landscapes and transcriptomes of fetal hepatocytes. Injury-related signaling pathways known to be critical for regeneration were activated in transitioning hepatocytes, and the most fetal-like hepatocytes exhibited chromatin landscapes that were enriched with transcription factors regulated by those pathways.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Simon Gregory
- Department of Neurology, Duke University, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Anna Mae Diehl
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine and
| |
Collapse
|
8
|
Bi N, Sun Y, Lei S, Zeng Z, Zhang Y, Sun C, Yu C. Identification of 40S ribosomal protein S8 as a novel biomarker for alcohol‑associated hepatocellular carcinoma using weighted gene co‑expression network analysis. Oncol Rep 2020; 44:611-627. [PMID: 32627011 PMCID: PMC7336510 DOI: 10.3892/or.2020.7634] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
Alcohol‑associated hepatocellular carcinoma (HCC) is a subtype of HCC with poor prognosis. The present study aimed to identify key biomarkers for alcohol‑associated HCC. The gene data profiles and corresponding clinical traits of patients with alcohol‑associated HCC were downloaded from The Cancer Genome Atlas (TCGA) database. Firstly, good genes and good samples were identified, which were subsequently used to conduct weighted gene co‑expression network analysis (WGCNA). Hub genes in the significant modules were selected following Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and from constructing a protein‑protein interaction (PPI) network. Real hub genes among hub genes were determined following progression, survival analysis and gene set enrichment analysis (GSEA), as well as reverse transcription‑quantitative PCR and immunohistochemical staining of non‑alcohol‑ and alcohol‑associated HCC samples. In total, 64 good samples of alcohol‑associated HCC with height score <160 were selected, from which 15,195 good genes were identified and used to conduct WGCNA; 8 gene co‑expressed modules were identified using WGCNA, while 3 modules (including pink, magenta and turquoise) were significantly associated with Child‑Pugh score, T‑stage and body weight. Following GO and KEGG analysis and construction of the PPI network, a total of 30 hub genes were identified in the aforementioned 3 gene co‑expressed modules, while 16 hub genes (including AURKB, BUB1, BUB1B, CCNB1, CCNB2, CDC20, CDCA8, CDK1, PLK1, RPS5, RPS7, RPS8, RPS14, RPS27, RPSA and TOP2A) were associated with the development of alcohol‑associated HCC, and had a significant prognosis value. Among these genes, only RPS8 was highly expressed in alcohol‑associated HCC, but not in non‑alcohol‑associated HCC, while RPS5 was not significantly associated in either alcohol‑ or non‑alcohol‑associated HCC. GSEA demonstrated that 10 pathways, including RNA polymerase and ribosome pathways were enriched in alcohol‑associated HCC samples where RPS8 was highly expressed. Taken together, the results of the present study demonstrate that RPS8 may be a novel biomarker for the diagnosis of patients with alcohol‑associated HCC.
Collapse
Affiliation(s)
- Ningrui Bi
- Department of Liver‑Biliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yuanmei Sun
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guiyang, Guizhou 550009, P.R. China
| | - Shan Lei
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guiyang, Guizhou 550009, P.R. China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guiyang, Guizhou 550009, P.R. China
| | - Yan Zhang
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Chengyi Sun
- Department of Liver‑Biliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Chao Yu
- Department of Liver‑Biliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| |
Collapse
|
9
|
Bahramabadi R, Dabiri S, Iranpour M, Kazemi Arababadi M. TLR4: An Important Molecule Participating in Either Anti-Human Papillomavirus Immune Responses or Development of Its Related Cancers. Viral Immunol 2019; 32:417-423. [PMID: 31721657 DOI: 10.1089/vim.2019.0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It has been reported that human papillomavirus (HPV) is a main cause of cervical cancer. Immune system plays key roles in the HPV infection clearance. Additionally, the roles played by immune responses in development of cancers have been documented previously. Toll-like receptors (TLRs) are the main surface or intravesicular receptors driving innate immunity, which either participate in the fight against infectious agents or participate in the progression of cancers. Thus, it has been hypothesized that the molecules may be part of the HPV/cancers puzzle. TLR4 is a unique member of TLRs family that uses both well-known TLRs related intracellular signaling pathways. Furthermore, the roles played by TLR4 against several viruses and also their related complications, such as tumors, have been demonstrated. Thus, it has been hypothesized that TLR4 may play a key role in HPV infection and its related complications. This review article collected the information regarding the mentioned plausible roles by TLR4.
Collapse
Affiliation(s)
- Reza Bahramabadi
- Pathology and Stem Cell Research Center, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cell Research Center, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Centre, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
10
|
Prognostic and clinicopathological value of Nanog in hepatocellular carcinoma: A meta-analysis. Clin Chim Acta 2018; 477:24-31. [DOI: 10.1016/j.cca.2017.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
|
11
|
Yao RR, Li JH, Zhang R, Chen RX, Wang YH. M2-polarized tumor-associated macrophages facilitated migration and epithelial-mesenchymal transition of HCC cells via the TLR4/STAT3 signaling pathway. World J Surg Oncol 2018; 16:9. [PMID: 29338742 PMCID: PMC5771014 DOI: 10.1186/s12957-018-1312-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Background M2-polarized macrophages are tumor-associated-macrophages (TAMs), which are important contents of tumor-infiltrating immune cells. Toll-like receptor 4 (TLR4) is a molecular biomarker of tumor aggressiveness and poor prognosis. Toll-like receptors (TLRs) have important roles in the immune system and M2-polarized macrophages. However, the effects of TLR4 on M2-polarized macrophages in hepatocellular carcinoma (HCC) are unknown. Here, TLR4 expressed on HCC cells mediates the pro-tumor effects and mechanisms of M2-polarized macrophages. Methods THP-1 cells were induced to differentiate into M2-like macrophages through treatments with IL-4, IL-13, and phorbol myristate acetate (PMA). We used the HCC cell lines SMMC-7721 and MHCC97-H cultured in conditioned medium from M2-like macrophages (M2-CM) to investigate the migration potential of HCC cells and epithelial-mesenchymal transition (EMT)-associated molecular genetics. Signaling pathways that mediated M2-CM-promoted HCC migration were detected using western blotting. Results HCC cells cultured with M2-CM displayed a fibroblast-like morphology, an increased metastatic capability, and expression of EMT markers. TLR4 expression was markedly increased in M2-CM-treated HCC cells. TLR4 overexpression promoted HCC cell migration, and a TLR4-neutralizing antibody markedly inhibited HCC EMT in cells cultured with M2-CM. Furthermore, the TLR4/(signal transducer and activator of transcription 3 (STAT3) signaling pathway contributed to the effects of M2-CM on HCC cells. Conclusions Taken together, M2-polarized macrophages facilitated the migration and EMT of HCC cells via the TLR4/STAT3 signaling pathway, suggesting that TLR4 may be a novel therapeutic target. These results improve our understanding of M2-polarized macrophages. Electronic supplementary material The online version of this article (10.1186/s12957-018-1312-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong-Rong Yao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing-Huan Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rui Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rong-Xin Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan-Hong Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China. .,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Involvement of inflammation and its related microRNAs in hepatocellular carcinoma. Oncotarget 2017; 8:22145-22165. [PMID: 27888618 PMCID: PMC5400654 DOI: 10.18632/oncotarget.13530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most commonly diagnosed type of cancer. The tumor inflammatory microenvironment regulates almost every step towards liver tumorigenesis and subsequent progression, and regulation of the inflammation-related signaling pathways, cytokines, chemokines and non-coding RNAs influences the proliferation, migration and metastasis of liver tumor cells. Inflammation fine-tunes the cancer microenvironment to favor epithelial-mesenchymal transition, in which cancer stem cells maintain tumorigenic potential. Emerging evidence points to inflammation-related microRNAs as crucial molecules to integrate the complex cellular and molecular crosstalk during HCC progression. Thus understanding the mechanisms by which inflammation regulates microRNAs might provide novel and admissible strategies for preventing, diagnosing and treating HCC. In this review, we will update three hypotheses of hepatocarcinogenesis and elaborate the most predominant inflammation signaling pathways, i.e. IL-6/STAT3 and NF-κB. We also try to summarize the crucial tumor-promoting and tumor-suppressing microRNAs and detail how they regulate HCC initiation and progression and collaborate with other critical modulators in this review.
Collapse
|
13
|
Chen D, Zhang F, Ren H, Luo J, Wang S. Role of cytokines and chemokines in alcohol-induced tumor promotion. Onco Targets Ther 2017; 10:1665-1671. [PMID: 28360527 PMCID: PMC5364014 DOI: 10.2147/ott.s129781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Excessive chronic alcohol consumption has become a worldwide health problem. The oncogenic effect of chronic alcohol consumption is one of the leading concerns. The mechanisms of alcohol-induced tumorigenesis and tumor progression are largely unknown, although many factors have been implicated in the process. This review discusses the recent progress in this research area with concentration on alcohol-induced dysregulation of cytokines and chemokines. Based on the available evidence, we propose that alcohol promotes tumor progression by the dysregulation of the cytokine/chemokine system. In addition, we discuss specific transcription factors and signaling pathways that are involved in the action of these cytokines/chemokines and the oncogenic effect of alcohol. This review provides novel insight into the mechanisms of alcohol-induced tumor promotion.
Collapse
Affiliation(s)
- Danlei Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Fengyun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haifeng Ren
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Siying Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
14
|
Lei Y, Li X, Yuan F, Liu L, Zhang J, Yang Y, Zhao J, Han Y, Ren J, Fu X. Toll-like receptor 4 ablation rescues against paraquat-triggered myocardial dysfunction: Role of ER stress and apoptosis. ENVIRONMENTAL TOXICOLOGY 2017; 32:656-668. [PMID: 27442881 DOI: 10.1002/tox.22267] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 06/06/2023]
Abstract
Paraquat is a nitrogen herbicide imposing severe organ toxicity in human leading to acute lung injury and heart failure. The present study was designed to examine the impact of ablation of the innate proinflammatory mediator toll-like receptor 4 (TLR4) in paraquat-induced cardiac contractile dysfunction and the underlying mechanisms involved with a focus on endoplasmic reticulum (ER) stress and apoptosis. Adult male wild-type (WT) and TLR4 knockout (TLR4-/- ) mice were challenged with paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of myocardial and cardiomyocyte sarcomere function, ER stress, apoptosis and inflammation. Acute paraquat challenge exerted myocardial functional and geometric alterations including enlarged left ventricular end systolic diameter (LVESD), reduced fractional shortening, decreased sarcomere shortening, maximal velocities of sarcomere shortening and relengthening associated with unchanged LV posterior wall thickness, septal thickness, LV end diastolic diameter (LVEDD), heart rate, sarcomere length, time-to-peak shortening and time-to-90% relengthening. Although TLR4 ablation did not affect mechanical properties in the heart, it significantly attenuated or ablated paraquat-induced cardiac contractile anomalies. Moreover, paraquat imposed overt ER stress, apoptosis and inflammation as evidenced by upregulation of Bip, CHOP, Caspase-3, -9, Bax, Bad, and IL-1β, phosphorylation of PERK, eIF2α and IΚB, as well as activation of the stress molecules ERK and p38, with unchanged Caspase-8, Bcl2, TNF-α, p53, HMGB1, MyD88 and phosphorylation of Akt, GSK3β and JNK, the effects of which were attenuated or negated by TLR4 knockout. Taken together, our results suggested that TLR4 ablation alleviated paraquat-induced myocardial contractile dysfunction possibly through attenuation of ER stress, apoptosis and inflammation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 656-668, 2017.
Collapse
Affiliation(s)
- Yonghong Lei
- Institute of Wound Healing and Cell Biology Laboratory, the First Affiliated Hospital, Beijing, 100048, China
| | - Xue Li
- Cardiovascular Department, Tangdu Hospital, Xi'an, 710038, China
| | - Fang Yuan
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Lu Liu
- Department of Clinical Nutrition, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Juan Zhang
- Cardiovascular Department, Tangdu Hospital, Xi'an, 710038, China
| | - Yanping Yang
- Cardiovascular Department, Tangdu Hospital, Xi'an, 710038, China
| | - Jieqiong Zhao
- Cardiovascular Department, Tangdu Hospital, Xi'an, 710038, China
| | - Yan Han
- Department of Plastic Surgery, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Jun Ren
- Department of Cardiology, Fudan University, Zhongshan Hospital, Shanghai, 210032, China
| | - Xiaobing Fu
- Institute of Wound Healing and Cell Biology Laboratory, the First Affiliated Hospital, Beijing, 100048, China
| |
Collapse
|
15
|
Identification and Validation of HCC-specific Gene Transcriptional Signature for Tumor Antigen Discovery. Sci Rep 2016; 6:29258. [PMID: 27387388 PMCID: PMC4937235 DOI: 10.1038/srep29258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022] Open
Abstract
A novel two-step bioinformatics strategy was applied for identification of signatures with therapeutic implications in hepatitis-associated HCC. Transcriptional profiles from HBV- and HCV-associated HCC samples were compared with non-tumor liver controls. Resulting HCC modulated genes were subsequently compared with different non-tumor tissue samples. Two related signatures were identified, namely “HCC-associated” and “HCC-specific”. Expression data were validated by RNA-Seq analysis carried out on unrelated HCC samples and protein expression was confirmed according to The Human Protein Atlas" (http://proteinatlas.org/), a public repository of immunohistochemistry data. Among all, aldo-keto reductase family 1 member B10, and IGF2 mRNA-binding protein 3 were found strictly HCC-specific with no expression in 18/20 normal tissues. Target peptides for vaccine design were predicted for both proteins associated with the most prevalent HLA-class I and II alleles. The described novel strategy showed to be feasible for identification of HCC-specific proteins as highly potential target for HCC immunotherapy.
Collapse
|
16
|
Abstract
Toll-like receptor 4 (TLR4), one of pattern recognition receptors (PRRs) which can recognize pathogen-associated molecular patterns (PAMPs) and danger associated molecular patterns (DAMPs), regulates the innate immune system at early phase by presenting danger signals to the host. Because of its role in immune response, inflammation regulation and tumorigenesis, a growing number of oncology studies, including those on hepatocellular carcinoma (HCC), have started to focus on TLR4; however, there are very few studies on the specific mechanism of TLR4 in HCC. Pathogenesis of HCC involves cell damage and eventual cell malignant transformation caused by chronic inflammation, and this process involves many molecular pathways. Therefore, clarifying the role of TLR4 in the occurrence, development, metastasis and treatment of HCC has important biological significance and clinical value. This review reviews the role of TLR4 in HCC.
Collapse
|
17
|
Lopes JAG, Borges-Canha M, Pimentel-Nunes P. Innate immunity and hepatocarcinoma: Can toll-like receptors open the door to oncogenesis? World J Hepatol 2016; 8:162-182. [PMID: 26839640 PMCID: PMC4724579 DOI: 10.4254/wjh.v8.i3.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocarcinoma (HCC) is a highly prevalent cancer worldwide and its inflammatory background was established long ago. Recent studies have shown that innate immunity is closely related to the HCC carcinogenesis. An effective innate immunity response relies on the toll-like receptors (TLR) found in several different liver cells which, through different ligands and many signaling pathways can elicit, not only a pro-inflammatory but also an oncogenic or anti-oncogenic response. Our aim was to study the role of TLRs in the liver oncogenesis and as a consequence their value as potential therapeutic targets. We performed a systematic review of PubMed searching for original articles studying the relationship between HCC and TLRs until March 2015. TLR2 appears to be a fundamental stress-sensor as its absence reveals an augmented tendency to accumulate DNA-damages and to cell survival. However, pathways are still not fully understood as TLR2 up-regulation was also associated to enhanced tumorigenesis. TLR3 has a well-known protective role influencing crucial processes like angiogenesis, cell growth or proliferation. TLR4 works as an interesting epithelial-mesenchymal transition’s inducer and a promoter of cell survival probably inducing HCC carcinogenesis even though an anti-cancer role has already been observed. TLR9’s influence on carcinogenesis is also controversial and despite a potential anti-cancer capacity, a pro-tumorigenic role is more likely. Genetic polymorphisms in some TLRs have been found and its influence on the risk of HCC has been reported. As therapeutic targets, TLRs are already in use and have a great potential. In conclusion, TLRs have been shown to be an interesting influence on the HCC’s microenvironment, with TLR3 clearly determining an anti-tumour influence. TLR4 and TLR9 are considered to have a positive relationship with tumour development even though, in each of them anti-tumorigenic signals have been described. TLR2 presents a more ambiguous role, possibly depending on the stage of the inflammation-HCC axis.
Collapse
|
18
|
Hsiao CC, Chen PH, Cheng CI, Tsai MS, Chang CY, Lu SC, Hsieh MC, Lin YC, Lee PH, Kao YH. Toll-like receptor-4 is a target for suppression of proliferation and chemoresistance in HepG2 hepatoblastoma cells. Cancer Lett 2015; 368:144-152. [DOI: 10.1016/j.canlet.2015.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 02/07/2023]
|
19
|
Siddique HR, Feldman DE, Chen CL, Punj V, Tokumitsu H, Machida K. NUMB phosphorylation destabilizes p53 and promotes self-renewal of tumor-initiating cells by a NANOG-dependent mechanism in liver cancer. Hepatology 2015; 62:1466-79. [PMID: 26174965 PMCID: PMC4618247 DOI: 10.1002/hep.27987] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/05/2015] [Indexed: 12/22/2022]
Abstract
UNLABELLED Stem cell populations are maintained through self-renewing divisions in which one daughter cell commits to a particular fate whereas the other retains the multipotent characteristics of its parent. The NUMB, a tumor suppressor, in conjunction with another tumor-suppressor protein, p53, preserves this property and acts as a barrier against deregulated expansion of tumor-associated stem cells. In this context, NUMB-p53 interaction plays a crucial role to maintain the proper homeostasis of both stem cells, as well as differentiated cells. Because the molecular mechanism governing the assembly and stability of the NUMB-p53 interaction/complex are poorly understood, we tried to identify the molecule(s) that govern this process. Using cancer cell lines, tumor-initiating cells (TICs) of liver, the mouse model, and clinical samples, we identified that phosphorylations of NUMB destabilize p53 and promote self-renewal of TICs in a pluripotency-associated transcription factor NANOG-dependent manner. NANOG phosphorylates NUMB by atypical protein kinase C zeta (aPKCζ), through the direct induction of Aurora A kinase (AURKA) and the repression of an aPKCζ inhibitor, lethal (2) giant larvae. By radioactivity-based kinase activity assays, we showed that NANOG enhances kinase activities of both AURKA and aPKCζ, an important upstream process for NUMB phosphorylation. Phosphorylation of NUMB by aPKCζ destabilizes the NUMB-p53 interaction and p53 proteolysis and deregulates self-renewal in TICs. CONCLUSION Post-translational modification of NUMB by the NANOG-AURKA-aPKCζ pathway is an important event in TIC self-renewal and tumorigenesis. Hence, the NANOG-NUMB-p53 signaling axis is an important regulatory pathway for TIC events in TIC self-renewal and liver tumorigenesis, suggesting a therapeutic strategy by targeting NUMB phosphorylation. Further in-depth in vivo and clinical studies are warranted to verify this suggestion.
Collapse
Affiliation(s)
- Hifzur R. Siddique
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine
| | - Douglas E. Feldman
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine
| | - Chia-Lin Chen
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine
| | - Vasu Punj
- Division of Hematology and Bioinformatics Core, Norris Cancer Center, University of Southern California Keck School of Medicine
| | - Hiroshi Tokumitsu
- Division of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine
- Southern California Research Center for ALPD and Cirrhosis
| |
Collapse
|