1
|
Teis A, Castelblanco E, Cediel G, Amigó N, Julve J, Ribalta J, Guardiola M, Franch J, Bermúdez-López M, Codina P, Lupón J, Mauricio D, Alonso N, Bayés-Genís A. 1H-magnetic resonance spectroscopy lipoprotein profile in patients with chronic heart failure versus matched controls. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2022; 75:864-873. [PMID: 34716123 DOI: 10.1016/j.rec.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION AND OBJECTIVES Advanced lipoprotein phenotyping is a better predictor of atherosclerotic cardiovascular risk than cholesterol concentration alone. Lipoprotein profiling in heart failure (HF) is incompletely characterized. We aimed to describe the lipoprotein profile in patients with chronic HF compared with a matched control population. METHODS This cross-sectional study was performed from May 2006 to April 2014 and included ambulatory patients with chronic HF. Lipid concentrations and the size of main lipoprotein fractions (high-density lipoprotein [HDL], low-density lipoprotein [LDL], and very low-density lipoprotein) and the particle concentration of their 3 subfractions (large, medium and small) were assessed using 1H magnetic resonance spectroscopy. RESULTS The 429 included patients with chronic HF were compared with 428 matched controls. Patients with chronic HF had lower total cholesterol and lower mean LDL (1115 vs 1352 nmol/L; P<.001) and HDL (25.7 vs 27.9μmol/L; P <.001) particle concentrations, with this last difference being mediated by a significantly lower concentration of the small subfraction of HDL (15.2 vs 18.6μmol/L; P <.001). Mean very low-density lipoprotein, LDL, and HDL particle size was significantly higher in patients with HF vs controls. All HDL-related differences from controls persisted after adjustment for New York Heart Association functional class or body mass index. We found strong negative correlations of known cardiac biomarkers (N-terminal pro-brain natriuretic peptide and interleukin-1 receptor-like 1) with total and small LDL and HDL fractions and HDL particle size. CONCLUSIONS Patients with chronic HF significantly differ in their lipoprotein profile compared with unaffected controls. Further research is needed to better understand the pathogenic relevance of this difference.
Collapse
Affiliation(s)
- Albert Teis
- Institut del Cor, Departament de Cardiologia, Hospital Universitari Germans Trias, Badalona, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esmeralda Castelblanco
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Institut de Recerca i d'Investigació Biomèdica de l'Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; Departament d'Endocrinologia i Nutrició, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Germán Cediel
- Institut del Cor, Departament de Cardiologia, Hospital Universitari Germans Trias, Badalona, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain; Institut del Cor, Unitat d'Insuficiència Cardiaca, Hospital Universitari Germans Trias, Badalona, Barcelona, Spain
| | - Nuria Amigó
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Biosfer Teslab SL, Reus, Tarragona, Spain; Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - Josep Julve
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Institut de Recerca i d'Investigació Biomèdica de l'Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Josep Ribalta
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Unitat de Recerca en Lípids i Aterosclerosi, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Tarragona, Spain; Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - Montse Guardiola
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Unitat de Recerca en Lípids i Aterosclerosi, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Tarragona, Spain; Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - Josep Franch
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; DAP-Cat Group, Unitat de Suport a la Recerca, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi i Gurina (IDIAPJGol), Barcelona, Spain
| | - Marcelino Bermúdez-López
- Grupo Investigación Translacional Vascular y Renal, IRBLleida, Red de Investigación Renal (RedInRen-ISCIII), Lleida, Spain
| | - Pau Codina
- Institut del Cor, Departament de Cardiologia, Hospital Universitari Germans Trias, Badalona, Barcelona, Spain; Institut del Cor, Unitat d'Insuficiència Cardiaca, Hospital Universitari Germans Trias, Badalona, Barcelona, Spain
| | - Josep Lupón
- Institut del Cor, Departament de Cardiologia, Hospital Universitari Germans Trias, Badalona, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain; Institut del Cor, Unitat d'Insuficiència Cardiaca, Hospital Universitari Germans Trias, Badalona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Dídac Mauricio
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Institut de Recerca i d'Investigació Biomèdica de l'Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; Institut de Recerca Biomèdica de Lleida Dr. Pifarré (IRB Lleida), Universitat de Lleida, Lleida, Spain
| | - Nuria Alonso
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Departament d'Endocrinologia i Nutrició, Hospital Universitari Germans Trias, Badalona, Barcelona, Spain.
| | - Antoni Bayés-Genís
- Institut del Cor, Departament de Cardiologia, Hospital Universitari Germans Trias, Badalona, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| |
Collapse
|
2
|
Adorni MP, Palumbo M, Marchi C, Zimetti F, Ossoli A, Turri M, Bernini F, Hollan I, Moláček J, Treska V, Ronda N. HDL metabolism and functions impacting on cell cholesterol homeostasis are specifically altered in patients with abdominal aortic aneurysm. Front Immunol 2022; 13:935241. [PMID: 36172376 PMCID: PMC9510680 DOI: 10.3389/fimmu.2022.935241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe etiopathogenesis of abdominal aortic aneurysm (AAA) is still unclarified, but vascular inflammation and matrix metalloproteases activation have a recognized role in AAA development and progression. Circulating lipoproteins are involved in tissue inflammation and repair, particularly through the regulation of intracellular cholesterol, whose excess is associated to cell damage and proinflammatory activation. We analyzed lipoprotein metabolism and function in AAA and in control vasculopathic patients, to highlight possible non-atherosclerosis-related, specific abnormalities.MethodsWe measured fluorometrically serum esterified/total cholesterol ratio, as an index of lecithin-cholesterol acyltransferase (LCAT) activity, and cholesteryl ester transfer protein (CETP) activity in patients referred to vascular surgery either for AAA (n=30) or stenotic aortic/peripheral atherosclerosis (n=21) having similar burden of cardiovascular risk factors and disease. We measured high-density lipoprotein (HDL)-cholesterol efflux capacity (CEC), through the ATP-binding cassette G1 (ABCG1) and A1 (ABCA1) pathways and serum cell cholesterol loading capacity (CLC), by radioisotopic and fluorimetric methods, respectively.ResultsWe found higher LCAT (+23%; p < 0.0001) and CETP (+49%; p < 0.0001) activity in AAA sera. HDL ABCG1-CEC was lower (−16%; p < 0.001) and ABCA1-CEC was higher (+31.7%; p < 0.0001) in AAA. Stratification suggests that smoking may partly contribute to these modifications. CEC and CETP activity correlated with CLC only in AAA.ConclusionsWe demonstrated that compared to patients with stenotic atherosclerosis, patients with AAA had altered HDL metabolism and functions involved in their anti-inflammatory and tissue repair activity, particularly through the ABCG1-related intracellular signaling. Clarifying the relevance of this mechanism for AAA evolution might help in developing new diagnostic parameters and therapeutic targets for the early management of this condition.
Collapse
Affiliation(s)
- Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Via Volturno 39/F, Parma, Italy
| | - Marcella Palumbo
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma, Italy
| | - Cinzia Marchi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma, Italy
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma, Italy
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Marta Turri
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Franco Bernini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma, Italy
- *Correspondence: Franco Bernini,
| | - Ivana Hollan
- Lillehammer Hospital for Rheumatic Diseases, M. Grundtvigs veg 6, Lillehammer, Norway and Brigham and Women’s Hospital, Cardiology Division, Boston, United States
| | - Jiří Moláček
- Department of Vascular Surgery, Faculty of Medicine and University Hospital in Plzen, Charles University Ovocný trh 5 Prague 1, Plzen, Czechia
| | - Vladislav Treska
- Department of Vascular Surgery, Faculty of Medicine and University Hospital in Plzen, Charles University Ovocný trh 5 Prague 1, Plzen, Czechia
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma, Italy
| |
Collapse
|
3
|
Dalakoura-Karagkouni K, Tiniakou I, Zannis VI, Kardassis D. Using adenovirus-mediated gene transfer to study the effect of myeloperoxidase on plasma lipid levels, HDL structure and functionality in mice expressing human apoA-I forms. Biochem Biophys Res Commun 2022; 622:108-114. [PMID: 35843089 DOI: 10.1016/j.bbrc.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
Abstract
Apolipoprotein A-I (apoA-I), the main protein component of High-Density Lipoprotein (HDL), is modified in plasma and the arterial wall by various enzymes. Myeloperoxidase (MPO), a leukocyte-derived peroxidase, is highly expressed during inflammation and associates with HDL reducing its functionality and contributing to atherosclerosis. In the present study we sought to explore further the effect of MPO on HDL structure and functionality in vivo using adenovirus-mediated gene transfer of human MPO combined with human apoA-I forms containing substitutions at MPO-sensitive sites or wild type apoA-I. We found that overexpression of MPO in mice significantly increased plasma apoA-I and HDL levels without affecting the expression of genes involved in HDL biogenesis or catabolism in the liver. Overexpression of MPO in the liver reduced the expression of pro-inflammatory genes and increased or did not affect the expression of anti-inflammatory genes suggesting that MPO had no toxic effects in this organ. In the plasma of mice overexpressing MPO, no significant alterations in HDL size or electrophoretic mobility was observed with the exception of mice expressing apoA-I (M148A) which showed enriched pre-β relative to α HDL particles, suggesting that the apoA-I (M148A) mutation may interfere with HDL remodelling. Overexpression of MPO was associated with reduced anti-oxidant capacity of HDL particles in all mice. Interestingly, HDL particles bearing apoA-I (Y192A) showed enhanced ABCA1-dependent cholesterol efflux from macrophages which was not affected by MPO and these mice had reduced levels of LDL-c. These findings provide new insights on the role of specific amino acid residues of apoA-I in HDL structure and function following modification by MPO. This knowledge may facilitate the development of novel therapies based on improved HDL forms for patients with chronic diseases that are characterized by dysfunctional HDL.
Collapse
Affiliation(s)
- Katerina Dalakoura-Karagkouni
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, 71003, Crete, Greece
| | - Ioanna Tiniakou
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, 71003, Crete, Greece
| | - Vassilis I Zannis
- Section of Molecular Genetics, Whitaker Cardiovascular Institute, Boston University Medical Center, Boston, MA, 02118, USA
| | - Dimitris Kardassis
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, 71003, Crete, Greece.
| |
Collapse
|
4
|
Role of Oxidative Stress in Diabetic Cardiomyopathy. Antioxidants (Basel) 2022; 11:antiox11040784. [PMID: 35453469 PMCID: PMC9030255 DOI: 10.3390/antiox11040784] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes is a redox disease. Oxidative stress and chronic inflammation induce a switch of metabolic homeostatic set points, leading to glucose intolerance. Several diabetes-specific mechanisms contribute to prominent oxidative distress in the heart, resulting in the development of diabetic cardiomyopathy. Mitochondrial overproduction of reactive oxygen species in diabetic subjects is not only caused by intracellular hyperglycemia in the microvasculature but is also the result of increased fatty oxidation and lipotoxicity in cardiomyocytes. Mitochondrial overproduction of superoxide anion radicals induces, via inhibition of glyceraldehyde 3-phosphate dehydrogenase, an increased polyol pathway flux, increased formation of advanced glycation end-products (AGE) and activation of the receptor for AGE (RAGE), activation of protein kinase C isoforms, and an increased hexosamine pathway flux. These pathways not only directly contribute to diabetic cardiomyopathy but are themselves a source of additional reactive oxygen species. Reactive oxygen species and oxidative distress lead to cell dysfunction and cellular injury not only via protein oxidation, lipid peroxidation, DNA damage, and oxidative changes in microRNAs but also via activation of stress-sensitive pathways and redox regulation. Investigations in animal models of diabetic cardiomyopathy have consistently demonstrated that increased expression of the primary antioxidant enzymes attenuates myocardial pathology and improves cardiac function.
Collapse
|
5
|
Diab A, Valenzuela Ripoll C, Guo Z, Javaheri A. HDL Composition, Heart Failure, and Its Comorbidities. Front Cardiovasc Med 2022; 9:846990. [PMID: 35350538 PMCID: PMC8958020 DOI: 10.3389/fcvm.2022.846990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although research on high-density lipoprotein (HDL) has historically focused on atherosclerotic coronary disease, there exists untapped potential of HDL biology for the treatment of heart failure. Anti-oxidant, anti-inflammatory, and endothelial protective properties of HDL could impact heart failure pathogenesis. HDL-associated proteins such as apolipoprotein A-I and M may have significant therapeutic effects on the myocardium, in part by modulating signal transduction pathways and sphingosine-1-phosphate biology. Furthermore, because heart failure is a complex syndrome characterized by multiple comorbidities, there are complex interactions between heart failure, its comorbidities, and lipoprotein homeostatic mechanisms. In this review, we will discuss the effects of heart failure and associated comorbidities on HDL, explore potential cardioprotective properties of HDL, and review novel HDL therapeutic targets in heart failure.
Collapse
|
6
|
Perfil lipoproteico por espectroscopia nuclear magnética en pacientes con insuficiencia cardiaca crónica comparado con controles apareados. Rev Esp Cardiol 2022. [DOI: 10.1016/j.recesp.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
De Geest B, Mishra M. Role of high-density lipoproteins in cardioprotection and in reverse remodeling: Therapeutic implications. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159022. [PMID: 34333125 DOI: 10.1016/j.bbalip.2021.159022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Cardioprotection includes all mechanisms that contribute to preservation of the heart by reducing or even preventing myocardial damage. High-density lipoproteins (HDLs) are circulating multimolecular platforms that exert a multitude of effects on cardiomyocytes and nonmyocyte cells in the myocardium leading to preservation of cardiac structure and function. Animal intervention studies applying HDL-targeted therapies have provided consistent evidence that HDLs protect against ischemia-reperfusion injury, leading to smaller myocardial infarctions, and that HDLs attenuate infarct expansion and cardiac remodeling post-myocardial infarction. These beneficial effects of HDLs are not restricted to prevention of development of ischemic cardiomyopathy but also apply to prevention of pathological hypertrophy and adverse remodeling in the presence of diabetes or in the presence of pressure overload. Moreover, HDLs can induce reverse remodeling characterized by a reduction of cardiac hypertrophy, a decrease of myocardial fibrosis, a regression of capillary rarefaction, and a restoration of cardiac function. HDL-targeted interventions are an effective treatment for heart failure in animal models. In conclusion, whereas protective effects of HDLs on coronary arteries remain essentially unproven till now, the potential for clinical translation of HDL-targeted interventions in prevention of cardiomyopathy and in treatment of heart failure is supported by consistent evidence from animal intervention studies.
Collapse
Affiliation(s)
- Bart De Geest
- Centre for Molecular and Vascular Biology, Catholic University of Leuven, Leuven, Belgium.
| | - Mudit Mishra
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
8
|
Bonacina F, Pirillo A, Catapano AL, Norata GD. HDL in Immune-Inflammatory Responses: Implications beyond Cardiovascular Diseases. Cells 2021; 10:cells10051061. [PMID: 33947039 PMCID: PMC8146776 DOI: 10.3390/cells10051061] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
High density lipoproteins (HDL) are heterogeneous particles composed by a vast array of proteins and lipids, mostly recognized for their cardiovascular (CV) protective effects. However, evidences from basic to clinical research have contributed to depict a role of HDL in the modulation of immune-inflammatory response thus paving the road to investigate their involvement in other diseases beyond those related to the CV system. HDL-C levels and HDL composition are indeed altered in patients with autoimmune diseases and usually associated to disease severity. At molecular levels, HDL have been shown to modulate the anti-inflammatory potential of endothelial cells and, by controlling the amount of cellular cholesterol, to interfere with the signaling through plasma membrane lipid rafts in immune cells. These findings, coupled to observations acquired from subjects carrying mutations in genes related to HDL system, have helped to elucidate the contribution of HDL beyond cholesterol efflux thus posing HDL-based therapies as a compelling interventional approach to limit the inflammatory burden of immune-inflammatory diseases.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| | - Alberico L. Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
- Correspondence: (A.L.C.); (G.D.N.)
| | - Giuseppe D. Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- Correspondence: (A.L.C.); (G.D.N.)
| |
Collapse
|
9
|
Emmens JE, Jia C, Ng LL, van Veldhuisen DJ, Dickstein K, Anker SD, Lang CC, Filippatos G, Cleland JGF, Metra M, Voors AA, de Boer RA, Tietge UJF. Impaired High-Density Lipoprotein Function in Patients With Heart Failure. J Am Heart Assoc 2021; 10:e019123. [PMID: 33870728 PMCID: PMC8200730 DOI: 10.1161/jaha.120.019123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background We recently showed that, in patients with heart failure, lower high‐density lipoprotein (HDL) cholesterol concentration was a strong predictor of death or hospitalization for heart failure. In a follow‐up study, we suggested that this association could be partly explained by HDL proteome composition. However, whether the emerging concept of HDL function contributes to the prognosis of patients with heart failure has not been addressed. Methods and Results We measured 3 key protective HDL function metrics, namely, cholesterol efflux, antioxidative capacity, and anti‐inflammatory capacity, at baseline and after 9 months in 446 randomly selected patients with heart failure from BIOSTAT‐CHF (A Systems Biology Study to Tailored Treatment in Chronic Heart Failure). Additionally, the relationship between HDL functionality and HDL proteome composition was determined in 86 patients with heart failure. From baseline to 9 months, HDL cholesterol concentrations were unchanged, but HDL cholesterol efflux and anti‐inflammatory capacity declined (both P<0.001). In contrast, antioxidative capacity increased (P<0.001). Higher HDL cholesterol efflux was associated with lower mortality after adjusting for BIOSTAT‐CHF risk models and log HDL cholesterol (hazard ratio, 0.81; 95% CI, 0.71–0.92; P=0.001). Other functionality measures were not associated with outcome. Several HDL proteins correlated with HDL functionality, mainly with cholesterol efflux. Apolipoprotein A1 emerged as the main protein associated with all 3 HDL functionality measures. Conclusions Better HDL cholesterol efflux at baseline was associated with lower mortality during follow‐up, independent of HDL cholesterol. HDL cholesterol efflux and anti‐inflammatory capacity declined during follow‐up in patients with heart failure. Measures of HDL function may provide clinical information in addition to HDL cholesterol concentration in patients with heart failure.
Collapse
Affiliation(s)
- Johanna E Emmens
- Department of Cardiology University of Groningen Groningen The Netherlands
| | - Congzhuo Jia
- Department of Pediatrics University of Groningen Groningen The Netherlands.,Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| | - Leong L Ng
- Department of Cardiovascular Sciences Glenfield HospitalUniversity of Leicester Leicester UK.,NIHR Leicester Biomedical Research Centre Leicester UK
| | | | - Kenneth Dickstein
- University of Bergen Bergen Norway.,Stavanger University Hospital Stavanger Norway
| | - Stefan D Anker
- Department of Cardiology (CVK) Berlin Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany.,German Centre for Cardiovascular Research (DZHK) partner site Berlin Charité Universitätsmedizin Berlin Berlin Germany.,Department of Cardiology and Pneumology University Medical Center Göttingen (UMG) Göttingen Germany
| | - Chim C Lang
- School of Medicine Centre for Cardiovascular and Lung Biology Division of Molecular and Clinical Medicine University of Dundee Dundee UK
| | - Gerasimos Filippatos
- National and Kapodistrian University of AthensSchool of Medicine Athens Greece.,University of CyprusSchool of Medicine Nicosia Cyprus
| | - John G F Cleland
- National Heart & Lung InstituteRoyal Brompton & Harefield HospitalsImperial College London UK.,Robertson Institute of Biostatistics and Clinical Trials Unit University of Glasgow Glasgow UK
| | - Marco Metra
- Institute of Cardiology Department of Medical and Surgical Specialties Radiological Sciences and Public Health University of Brescia Brescia Italy
| | - Adriaan A Voors
- Department of Cardiology University of Groningen Groningen The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology University of Groningen Groningen The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics University of Groningen Groningen The Netherlands.,Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden.,Clinical Chemistry Karolinska University LaboratoryKarolinska University Hospital Stockholm SE-141 86 Sweden
| |
Collapse
|
10
|
High-Density Lipoprotein-Targeted Therapies for Heart Failure. Biomedicines 2020; 8:biomedicines8120620. [PMID: 33339429 PMCID: PMC7767106 DOI: 10.3390/biomedicines8120620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
The main and common constituents of high-density lipoproteins (HDLs) are apolipoprotein A-I, cholesterol, and phospholipids. Biochemical heterogeneity of HDL particles is based on the variable presence of one or more representatives of at least 180 proteins, 200 lipid species, and 20 micro RNAs. HDLs are circulating multimolecular platforms that perform divergent functions whereby the potential of HDL-targeted interventions for treatment of heart failure can be postulated based on its pleiotropic effects. Several murine studies have shown that HDLs exert effects on the myocardium, which are completely independent of any impact on coronary arteries. Overall, HDL-targeted therapies exert a direct positive lusitropic effect on the myocardium, inhibit the development of cardiac hypertrophy, suppress interstitial and perivascular myocardial fibrosis, increase capillary density in the myocardium, and prevent the occurrence of heart failure. In four distinct murine models, HDL-targeted interventions were shown to be a successful treatment for both pre-existing heart failure with reduced ejection fraction (HFrEF) and pre-existing heart failure with preserved ejection fraction (HFrEF). Until now, the effect of HDL-targeted interventions has not been evaluated in randomized clinical trials in heart failure patients. As HFpEF represents an important unmet therapeutic need, this is likely the preferred therapeutic domain for clinical translation.
Collapse
|
11
|
Serum level of HDL particles are independently associated with long-term prognosis in patients with coronary artery disease: The GENES study. Sci Rep 2020; 10:8138. [PMID: 32424189 PMCID: PMC7234989 DOI: 10.1038/s41598-020-65100-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/27/2020] [Indexed: 01/07/2023] Open
Abstract
HDL-Cholesterol (HDL-C) is not an accurate surrogate marker to measure the cardioprotective functions of HDL in coronary artery diseases (CAD) patients. Hence, measurement of other HDL-related parameters may have prognostic superiority over HDL-C. In this work, we examined the predictive value of HDL particles profile for long-term mortality in CAD patients and to compare its informative value to that of HDL-C and apoA-I. HDL particles profiles were measured by nuclear magnetic resonance (NMR) spectroscopy in 214 male participants with stable CAD (45-74 years). Median follow up was 12.5 years with a 36.4% mortality rate. Cardiovascular mortality accounted for 64.5%. Mean concentrations of total HDL particles (HDL-P), small-sized HDL (SHDL-P) and apoA-I were lower in deceased than in surviving patients whereas no difference was observed according to HDL-C and large HDL particles. All NMR-HDL measures were correlated between themselves and with other HDL markers (HDL-C, apoA-I and LpA-I). In a multivariate model adjusted for cardiovascular risk factors and bioclinical variables, HDL-P and SHDL-P displayed the strongest inverse association with all-cause and cardiovascular mortality. Weaker associations were recorded for apoA-I. Based on our results, we conclude that HDL particle profile measured by NMR spectroscopy should be considered to better stratify risk in population at high risk or in the setting of pharmacotherapy.
Collapse
|
12
|
Kluck GEG, Durham KK, Yoo JA, Trigatti BL. High Density Lipoprotein and Its Precursor Protein Apolipoprotein A1 as Potential Therapeutics to Prevent Anthracycline Associated Cardiotoxicity. Front Cardiovasc Med 2020; 7:65. [PMID: 32411725 PMCID: PMC7198830 DOI: 10.3389/fcvm.2020.00065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/06/2020] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular disease and cancer are the leading causes of death in developed societies. Despite their effectiveness, many cancer therapies exhibit deleterious cardiovascular side effects such as cardiotoxicity and heart failure. The cardiotoxic effects of anthracyclines such as doxorubicin are the most well-characterized of cardiotoxic anti-cancer therapies. While other anti-neoplastic drugs also induce cardiotoxicity, often leading to heart failure, they are beyond the scope of this review. This review first summarizes the mechanisms of doxorubicin-induced cardiotoxicity. It then reviews emerging preclinical evidence that high density lipoprotein and its precursor protein apolipoprotein A1, which are known for their protective effects against ischemic cardiovascular disease, may also protect against doxorubicin-induced cardiotoxicity both directly and indirectly, when used therapeutically.
Collapse
Affiliation(s)
- George E. G. Kluck
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Kristina K. Durham
- Faculty of Health Sciences, Institute of Applied Health Sciences, School of Rehabilitation Sciences, McMaster University, Hamilton, ON, Canada
| | - Jeong-Ah Yoo
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Bernardo L. Trigatti
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| |
Collapse
|
13
|
Busatto S, Zendrini A, Radeghieri A, Paolini L, Romano M, Presta M, Bergese P. The nanostructured secretome. Biomater Sci 2020; 8:39-63. [PMID: 31799977 DOI: 10.1039/c9bm01007f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term secretome, which traditionally strictly refers to single proteins, should be expanded to also include the great variety of nanoparticles secreted by cells (secNPs) into the extracellular space, which ranges from high-density lipoproteins of a few nanometers to extracellular vesicles and fat globules of hundreds of nanometers. Widening the definition is urged by the ever-increasing understanding of the role of secNPs as regulators/mediators of key physiological and pathological processes, which also puts them in the running as breakthrough cell-free therapeutics and diagnostics. "Made by cells for cells", secNPs are envisioned as a sweeping paradigm shift in nanomedicine, promising to overcome the limitations of synthetic nanoparticles by unsurpassed circulation and targeting abilities, precision and sustainability. From a longer/wider perspective, advanced manipulation would possibly make secNPs available as building blocks for future "biogenic" nanotechnology. However, the current knowledge is fragmented and sectorial (the majority of the studies being focused on a specific biological and/or medical aspect of a given secNP class or subclass), the understanding of the nanoscale and interfacial properties is limited and the development of bioprocesses and regulatory initiatives is in the early days. We believe that new multidisciplinary competencies and synergistic efforts need to be attracted and augmented to move forward. This review will contribute to the effort by attempting for the first time to rationally gather and elaborate secNPs and their traits into a unique concise framework - from biogenesis to colloidal properties, engineering and clinical translation - disclosing the overall view and easing comparative analysis and future exploitation.
Collapse
Affiliation(s)
- S Busatto
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Tian M, Ticer T, Wang Q, Walker S, Pham A, Suh A, Busatto S, Davidovich I, Al-Kharboosh R, Lewis-Tuffin L, Ji B, Quinones-Hinojosa A, Talmon Y, Shapiro S, Rückert F, Wolfram J. Adipose-Derived Biogenic Nanoparticles for Suppression of Inflammation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904064. [PMID: 32067382 DOI: 10.1002/smll.201904064] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Extracellular vesicles secreted from adipose-derived mesenchymal stem cells (ADSCs) have therapeutic effects in inflammatory diseases. However, production of extracellular vesicles (EVs) from ADSCs is costly, inefficient, and time consuming. The anti-inflammatory properties of adipose tissue-derived EVs and other biogenic nanoparticles have not been explored. In this study, biogenic nanoparticles are obtained directly from lipoaspirate, an easily accessible and abundant source of biological material. Compared to ADSC-EVs, lipoaspirate nanoparticles (Lipo-NPs) take less time to process (hours compared to months) and cost less to produce (clinical-grade cell culture facilities are not required). The physicochemical characteristics and anti-inflammatory properties of Lipo-NPs are evaluated and compared to those of patient-matched ADSC-EVs. Moreover, guanabenz loading in Lipo-NPs is evaluated for enhanced anti-inflammatory effects. Apolipoprotein E and glycerolipids are enriched in Lipo-NPs compared to ADSC-EVs. Additionally, the uptake of Lipo-NPs in hepatocytes and macrophages is higher. Lipo-NPs and ADSC-EVs have comparable protective and anti-inflammatory effects. Specifically, Lipo-NPs reduce toll-like receptor 4-induced secretion of inflammatory cytokines in macrophages. Guanabenz-loaded Lipo-NPs further suppress inflammatory pathways, suggesting that this combination therapy can have promising applications for inflammatory diseases.
Collapse
Affiliation(s)
- Ming Tian
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Surgery, Surgical Lab, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Taylor Ticer
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Qikun Wang
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Surgery, Surgical Lab, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Sierra Walker
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Anthony Pham
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Annie Suh
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sara Busatto
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Rawan Al-Kharboosh
- Department of Neurosurgery, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | | | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shane Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Felix Rückert
- Department of Surgery, Surgical Lab, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|
15
|
Advances in HDL: Much More than Lipid Transporters. Int J Mol Sci 2020; 21:ijms21030732. [PMID: 31979129 PMCID: PMC7037660 DOI: 10.3390/ijms21030732] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 01/07/2023] Open
Abstract
High Density Lipoprotein (HDL) particles, beyond serving as lipid transporters and playing a key role in reverse cholesterol transport, carry a highly variable number of proteins, micro-RNAs, vitamins, and hormones, which endow them with the ability to mediate a plethora of cellular and molecular mechanisms that promote cardiovascular health. It is becoming increasingly evident, however, that the presence of cardiovascular risk factors and co-morbidities alters HDLs cargo and protective functions. This concept has led to the notion that metrics other than HDL-cholesterol levels, such as HDL functionality and composition, may better capture HDL cardiovascular protection. On the other hand, the potential of HDL as natural delivery carriers has also fostered the design of engineered HDL-mimetics aiming to improve HDL efficacy or as drug-delivery agents with therapeutic potential. In this paper, we first provide an overview of the molecules known to be transported by HDL particles and mainly discuss their functions in the cardiovascular system. Second, we describe the impact of cardiovascular risk factors and co-morbidities on HDL remodeling. Finally, we review the currently developed HDL-based approaches.
Collapse
|
16
|
Fellström B, Helmersson-Karlqvist J, Lind L, Soveri I, Wu PH, Thulin M, Ärnlöv J, Larsson A. Associations Between Apolipoprotein A1, High-Density Lipoprotein Cholesterol, and Urinary Cytokine Levels in Elderly Males and Females. J Interferon Cytokine Res 2019; 40:71-74. [PMID: 31599692 DOI: 10.1089/jir.2019.0074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There exists a close relationship between cardiovascular diseases and chronic kidney disease. Apolipoprotein A1 and high-density lipoprotein (HDL) cholesterol are widely used as cardiovascular risk markers but they also have anti-inflammatory properties. The aim of this study was to investigate any associations between HDL levels and cytokine levels in urine. We randomly selected 90 urine samples from the Prospective Investigation of the Vasculature in Uppsala Seniors Study (41 males and 49 females). The samples were analyzed with 2 multiplex assays, Multiplex Inflammation I and Cardiovascular II kits (Olink Bioscience, Uppsala, Sweden). We analyzed the correlations between 158 cytokines in urine with apolipoprotein A1, HDL cholesterol, apolipoprotein B, and low-density lipoprotein cholesterol. There were strong correlations for apolipoprotein A1 and HDL cholesterol with individual cytokines. After adjustment for multiplicity testing, there were 33 significant correlations between apolipoprotein A1 and cytokine levels and 14 of these were also significantly correlated with HDL cholesterol. The strongest associations were observed for IL-1α, SPON2, RAGE, PAR-1, TRAIL-R2, IL-4RA, TNFRSF11A, and SCF. A total of 28 out of 33 correlations were negative, indicating a negative relationship between apolipoprotein A1 and urinary cytokines. The study shows a negative correlation between apolipoprotein A1 and HDL cholesterol and urinary cytokine levels. The finding is in agreement with the anti-inflammatory properties of HDL.
Collapse
Affiliation(s)
- Bengt Fellström
- Department of Medical Sciences, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | | | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Inga Soveri
- Department of Medical Sciences, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Ping-Hsun Wu
- Department of Medical Sciences, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Måns Thulin
- Institution of Statistics, Uppsala University, Uppsala, Sweden
| | - Johan Ärnlöv
- Department of School of Health and Social Studies, Dalarna University, Falun, Sweden.,Division of Family Medicine, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
17
|
Kone A, Cherif MS, Prabin D, Dumre SP, Doumbouya AI, Kapche DF, Camara F, Saousan S, Sara K, Diakite M, Cisse M, Azzouzi L, Habbal R. Modifiable predictors of severe heart failure in Morocco: a descriptive study using routinely collected health data. Pan Afr Med J 2019; 34:6. [PMID: 31762875 PMCID: PMC6850741 DOI: 10.11604/pamj.2019.34.6.17998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/03/2019] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Heart Failure (HF) is a growing public health concern in Morocco and there is a striking paucity on determinants of severe HF (SHF) in this population. The aim of this study was to identify patients admitted with HF at Ibn Rochd Hospital, Casablanca from 2011 onwards, when electronic record keeping began. METHODS A total of 105 patients underwent a series of cardiological examinations between July 2011 and January 2014. The New York Heart Association (NYHA) criteria was used to evaluate the severity of HF. Patients with NYHA classification gradings of I and II were defined as having moderate HF (MHF) and those graded as III and IV were defined as having a SHF. Univariable and multivariable risk factors associated with SHF were explored using logistic regression. The results were reported following the RECORD (Reporting of studies Conducted using Observational Routinely-collected Data) statement. RESULTS A total of 24 (33%) patients were identified as having a SHF. Four predictors of SHF were identified in univariate analysis: haemoglobin <12g/dL, neutrophil-to-lymphocyte ratio (NLR) >3, mean corpuscular haemoglobin concentration (MCHC) <32 picolitre, and high density lipoprotein (HDL) <0.35 (mmol/L). Only NLR>3 and HDL <0.35 mmol/L remained independent predictors in multivariable analysis. Patients with NLR >3 were at 6-fold increased odds of SHF [adjusted odds ratio (AOR): 6.78, 95% confidence interval (CI): 1.40-32.80, p=0.017], and those with HDL<0.35 (mmol/L) were at 10-fold increased odds of SHF [AOR: 10.11, 95% CI: 2.26-45.27, p=0.002]. CONCLUSION The independent biomarkers of SHF identified in this study provide valuable information to ward clinicians in resource-constrained facilities to identify patients vulnerable to developing severe heart complications.
Collapse
Affiliation(s)
- Alpha Kone
- Department of Cardiology, Ibn Rochd Hospital, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco
- Faculty of Medicine Pharmacy and Odontostomatology, Gamal Abdel Nasser University of Conakry, Conakry, Guinea
| | - Mahamoud Sama Cherif
- Faculty of Medicine Pharmacy and Odontostomatology, Gamal Abdel Nasser University of Conakry, Conakry, Guinea
- Infectious Diseases Data Observatory, Centre for Tropical Medicine & Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dahal Prabin
- Infectious Diseases Data Observatory, Centre for Tropical Medicine & Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Shyam Prakash Dumre
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Almamy Ibrahim Doumbouya
- Department of Cardiology, Ibn Rochd Hospital, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco
| | - Diane Fotso Kapche
- Department of Cardiology, Ibn Rochd Hospital, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco
| | - Facely Camara
- Faculty of Medicine Pharmacy and Odontostomatology, Gamal Abdel Nasser University of Conakry, Conakry, Guinea
| | - Serbout Saousan
- Department of Cardiology, Ibn Rochd Hospital, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco
| | - Khaddi Sara
- Department of Cardiology, Ibn Rochd Hospital, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco
| | - Mandiou Diakite
- Faculty of Medicine Pharmacy and Odontostomatology, Gamal Abdel Nasser University of Conakry, Conakry, Guinea
| | - Mohamed Cisse
- Faculty of Medicine Pharmacy and Odontostomatology, Gamal Abdel Nasser University of Conakry, Conakry, Guinea
| | - Leila Azzouzi
- Department of Cardiology, Ibn Rochd Hospital, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco
| | - Rachida Habbal
- Department of Cardiology, Ibn Rochd Hospital, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco
| |
Collapse
|
18
|
Effective Treatment of Diabetic Cardiomyopathy and Heart Failure with Reconstituted HDL (Milano) in Mice. Int J Mol Sci 2019; 20:ijms20061273. [PMID: 30871282 PMCID: PMC6470758 DOI: 10.3390/ijms20061273] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
The risk of heart failure (HF) is prominently increased in patients with type 2 diabetes mellitus. The objectives of this study were to establish a murine model of diabetic cardiomyopathy induced by feeding a high-sugar/high-fat (HSHF) diet and to evaluate the effect of reconstituted HDLMilano administration on established HF in this model. The HSHF diet was initiated at the age of 12 weeks and continued for 16 weeks. To investigate the effect of reconstituted HDLMilano on HF, eight intraperitoneal administrations of MDCO-216 (100 mg/kg protein concentration) or of an identical volume of control buffer were executed with a 48-h interval starting at the age of 28 weeks. The HSHF diet-induced obesity, hyperinsulinemia, and type 2 diabetes mellitus. Diabetic cardiomyopathy was present in HSHF diet mice as evidenced by cardiac hypertrophy, increased interstitial and perivascular fibrosis, and decreased myocardial capillary density. Pressure-volume loop analysis indicated the presence of both systolic and diastolic dysfunction and of decreased cardiac output in HSHF diet mice. Treatment with MDCO-216 reversed pathological remodelling and cardiac dysfunction and normalized wet lung weight, indicating effective treatment of HF. No effect of control buffer injection was observed. In conclusion, reconstituted HDLMilano reverses HF in type 2 diabetic mice.
Collapse
|
19
|
Cavassan NRV, Camargo CC, de Pontes LG, Barraviera B, Ferreira RS, Miot HA, Abbade LPF, Dos Santos LD. Correlation between chronic venous ulcer exudate proteins and clinical profile: A cross-sectional study. J Proteomics 2019; 192:280-290. [PMID: 30261322 DOI: 10.1016/j.jprot.2018.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 01/13/2023]
Abstract
Chronic venous ulcers affect the quality of life of patients around the world. The aims of this study were to identify the proteins expressed in chronic venous ulcer exudates, to categorize them according to their roles and to correlate them with the clinical and epidemiological aspects of the disease. The study population consisted of 37 ulcers from 28 patients, and the inflammatory exudates of these thirty-seven ulcers were subjected to tryptic digestion and mass spectrometry analysis. Twenty-three patients were female (62.2%), and five (37.8%) were male. The patients had a mean age of 70 (±10.1) years. Of the patients, 73% adhered to compression and rest, 81.1% reported a history of primary varices, 54.1% reported a history of systemic arterial hypertension, 54.1% reported a history of devitalized tissue in the wound bed and 64.9% reported ulcers with more than ten years of evolution. Seventy-six proteins were identified, and they were grouped according to their primary role in the healing process. Eight correlations between clinical and epidemiological data and protein expression were noteworthy: diabetes mellitus vs. Ig gamma-2 and apolipoprotein-A1 and albumin; congestive heart failure vs. Ig lambda-2; colonization vs. actin; compressive therapy vs. Ig kappa; systemic arterial hypertension vs. alpha-2-macroglobulin and apolipoprotein-A1; area of ulcer vs. apolipoprotein-A1; race vs. heavy chain Ig and Ig γ-1 chain; age and race vs. Ig γ-1 chain. These associations may help to elucidate the prognosis and chronicity of chronic venous ulcers based on secreted proteins.
Collapse
Affiliation(s)
- Nayara Rodrigues Vieira Cavassan
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Caio Cavassan Camargo
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Letícia Gomes de Pontes
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Benedito Barraviera
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Center for the Study of Venoms and Venomous Animals (CEVAP), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Center for the Study of Venoms and Venomous Animals (CEVAP), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Hélio Amante Miot
- Department of Dermatology and Radiology, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Luciana Patrícia Fernandes Abbade
- Department of Dermatology and Radiology, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Lucilene Delazari Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Center for the Study of Venoms and Venomous Animals (CEVAP), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
20
|
HDL subclasses and mortality in acute heart failure patients. Clin Chim Acta 2018; 490:81-87. [PMID: 30578754 PMCID: PMC6591134 DOI: 10.1016/j.cca.2018.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022]
Abstract
The link between HDL subclasses and the prognosis of cardiovascular diseases remains controversial. We thus evaluated the prognostic value of the HDL subclasses 3 and 2 cholesterol (HDL3-C, HDL2-C) as well as of total HDL-C for 3-month mortality in acute heart failure (AHF) patients. The serum levels of HDL3-C and total HDL-C were determined by detergent-based homogeneous assay. HDL2-C was computed by the difference between total HDL-C and HDL3-C. Out of the 132 analyzed patients, 35 (26.5%) died within three months after onset of AHF. Univariate logistic regression analyses revealed a significant inverse association of HDL3-C (odds ratio (OR) 0.46 per 1-SD increase, 95% confidence interval (CI) 0.27–0.72, p = 0.001) with 3-month mortality, whereas concentrations of total HDL-C and HDL2-C showed no significant association. After adjustment for various laboratory and clinical parameters known to be associated with mortality in heart failure patients, HDL3-C concentrations remained significantly associated with 3-month mortality (OR 0.34 per 1-SD increase, 95% CI 0.15–0.74, p =0.010). We conclude that low admission serum levels of HDL3-C are associated with an increased 3-month mortality in AHF patients, whereas total HDL-C and HDL2-C showed no association. HDL3-C might thus be useful as a prognostic parameter in AHF.
Collapse
|
21
|
Aboumsallem JP, Mishra M, Amin R, Muthuramu I, Kempen H, De Geest B. Successful treatment of established heart failure in mice with recombinant HDL (Milano). Br J Pharmacol 2018; 175:4167-4182. [PMID: 30079544 PMCID: PMC6177616 DOI: 10.1111/bph.14463] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The pleiotropic properties of HDL may exert beneficial effects on the myocardium. The effect of recombinant HDLMilano on established heart failure was evaluated in C57BL/6 mice. EXPERIMENTAL APPROACH Mice were subjected to transverse aortic constriction (TAC) or sham operation at the age of 14 weeks. Eight weeks later, TAC and sham mice were each randomized into three different groups. Reference groups were killed at day 56 after the operation for baseline analysis. Five i.p. injections of recombinant HDLMilano (MDCO-216), 100 mg·kg-1 , or an equivalent volume of control buffer were administered with a 48 h interval starting at day 56. Endpoint analyses in the control buffer groups and in the MDCO-216 groups were executed at day 65. KEY RESULTS Lung weight in MDCO-216 TAC mice was 25.3% lower than in reference TAC mice and 27.9% lower than in control buffer TAC mice and was similar in MDCO-216 sham mice. MDCO-216 significantly decreased interstitial fibrosis and increased relative vascularity compared to reference TAC mice and control buffer TAC mice. The peak rate of isovolumetric relaxation in MDCO-216 TAC mice was 30.4 and 36.3% higher than in reference TAC mice and control buffer TAC mice respectively. Nitro-oxidative stress and myocardial apoptosis were significantly reduced in MDCO-216 TAC mice compared to control buffer TAC mice. CONCLUSIONS AND IMPLICATIONS MDCO-216 improves diastolic function, induces regression of interstitial fibrosis and normalizes lung weight in mice with established heart failure. Recombinant HDL may emerge as a treatment modality in heart failure.
Collapse
Affiliation(s)
- Joseph Pierre Aboumsallem
- Centre for Molecular and Vascular Biology, Department of Cardiovascular SciencesCatholic University of LeuvenLeuvenBelgium
| | - Mudit Mishra
- Centre for Molecular and Vascular Biology, Department of Cardiovascular SciencesCatholic University of LeuvenLeuvenBelgium
| | - Ruhul Amin
- Centre for Molecular and Vascular Biology, Department of Cardiovascular SciencesCatholic University of LeuvenLeuvenBelgium
| | - Ilayaraja Muthuramu
- Centre for Molecular and Vascular Biology, Department of Cardiovascular SciencesCatholic University of LeuvenLeuvenBelgium
| | - Herman Kempen
- The Medicines Company (Schweiz) GmbHZürichSwitzerland
| | - Bart De Geest
- Centre for Molecular and Vascular Biology, Department of Cardiovascular SciencesCatholic University of LeuvenLeuvenBelgium
| |
Collapse
|
22
|
Mishra M, Muthuramu I, Aboumsallem JP, Kempen H, De Geest B. Reconstituted HDL (Milano) Treatment Efficaciously Reverses Heart Failure with Preserved Ejection Fraction in Mice. Int J Mol Sci 2018; 19:ijms19113399. [PMID: 30380754 PMCID: PMC6274776 DOI: 10.3390/ijms19113399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/22/2018] [Accepted: 10/27/2018] [Indexed: 12/20/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents a major unmet therapeutic need. This study investigated whether feeding coconut oil (CC diet) for 26 weeks in female C57BL/6N mice induces HFpEF and evaluated the effect of reconstituted high-density lipoprotein (HDL)Milano (MDCO-216) administration on established HFpEF. Eight intraperitoneal injections of MDCO-216 (100 mg/kg protein concentration) or of an equivalent volume of control buffer were executed with a 48-h interval starting at 26 weeks after the initiation of the diet. Feeding the CC diet for 26 weeks induced pathological left ventricular hypertrophy characterized by a 17.1% (p < 0.0001) lower myocardial capillary density and markedly (p < 0.0001) increased interstitial fibrosis compared to standard chow (SC) diet mice. Parameters of systolic and diastolic function were significantly impaired in CC diet mice resulting in a reduced stroke volume, decreased cardiac output, and impaired ventriculo-arterial coupling. However, ejection fraction was preserved. Administration of MDCO-216 in CC diet mice reduced cardiac hypertrophy, increased capillary density (p < 0.01), and reduced interstitial fibrosis (p < 0.01). MDCO-216 treatment completely normalized cardiac function, lowered myocardial acetyl-coenzyme A carboxylase levels, and decreased myocardial transforming growth factor-β1 in CC diet mice. In conclusion, the CC diet induced HFpEF. Reconstituted HDLMilano reversed pathological remodeling and functional cardiac abnormalities.
Collapse
Affiliation(s)
- Mudit Mishra
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium.
| | - Ilayaraja Muthuramu
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium.
| | - Joseph Pierre Aboumsallem
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium.
| | - Herman Kempen
- The Medicines Company (Schweiz), CH-8001 GmbH Zürich, Switzerland.
| | - Bart De Geest
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
23
|
Muthuramu I, Amin R, Aboumsallem JP, Mishra M, Robinson EL, De Geest B. Hepatocyte-Specific SR-BI Gene Transfer Corrects Cardiac Dysfunction in
Scarb1
-Deficient Mice and Improves Pressure Overload-Induced Cardiomyopathy. Arterioscler Thromb Vasc Biol 2018; 38:2028-2040. [DOI: 10.1161/atvbaha.118.310946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective—
We investigated the hypothesis that HDL (high-density lipoprotein) dysfunction in
Scarb1
−/−
mice negatively affects cardiac function both in the absence and in the presence of pressure overload. Second, we evaluated whether normalization of HDL metabolism in
Scarb1
−/−
mice by hepatocyte-specific SR-BI (scavenger receptor class B, type I) expression after E1E3E4-deleted adenoviral AdSR-BI (E1E3E4-deleted adenoviral vector expressing SR-BI protein in hepatocytes) transfer abrogates the effects of total body SR-BI deficiency on cardiac structure and function.
Approach and Results—
Transverse aortic constriction (TAC) or sham operation was performed at the age of 14 weeks, 2 weeks after saline injection or after gene transfer with AdSR-BI or with the control vector Adnull. Mortality rate in
Scarb1
−/−
TAC mice was significantly increased compared with wild-type TAC mice during 8 weeks of follow-up (hazard ratio, 2.02; 95% CI, 1.14–3.61). Hepatocyte-specific SR-BI gene transfer performed 2 weeks before induction of pressure overload by TAC potently reduced mortality in
Scarb1
−/−
mice (hazard ratio, 0.329; 95% CI, 0.180–0.600). Hepatocyte-specific SR-BI expression abrogated increased cardiac hypertrophy and lung congestion and counteracted increased myocardial apoptosis and interstitial and perivascular fibrosis in
Scarb1
−/−
TAC mice.
Scarb1
−/−
sham mice were, notwithstanding the absence of detectable structural heart disease, characterized by systolic and diastolic dysfunction and hypotension, which were completely counteracted by AdSR-BI transfer. Furthermore, AdSR-BI transfer abrogated increased end-diastolic pressure and diastolic dysfunction in
Scarb1
−/−
TAC mice. Increased oxidative stress and reduced antioxidant defense systems in
Scarb1
−/−
mice were rescued by AdSR-BI transfer.
Conclusions—
The detrimental effects of SR-BI deficiency on cardiac structure and function are nullified by hepatocyte-specific SR-BI transfer, which restores HDL metabolism.
Collapse
Affiliation(s)
- Ilayaraja Muthuramu
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Ruhul Amin
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Joseph Pierre Aboumsallem
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Mudit Mishra
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Emma Louise Robinson
- Experimental Cardiology, Department of Cardiovascular Sciences (E.L.R.), Catholic University of Leuven, Belgium
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands (E.L.R.)
| | - Bart De Geest
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| |
Collapse
|
24
|
Lucchesi D, Popa SG, Sancho V, Giusti L, Garofolo M, Daniele G, Pucci L, Miccoli R, Penno G, Del Prato S. Influence of high density lipoprotein cholesterol levels on circulating monocytic angiogenic cells functions in individuals with type 2 diabetes mellitus. Cardiovasc Diabetol 2018; 17:78. [PMID: 29866130 PMCID: PMC5987640 DOI: 10.1186/s12933-018-0720-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
Background High-density lipoproteins (HDLs) can exert anti-atherogenic effects. On top of removing excess cholesterol through reverse cholesterol transport, HDLs play beneficial actions on endothelial function and integrity. In particular, HDLs are strong determinant of endothelial progenitor cells (EPCs) number and function. To gain further insights into such an effect we characterized in vitro functionality of circulating “early” EPCs obtained from 60 type 2 diabetes individuals with low HDL-cholesterol (HDL-C) and 59 with high HDL-C levels. Methods After an overnight fast, venous blood was drawn in EDTA tubes and processed within 2-h from sampling. Peripheral blood mononuclear cells were isolated and plated on fibronectin coated culture dishes; after 3 days culture, adherent cells positive for Dil-ac-LDL/Lectin dual fluorescent staining were identified as monocytic angiogenic cells (MACs). After 5–7 days culture in EBM-2 medium, adherent cells were evaluated for viability/proliferation (MTT assay), senescence (beta-galactosidase activity detection), migration (modified Boyden chamber using VEGF as chemoattractant), adhesion capacity (on fibronectin-coated culture dishes) and ROS production (ROS-sensitive fluorescent probe CM-H2DCFDA). Results MACs obtained from diabetic individuals with high HDL-C had 23% higher viability compared to low HDL-C (111.6 ± 32.7% vs. 90.5 ± 28.6% optical density; p = 0.002). H2O2 exposure impaired MACs viability to a similar extent in both groups (109.2 ± 31.7% vs. 74.5 ± 40.8% in high HDL-C, p < 0.0001; 88.3 ± 25.5% vs. 72.3 ± 22.5% in low-HDL, p = 0.004). MACs senescence was comparable in the two groups (102.7 ± 29.8% vs. 99.2 ± 27.8%; p = 0.703) and was only slightly modified by exposure to H2O2. There was no difference in the MACs migration capacity between the two groups (91.3 ± 34.2% vs. 108.7 ± 39.5%; p = 0.111), as well as in MACs adhesion capacity (105.2 ± 32.7% vs. 94.1 ± 26.1%; p = 0.223). Finally, ROS production was slightly thought not significantly higher in MACs from type 2 diabetes individuals with low- than high-HDL. After stratification of HDL-C levels into quartiles, viability (p < 0.0001) and adhesion (p = 0.044) were higher in Q4 than in Q1–Q3. In logistic regression analysis, HDL-C was correlated to MACs viability and adhesion independently of HbA1c or BMI, respectively. Conclusions Our data suggest that in type 2 diabetes subjects, HDL-cholesterol is an independent determinant of circulating MACs functional capacities—mainly viability, to a lesser extent adhesion—likely contributing also through this mechanism to cardiovascular protection even in type 2 diabetes.
Collapse
Affiliation(s)
- Daniela Lucchesi
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy
| | - Simona Georgiana Popa
- Diabetes, Nutrition and Metabolic Diseases, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Veronica Sancho
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy
| | - Laura Giusti
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy
| | - Monia Garofolo
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy
| | - Giuseppe Daniele
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Pisa, Italy
| | - Roberto Miccoli
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy
| | - Giuseppe Penno
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy
| | - Stefano Del Prato
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy.
| |
Collapse
|
25
|
Reactive Oxygen Species, Superoxide Dimutases, and PTEN-p53-AKT-MDM2 Signaling Loop Network in Mesenchymal Stem/Stromal Cells Regulation. Cells 2018; 7:cells7050036. [PMID: 29723979 PMCID: PMC5981260 DOI: 10.3390/cells7050036] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/22/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent cells that can differentiate to various specialized cells, which have the potential capacity to differentiate properly and accelerate recovery in damaged sites of the body. This stem cell technology has become the fundamental element in regenerative medicine. As reactive oxygen species (ROS) have been reported to adversely influence stem cell properties, it is imperative to attenuate the extent of ROS to the promising protective approach with MSCs’ regenerative therapy. Oxidative stress also affects the culture expansion and longevity of MSCs. Therefore, there is great need to identify a method to prevent oxidative stress and replicative senescence in MSCs. Phosphatase and tensin homologue deleted on chromosome 10/Protein kinase B, PKB (PTEN/AKT) and the tumor suppressor p53 pathway have been proven to play a pivotal role in regulating cell apoptosis by regulating the oxidative stress and/or ROS quenching. In this review, we summarize the current research and our view of how PTEN/AKT and p53 with their partners transduce signals downstream, and what the implications are for MSCs’ biology.
Collapse
|
26
|
Emmens JE, Jones DJL, Cao TH, Chan DCS, Romaine SPR, Quinn PA, Anker SD, Cleland JG, Dickstein K, Filippatos G, Hillege HL, Lang CC, Ponikowski P, Samani NJ, van Veldhuisen DJ, Zannad F, Zwinderman AH, Metra M, de Boer RA, Voors AA, Ng LL. Proteomic diversity of high-density lipoprotein explains its association with clinical outcome in patients with heart failure. Eur J Heart Fail 2017; 20:260-267. [PMID: 29251807 DOI: 10.1002/ejhf.1101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/26/2017] [Accepted: 11/09/2017] [Indexed: 11/10/2022] Open
Abstract
AIMS Previously, low high-density lipoprotein (HDL) cholesterol was found to be one of the strongest predictors of mortality and/or heart failure (HF) hospitalisation in patients with HF. We therefore performed in-depth investigation of the multifunctional HDL proteome to reveal underlying pathophysiological mechanisms explaining the association between HDL and clinical outcome. METHODS AND RESULTS We selected a cohort of 90 HF patients with 1:1 cardiovascular death/survivor ratio from BIOSTAT-CHF. A novel optimised protocol for selective enrichment of lipoproteins was used to prepare plasma. Enriched lipoprotein content of samples was analysed using high resolution nanoscale liquid chromatography-mass spectrometry-based proteomics, utilising a label free approach. Within the HDL proteome, 49 proteins significantly differed between deaths and survivors. An optimised model of 12 proteins predicted death with 76% accuracy (Nagelkerke R2 =0.37, P < 0.001). The strongest contributors to this model were filamin-A (related to crosslinking of actin filaments) [odds ratio (OR) 0.31, 95% confidence interval (CI) 0.15-0.61, P = 0.001] and pulmonary surfactant-associated protein B (related to alveolar capillary membrane function) (OR 2.50, 95% CI 1.57-3.98, P < 0.001). The model predicted mortality with an area under the curve of 0.82 (95% CI 0.77-0.87, P < 0.001). Internal cross validation resulted in 73.3 ± 7.2% accuracy. CONCLUSION This study shows marked differences in composition of the HDL proteome between HF survivors and deaths. The strongest differences were seen in proteins reflecting crosslinking of actin filaments and alveolar capillary membrane function, posing potential pathophysiological mechanisms underlying the association between HDL and clinical outcome in HF.
Collapse
Affiliation(s)
- Johanna Elisabeth Emmens
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Donald J L Jones
- Department of Cancer Studies, University of Leicester, Leicester Royal Infirmary, Leicester, UK
| | - Thong H Cao
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK.,Department of General Internal Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Daniel C S Chan
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Simon P R Romaine
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Paulene A Quinn
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Stefan D Anker
- Division of Cardiology and Metabolism - Heart Failure, Cachexia and Sarcopenia, Department of Cardiology (CVK); and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) Berlin, Charité Universitätsmedizin Berlin, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - John G Cleland
- National Heart and Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College, London, UK
| | - Kenneth Dickstein
- University of Bergen, Bergen, Norway.,Stavanger University Hospital, Stavanger, Norway
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon, Athens, Greece
| | - Hans L Hillege
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Chim C Lang
- School of Medicine Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Piotr Ponikowski
- Department of Heart Diseases, Wroclaw Medical University, and Cardiology Department, Military Hospital, Wroclaw, Poland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Faiz Zannad
- Inserm CIC 1433, Université de Lorrain, CHU de Nancy, Nancy, France
| | - Aeilko H Zwinderman
- Department of Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, Amsterdam, The Netherlands
| | - Marco Metra
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
27
|
Selective HDL-Raising Human Apo A-I Gene Therapy Counteracts Cardiac Hypertrophy, Reduces Myocardial Fibrosis, and Improves Cardiac Function in Mice with Chronic Pressure Overload. Int J Mol Sci 2017; 18:ijms18092012. [PMID: 28930153 PMCID: PMC5618660 DOI: 10.3390/ijms18092012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/14/2022] Open
Abstract
Epidemiological studies support an independent inverse association between high-density lipoprotein (HDL) cholesterol levels and heart failure incidence. The effect of selective HDL-raising adeno-associated viral serotype 8-human apolipoprotein (apo) A-I (AAV8-A-I) gene transfer on cardiac remodeling induced by transverse aortic constriction (TAC) was evaluated in C57BL/6 low-density lipoprotein receptor-deficient mice. Septal wall thickness and cardiomyocyte cross-sectional area were reduced by 16.5% (p < 0.001) and by 13.8% (p < 0.01), respectively, eight weeks after TAC in AAV8-A-I mice (n = 24) compared to control mice (n = 39). Myocardial capillary density was 1.11-fold (p < 0.05) higher and interstitial cardiac fibrosis was 45.3% (p < 0.001) lower in AAV8-A-I TAC mice than in control TAC mice. Lung weight and atrial weight were significantly increased in control TAC mice compared to control sham mice, but were not increased in AAV8-A-I TAC mice. The peak rate of isovolumetric contraction was 1.19-fold (p < 0.01) higher in AAV8-A-I TAC mice (n = 17) than in control TAC mice (n = 29). Diastolic function was also significantly enhanced in AAV8-A-I TAC mice compared to control TAC mice. Nitro-oxidative stress and apoptosis were significantly reduced in the myocardium of AAV8-A-I TAC mice compared to control TAC mice. In conclusion, selective HDL-raising human apo A-I gene transfer potently counteracts the development of pressure overload-induced cardiomyopathy.
Collapse
|
28
|
Nagao M, Toh R, Irino Y, Nakajima H, Oshita T, Tsuda S, Hara T, Shinohara M, Ishida T, Hirata KI. High-density lipoprotein protects cardiomyocytes from oxidative stress via the PI3K/mTOR signaling pathway. FEBS Open Bio 2017; 7:1402-1409. [PMID: 28904868 PMCID: PMC5586351 DOI: 10.1002/2211-5463.12279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/26/2017] [Accepted: 07/23/2017] [Indexed: 02/07/2023] Open
Abstract
Low levels of plasma high-density lipoprotein (HDL) cholesterol are associated with an increased risk of heart failure, regardless of the presence or absence of coronary artery disease. However, the direct effects of HDL on failing myocardium have not been fully elucidated. We found that HDL treatment resulted in improved cell viability in H9c2 cardiomyocytes under oxidative stress. This cardioprotective effect of HDL was regulated via the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway. mTOR signaling promotes cell survival through the inactivation of the BCL2-associated agonist of cell death via phosphorylation of ribosomal protein S6 kinase. Modulation of cardiac PI3K/mTOR signaling by HDL could represent a novel therapeutic strategy for heart failure.
Collapse
Affiliation(s)
- Manabu Nagao
- Division of Cardiovascular Medicine Kobe University Graduate School of Medicine Japan
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine Kobe University Graduate School of Medicine Japan
| | - Yasuhiro Irino
- Division of Evidence-Based Laboratory Medicine Kobe University Graduate School of Medicine Japan
| | - Hideto Nakajima
- Division of Cardiovascular Medicine Kobe University Graduate School of Medicine Japan
| | - Toshihiko Oshita
- Division of Cardiovascular Medicine Kobe University Graduate School of Medicine Japan
| | - Shigeyasu Tsuda
- Division of Cardiovascular Medicine Kobe University Graduate School of Medicine Japan
| | - Tetsuya Hara
- Division of Cardiovascular Medicine Kobe University Graduate School of Medicine Japan
| | - Masakazu Shinohara
- Division of Epidemiology Kobe University Graduate School of Medicine Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine Kobe University Graduate School of Medicine Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine Kobe University Graduate School of Medicine Japan.,Division of Evidence-Based Laboratory Medicine Kobe University Graduate School of Medicine Japan
| |
Collapse
|
29
|
Muthuramu I, Amin R, De Geest B. New perspectives on biological HDL-targeted therapies. Expert Opin Biol Ther 2017; 17:793-796. [PMID: 28532178 DOI: 10.1080/14712598.2017.1333597] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ilayaraja Muthuramu
- a Centre for Molecular and Vascular Biology , Department of Cardiovascular Sciences , KU Leuven , Leuven , Belgium
| | - Ruhul Amin
- a Centre for Molecular and Vascular Biology , Department of Cardiovascular Sciences , KU Leuven , Leuven , Belgium
| | - Bart De Geest
- a Centre for Molecular and Vascular Biology , Department of Cardiovascular Sciences , KU Leuven , Leuven , Belgium
| |
Collapse
|
30
|
Potočnjak I, Degoricija V, Trbušić M, Pregartner G, Berghold A, Marsche G, Frank S. Serum Concentration of HDL Particles Predicts Mortality in Acute Heart Failure Patients. Sci Rep 2017; 7:46642. [PMID: 28418031 PMCID: PMC5394530 DOI: 10.1038/srep46642] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/21/2017] [Indexed: 12/31/2022] Open
Abstract
Clinical studies have shown that assessing circulating concentrations of high-density lipoprotein (HDL) particles by nuclear magnetic resonance (NMR) spectroscopy is superior to HDL-cholesterol in predicting cardiovascular risk. We tested the hypothesis that circulating concentrations of HDL particles predict 3-month mortality of patients with acute heart failure (AHF). Out of 152 included patients, 52% were female, additionally the mean patient age was 75.2 ± 10.3 years, and three-month mortality was 27%. Serum lipoprotein profile at admission was determined by NMR spectroscopy. Univariate logistic regression analyses revealed a significant inverse association of total (odds ratio (OR) 0.38 per 1-SD increase, 95% confidence interval (CI) 0.23-0.60, p < 0.001) and small HDL particle concentrations (OR 0.35 per 1-SD increase, 95% CI 0.19-0.60, p < 0.001) with 3-month mortality, whereas concentrations of large HDL particles (p = 0.353) or HDL-cholesterol (p = 0.107) showed no significant association. After adjustment for age, sex, mean arterial pressure, low-density lipoprotein cholesterol, glomerular filtration rate, urea, and N-terminal pro-brain natriuretic peptide, both the total and small HDL particle concentrations remained significantly associated with 3-month mortality. Based on our results, we conclude that total and small HDL particle concentrations strongly and independently predict 3-month mortality in AHF patients.
Collapse
Affiliation(s)
- Ines Potočnjak
- University Hospital Centre Sisters of Charity, Department of Medicine, Zagreb, Croatia
| | - Vesna Degoricija
- University Hospital Centre Sisters of Charity, Department of Medicine, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Matias Trbušić
- University Hospital Centre Sisters of Charity, Department of Medicine, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
- BioTechMed-Graz, Austria
| | - Saša Frank
- BioTechMed-Graz, Austria
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
31
|
Sengupta MB, Saha S, Mohanty PK, Mukhopadhyay KK, Mukhopadhyay D. Increased expression of ApoA1 after neuronal injury may be beneficial for healing. Mol Cell Biochem 2016; 424:45-55. [PMID: 27734225 DOI: 10.1007/s11010-016-2841-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/06/2016] [Indexed: 01/24/2023]
Abstract
ApoA1 is a player in reverse cholesterol transport that initiates multiple cellular pathways on binding to its receptor ABCA1. Its relation to neuronal injury is however unclear. We found ApoA1 to be increasingly abundant at a later time point in the secondary phase of traumatic spinal cord injury. In a cellular injury model of neuroblastoma, ApoA1 showed an initial diminished expression after infliction of injury, which sharply increased thereafter. Subsequently, ApoA1 was shown to alter wound healing dynamics in neuroblastoma injury model. It was observed that an initial lag in scratch wound closure was followed by rapid healing in the ApoA1 treatment group. Activation of ERK pathway and Actin polymerisation by ApoA1 corroborated its role in healing after neuronal injury. We propose that ApoA1 is increasingly expressed and secreted as a delayed response to neuronal injury, and this is a self-protecting mechanism of the injured system.
Collapse
Affiliation(s)
- Mohor B Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Suparna Saha
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Pradeep K Mohanty
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Kiran K Mukhopadhyay
- Department of Orthopaedic Surgery, Nil Ratan Sircar Medical College and Hospital, 138 AJC Bose Road, Kolkata, 700014, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
| |
Collapse
|
32
|
Affiliation(s)
- Vinaya Simha
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Yogish C Kudva
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| |
Collapse
|
33
|
Potočnjak I, Degoricija V, Trbušić M, Terešak SD, Radulović B, Pregartner G, Berghold A, Tiran B, Marsche G, Frank S. Metrics of High-Density Lipoprotein Function and Hospital Mortality in Acute Heart Failure Patients. PLoS One 2016; 11:e0157507. [PMID: 27304214 PMCID: PMC4909230 DOI: 10.1371/journal.pone.0157507] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/30/2016] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE The functionality of high-density lipoprotein (HDL) is impaired in chronic ischaemic heart failure (HF). However, the relationship between HDL functionality and outcomes in acute HF (AHF) has not been studied. The present study investigates whether the metrics of HDL functionality, including HDL cholesterol efflux capacity and HDL-associated paraoxonase (PON)-1 arylesterase (AE) activity are associated with hospital mortality in AHF patients. METHODS AND RESULTS The study was performed as a prospective, single-centre, observational research on 152 patients, defined and categorised according to the ESC and ACCF/AHA Guidelines for HF by time of onset, final clinical presentation and ejection fraction. The mean age of the included patients (52% female) was 75.2 years (SD 10.3) and hospital mortality was 14.5%. HDL cholesterol efflux capacity was examined by measuring the capacity of apoB depleted serum to remove tritium-labelled cholesterol from cultured macrophages. The AE activity of the HDL fraction was examined by a photometric assay. In a univariable regression analysis, low cholesterol efflux, but not AE activity, was significantly associated with hospital mortality [odds ratio (OR) 0.78, 95% confidence interval (CI) 0.64-0.96, p = 0.019]. In multivariable analysis progressively adjusting for important clinical and laboratory parameters the association obtained for cholesterol efflux capacity and hospital mortality by univariable analysis, despite a stable OR, did not stay significant (p = 0.179). CONCLUSION Our results suggest that HDL cholesterol efflux capacity (but not AE activity) contributes to, but is not an independent risk factor for, hospital mortality in AHF patients. Larger studies are needed to draw firm conclusions.
Collapse
Affiliation(s)
- Ines Potočnjak
- University Hospital Centre Sisters of Charity, Department of Medicine, Zagreb, Croatia
- * E-mail: (IP); (GM); (SF)
| | - Vesna Degoricija
- University Hospital Centre Sisters of Charity, Department of Medicine, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Matias Trbušić
- University Hospital Centre Sisters of Charity, Department of Medicine, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sanda Dokoza Terešak
- University Hospital Centre Sisters of Charity, Department of Medicine, Zagreb, Croatia
| | | | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, Graz, Austria
| | - Beate Tiran
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
- * E-mail: (IP); (GM); (SF)
| | - Saša Frank
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University Graz, Graz, Austria
- * E-mail: (IP); (GM); (SF)
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The clinical utility of HDLs has been scrutinized upon the publication of Mendelian randomization studies showing no effect of HDL-cholesterol (HDL-C) modifying variants on cardiovascular disease (CVD) outcome. The failures of randomized controlled HDL-C-directed intervention trials have further fueled this skepticism. This general criticism originates from oversimplification that has equated 'HDL-C' with 'HDL' and misconceived both as the 'good cholesterol'. RECENT FINDINGS HDL particles are heterogeneous and carry hundreds of different lipids, proteins, and microRNAs. Many of them but not cholesterol, that is, HDL-C, contributes to the multiple protective functions of HDLs that probably evolved to manage potentially life-threatening crises. Inflammatory processes modify the composition of HDL particles as well as their individual protein and lipid components, and, as a consequence, also their functionality. Gain of dominant-negative functions makes dysfunctional HDL a part rather than a solution of the endangering situation. Quantification of HDL particle numbers, distinct proteins or lipids, and modifications thereof as well as bioassays of HDL functionality are currently explored toward their diagnostic performance in risk prediction and monitoring of treatment response. SUMMARY Any successful clinical exploitation of HDLs will depend on the identification of the most relevant (dys)functions and their structural correlates. Stringent or prioritized structure-(dys)function relationships may provide biomarkers for better risk assessment and monitoring of treatment response. The most relevant agonists carried by either functional or dysfunctional HDLs as well as their cellular responders are interesting targets for drug development.
Collapse
|
35
|
McGarrah RW, Craig DM, Haynes C, Dowdy ZE, Shah SH, Kraus WE. High-density lipoprotein subclass measurements improve mortality risk prediction, discrimination and reclassification in a cardiac catheterization cohort. Atherosclerosis 2016; 246:229-35. [PMID: 26803432 PMCID: PMC4764426 DOI: 10.1016/j.atherosclerosis.2016.01.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/02/2015] [Accepted: 01/08/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Recent failures of HDL cholesterol (HDL-C)-raising therapies to prevent cardiovascular disease (CVD) events have tempered the interest in the role of HDL-C in clinical risk assessment. Emerging data suggest that the atheroprotective properties of HDL depend on specific HDL particle characteristics not reflected by HDL-C. The purpose of this study was to determine the association of HDL particle concentration (HDL-P) and HDL subclasses with mortality in a high-risk cardiovascular population and to examine the clinical utility of these parameters in mortality risk discrimination and reclassification models. METHODS Using nuclear magnetic resonance spectroscopy, we measured HDL-P and HDL subclasses in 3972 individuals enrolled in the CATHGEN coronary catheterization biorepository; tested for association with all-cause mortality in robust clinical models; and examined the utility of HDL subclasses in incremental mortality risk discrimination and reclassification. RESULTS Over an average follow-up of eight years, 29.6% of the individuals died. In a multivariable model adjusted for ten CVD risk factors, HDL-P [HR, 0.71 (0.67-0.76), p = 1.3e-24] had a stronger inverse association with mortality than did HDL-C [HR 0.93 (0.87-0.99), p = 0.02]. Larger HDL size conferred greater risk and the sum of medium- and small-size HDL particles (MS-HDL-P) conferred less risk. Furthermore, the strong inverse relation of HDL-P levels with mortality was accounted for entirely by MS-HDL-P; HDL-C was not associated with mortality after adjustment for MS-HDL-P. Addition of MS-HDL-P to the GRACE Risk Score significantly improved risk discrimination and risk reclassification. CONCLUSION HDL-P and smaller HDL subclasses were independent markers of residual mortality risk and incremental to HDL-C in a high-risk CVD population. These measures should be considered in risk stratification and future development of HDL-targeted therapies in high-risk populations.
Collapse
Affiliation(s)
- Robert W McGarrah
- Division of Cardiology, Department of Medicine, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.
| | - Damian M Craig
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Carol Haynes
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Z Elaine Dowdy
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Svati H Shah
- Division of Cardiology, Department of Medicine, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Duke Clinical Research Institute, Durham, NC, USA
| | - William E Kraus
- Division of Cardiology, Department of Medicine, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|