1
|
Shahrokhi Nejad S, Razi S, Rezaei N. The role of AMPK in pancreatic cancer: from carcinogenesis to treatment. Clin Transl Oncol 2024:10.1007/s12094-024-03572-8. [PMID: 38926257 DOI: 10.1007/s12094-024-03572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Pancreatic cancer has doubled over the previous two decades. Routine therapies are becoming incredibly resistant and failing to compensate for the burden caused by this aggressive neoplasm. As genetic susceptibility has always been a highlighted concern for this disease, identifying the molecular pathways involved in the survival and function of pancreatic cancer cells provides insight into its variant etiologies, one of which is the role of AMPK. This regulating factor of cell metabolism is crucial in the homeostasis and growth of the cell. Herein, we review the possible role of AMPK in pancreatic cancer while considering its leading effects on glycolysis and autophagy. Then, we assess the probable therapeutic agents that have resulted from the suggested pathways. Studying the underlying genetic changes in pancreatic cancer provides a chance to detect and treat patients suffering from advanced stages of the disease, and those who have given up their hope on conventional therapies can gain an opportunity to combat this cancer.
Collapse
Affiliation(s)
- Shahrzad Shahrokhi Nejad
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
2
|
Nandi S, Nag A, Khatua S, Sen S, Chakraborty N, Naskar A, Acharya K, Calina D, Sharifi-Rad J. Anticancer activity and other biomedical properties of β-sitosterol: Bridging phytochemistry and current pharmacological evidence for future translational approaches. Phytother Res 2024; 38:592-619. [PMID: 37929761 DOI: 10.1002/ptr.8061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
Sterols, including β-sitosterol, are essential components of cellular membranes in both plant and animal cells. Despite being a major phytosterol in various plant materials, comprehensive scientific knowledge regarding the properties of β-sitosterol and its potential applications is essential for scholarly pursuits and utilization purposes. β-sitosterol shares similar chemical characteristics with cholesterol and exhibits several pharmacological activities without major toxicity. This study aims to bridge the gap between phytochemistry and current pharmacological evidence of β-sitosterol, focusing on its anticancer activity and other biomedical properties. The goal is to provide a comprehensive understanding of β-sitosterol's potential for future translational approaches. A thorough examination of the literature was conducted to gather relevant information on the biological properties of β-sitosterol, particularly its anticancer therapeutic potential. Various databases were searched, including PubMed/MedLine, Scopus, Google Scholar, and Web of Science using appropriate keywords. Studies investigating the effects of β-sitosterol on different types of cancer were analyzed, focusing on mechanisms of action, pharmacological screening, and chemosensitizing properties. Modern pharmacological screening studies have revealed the potential anticancer therapeutic properties of β-sitosterol against various types of cancer, including leukemia, lung, stomach, breast, colon, ovarian, and prostate cancer. β-sitosterol has demonstrated chemosensitizing effects on cancer cells, interfering with multiple cell signaling pathways involved in proliferation, cell cycle arrest, apoptosis, survival, metastasis invasion, angiogenesis, and inflammation. Structural derivatives of β-sitosterol have also shown anti-cancer effects. However, research in the field of drug delivery and the detailed mode of action of β-sitosterol-mediated anticancer activities remains limited. β-sitosterol, as a non-toxic compound with significant pharmacological potential, exhibits promising anticancer effects against various cancer types. Despite being relatively less potent than conventional cancer chemotherapeutics, β-sitosterol holds potential as a safe and effective nutraceutical against cancer. Further comprehensive studies are recommended to explore the biological properties of β-sitosterol, including its mode of action, and develop novel formulations for its potential use in cancer treatment. This review provides a foundation for future investigations and highlights the need for further research on β-sitosterol as a potent superfood in combating cancer.
Collapse
Affiliation(s)
- Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, India
| | - Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, India
| | - Surjit Sen
- Department of Botany, Fakir Chand College, Kolkata, India
| | | | - Arghya Naskar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
3
|
Huang Y, Xu J, Xie C, Liao Y, Lin R, Zeng Y, Yu F. A Novel Gene Pair CSTF2/DPE2A Impacts Prognosis and Cell Cycle of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1639-1657. [PMID: 37791068 PMCID: PMC10544262 DOI: 10.2147/jhc.s413935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), one of the commonest cancers at present, possesses elevated mortality. This study explored the predictive value of CSTF2/PDE2A for HCC prognosis. Methods In this study, clinical information and RNA sequencing expression profiles of HCC patients were acquired from common databases. Kaplan-Meier curve compound with time-dependent ROC curve, nomogram model, and univariate/multivariate Cox analysis were carried out to access the prediction capacity of CSTF2/PDE2A. The immune status, tumor microenvironment, drug sensitivity, biological function and pathway between HCC and adjacent non-tumorous tissue were analyzed and compared. Finally, RT-qPCR, Western blot, and apoptosis assays were performed to verify the effect on HCC cells of CSTF2/PDE2A. Results The optimal cut-off value of CSTF2, PDE2A and CSTF2/PDE2A was 6.95, 0.95 and 3.63, respectively. In TCGA and ICGC cohorts, the high group of CSTF2/PDE2A presented higher OS compared to low group. The area under the curve (AUC) for OS at 1-, 2-, and 3-years predicted by CSTF2/PDE2A were 0.731/0.695, 0.713/0.732 and 0.689/0.755, higher than the counterparts of the single gene CSTF2 and PDE2A. Multivariate Cox analysis revealed that CSTF2/PDE2A (HR = 1.860/3.236, 95% CI = 1.265-2.733/1.575-6.645) was an independent prognostic factor for HCC. The OS nomogram model created according to five independent factors including CSTF2/PDE2A showed excellent capacity for HCC prognosis. Furthermore, the immune status of the CSTF2/PDE2A high group was deleted, cell cycle-related genes and chemotherapy resistance were increased. Finally, cell experiments revealed distinct differences in the proliferation, apoptosis, protein and mRNA expression of HCC cells after si-CSTF2 transfection compared with the negative control. Conclusion Taken together, the gene pair CSTF2/PDE2A is able to forecast the prognosis of HCC and regulates cell cycle, which is promising as a novel prognostic predictor of HCC.
Collapse
Affiliation(s)
- Yangjin Huang
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Jun Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Chunming Xie
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yuejuan Liao
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Rong Lin
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yuan Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
4
|
Wang K, Lu H, Wang X, Liu Q, Hu J, Liu Y, Jin M, Kong D. Simultaneous suppression of PKM2 and PHGDH elicits synergistic anti-cancer effect in NSCLC. Front Pharmacol 2023; 14:1200538. [PMID: 37284309 PMCID: PMC10239820 DOI: 10.3389/fphar.2023.1200538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Metabolic reprogramming is a hallmark of human cancer. Cancer cells exhibit enhanced glycolysis, which allows glycolytic intermediates to be diverted into several other biosynthetic pathways, such as serine synthesis. Here, we explored the anti-cancer effects of the pyruvate kinase (PK) M2 inhibitor PKM2-IN-1 alone or in combination with the phosphoglycerate dehydrogenase (PHGDH) inhibitor NCT-503 in human NSCLC A549 cells in vitro and in vivo. PKM2-IN-1 inhibited proliferation and induced cell cycle arrest and apoptosis, with increased glycolytic intermediate 3-phosphoglycerate (3-PG) level and PHGDH expression. The combination of PKM2-IN-1 and NCT-503 further suppressed cancer cell proliferation and induced G2/M phase arrest, accompanied by the reduction of ATP, activation of AMPK and inhibition of its downstream mTOR and p70S6K, upregulation of p53 and p21, as well as downregulation of cyclin B1 and cdc2. In addition, combined treatment triggered ROS-dependent apoptosis by affecting the intrinsic Bcl-2/caspase-3/PARP pathway. Moreover, the combination suppressed glucose transporter type 1 (GLUT1) expression. In vivo, co-administration of PKM2-IN-1 and NCT-503 significantly inhibited A549 tumor growth. Taken together, PKM2-IN-1 in combination with NCT-503 exhibited remarkable anti-cancer effects through induction of G2/M cell cycle arrest and apoptosis, in which the metabolic stress induced ATP reduction and ROS augmented DNA damage might be involved. These results suggest that the combination of PKM2-IN-1 and NCT-503 might be a potential strategy for the therapy of lung cancer.
Collapse
Affiliation(s)
- Kaixuan Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Hao Lu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Xinmiao Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Qingxia Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Jinxia Hu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Yao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China
- Institute of Otolaryngology of Tianjin, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Correa-Romero BF, Olivares-Marin IK, Regalado-Gonzalez C, Nava GM, Madrigal-Perez LA. The role of the SNF1 signaling pathway in the growth of Saccharomyces cerevisiae in different carbon and nitrogen sources. Braz J Microbiol 2023:10.1007/s42770-023-00954-y. [DOI: 10.1007/s42770-023-00954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
|
6
|
Peng Q, Tan S, Xia L, Wu N, Oyang L, Tang Y, Su M, Luo X, Wang Y, Sheng X, Zhou Y, Liao Q. Phase separation in Cancer: From the Impacts and Mechanisms to Treatment potentials. Int J Biol Sci 2022; 18:5103-5122. [PMID: 35982902 PMCID: PMC9379413 DOI: 10.7150/ijbs.75410] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/16/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is a public health problem of great concern, and it is also one of the main causes of death in the world. Cancer is a disease characterized by dysregulation of diverse cellular processes, including avoiding growth inhibitory factors, avoiding immune damage and promoting metastasis, etc. However, the precise mechanism of tumorigenesis and tumor progression still needs to be further elucidated. Formations of liquid-liquid phase separation (LLPS) condensates are a common strategy for cells to achieve diverse functions, such as chromatin organization, signal transduction, DNA repair and transcriptional regulation, etc. The biomolecular aggregates formed by LLPS are mainly driven by multivalent weak interactions mediated by intrinsic disordered regions (IDRs) in proteins. In recent years, aberrant phase separations and transition have been reported to be related to the process of various diseases, such as neurodegenerative diseases and cancer. Herein, we discussed recent findings that phase separation regulates tumor-related signaling pathways and thus contributes to tumor progression. We also reviewed some tumor virus-associated proteins to regulate the development of virus-associated tumors via phase separation. Finally, we discussed some possible strategies for treating tumors by targeting phase separation.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ying Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xiaowu Sheng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
7
|
Liu C, Yang M, Li L, Luo S, Yang J, Li C, Liu H, Sun L. A Glimpse of Inflammation and Anti-Inflammation Therapy in Diabetic Kidney Disease. Front Physiol 2022; 13:909569. [PMID: 35874522 PMCID: PMC9298824 DOI: 10.3389/fphys.2022.909569] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes mellitus and a major cause of end-stage kidney disease (ESKD). The pathogenesis of DKD is very complex and not completely understood. Recently, accumulated evidence from in vitro and in vivo studies has demonstrated that inflammation plays an important role in the pathogenesis and the development of DKD. It has been well known that a variety of pro-inflammatory cytokines and related signaling pathways are involved in the procession of DKD. Additionally, some anti-hyperglycemic agents and mineralocorticoid receptor antagonists (MRAs) that are effective in alleviating the progression of DKD have anti-inflammatory properties, which might have beneficial effects on delaying the progression of DKD. However, there is currently a lack of systematic overviews. In this review, we focus on the novel pro-inflammatory signaling pathways in the development of DKD, including the nuclear factor kappa B (NF-κB) signaling pathway, toll-like receptors (TLRs) and myeloid differentiation primary response 88 (TLRs/MyD88) signaling pathway, adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling pathways, inflammasome activation, mitochondrial DNA (mtDNA) release as well as hypoxia-inducible factor-1(HIF-1) signaling pathway. We also discuss the related anti-inflammation mechanisms of metformin, finerenone, sodium-dependent glucose transporters 2 (SGLT2) inhibitors, Dipeptidyl peptidase-4 (DPP-4) inhibitors, Glucagon-like peptide-1 (GLP-1) receptor agonist and traditional Chinese medicines (TCM).
Collapse
Affiliation(s)
- Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases & Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
8
|
AMPK's double-faced role in advanced stages of prostate cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2064-2073. [PMID: 35781781 DOI: 10.1007/s12094-022-02874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer deaths in men. Unfortunately, a very limited number of drugs are available for the relapsed and advanced stages of PCa, adding only a few months to survival; therefore, it is vital to develop new drugs. 5´ AMP-activated protein kinase (AMPK) is a master regulator of cell metabolism. It plays a significant role in the metabolism of PCa; hence, it can serve well as a treatment option for the advanced stages of PCa. However, whether this pathway contributes to cancer cell survival or death remains unknown. The present study reviews the possible pathways by which AMPK plays role in the advanced stages of PCa, drug resistance, and metastasis: (1) AMPK has a contradictory role in promoting glycolysis and the Warburg effect which are correlated with cancer stem cells (CSCs) survival and advanced PCa. It exerts its effect by interacting with hypoxia-induced factor 1 (HIF1) α, pyruvate kinase 2 (PKM2), glucose transporter (GLUT) 1 and pyruvate dehydrogenase complex (PDHC), which are key regulators of glycolysis; however, whether it promotes or discourage glycolysis is not conclusive. It can also exert an anti-CSC effect by negative regulation of NANOG and epithelial-mesenchymal transition (EMT) transcription factors, which are the major drivers of CSC maintenance; (2) the regulatory effect of AMPK on autophagy is also noticeable. Androgen receptors' expression increases AMPK activation through Calcium/calmodulin-dependent protein kinase 2 (CaMKK2) and induces autophagy. In addition, AMPK itself increases autophagy by downregulating the mammalian target of rapamycin complex (mTORC). However, whether increased autophagy inhibits or promotes cell death and drug resistance is contradictory. This study reveals that there are numerous pathways other than cell metabolism by which AMPK exerts its effects in the advanced stages of PCa, making it a priceless treatment target. Finally, we mention some drugs developed to treat the advanced stages of PCa by acting on AMPK.
Collapse
|
9
|
Bao X, Zhang Y, Zhang H, Xia L. Molecular Mechanism of β-Sitosterol and its Derivatives in Tumor Progression. Front Oncol 2022; 12:926975. [PMID: 35756648 PMCID: PMC9213880 DOI: 10.3389/fonc.2022.926975] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
β-Sitosterol (SIT), a white powdery organic substance with a molecular formula of C29H50O, is one of the most abundant naturally occurring phytosterols in plants. With a chemical composition similar to that of cholesterol, SIT is applied in various fields such as medicine, agriculture, and chemical industries, owing to its unique biological and physicochemical properties. Modern pharmacological studies have elucidated good anti-tumor therapeutic effect activity of SIT, which mainly manifests as pro-apoptotic, anti-proliferative, anti-metastatic, anti-invasive, and chemosensitizing on tumor cells. In addition, SIT exerts an anti-tumor effect on multiple malignant tumors such as breast, gastric, lung, kidney, pancreatic, prostate, and other cancers. Further, SIT derivatives with structural modifications are promising anti-tumor drugs with significant anti-tumor effects. This review article focuses on recent studies relevant to the anti-tumor effects of SIT and summarizes its anti-tumor mechanism to provide a reference for the clinical treatment of malignant tumors and the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
- Xingxun Bao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Bie F, Zhang G, Yan X, Ma X, Zhan S, Qiu Y, Cao J, Ma Y, Ma M. β-Boswellic Acid Suppresses Breast Precancerous Lesions via GLUT1 Targeting-Mediated Glycolysis Inhibition and AMPK Pathway Activation. Front Oncol 2022; 12:896904. [PMID: 35712503 PMCID: PMC9194511 DOI: 10.3389/fonc.2022.896904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Breast carcinoma is a multistep progressive disease. Precancerous prevention seems to be crucial. β-Boswellic acid (β-BA), the main component of the folk medicine Boswellia serrata (B. serrata), has been reported to be effective in various diseases including tumors. In this work, we demonstrated that β-BA could inhibit breast precancerous lesions in rat disease models. Consistently, β-BA could suppress proliferation and induce apoptosis on MCF-10AT without significantly influencing MCF-10A. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that β-BA may interfere with the metabolic pathway. Metabolism-related assays showed that β-BA suppressed glycolysis and reduced ATP production, which then activated the AMPK pathway and inhibited the mTOR pathway to limit MCF-10AT proliferation. Further molecular docking analysis suggested that GLUT1 might be the target of β-BA. Forced expression of GLUT1 could rescue the glycolysis suppression and survival limitation induced by β-BA on MCF-10AT. Taken together, β-BA could relieve precancerous lesions in vivo and in vitro through GLUT1 targeting-induced glycolysis suppression and AMPK/mTOR pathway alterations. Here, we offered a molecular basis for β-BA to be developed as a promising drug candidate for the prevention of breast precancerous lesions.
Collapse
Affiliation(s)
- Fengjie Bie
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Guijuan Zhang
- School of Nursing, Jinan University, Guangzhou, China
| | - Xianxin Yan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xinyi Ma
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Sha Zhan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yebei Qiu
- The Oncology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingyu Cao
- The Oncology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi Ma
- Department of Cellular Biology, Institute of Biomedicine, National Engineering, Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Min Ma
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- The Oncology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Nimma R, Kalvala AK, Patel N, Surapaneni SK, Sun L, Singh R, Nottingham E, Bagde A, Kommineni N, Arthur P, Nathani A, Meckes DG, Singh M. Combined Transcriptomic and Proteomic Profiling to Unravel Osimertinib, CARP-1 Functional Mimetic (CFM 4.17) Formulation and Telmisartan Combo Treatment in NSCLC Tumor Xenografts. Pharmaceutics 2022; 14:pharmaceutics14061156. [PMID: 35745729 PMCID: PMC9230742 DOI: 10.3390/pharmaceutics14061156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 01/05/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is highly expressed in many non-small cell lung cancers (NSCLC), necessitating the use of EGFR-tyrosine kinase inhibitors (TKIs) as first-line treatments. Osimertinib (OSM), a third-generation TKI, is routinely used in clinics, but T790M mutations in exon 20 of the EGFR receptor lead to resistance against OSM, necessitating the development of more effective therapeutics. Telmisartan (TLM), OSM, and cell cycle and apoptosis regulatory protein 1 (CARP-1) functional mimetic treatments (CFM4.17) were evaluated in this study against experimental H1975 tumor xenografts to ascertain their anti-cancer effects. Briefly, tumor growth was studied in H1975 xenografts in athymic nude mice, gene and protein expressions were analyzed using next-generation RNA sequencing, proteomics, RT-PCR, and Western blotting. TLM pre-treatment significantly reduced the tumor burden when combined with CFM-4.17 nanoformulation and OSM combination (TLM_CFM-F_OSM) than their respective single treatments or combination of OSM and TLM with CFM 4.17. Data from RNA sequencing and proteomics revealed that TLM_CFM-F_OSM decreased the expression of Lamin B2, STAT3, SOD, NFKB, MMP-1, TGF beta, Sox-2, and PD-L1 proteins while increasing the expression of AMPK proteins, which was also confirmed by RT-PCR, proteomics, and Western blotting. According to our findings, the TLM_CFM-F_OSM combination has a superior anti-cancer effect in the treatment of NSCLC by affecting multiple resistant markers that regulate mitochondrial homeostasis, inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Ramesh Nimma
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Anil Kumar Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Nilkumar Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Li Sun
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA; (L.S.); (D.G.M.J.)
| | - Rakesh Singh
- Department of Translational Science Laboratory, College of Medicine, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA;
| | - Ebony Nottingham
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - David G. Meckes
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA; (L.S.); (D.G.M.J.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
- Correspondence: or ; Tel.: +1-850-561-2790; Fax: +1-850-599-3813
| |
Collapse
|
12
|
Heider CG, Itenberg SA, Rao J, Ma H, Wu X. Mechanisms of Cannabidiol (CBD) in Cancer Treatment: A Review. BIOLOGY 2022; 11:biology11060817. [PMID: 35741337 PMCID: PMC9220307 DOI: 10.3390/biology11060817] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/22/2022] [Accepted: 05/22/2022] [Indexed: 12/18/2022]
Abstract
Simple Summary Emerging evidence suggests positive outcomes from the use of CBD as a cancer treatment. CBD can relieve cancer pain and ease the side effects of chemotherapy; however, there is less research about the mechanism of CBD’s anticancer effects. In this article, recent studies on the efficacy and mechanisms of CBD’s anticancer effects in cell- and animal-based models and human clinical studies are reviewed. Abstract Cannabis sativa L. (Cannabis) and its bioactive compounds, including cannabinoids and non-cannabinoids, have been extensively studied for their biological effects in recent decades. Cannabidiol (CBD), a major non-intoxicating cannabinoid in Cannabis, has emerged as a promising intervention for cancer research. The purpose of this review is to provide insights into the relationship between CBD and cancer based on recent research findings. The anticancer effects of CBD are mainly mediated via its interaction with the endocannabinoid system, resulting in the alleviation of pain and the promotion of immune regulation. Published reviews have focused on the applications of CBD in cancer pain management and the possible toxicological effects of its excessive consumption. In this review, we aim to summarize the mechanisms of action underlying the anticancer activities of CBD against several common cancers. Studies on the efficacy and mechanisms of CBD on cancer prevention and intervention in experimental models (i.e., cell culture- and animal-based assays) and human clinical studies are included in this review.
Collapse
Affiliation(s)
- Camren G. Heider
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, USA; (C.G.H.); (S.A.I.)
| | - Sasha A. Itenberg
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, USA; (C.G.H.); (S.A.I.)
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA;
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence: (H.M.); (X.W.)
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, USA; (C.G.H.); (S.A.I.)
- Correspondence: (H.M.); (X.W.)
| |
Collapse
|
13
|
Shen J, Wu Y, Ruan W, Zhu F, Duan S. miR-1908 Dysregulation in Human Cancers. Front Oncol 2022; 12:857743. [PMID: 35463352 PMCID: PMC9021824 DOI: 10.3389/fonc.2022.857743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/11/2022] [Indexed: 01/19/2023] Open
Abstract
MiR-1908 is a miRNA located in the intron of the fatty acid desaturase 1 (FADS1) gene. The expression level of miR-1908 is abnormal in many diseases such as cancer. miR-1908 can inhibit the expression of at least 27 target genes by binding to the 3’ untranslated region (3’ UTR) of target genes. miR-1908 is involved in the biological processes of cell proliferation, cell differentiation, cell apoptosis, cancer cell invasion, and metastasis. The expression of miR-1908 is regulated by 11 factors, including lncRNA HOTTIP, adipokines (TNF-α, leptin, and resistin), NF-κB, free fatty acid (FFA), cholesterol, stearoyl-CoA desaturase (SCD1), immune-related transcription factors (STAT1, RB1, and IRF1). The expression of miR-1908 is also affected by the anticancer drug OSW-1, growth hormone (GH), and the anticonvulsant drug sodium valproate. In addition, the aberrant expression of miR-1908 is also related to the prognosis of a variety of cancers, including non-small cell lung cancer (NSCLC), ovarian cancer (OC), breast cancer, cervical cancer, glioma, high-grade serous ovarian carcinoma (HGSOC), osteosarcoma, etc. This article summarizes the abnormal expression pattern of miR-1908 in various diseases and its molecular regulation mechanisms. Our work will provide potential hints and direction for future miR-1908-related research.
Collapse
Affiliation(s)
- Jinze Shen
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wenjing Ruan
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Immunotherapy Mechanism of Esophageal Squamous Cell Carcinoma with the Effect of STK11/AMPK Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8636527. [PMID: 35463992 PMCID: PMC9033337 DOI: 10.1155/2022/8636527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022]
Abstract
This study was aimed at exploring the mechanism of serine threonine protein kinase 11 (STK11)/Adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling pathway after immunotherapy for esophageal squamous cell carcinoma (ESCC), providing basic information for the clinical treatment of ESCC. In this study, tissue specimens from 100 patients with ESCC who underwent surgical treatment in Taizhou People's Hospital (group A) and 20 patients with recurrent or metastatic ESCC who received second-line immunotherapy (group B) were collected. The real-time fluorescent quantitative polymerase chain reaction (PCR) (RT-qPCR) technology was used to detect the expression levels of STK11, interferon-γ (IFN-γ), interleukin 6 (IL-6), and vascular endothelial growth factor (VEGF) in the tissues. The immunohistochemical staining was used to detect the positive expression levels (PELs) of STK11 and AMPKα in the tissues, and immunofluorescence staining was used to detect the PELs Teff cells (CD3 and CD8), Treg cells (CD4 and FOXP3), and neutrophils (CD68 and CD163). RT-qPCR results showed that the expression levels of STK11 and IFN-γ in group A were obviously lower, and those of IL-6 and VEGF were much higher in contrast to group B (P < 0.05). The results of immunohistochemical staining showed that the number of STK11- and AMPKα-positive staining cells in group A was dramatically less than that in group B (P <0.05). The results of immunofluorescence staining revealed that the number of positive staining cells for Teff cells, Treg cells, and neutrophils in group A was also less dramatically than that in group B (P <0.05). In summary, immunotherapy can play a therapeutic effect on ESCC by regulating STK11/AMPK pathway and immune cell infiltration.
Collapse
|
15
|
Lin SR, Lin QM, Lin YJ, Qian X, Wang XP, Gong Z, Chen F, Song B. Bradykinin postconditioning protects rat hippocampal neurons after restoration of spontaneous circulation following cardiac arrest via activation of the AMPK/mTOR signaling pathway. Neural Regen Res 2022; 17:2232-2237. [PMID: 35259843 PMCID: PMC9083139 DOI: 10.4103/1673-5374.337049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Bradykinin (BK) is an active component of the kallikrein-kinin system that has been shown to have cardioprotective and neuroprotective effects. We previously showed that BK postconditioning strongly protects rat hippocampal neurons upon restoration of spontaneous circulation (ROSC) after cardiac arrest. However, the precise mechanism underlying this process remains poorly understood. In this study, we treated a rat model of ROSC after cardiac arrest (induced by asphyxiation) with 150 μg/kg BK via intraperitoneal injection 48 hours after ROSC following cardiac arrest. We found that BK postconditioning effectively promoted the recovery of rat neurological function after ROSC following cardiac arrest, increased the amount of autophagosomes in the hippocampal tissue, inhibited neuronal cell apoptosis, up-regulated the expression of autophagy-related proteins LC3 and NBR1 and down-regulated p62, inhibited the expression of the brain injury marker S100β and apoptosis-related protein caspase-3, and affected the expression of adenosine monophosphate-activated protein kinase/mechanistic target of rapamycin pathway-related proteins. Adenosine monophosphate-activated protein kinase inhibitor compound C clearly inhibited BK-mediated activation of autophagy in rats after ROSC following cardiac arrest, which aggravated the injury caused by ROSC. The mechanistic target of rapamycin inhibitor rapamycin enhanced the protective effects of BK by stimulating autophagy. Our findings suggest that BK postconditioning protects against injury caused by ROSC through activating the adenosine monophosphate-activated protein kinase/mechanistic target of the rapamycin pathway.
Collapse
Affiliation(s)
- Shi-Rong Lin
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital South Branch; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Qing-Ming Lin
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yu-Jia Lin
- Provincial College of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xin Qian
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Xiao-Ping Wang
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Zheng Gong
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Feng Chen
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Bin Song
- Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University; Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province; Laboratory of Clinical Applied Anatomy, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
16
|
Mobet Y, Liu X, Liu T, Yu J, Yi P. Interplay Between m6A RNA Methylation and Regulation of Metabolism in Cancer. Front Cell Dev Biol 2022; 10:813581. [PMID: 35186927 PMCID: PMC8851358 DOI: 10.3389/fcell.2022.813581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Methylation of adenosine in RNA to N6-methyladenosine (m6A) is widespread in eukaryotic cells with his integral RNA regulation. This dynamic process is regulated by methylases (editors/writers), demethylases (remover/erasers), and proteins that recognize methylation (effectors/readers). It is now evident that m6A is involved in the proliferation and metastasis of cancer cells, for instance, altering cancer cell metabolism. Thus, determining how m6A dysregulates metabolic pathways could provide potential targets for cancer therapy or early diagnosis. This review focuses on the link between the m6A modification and the reprogramming of metabolism in cancer. We hypothesize that m6A modification could dysregulate the expression of glucose, lipid, amino acid metabolism, and other metabolites or building blocks of cells by adaptation to the hypoxic tumor microenvironment, an increase in glycolysis, mitochondrial dysfunction, and abnormal expression of metabolic enzymes, metabolic receptors, transcription factors as well as oncogenic signaling pathways in both hematological malignancies and solid tumors. These metabolism abnormalities caused by m6A’s modification may affect the metabolic reprogramming of cancer cells and then increase cell proliferation, tumor initiation, and metastasis. We conclude that focusing on m6A could provide new directions in searching for novel therapeutic and diagnostic targets for the early detection and treatment of many cancers.
Collapse
Affiliation(s)
- Youchaou Mobet
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA, United States
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| |
Collapse
|
17
|
Chi J, Zhang W, Li Y, Zhao J, Zheng X, Gao M. TET3 Mediates 5hmC Level and Promotes Tumorigenesis by Activating AMPK Pathway in Papillary Thyroid Cancer. Int J Endocrinol 2022; 2022:2658727. [PMID: 35755313 PMCID: PMC9217609 DOI: 10.1155/2022/2658727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignant tumor. The accurate risk stratification and prognosis assessment is particularly important for patients with thyroid cancer, which can reduce the tumor recurrence rate, morbidity, and mortality effectively. DNA methylation is one of the most widely studied epigenetic modifications. Many studies have shown that 5hmC-mediated demethylation played an important role in tumors. The hydroxylation of 5mC is catalyzed by ten-eleven translocation dioxygenase (TET). In this study, we first found that the abnormal expression of 5hmC was closely related to microcarcinoma, multifocal, extraglandular invasion and lymph node metastasis of thyroid carcinoma. Then, we identified TET3 was differentially expressed in thyroid cancers and normal tissues from the TET family. TET3 can promote the proliferation, migration, and invasion of thyroid cancer. TET3-mediated 5hmC can regulate the transcription of AMPK pathway-related genes to activate the AMPK pathway and autophagy and therefore promote PTC proliferation. These findings provide a preclinical rationale for the design of novel therapeutic strategies for this target to improve the clinical outcome of patients with PTC.
Collapse
Affiliation(s)
- Jiadong Chi
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wei Zhang
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Breast and Thyroid Surgery, Tianjin Union Medical Center, No. 190 Jieyuan Road, Hongqiao District, Tianjin 300121, China
| | - Yigong Li
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jie Zhao
- Department of Orthopedics, Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ming Gao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Breast and Thyroid Surgery, Tianjin Union Medical Center, No. 190 Jieyuan Road, Hongqiao District, Tianjin 300121, China
| |
Collapse
|
18
|
The New Role of AMP-Activated Protein Kinase in Regulating Fat Metabolism and Energy Expenditure in Adipose Tissue. Biomolecules 2021; 11:biom11121757. [PMID: 34944402 PMCID: PMC8698496 DOI: 10.3390/biom11121757] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is characterized by excessive accumulation of fat in the body, which is triggered by a body energy intake larger than body energy consumption. Due to complications such as cardiovascular diseases, type 2 diabetes (T2DM), obstructive pneumonia and arthritis, as well as high mortality, morbidity and economic cost, obesity has become a major health problem. The global prevalence of obesity, and its comorbidities is escalating at alarming rates, demanding the development of additional classes of therapeutics to reduce the burden of disease further. As a central energy sensor, the AMP-activated protein kinase (AMPK) has recently been elucidated to play a paramount role in fat synthesis and catabolism, especially in regulating the energy expenditure of brown/beige adipose tissue and the browning of white adipose tissue (WAT). This review discussed the role of AMPK in fat metabolism in adipose tissue, emphasizing its role in the energy expenditure of brown/beige adipose tissue and browning of WAT. A deeper understanding of the role of AMPK in regulating fat metabolism and energy expenditure can provide new insights into obesity research and treatment.
Collapse
|
19
|
Feng Y, Yao S, Pu Z, Cheng H, Fei B, Zou J, Huang Z. Identification of New Tumor-Related Gene Mutations in Chinese Gastrointestinal Stromal Tumors. Front Cell Dev Biol 2021; 9:764275. [PMID: 34805171 PMCID: PMC8595335 DOI: 10.3389/fcell.2021.764275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. As the main GIST drivers, gain-of-function mutations in KIT or PDGFRA are closely associated with not only tumor development and progression but also therapeutic response. In addition to the status of KIT and PDGFRA, little is known about other potential GIST-related genes. In this study, we identified the mutation profiles in 49 KIT-mutated GIST tumors using the whole exome sequencing (WES) method. Furthermore, some representative mutations were further validated in an independent GIST cohort using the SNaPshot SNP assay. We identified extensive and diverse mutations of KIT in GIST, including many undescribed variants. In addition, we revealed some new tumor-related gene mutations with unknown pathogenicity. By enrichment analyses of gene function and protein-protein interaction network construction, we showed that these genes were enriched in several important cancer- or metabolism-related signaling pathways, including PI3K-AKT,RTK-RAS, Notch, Wnt, Hippo, mTOR, AMPK, and insulin signaling. In particular, DNA repair-related genes, including MLH1, MSH6, BRCA1, BRCA2, and POLE, are frequently mutated in GISTs, suggesting that immune checkpoint blockade may have promising clinical applications for these GIST subpopulations. In conclusion, in addition to extensive and diverse mutations of KIT, some genes related to DNA-repair and cell metabolism may play important roles in the development, progression and therapeutic response of GIST.
Collapse
Affiliation(s)
- Yuyang Feng
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhening Pu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Han Cheng
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jian Zou
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Yoo HY, Park SY, Chang SY, Kim SH. Regulation of Butyrate-Induced Resistance through AMPK Signaling Pathway in Human Colon Cancer Cells. Biomedicines 2021; 9:biomedicines9111604. [PMID: 34829834 PMCID: PMC8615665 DOI: 10.3390/biomedicines9111604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Butyrates inhibit cell growth in colon cancer cells by inhibiting histone deacetylases. However, chronic exposure to butyrates induces butyrate resistance in colon cancer cells. The mechanism underlying the acquisition of resistance is not yet fully understood. Here, butyrate-resistant (BR) colon cancer cells were developed in HCT116, HT29, and SW480 human colon cancer cells and were confirmed by the increase in the inhibitory concentrations of cell growth by 50% (IC50) compared to their respective parental (PT) cells. Chronic exposure to butyrate induced autophagy via higher expression of Beclin-1 and LC3B-II. The AMP-activated protein kinase (AMPK) was downregulated along with the activation of Akt and mammalian target of rapamycin (mTOR) and decrease in acetyl-CoA carboxylase (ACC) in BR colon cancer cells compared to those in their respective PT cells. Activation of AMPK by AICAR treatment in BR colon cancer cells suppressed cell proliferation by inhibiting Akt and mTOR and activating ACC. Taken together, chronic exposure to butyrate increased butyrate resistance in human colon cancer by inducing protective autophagy through the downregulation of AMPK/ACC and activation of Akt/mTOR signaling. Activation of AMPK restored sensitivity to butyrate by the inhibition of Akt/mTOR, suggesting that AMPK could be a therapeutic target for BR colon cancers.
Collapse
Affiliation(s)
| | | | | | - So Hee Kim
- Correspondence: ; Tel.: +82-31-219-3451; Fax: +82-31-219-3435
| |
Collapse
|
21
|
Qi X, Li Q, Che X, Wang Q, Wu G. The Uniqueness of Clear Cell Renal Cell Carcinoma: Summary of the Process and Abnormality of Glucose Metabolism and Lipid Metabolism in ccRCC. Front Oncol 2021; 11:727778. [PMID: 34604067 PMCID: PMC8479096 DOI: 10.3389/fonc.2021.727778] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
Kidney cancer is a cancer with an increasing incidence in recent years. Clear cell renal cell carcinoma (ccRCC) accounts for up to 80% of all kidney cancers. The understanding of the pathogenesis, tumor progression, and metastasis of renal carcinoma is not yet perfect. Kidney cancer has some characteristics that distinguish it from other cancers, and the metabolic aspect is the most obvious. The specificity of glucose and lipid metabolism in kidney cancer cells has also led to its being studied as a metabolic disease. As the most common type of kidney cancer, ccRCC has many characteristics that represent the specificity of kidney cancer. There are features that we are very concerned about, including the presence of lipid droplets in cells and the obesity paradox. These two points are closely related to glucose metabolism and lipid metabolism. Therefore, we hope to explore whether metabolic changes affect the occurrence and development of kidney cancer by looking for evidence of changes on expression at the genomic and protein levels in glucose metabolism and lipid metabolism in ccRCC. We begin with the representative phenomenon of abnormal cancer metabolism: the Warburg effect, through the collection of popular metabolic pathways and related genes in the last decade, as well as some research hotspots, including the role of ferroptosis and glutamine in cancer, systematically elaborated the factors affecting the incidence and metastasis of kidney cancer. This review also identifies the similarities and differences between kidney cancer and other cancers in order to lay a theoretical foundation and provide a valid hypothesis for future research.
Collapse
Affiliation(s)
- Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanlin Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Hu J, Zhang L, Chen W, Shen L, Jiang J, Sun S, Chen Z. Role of Intra- and Extracellular Lipid Signals in Cancer Stemness and Potential Therapeutic Strategy. Front Pharmacol 2021; 12:730751. [PMID: 34603046 PMCID: PMC8479196 DOI: 10.3389/fphar.2021.730751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence showed that cancer stem cells (CSCs) play significant roles in cancer initiation, resistance to therapy, recurrence and metastasis. Cancer stem cells possess the ability of self-renewal and can initiate tumor growth and avoid lethal factors through flexible metabolic reprogramming. Abnormal lipid metabolism has been reported to be involved in the cancer stemness and promote the development of cancer. Lipid metabolism includes lipid uptake, lipolysis, fatty acid oxidation, de novo lipogenesis, and lipid desaturation. Abnormal lipid metabolism leads to ferroptosis of CSCs. In this review, we comprehensively summarized the role of intra- and extracellular lipid signals in cancer stemness, and explored the feasibility of using lipid metabolism-related treatment strategies for future cancer.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Leyi Zhang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Wuzhen Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Lesang Shen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jingxin Jiang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Shanshan Sun
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
23
|
Guo X, Li H, Zhang M, Li R. LncRNA GAS6 antisense RNA 1 facilitates the tumorigenesis of clear cell renal cell carcinoma by regulating the AMP-activated protein kinase/mTOR signaling pathway. Oncol Lett 2021; 22:727. [PMID: 34429767 PMCID: PMC8371955 DOI: 10.3892/ol.2021.12988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
The role of GAS6 antisense RNA 1 (GAS6-AS1) in clear cell renal cell carcinoma (ccRCC) remains unclear. The aim of the present study was to investigate the role and molecular mechanisms of GAS6-AS1 in the progression of ccRCC. GAS6-AS1 was found to be upregulated in ccRCC tissues and cell lines, and patients with high GAS6-AS1 expression levels exhibited a poor prognosis. Small interfering (si)RNA GAS6-AS1 inhibited the activity, colony formation, invasiveness and glycolysis of OSRC-2 and SW839 cells, while GAS6-AS1 overexpression promoted these functions. Moreover, si-GAS6-AS1 increased the phosphorylation level of AMP-activated protein kinase (AMPK) and decreased that of mTOR, as well as decreasing proliferating cell nuclear antigen (PCNA), MMP-2 and hexokinase-2 (HK2) expression, which were reversed by inhibiting AMPK or mTOR. In addition, the silencing of GAS6-AS1 suppressed the growth of xenografted tumors and attenuated the expression of PCNA, MMP-2 and HK2 in tumor tissues. These findings conclude that GAS6-AS1 regulated the proliferation, invasiveness and glycolysis of ccRCC cells by regulating the AMPK/mTOR signaling pathway, and suggest that GAS6-AS1 may be a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Xiaoyun Guo
- Department of Nephrology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300201, P.R. China
| | - Hongjun Li
- Department of Infectious Diseases and Immunology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300201, P.R. China
| | - Mei Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Hexi, Tianjin 300201, P.R. China
| | - Rong Li
- Department of Nephrology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300201, P.R. China
| |
Collapse
|
24
|
Shi Z, Liu J, Wang F, Li Y. Integrated analysis of Solute carrier family-2 members reveals SLC2A4 as an independent favorable prognostic biomarker for breast cancer. Channels (Austin) 2021; 15:555-568. [PMID: 34488531 PMCID: PMC8425726 DOI: 10.1080/19336950.2021.1973788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Most of Solute carrier family-2 (SLC2) members play a key role of facilitative transporters, and glucose transporter (GLUT) proteins encoded by SLC2s can transport hexoses or polyols. However, the function and mechanism of SLC2s remain unclear in human cancers. Here, we explored the dysregulated expression, prognostic values, epigenetic, genetic alterations, and biomolecular network of SLC2s in human cancers. According to the data from public-omicsrepository, SLC2A4 (GLUT4) was found to be significantly downregulated in most cancers, and higher messenger RNA (mRNA) expression of SLC2A4 significantly associated with better prognosis of breast cancer (BRCA) patients. Moreover, DNA hypermethylation in the promoter of SLC2A4 may affect the regulation of its mRNA expression, and SLC2A4 was strongly correlated with pathways, including the translocation of SLC2A4 to the plasma membrane and PID INSULIN PATHWAY. In conclusion, these results provide insight into SLC2s in human cancers and suggest that SLC2A4 could be an unfavorable prognostic biomarker for the survival of BRCA patients.
Collapse
Affiliation(s)
- Zhenyu Shi
- Department of Predictive Medicine,Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, HenanUniversity,Kaifeng,China
| | - Jiahao Liu
- Department of Predictive Medicine,Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, HenanUniversity,Kaifeng,China
| | - Fei Wang
- Department of Predictive Medicine,Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, HenanUniversity,Kaifeng,China
| | - Yongqiang Li
- Department of Predictive Medicine,Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, HenanUniversity,Kaifeng,China
| |
Collapse
|
25
|
Mathilakathu A, Borchert S, Wessolly M, Mairinger E, Beckert H, Steinborn J, Hager T, Christoph DC, Kollmeier J, Wohlschlaeger J, Mairinger T, Schmid KW, Walter RFH, Brcic L, Mairinger FD. Mitogen signal-associated pathways, energy metabolism regulation, and mediation of tumor immunogenicity play essential roles in the cellular response of malignant pleural mesotheliomas to platinum-based treatment: a retrospective study. Transl Lung Cancer Res 2021; 10:3030-3042. [PMID: 34430345 PMCID: PMC8350085 DOI: 10.21037/tlcr-21-201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/15/2021] [Indexed: 11/06/2022]
Abstract
Background Malignant pleural mesothelioma (MPM) is a rare malignant tumor associated with asbestos exposure, with infaust prognosis and overall survival below 20 months in treated patients. Platinum is still the backbone of the chemotherapy protocols, and the reasons for the rather poor efficacy of platinum compounds in MPM remain largely unknown. Therefore, we aimed to analyze differences in key signaling pathways and biological mechanisms in therapy-naïve samples and samples after chemotherapy in order to evaluate the effect of platinum-based chemotherapy. Methods The study cohort comprised 24 MPM tumor specimens, 12 from therapy-naïve and 12 from patients after platinum-based therapy. Tumor samples were screened using the NanoString nCounter platform for digital gene expression analysis with an appurtenant custom-designed panel comprising a total of 366 mRNAs covering the most important tumor signaling pathways. Significant pathway associations were identified by gene set enrichment analysis using the WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) Results We have found reduced activity of TNF (normalized enrichment score: 2.03), IL-17 (normalized enrichment score: 1.93), MAPK (normalized enrichment score: 1.51), and relaxin signaling pathways (normalized enrichment score: 1.42) in the samples obtained after platinum-based therapy. In contrast, AMPK (normalized enrichment score: –1.58), mTOR (normalized enrichment score: –1.50), Wnt (normalized enrichment score: –1.38), and longevity regulating pathway (normalized enrichment score: –1.31) showed significantly elevated expression in the same samples. Conclusions We could identify deregulated signaling pathways due to a directed cellular response to platinum-induced cell stress. Our results are paving the ground for a better understanding of cellular responses and escape mechanisms, carrying a high potential for improved clinical management of patients with MPM.
Collapse
Affiliation(s)
- Alexander Mathilakathu
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Hendrik Beckert
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Essen, Germany
| | - Julia Steinborn
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Thomas Hager
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Daniel C Christoph
- Department of Medical Oncology, Evang. Kliniken Essen-Mitte, Essen, Germany
| | - Jens Kollmeier
- Department of Pneumology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Thomas Mairinger
- Department of Tissue Diagnostics, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Robert F H Walter
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Fabian D Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| |
Collapse
|
26
|
Behl T, Gupta A, Sehgal A, Sharma S, Singh S, Sharma N, Diaconu CC, Rahdar A, Hafeez A, Bhatia S, Al-Harrasi A, Bungau S. A spotlight on underlying the mechanism of AMPK in diabetes complications. Inflamm Res 2021; 70:939-957. [PMID: 34319417 DOI: 10.1007/s00011-021-01488-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is one of the centenarian metabolic disorders and is considered as a stellar and leading health issue worldwide. According to the International Diabetes Federation (IDF) Diabetes Atlas and National Diabetes Statistics, the number of diabetic patients will increase at an exponential rate from 463 to 700 million by the year 2045. Thus, there is a great need for therapies targeting functions that can help in maintaining the homeostasis of glucose levels and improving insulin sensitivity. 5' adenosine monophosphate-activated protein kinase (AMPK) activation, by various direct and indirect factors, might help to overcome the hurdles (like insulin resistance) associated with the conventional approach. MATERIALS AND RESULTS A thorough review and analysis was conducted using various database including MEDLINE and EMBASE databases, with Google scholar using various keywords. This extensive review concluded that various drugs (plant-based, synthetic indirect/direct activators) are available, showing tremendous potential in maintaining the homeostasis of glucose and lipid metabolism, without causing insulin resistance, and improving insulin sensitivity. Moreover, these drugs have an effect against diabetes and are therapeutically beneficial in the treatment of diabetes-associated complications (neuropathy and nephropathy) via mechanism involving inhibition of nuclear translocation of SMAD4 (SMAD family member) expression and association with peripheral nociceptive neurons mediated by AMPK. CONCLUSION From the available information, it may be concluded that various indirect/direct activators show tremendous potential in maintaining the homeostasis of glucose and lipid metabolism, without resulting in insulin resistance, and may improve insulin sensitivity, as well. Therefore, in a nut shell, it may be concluded that the regulation of APMK functions by various direct/indirect activators may bring promising results. These activators may emerge as a novel therapy in diabetes and its associated complications.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sanchay Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Camelia Cristina Diaconu
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, Bucharest, Romania.,Department 5, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur, Uttar Pradesh, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Haryana, India.,Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
27
|
Ershov P, Kaluzhskiy L, Mezentsev Y, Yablokov E, Gnedenko O, Ivanov A. Enzymes in the Cholesterol Synthesis Pathway: Interactomics in the Cancer Context. Biomedicines 2021; 9:biomedicines9080895. [PMID: 34440098 PMCID: PMC8389681 DOI: 10.3390/biomedicines9080895] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
A global protein interactome ensures the maintenance of regulatory, signaling and structural processes in cells, but at the same time, aberrations in the repertoire of protein-protein interactions usually cause a disease onset. Many metabolic enzymes catalyze multistage transformation of cholesterol precursors in the cholesterol biosynthesis pathway. Cancer-associated deregulation of these enzymes through various molecular mechanisms results in pathological cholesterol accumulation (its precursors) which can be disease risk factors. This work is aimed at systematization and bioinformatic analysis of the available interactomics data on seventeen enzymes in the cholesterol pathway, encoded by HMGCR, MVK, PMVK, MVD, FDPS, FDFT1, SQLE, LSS, DHCR24, CYP51A1, TM7SF2, MSMO1, NSDHL, HSD17B7, EBP, SC5D, DHCR7 genes. The spectrum of 165 unique and 21 common protein partners that physically interact with target enzymes was selected from several interatomic resources. Among them there were 47 modifying proteins from different protein kinases/phosphatases and ubiquitin-protein ligases/deubiquitinases families. A literature search, enrichment and gene co-expression analysis showed that about a quarter of the identified protein partners was associated with cancer hallmarks and over-represented in cancer pathways. Our results allow to update the current fundamental view on protein-protein interactions and regulatory aspects of the cholesterol synthesis enzymes and annotate of their sub-interactomes in term of possible involvement in cancers that will contribute to prioritization of protein targets for future drug development.
Collapse
|
28
|
Chen C, Gao H, Su X. Autophagy-related signaling pathways are involved in cancer (Review). Exp Ther Med 2021; 22:710. [PMID: 34007319 PMCID: PMC8120650 DOI: 10.3892/etm.2021.10142] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a self-digestion process in cells that can maintain energy homeostasis under normal circumstances. However, misfolded proteins, damaged mitochondria and other unwanted components in cells can be decomposed and reused via autophagy in some specific cases (including hypoxic stress, low energy states or nutrient deprivation). Therefore, autophagy serves a positive role in cell survival and growth. However, excessive autophagy may lead to apoptosis. Furthermore, abnormal autophagy may lead to carcinogenesis and promote tumorigenesis in normal cells. In tumor cells, autophagy may provide the energy required for excessive proliferation, promote the growth of cancer cells, and evade apoptosis caused by certain treatments, including radiotherapy and chemotherapy, resulting in increased treatment resistance and drug resistance. On the other hand, autophagy leads to an insufficient nutrient supply in cancer cells and the destruction of energy homeostasis, thereby inducing cancer cell apoptosis. Therefore, understanding the mechanism of the double-edged sword of autophagy is crucial for the treatment of cancer. The present review summarizes the signaling pathways and key factors involved in autophagy and cancer to provide possible strategies for treating tumors.
Collapse
Affiliation(s)
- Caixia Chen
- Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Hui Gao
- Department of Thoracic Surgery, Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, Inner Mongolia 010020, P.R. China
| | - Xiulan Su
- Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
29
|
SCD5 expression correlates with prognosis and response to neoadjuvant chemotherapy in breast cancer. Sci Rep 2021; 11:8976. [PMID: 33903614 PMCID: PMC8076324 DOI: 10.1038/s41598-021-88258-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/08/2021] [Indexed: 12/31/2022] Open
Abstract
Neoadjuvant chemotherapy (NACT) represents a standard option for breast cancer. Unfortunately, about 55–80% of breast cancer patients do not have a favorable response to chemotherapy. Highly specific tumor biomarker that can predict the pathological response to neoadjuvant chemotherapy is lacking. Stearoyl-CoA desaturase 5 (SCD5) is an integral membrane protein of the endoplasmic reticulum that participates in lipid metabolism. Previous studies on the role of SCD5 in human cancers drew different conclusions. Therefore, the role of SCD5 in breast cancer remains unclear. Our study aims to understand its expression signature, prognosis value and correlation with pathological response to NACT in breast cancer using bioinformatics from public databases. Analysis of samples from public databases showed that SCD5 expression was down-regulated in some human cancers including breast cancer, and low expression of SCD5 was associated with more aggressive breast cancer phenotypes. Survival analysis revealed that SCD5 expression was related to prognosis in breast cancer. Integrated analysis of multiple public datasets indicated that SCD5 expression signature was associated with pathological response to NACT, particularly in TNBC. Based on functional enrichment analysis, the most affected biological functions in high SCD5-expressing breast cancer tissues were involved in negative regulation of cell cycle. Moreover, a significantly negative correlation between SCD5 expression and several cell cycle regulators was noted. Taken together, SCD5 was involved in the development and progression of breast cancer and might be a predictive biomarker for response to NACT. In conclusion, SCD5 could serve as a predictive biomarker of pathological response to NACT and play a carcinostatic role in breast cancer. These results provided us with clues to better understand SCD5 from the perspective of bioinformatics and highlighted the clinical importance of SCD5 in breast cancer, especially triple negative breast cancer (TNBC).
Collapse
|
30
|
Zhang J, Han L, Yu J, Li H, Li Q. miR-224 aggravates cancer-associated fibroblast-induced progression of non-small cell lung cancer by modulating a positive loop of the SIRT3/AMPK/mTOR/HIF-1α axis. Aging (Albany NY) 2021; 13:10431-10449. [PMID: 33819917 PMCID: PMC8064154 DOI: 10.18632/aging.202803] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Cancer-associated fibroblast (CAF) is among the most important tumor-host microenvironment components by affecting tumor progression. This study explored the role of miR-224 in CAF-induced non-small cell lung cancer (NSCLC). MATERIALS AND METHODS A CAF-NSCLC cell co-culture model was established, and the miR-224 expression in CAF was detected by reverse transcription-polymerase chain reaction (RT-PCR). Gain- and loss- of experiments of miR-224 were implemented to verify the effects of CAF on NSCLC cell proliferation, invasion, and epithelial-mesenchymal transition (EMT), and endothelial cell (EC) angiogenesis. Overexpressing genetic or pharmacological interventions were performed to explore the potential mechanisms of Sirtuins 3/AMP-activated protein kinase/mammalian target of rapamycin/hypoxia-inducible factor-1α (SIRT3/AMPK/mTOR/HIF-1α). RESULTS CAF enhanced the malignant phenotype of NSCLC cells and induced EC angiogenesis. miR-224 was significantly altered in CAFs. miR-224 up-regulation exacerbated NSCLC development mediated by CAFs, while miR-224 inhibition mostly reversed CAF-induced effects. Mechanistically, miR-224 targeted the 3'-untranslated regions (UTR) of SIRT3 mRNA, thereby inhibiting SIRT3/AMPK and activating mTOR/HIF-1α. Forced overexpression of SIRT3 up-regulated AMPK and inactivated mTOR/HIF-1α, while inhibiting HIF-1α markedly up-regulated SIRT3/AMPK and reduced mTOR phosphorylation. Interestingly, both Sirt1 overexpression and HIF-1α inhibition repressed miR-224 levels and miR-224-mediated promotive effects in NSCLC. CONCLUSION The miR-224-SIRT3/AMPK/mTOR/HIF-1α axis formed a positive feedback loop in modulating CAF-induced carcinogenic effects on NSCLC.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| | - Lan Han
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| | - Jing Yu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| | - Hui Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| | - Qingfeng Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| |
Collapse
|
31
|
Hou X, Shi X, Zhang W, Li D, Hu L, Yang J, Zhao J, Wei S, Wei X, Ruan X, Zheng X, Gao M. LDHA induces EMT gene transcription and regulates autophagy to promote the metastasis and tumorigenesis of papillary thyroid carcinoma. Cell Death Dis 2021; 12:347. [PMID: 33795650 PMCID: PMC8017009 DOI: 10.1038/s41419-021-03641-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 02/01/2023]
Abstract
Papillary thyroid carcinoma (PTC) is one of the most common kinds of endocrine-related cancer and has a heterogeneous prognosis. Metabolic reprogramming is one of the hallmarks of cancers. Aberrant glucose metabolism is associated with malignant biological behavior. However, the functions and mechanisms of glucose metabolism genes in PTC are not fully understood. Thus, data from The Cancer Genome Atlas database were analyzed, and lactate dehydrogenase A (LDHA) was determined to be a potential novel diagnostic and therapeutic target for PTCs. The research objective was to investigate the expression of LDHA in PTCs and to explore the main functions and relative mechanisms of LDHA in PTCs. Higher expression levels of LDHA were found in PTC tissues than in normal thyroid tissues at both the mRNA and protein levels. Higher expression levels of LDHA were correlated with aggressive clinicopathological features and poor prognosis. Moreover, we found that LDHA not only promoted PTC migration and invasion but also enhanced tumor growth both in vitro and in vivo. In addition, we revealed that the metabolic products of LDHA catalyzed induced the epithelial-mesenchymal transition process by increasing the relative gene H3K27 acetylation. Moreover, LDHA knockdown activated the AMPK pathway and induced protective autophagy. An autophagy inhibitor significantly enhanced the antitumor effect of FX11. These results suggested that LDHA enhanced the cell metastasis and proliferation of PTCs and may therefore become a potential therapeutic target for PTCs.
Collapse
Affiliation(s)
- Xiukun Hou
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Xianle Shi
- grid.21729.3f0000000419368729Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Wei Zhang
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Dapeng Li
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Linfei Hu
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Jihong Yang
- grid.21729.3f0000000419368729Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Jingzhu Zhao
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Songfeng Wei
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Xi Wei
- grid.411918.40000 0004 1798 6427Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Xianhui Ruan
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Xiangqian Zheng
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Ming Gao
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| |
Collapse
|
32
|
Abstract
Metabolic reprogramming with heterogeneity is a hallmark of cancer and is at the basis of malignant behaviors. It supports the proliferation and metastasis of tumor cells according to the low nutrition and hypoxic microenvironment. Tumor cells frantically grab energy sources (such as glucose, fatty acids, and glutamine) from different pathways to produce a variety of biomass to meet their material needs via enhanced synthetic pathways, including aerobic glycolysis, glutaminolysis, fatty acid synthesis (FAS), and pentose phosphate pathway (PPP). To survive from stress conditions (e.g., metastasis, irradiation, or chemotherapy), tumor cells have to reprogram their metabolism from biomass production towards the generation of abundant adenosine triphosphate (ATP) and antioxidants. In addition, cancer cells remodel the microenvironment through metabolites, promoting an immunosuppressive microenvironment. Herein, we discuss how the metabolism is reprogrammed in cancer cells and how the tumor microenvironment is educated via the metabolic products. We also highlight potential metabolic targets for cancer therapies.
Collapse
Affiliation(s)
- Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
33
|
Wu M, Li Q, Wang H. Identification of Novel Biomarkers Associated With the Prognosis and Potential Pathogenesis of Breast Cancer via Integrated Bioinformatics Analysis. Technol Cancer Res Treat 2021; 20:1533033821992081. [PMID: 33550915 PMCID: PMC7876582 DOI: 10.1177/1533033821992081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Breast cancer is the most commonly diagnosed malignancy and a major cause of cancer-related deaths in women globally. Identification of novel prognostic and pathogenesis biomarkers play a pivotal role in the management of the disease. Methods: Three data sets from the GEO database were used to identify differentially expressed genes (DEGs) in breast cancer. Gene Ontology (GO) enrichment and Kyoto Encyclopaedia of Genes and Genomes pathway analyses were performed to elucidate the functional roles of the DEGs. Besides, we investigated the translational and protein expression levels and survival data of the DEGs in patients with breast cancer from the Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine, Human Protein Atlas, and Kaplan Meier plotter tool databases. The corresponding change in the expression level of microRNAs in the DEGs was also predicted using miRWalk and TargetScan, and the expression profiles were analyzed using OncomiR. Finally, the expression of novel DEGs were validated in Chinese breast cancer tissues by RT-qPCR. Results: A total of 46 DEGs were identified, and GO analysis revealed that these genes were mainly associated with biological processes involved in fatty acid, lipid localization, and regulation of lipid metabolism. Two novel biomarkers, ADH1A and IGSF10, and 4 other genes (APOD, KIT, RBP4, and SFRP1) that were implicated in the prognosis and pathogenesis of breast cancer, exhibited low expression levels in breast cancer tissues. Besides, 14/25 microRNAs targeting 6 genes were first predicted to be associated with breast cancer prognosis. RT-qPCR results of ADH1A and IGSF10 expression in Chinese breast cancer tissues were consistent with the database analysis and showed significant down-regulation. Conclusion: ADH1A, IGSF10, and the 14 microRNAs were found to be potential novel biomarkers for the diagnosis, treatment, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Meng Wu
- Department of Medical Oncology, The Affiliated Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingdai Li
- Department of Medical Oncology, The Affiliated Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongbing Wang
- Department of Medical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
34
|
Becherini P, Caffa I, Piacente F, Damonte P, Vellone VG, Passalacqua M, Benzi A, Bonfiglio T, Reverberi D, Khalifa A, Ghanem M, Guijarro A, Tagliafico L, Sucameli M, Persia A, Monacelli F, Cea M, Bruzzone S, Ravera S, Nencioni A. SIRT6 enhances oxidative phosphorylation in breast cancer and promotes mammary tumorigenesis in mice. Cancer Metab 2021; 9:6. [PMID: 33482921 PMCID: PMC7821730 DOI: 10.1186/s40170-021-00240-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Sirtuin 6 (SIRT6) is a NAD+-dependent deacetylase with key roles in cell metabolism. High SIRT6 expression is associated with adverse prognosis in breast cancer (BC) patients. However, the mechanisms through which SIRT6 exerts its pro-oncogenic effects in BC remain unclear. Here, we sought to define the role of SIRT6 in BC cell metabolism and in mouse polyoma middle T antigen (PyMT)-driven mammary tumors. METHODS We evaluated the effect of a heterozygous deletion of Sirt6 on tumor latency and survival of mouse mammary tumor virus (MMTV)-PyMT mice. The effect of SIRT6 silencing on human BC cell growth was assessed in MDA-MB-231 xenografts. We also analyzed the effect of Sirt6 heterozygous deletion, of SIRT6 silencing, and of the overexpression of either wild-type (WT) or catalytically inactive (H133Y) SIRT6 on BC cell pyruvate dehydrogenase (PDH) expression and activity and oxidative phosphorylation (OXPHOS), including respiratory complex activity, ATP/AMP ratio, AMPK activation, and intracellular calcium concentration. RESULTS The heterozygous Sirt6 deletion extended tumor latency and mouse survival in the MMTV-PyMT mouse BC model, while SIRT6 silencing slowed the growth of MDA-MB-231 BC cell xenografts. WT, but not catalytically inactive, SIRT6 enhanced PDH expression and activity, OXPHOS, and ATP/AMP ratio in MDA-MB-231 and MCF7 BC cells. Opposite effects were obtained by SIRT6 silencing, which also blunted the expression of genes encoding for respiratory chain proteins, such as UQCRFS1, COX5B, NDUFB8, and UQCRC2, and increased AMPK activation in BC cells. In addition, SIRT6 overexpression increased, while SIRT6 silencing reduced, intracellular calcium concentration in MDA-MB-231 cells. Consistent with these findings, the heterozygous Sirt6 deletion reduced the expression of OXPHOS-related genes, the activity of respiratory complexes, and the ATP/AMP ratio in tumors isolated from MMTV-PyMT mice. CONCLUSIONS Via its enzymatic activity, SIRT6 enhances PDH expression and activity, OXPHOS, ATP/AMP ratio, and intracellular calcium concentration, while reducing AMPK activation, in BC cells. Thus, overall, SIRT6 inhibition appears as a viable strategy for preventing or treating BC.
Collapse
Affiliation(s)
- Pamela Becherini
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy.,Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy.,Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Francesco Piacente
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy.,Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Department of Experimental Medicine (DIMES), University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy
| | - Patrizia Damonte
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - Valerio G Vellone
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Department of Integrated, Surgical and Diagnostic Sciences (DISC), University of Genoa, L.go Rosanna Benzi 8, 16132, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine (DIMES), University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy
| | - Andrea Benzi
- Department of Experimental Medicine (DIMES), University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - Daniele Reverberi
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Amr Khalifa
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - Moustafa Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - Ana Guijarro
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - Marzia Sucameli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy.,Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy.,Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine (DIMES), University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine (DIMES), University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy.
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy. .,Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
35
|
Wang Y, Xu B, Zhou J, Wu X. Propofol activates AMPK to inhibit the growth of HepG2 cells in vitro and hepatocarcinogenesis in xenograft mouse tumor models by inducing autophagy. J Gastrointest Oncol 2021; 11:1322-1332. [PMID: 33457004 DOI: 10.21037/jgo-20-472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a fatal malignant tumor with a poor prognosis, and is the third leading cause of cancer-related deaths worldwide. This study aimed to investigate the anti-tumor effect of propofol on the proliferation, apoptosis, and cell cycle of HCC by regulating adenosine monophosphate-activated protein kinase (AMPK) in vivo and in vitro. Methods The cell counting Kit-8 (CCK-8) assay was employed to screen the effect of propofol on HepG2 cell viability at various concentrations (0.3, 0.6, 1.2, 2.5, 5, 10, 20, 40, 80 and 160 µM). We selected propofol at concentrations of 5, 10 and 20 µM for subsequent experiments. Flow cytometry was used to examine the apoptosis and cell cycle of HCC. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) was applied to measure the messenger ribonucleic acid (mRNA) expression levels of proliferating cell nuclear antigen (PCNA) and survivin. Western blotting was applied to measure the protein expression levels of PCNA, survivin, cleaved caspase-3, cleaved caspase-9, p27 (Kip1), and cyclin A. The effects of propofol were evaluated by establishing a xenograft tumor model. Results After treatment with propofol, the mRNA expression levels of PCNA and survivin were decreased compared with the 0 µM propofol (control) group. The colony formation assay showed that the colony formation rate was obviously down-regulated. Flow cytometry demonstrated that HepG2 cell apoptosis was increased. G0/G1 was enhanced compared with the control group, while G2/M was restrained. The levels of cleaved caspase-3, cleaved caspase-9, p27, phospho-AMP-activated protein kinase α1 (p-AMPKα1), phospho-mammalian target of rapamycin (p-mTOR), and phospho-Unc-51 like autophagy activating kinase 1 (p-ULK1) were notably elevated, while the levels of cyclin A were suppressed. The xenograft tumor volume declined in vivo compared with the HepG2 xenograft group. The expression levels of cell proliferation markers (PCNA) were significantly down-regulated markedly, while the expression levels of cell cycle markers (p27) were notablyup-regulated. Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining showed that cell apoptosis was increased. The levels of p-AMPKα1 were also up-regulated. Conclusions Propofol inhibits the proliferation, apoptosis, and cell cycle of HCC by regulating AMPK in vivo and in vitro.
Collapse
Affiliation(s)
- Yixiong Wang
- Department of Anesthesiology, The Quanzhou First Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Baozhu Xu
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jianying Zhou
- Department of Anesthesiology, The Quanzhou First Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xianyan Wu
- Department of Anesthesiology, The Quanzhou First Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
36
|
Liao XZ, Gao Y, Zhao HW, Zhou M, Chen DL, Tao LT, Guo W, Sun LL, Gu CY, Chen HR, Xiao ZW, Zhang JX, He MF, Lin LZ. Cordycepin Reverses Cisplatin Resistance in Non-small Cell Lung Cancer by Activating AMPK and Inhibiting AKT Signaling Pathway. Front Cell Dev Biol 2021; 8:609285. [PMID: 33520990 PMCID: PMC7843937 DOI: 10.3389/fcell.2020.609285] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Cisplatin (DDP) is the first-line chemotherapeutic agent against lung cancer. However, the therapeutic effect of DDP loses over time due to the acquired drug resistance in non-small cell lung cancer (NSCLC) cells. In recent years, the role of the traditional Chinese medicine (TCM) cordycepin (Cor) in cancer treatment has been attracting attention. However, the effects of Cor on DDP resistance in NSCLC are unclear. In the present study, we aimed to investigate the effects of Cor in combination with DDP on cell proliferation and apoptosis in NSCLC and explore possible underlying mechanisms. The cell proliferation and apoptosis were analyzed in NSCLC parental (A549) and DDP-resistant (A549DDP) cells treated with DDP alone or in combination with Cor both in vitro and in vivo. Different genes and signaling pathways were investigated between DDP-sensitive and DDP-resistant A549 cells by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The perturbations of the MAPK and PI3K-AKT signaling pathways were evaluated by Western blot analysis. Our data showed that Cor markedly enhanced DDP inhibition on cell proliferation and promotion of apoptosis compared to the DDP-alone group in both A549 and A549DDP cells. The synergic actions were associated with activation of AMPK; inhibition of AKT, mTOR, and downstream P709S6K; and S6 phosphorylation in the AKT pathway compared with DDP alone. Collectively, combination of Cor and DDP has a synergistic effect in inhibiting proliferation and promoting apoptosis of NSCLC cells in the presence or absence of DDP resistance. The antitumor activity is associated with activation of AMPK and inhibition of the AKT pathway to enhance DDP inhibition on NSCLC. Our results suggested that Cor in combination with DDP could be an additional therapeutic option for the treatment of DDP-resistant NSCLC.
Collapse
Affiliation(s)
- Xiao-Zhong Liao
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Gao
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong-Wei Zhao
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mi Zhou
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan-Lei Chen
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lan-Ting Tao
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Guo
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling-Ling Sun
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chu-Ying Gu
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han-Rui Chen
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Wei Xiao
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Xing Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei-Fang He
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Zhu Lin
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
37
|
Ye ZQ, Dong XB, Chen HB, Gu DN, Qiu ZJ. Circular RNA CDR1as-induced autophagy regulates the proliferation and migration of CD44 +/CD24 - phenotype breast cancer stem cells in vitro. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1934575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Zhi-qiang Ye
- Department of General surgery, Shanghai General Hospital of Nanjing Medical University, Shanghai, People’s Republic of China
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xu-bin Dong
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Han-bin Chen
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Dian-na Gu
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Zheng-jun Qiu
- Department of General surgery, Shanghai General Hospital of Nanjing Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
38
|
Niu L, Yang W, Duan L, Wang X, Li Y, Xu C, Liu C, Zhang Y, Zhou W, Liu J, Zhao Q, Han Y, Hong L, Fan D. Biological functions and theranostic potential of HMGB family members in human cancers. Ther Adv Med Oncol 2020; 12:1758835920970850. [PMID: 33224279 PMCID: PMC7659026 DOI: 10.1177/1758835920970850] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
The high mobility group box (HMGB) protein family consists of four members: HMGB1, 2, 3, and 4. They share similar amino acid sequences and identical functional regions, especially HMGB1, 2, and 3. The homology in structure may lead to similarity in function. In fact, though their targets may be different, they all possess the fundamental function of binding and distorting target DNAs. However, further research confirmed they are distributed differently in tissues and involved in various distinct physiological and pathological cellular processes, including cell proliferation, division, migration, and differentiation. Recently, the roles of HMGB family members in carcinogenesis has been widely investigated; however, systematic discussion on their functions and clinical values in malignant tumors is limited. In this review, we mainly review and summarize recent advances in knowledge of HMGB family members in terms of structure, distribution, biochemical cascades, and specific mechanisms regarding tumor progression. Importantly, the diagnostic, prognostic, and therapeutic value of these proteins in cancers is discussed. Finally, we envisage the orientation and challenges of this field in further studies.
Collapse
Affiliation(s)
- Liaoran Niu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Lili Duan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chengchao Xu
- 94719 Military Hospital, Ji'an, Jiangxi Province, China
| | - Chao Liu
- School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi Province, 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
39
|
Silva VR, Neves SP, Santos LDS, Dias RB, Bezerra DP. Challenges and Therapeutic Opportunities of Autophagy in Cancer Therapy. Cancers (Basel) 2020; 12:cancers12113461. [PMID: 33233671 PMCID: PMC7699739 DOI: 10.3390/cancers12113461] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Autophagy is a physiological process characterized by the degradation of the cell components through lysosomes due to stimuli/stress. In this study, we review the challenges and therapeutic opportunities that autophagy presents in the treatment of cancer. We discussed the results of several studies that evaluated autophagy as a therapeutic strategy in cancer, both through the modulation of therapeutic resistance and the death of cancer cells. Moreover, we discussed the role of autophagy in the biology of cancer stem cells and the inhibition of this process as a strategy to overcome resistance and progression of cancer stem cells. Abstract Autophagy is a physiological cellular process that is crucial for development and can occurs in response to nutrient deprivation or metabolic disorders. Interestingly, autophagy plays a dual role in cancer cells—while in some situations, it has a cytoprotective effect that causes chemotherapy resistance, in others, it has a cytotoxic effect in which some compounds induce autophagy-mediated cell death. In this review, we summarize strategies aimed at autophagy for the treatment of cancer, including studies of drugs that can modulate autophagy-mediated resistance, and/or drugs that cause autophagy-mediated cancer cell death. In addition, the role of autophagy in the biology of cancer stem cells has also been discussed.
Collapse
|
40
|
Acetylsalicylic acid and salicylic acid present anticancer properties against melanoma by promoting nitric oxide-dependent endoplasmic reticulum stress and apoptosis. Sci Rep 2020; 10:19617. [PMID: 33184378 PMCID: PMC7665072 DOI: 10.1038/s41598-020-76824-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Melanoma is the most aggressive and fatal type of skin cancer due to being highly proliferative. Acetylsalicylic acid (ASA; Aspirin) and salicylic acid (SA) are ancient drugs with multiple applications in medicine. Here, we showed that ASA and SA present anticancer effects against a murine model of implanted melanoma. These effects were also validated in 3D- and 2D-cultured melanoma B16F10 cells, where the drugs promoted pro-apoptotic effects. In both in vivo and in vitro models, SA and ASA triggered endoplasmic reticulum (ER) stress, which culminates with the upregulation of the pro-apoptotic transcription factor C/EBP homologous protein (CHOP). These effects are initiated by ASA/SA-triggered Akt/mTOR/AMPK-dependent activation of nitric oxide synthase 3 (eNOS), which increases nitric oxide and reactive oxygen species production inducing ER stress response. In the end, we propose that ASA and SA instigate anticancer effects by a novel mechanism, the activation of ER stress.
Collapse
|
41
|
Proteoglycans in the Pathogenesis of Hormone-Dependent Cancers: Mediators and Effectors. Cancers (Basel) 2020; 12:cancers12092401. [PMID: 32847060 PMCID: PMC7563227 DOI: 10.3390/cancers12092401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Hormone-dependent cancers exhibit high morbidity and mortality. In spite of advances in therapy, the treatment of hormone-dependent cancers remains an unmet health need. The tumor microenvironment (TME) exhibits unique characteristics that differ among various tumor types. It is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded and supported by components of the extracellular matrix (ECM). Therefore, the interactions among cancer cells, stromal cells, and components of the ECM determine cancer progression and response to therapy. Proteoglycans (PGs), hybrid molecules consisting of a protein core to which sulfated glycosaminoglycan chains are bound, are significant components of the ECM that are implicated in all phases of tumorigenesis. These molecules, secreted by both the stroma and cancer cells, are crucial signaling mediators that modulate the vital cellular pathways implicated in gene expression, phenotypic versatility, and response to therapy in specific tumor types. A plethora of deregulated signaling pathways contributes to the growth, dissemination, and angiogenesis of hormone-dependent cancers. Specific inputs from the endocrine and immune systems are some of the characteristics of hormone-dependent cancer pathogenesis. Importantly, the mechanisms involved in various aspects of cancer progression are executed in the ECM niche of the TME, and the PG components crucially mediate these processes. Here, we comprehensively discuss the mechanisms through which PGs affect the multifaceted aspects of hormone-dependent cancer development and progression, including cancer metastasis, angiogenesis, immunobiology, autophagy, and response to therapy.
Collapse
|
42
|
The Protective Role of Decorin in Hepatic Metastasis of Colorectal Carcinoma. Biomolecules 2020; 10:biom10081199. [PMID: 32824864 PMCID: PMC7465536 DOI: 10.3390/biom10081199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/24/2022] Open
Abstract
Decorin, the prototype member of the small leucine-rich proteoglycan gene family of extracellular matrix (ECM) proteins, acts as a powerful tumor suppressor by inducing the p21Waf1/Cip1 cyclin-dependent kinase inhibitor, as well as through its ability to directly bind and block the action of several tyrosine kinase receptors. Our previous studies suggested that the lack of decorin promotes hepatic carcinogenesis in mice. Based on this, we set out to investigate whether excess decorin may protect against the liver metastases of colon carcinoma. We also analyzed the effect of decorin in tissue microarrays of human colon carcinoma liver metastasis and examined whether the tumor cells can directly influence the decorin production of myofibroblasts. In humans, low levels of decorin in the liver facilitated the development of colon carcinoma metastases in proportion with more aggressive phenotypes, indicating a possible antitumor action of the proteoglycan. In vitro, colon carcinoma cells inhibited decorin expression in LX2 hepatic stellate cells. Moreover, liver-targeted decorin delivery in mice effectively attenuated metastasis formation of colon cancer. Overexpressed decorin reduced the activity of multiple receptor tyrosine kinases (RTKs) including the epidermal growth factor receptor (EGFR), an important player in colorectal cancer (CRC) pathogenesis. Downstream of that, we observed weakened signaling of ERK1/2, PLCγ, Akt/mTOR, STAT and c-Jun pathways, while p38 MAPK/MSK/CREB and AMPK were upregulated culminating in enhanced p53 function. In conclusion, decorin may effectively inhibit metastatic tumor formation in the liver.
Collapse
|
43
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
44
|
Matheson CJ, Casalvieri KA, Backos DS, Minhajuddin M, Jordan CT, Reigan P. Substituted oxindol-3-ylidenes as AMP-activated protein kinase (AMPK) inhibitors. Eur J Med Chem 2020; 197:112316. [PMID: 32334266 PMCID: PMC7409528 DOI: 10.1016/j.ejmech.2020.112316] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/05/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
AMP-activated protein kinase (AMPK) is a central metabolic regulator that promotes cancer growth and survival under hypoxia and plays a role in the maintenance of cancer stem cells. A major challenge to interrogating the potential of targeting AMPK in cancer is the lack of potent and selective small molecule inhibitors. Compound C has been widely used as an AMPK inhibitor, but it lacks potency and has a poor selectivity profile. The multi-kinase inhibitor, sunitinib, has demonstrated potent nanomolar inhibition of AMPK activity and has scope for modification. Here, we have designed and synthesized several series of oxindoles to determine the structural requirements for AMPK inhibition and to improve selectivity. We identified two potent, novel oxindole-based AMPK inhibitors that were designed to interact with the DFG motif in the ATP-binding site of AMPK, this key feature evades interaction with the common recptor tyrosine kinase targets of sunitinib. Cellular engagement of AMPK by these oxindoles was confirmed by the inhibition of phosphorylation of acetyl-CoA carboxylase (ACC), a known substrate of AMPK, in myeloid leukemia cells. Interestingly, although AMPK is highly expressed and activated in K562 cells these oxindole-based AMPK inhibitors did not impact cell viability or result in significant cytotoxicity. Our studies serve as a platform for the further development of oxindole-based AMPK inhibitors with therapeutic potential.
Collapse
Affiliation(s)
- Christopher J Matheson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045, USA
| | - Kimberly A Casalvieri
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045, USA
| | - Donald S Backos
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045, USA
| | - Mohammed Minhajuddin
- Division of Hematology, University of Colorado Anschutz Medical Campus, 12700 E 19th Avenue, Aurora, CO, 80045, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado Anschutz Medical Campus, 12700 E 19th Avenue, Aurora, CO, 80045, USA
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045, USA.
| |
Collapse
|
45
|
Ding H, Yu X, Hang C, Gao K, Lao X, Jia Y, Yan Z. Ailanthone: A novel potential drug for treating human cancer. Oncol Lett 2020; 20:1489-1503. [PMID: 32724391 PMCID: PMC7377054 DOI: 10.3892/ol.2020.11710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/05/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular disease. In 2015, >8.7 million people died worldwide due to cancer, and by 2030 this figure is expected to increase to ~13.1 million. Tumor chemotherapy drugs have specific toxicity and side effects, and patients can also develop secondary drug resistance. To prevent and treat cancer, scientists have developed novel drugs with improved antitumor effects and decreased toxicity. Ailanthone (AIL) is a quassinoid extract from the traditional Chinese medicine plant Ailanthus altissima, which is known to have anti-inflammatory and antimalarial effects. An increasing number of studies have focused on AIL due to its antitumor activity. AIL can inhibit cell proliferation and induce apoptosis by up- or downregulating cancer-associated molecules, which ultimately leads to cancer cell death. Antitumor effects of AIL have been observed in melanoma, acute myeloid leukemia, bladder, lung, breast, gastric and prostate cancer and vestibular neurilemmoma. To the best of our knowledge, the present study is the first review to describe the antitumor mechanisms of AIL.
Collapse
Affiliation(s)
- Haixiang Ding
- Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiuchong Yu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of The Medical School of Ningbo University and Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Chen Hang
- Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Kaijun Gao
- Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xifeng Lao
- Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yangtao Jia
- Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhilong Yan
- Department of Gastrointestinal Surgery, The Affiliated Hospital of The Medical School of Ningbo University and Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
46
|
Rodríguez-Hernández MA, de la Cruz-Ojeda P, López-Grueso MJ, Navarro-Villarán E, Requejo-Aguilar R, Castejón-Vega B, Negrete M, Gallego P, Vega-Ochoa Á, Victor VM, Cordero MD, Del Campo JA, Bárcena JA, Padilla CA, Muntané J. Integrated molecular signaling involving mitochondrial dysfunction and alteration of cell metabolism induced by tyrosine kinase inhibitors in cancer. Redox Biol 2020; 36:101510. [PMID: 32593127 PMCID: PMC7322178 DOI: 10.1016/j.redox.2020.101510] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer cells have unlimited replicative potential, insensitivity to growth-inhibitory signals, evasion of apoptosis, cellular stress, and sustained angiogenesis, invasiveness and metastatic potential. Cancer cells adequately adapt cell metabolism and integrate several intracellular and redox signaling to promote cell survival in an inflammatory and hypoxic microenvironment in order to maintain/expand tumor phenotype. The administration of tyrosine kinase inhibitor (TKI) constitutes the recommended therapeutic strategy in different malignancies at advanced stages. There are important interrelationships between cell stress, redox status, mitochondrial function, metabolism and cellular signaling pathways leading to cell survival/death. The induction of apoptosis and cell cycle arrest widely related to the antitumoral properties of TKIs result from tightly controlled events involving different cellular compartments and signaling pathways. The aim of the present review is to update the most relevant studies dealing with the impact of TKI treatment on cell function. The induction of endoplasmic reticulum (ER) stress and Ca2+ disturbances, leading to alteration of mitochondrial function, redox status and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) signaling pathways that involve cell metabolism reprogramming in cancer cells will be covered. Emphasis will be given to studies that identify key components of the integrated molecular pattern including receptor tyrosine kinase (RTK) downstream signaling, cell death and mitochondria-related events that appear to be involved in the resistance of cancer cells to TKI treatments.
Collapse
Affiliation(s)
- María A Rodríguez-Hernández
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - P de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Mª José López-Grueso
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Raquel Requejo-Aguilar
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Beatriz Castejón-Vega
- Research Laboratory, Oral Medicine Department, University of Seville, Seville, Spain
| | - María Negrete
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Paloma Gallego
- Unit for the Clinical Management of Digestive Diseases, Hospital University "Nuestra Señora de Valme", Sevilla, Spain
| | - Álvaro Vega-Ochoa
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Victor M Victor
- Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Service of Endocrinology and Nutrition, Hospital University "Doctor Peset", Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | - Mario D Cordero
- Research Laboratory, Oral Medicine Department, University of Seville, Seville, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Armilla, Spain
| | - José A Del Campo
- Unit for the Clinical Management of Digestive Diseases, Hospital University "Nuestra Señora de Valme", Sevilla, Spain
| | - J Antonio Bárcena
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - C Alicia Padilla
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Department of General Surgery, Hospital University "Virgen del Rocío"/IBiS/CSIC/University of Seville, Seville, Spain.
| |
Collapse
|
47
|
Long L, Hu X, Li X, Zhou D, Shi Y, Wang L, Zeng H, Yu X, Zhou W. The Anti-Breast Cancer Effect and Mechanism of Glimepiride-Metformin Adduct. Onco Targets Ther 2020; 13:3777-3788. [PMID: 32440146 PMCID: PMC7210042 DOI: 10.2147/ott.s240252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/02/2020] [Indexed: 02/05/2023] Open
Abstract
Background Compound adduct is a eutectic crystal formed by non-covalent bonds of two compounds or multiple compounds with water. Emerging evidence suggests that adduct could be different from the simple physical mixture of the individual compounds and has some new features. Recent studies reported that both glimepiride (Gli) and metformin (Met) may possess an anti-breast cancer effect besides anti-diabetic effect. In the current study, we synthesized glimepiride-metformin adduct (GMA) and examined its anti-breast cancer effect in vitro and in vivo to explore its potential in treatment of breast cancer in diabetic patients. Methods GMA was synthesized from Gli, Met and water at a molar molecular mass of 1:1:1 and identified by infrared spectroscopy. MTT assay, colony formation assay and wound healing assay were performed to examine the effects of GMA on cell viability and migration of human breast cancer cell lines CAL-148, MDA-MB-453, MDA-MB-231and MCF-7. The effect of GMA on cell cycle and apoptosis was examined by flow cytometry. The orthotopic implantation model was established to observe the inhibitory effect of GMA on tumor growth. The expression of Ki67 was detected by immunohistochemistry. RT-qPCR and Western blotting were performed to investigate mechanisms for the function of GMA. Results Both MTT and colony formation assays showed that GMA inhibited breast cancer cell viability, and the effect was greater than Gli alone, Met alone and the combination. In vivo study showed that GMA had an inhibitory effect on tumor growth of CAL-148 xenografts. Flow cytometry analysis indicated that GMA induced G1/S phase cell cycle arrest and apoptosis in breast cancer cells. RT-qPCR and Western blotting analyses showed that GMA activated AMPK, and up-regulated expression of p53 and p21, and down-regulated expression of cyclin D1 and CDK4. Conclusion GMA suppresses cell viability of breast cancer cells, and its effect is greater than Gli and Met alone or combination at the same concentration. GMA inhibits breast cancer cell growth in vivo. The antitumor effect of GMA may be related to the activation of AMPK resulting in up-regulation of p53 and p21 and down-regulation of cyclin D1 and CDK4.
Collapse
Affiliation(s)
- Liangyuan Long
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, People's Republic of China.,The Key Laboratory of Biochemistry and Molecular Pharmacology in Chongqing, Chongqing 400016, People's Republic of China
| | - Xiangnan Hu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, People's Republic of China.,The Key Laboratory of Biochemistry and Molecular Pharmacology in Chongqing, Chongqing 400016, People's Republic of China
| | - Xiaoli Li
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, People's Republic of China.,The Key Laboratory of Biochemistry and Molecular Pharmacology in Chongqing, Chongqing 400016, People's Republic of China
| | - Duanfang Zhou
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, People's Republic of China.,The Key Laboratory of Biochemistry and Molecular Pharmacology in Chongqing, Chongqing 400016, People's Republic of China
| | - Yun Shi
- West China Biopharm Research Institute, West China Hospital, Chengdu, Sichuan Province 610041, People's Republic of China
| | - Lingen Wang
- Department of General Surgery, Leping People's Hospital, Leping, Jiangxi Province 333300, People's Republic of China
| | - Hongfang Zeng
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, People's Republic of China.,The Key Laboratory of Biochemistry and Molecular Pharmacology in Chongqing, Chongqing 400016, People's Republic of China
| | - Xiaoping Yu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, People's Republic of China.,The Key Laboratory of Biochemistry and Molecular Pharmacology in Chongqing, Chongqing 400016, People's Republic of China
| | - Weiying Zhou
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, People's Republic of China.,The Key Laboratory of Biochemistry and Molecular Pharmacology in Chongqing, Chongqing 400016, People's Republic of China
| |
Collapse
|
48
|
Weidle UH, Birzele F, Nopora A. Pancreatic Ductal Adenocarcinoma: MicroRNAs Affecting Tumor Growth and Metastasis in Preclinical In Vivo Models. Cancer Genomics Proteomics 2020; 16:451-464. [PMID: 31659100 DOI: 10.21873/cgp.20149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023] Open
Abstract
Patients with pancreatic ductal adenocarcinoma have a dismall prognosis because at the time of diagnosis, in the vast majority of patients the tumor has already disseminated to distant organs and the therapeutic benefit of approved agents such as gemcitabine is limited. Therefore, the identification and preclinical and clinical validation of therapeutic agents covering new targets is of paramount importance. In this review we have summarized microRNAs and corresponding targets which affect growth and metastasis of pancreatic tumors in preclinical mouse in vivo models. We identified four up-regulated and 16 down-regulated miRs in PDAC in comparison to corresponding normal tissues. Three sub-categories of miRs have emerged: miRs affecting tumor growth and miRs with an impact on both, tumor growth and metastasis or metastasis only. Finally, we discuss technical and therapeutic aspects of miR-related therapeutic agents for the treatment of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Adam Nopora
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
49
|
Si Y, Wang J, Liu X, Zhou T, Xiang Y, Zhang T, Wang X, Feng T, Xu L, Yu Q, Zhao H, Liu Y. Ethoxysanguinarine, a Novel Direct Activator of AMP-Activated Protein Kinase, Induces Autophagy and Exhibits Therapeutic Potential in Breast Cancer Cells. Front Pharmacol 2020; 10:1503. [PMID: 31969821 PMCID: PMC6960228 DOI: 10.3389/fphar.2019.01503] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Ethoxysanguinarine (Eth) is a benzophenanthridine alkaloid extracted from Macleaya cordata (Willd) R. Br. It possesses antibacterial and antiviral activities and offers therapeutic benefits for the treatment of respiratory syndrome virus-induced cytopathic effects. However, the effect of Eth on human tumors and its pharmacological effects remain to be elucidated, together with its cellular target. Here, we examined the effects of Eth on breast cancer (BC) cells. We found that at low doses, Eth strongly inhibited the viability of BC cell lines and induced autophagy. Mechanistic studies showed that Eth induced autophagy by upregulating the activity of the AMP-activated protein kinase (AMPK). The AMPK inhibitor compound C significantly attenuated Eth-induced autophagy and inhibited proliferation. Meanwhile, the AMPK activator metformin significantly enhanced Eth-induced autophagy and inhibited proliferation. Computational docking and affinity assays showed that Eth directly interacted with the allosteric drug and metabolite site of AMPK to stabilize its activation. AMPK was less activated in tumor samples compared to normal breast tissues and was inversely associated with the prognosis of the patients. Moreover, Eth exhibited potent anti-BC activity in nude mice and favorable pharmacokinetics in rats. These characteristics render Eth as a promising candidate drug for further development and for designing new effective AMPK activators.
Collapse
Affiliation(s)
- Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Jiu Wang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan, China
| | - Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Tong Zhou
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Yuchen Xiang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Te Zhang
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xianhui Wang
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Tingting Feng
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Li Xu
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Qingqing Yu
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Huzi Zhao
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
50
|
Guo J, Li X, Zhang W, Chen Y, Zhu S, Chen L, Xu R, Lv Y, Wu D, Guo M, Liu X, Lu W, Deng H. HSP60-regulated Mitochondrial Proteostasis and Protein Translation Promote Tumor Growth of Ovarian Cancer. Sci Rep 2019; 9:12628. [PMID: 31477750 PMCID: PMC6718431 DOI: 10.1038/s41598-019-48992-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/14/2019] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological carcinoma due to the lack of diagnostic markers and effective drug targets. Discovery of new therapeutic targets in OC to improve the treatment outcome is urgently needed. We performed proteomic analysis of OC specimens and the paired normal tissues and revealed that proteins associated with mitochondrial proteostasis and protein translation were highly expressed in ovarian tumor tissues, indicating that mitochondria are required for tumor progression of OC. Heat shock protein 60 (HSP60), an important mitochondrial chaperone, was upregulated in ovarian tumors. HSP60 silencing significantly attenuated growth of OC cells in both cells and mice xenografts. Proteomic analysis revealed that HSP60 silencing downregulated proteins involved in mitochondrial functions and protein synthesis. Metabolomic analysis revealed that HSP60 silencing resulted in a more than 100-fold increase in cellular adenine levels, leading to increased adenosine monophosphate and an activated AMPK pathway, and consequently reduced mTORC1-mediated S6K and 4EBP1 phosphorylation to inhibit protein synthesis that suppressed the proliferation of OC cells. These results suggest that HSP60 knockdown breaks mitochondrial proteostasis, and inactivates the mTOR pathway to inhibit OC progression, suggesting that HSP60 is a potential therapeutic target for OC treatment.
Collapse
Affiliation(s)
- Jianying Guo
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiao Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, No.1 Xueshi Road, Hangzhou, Zhejiang, 310006, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, 100037, PR China
| | - Renhua Xu
- School of Nursing, Binzhou Medical University, Yantai, 264003, China
| | - Yang Lv
- Department of Gastroenterology and Hepatology, and Center of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Di Wu
- Department of Gastroenterology and Hepatology, and Center of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, and Center of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Xiaohui Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, No.1 Xueshi Road, Hangzhou, Zhejiang, 310006, China.
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|