1
|
Guo J, Zheng H, Xiong S. SENP6 restricts the IFN-I-induced signaling pathway and antiviral activity by deSUMOylating USP8. Cell Mol Immunol 2024; 21:892-904. [PMID: 38906982 PMCID: PMC11291505 DOI: 10.1038/s41423-024-01193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/10/2024] [Indexed: 06/23/2024] Open
Abstract
Type I interferon (IFN-I) exhibits broad-spectrum antiviral properties and is commonly employed in clinical for the treatment of viral infections. In this study, we unveil SENP6 as a potent regulator of IFN-I antiviral activity. SENP6 does not impact the production of IFN-I induced by viruses but rather modulates IFN-I-activated signaling. Mechanistically, SENP6 constitutively interacts with USP8 and inhibits the SUMOylation of USP8, consequently restricting the interaction between USP8 and IFNAR2. The dissociation of USP8 from IFNAR2 enhances IFNAR2 ubiquitination and degradation, thus attenuating IFN-I antiviral activity. Correspondingly, the downregulation of SENP6 promotes the interaction between USP8 and IFNAR2, leading to a reduction in IFNAR2 ubiquitination and, consequently, an enhancement in IFN-I-induced signaling. This study deciphers a critical deSUMOylation-deubiquitination crosstalk that finely regulates the IFN-I response to viral infection.
Collapse
Affiliation(s)
- Jing Guo
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Hui Zheng
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Sidong Xiong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Khai NX, Huy DQ, Trang DT, Minh NT, Tien TD, Phuong NV, Dung NV, Hang NT, Khanh LV, Hoang NH, Xuan NT, Mao CV, Tong HV. Expression of SUMO and NF-κB genes in hepatitis B virus-associated hepatocellular carcinoma patients: An observational study. Medicine (Baltimore) 2024; 103:e38737. [PMID: 38941371 PMCID: PMC11466154 DOI: 10.1097/md.0000000000038737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024] Open
Abstract
Alterations in signaling pathways and modulation of cell metabolism are associated with the pathogenesis of cancers, including hepatocellular carcinoma (HCC). Small ubiquitin-like modifier (SUMO) proteins and NF-κB family play major roles in various cellular processes. The current study aims to determine the expression profile of SUMO and NF-κB genes in HCC tumors and investigate their association with the clinical outcome of HCC. The expression of 5 genes - SUMO1, SUMO2, SUMO3, NF-κB p65, and NF-κB p50 - was quantified in tumor and adjacent non-tumor tissues of 58 HBV-related HCC patients by real-time quantitative PCR and was analyzed for the possible association with clinical parameters of HCC. The expression of SUMO2 was significantly higher in HCC tumor tissues compared to the adjacent non-tumor tissues (P = .01), while no significant difference in SUMO1, SUMO3, NF-κB p65, and NF-κB p50 expression was observed between HCC tumor and non-tumor tissues (P > .05). In HCC tissues, a strong correlation was observed between the expression of SUMO2 and NF-κB p50, between SUMO3 and NF-κB p50, between SUMO3 and NF-κB p65 (Spearman rho = 0.83; 0.82; 0.772 respectively; P < .001). The expression of SUMO1, SUMO2, SUMO3, NF-κB p65, and NF-κB p50 was decreased in grade 3 compared to grades 1 and 2 in HCC tumors according to the World Health Organization grades system. Our results highlighted that the SUMO2 gene is upregulated in tumor tissues of patients with HCC, and is related to the development of HCC, thus it may be associated with the pathogenesis of HCC.
Collapse
Affiliation(s)
- Nguyen Xuan Khai
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Duong Quang Huy
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Do Thi Trang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngo Tuan Minh
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Truong Dinh Tien
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Viet Phuong
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | | | - Ngo Thu Hang
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Le Van Khanh
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Can Van Mao
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Van Tong
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
3
|
Luo N, Zhang K, Li X, Hu Y, Guo L. Tanshinone IIA destabilizes SLC7A11 by regulating PIAS4-mediated SUMOylation of SLC7A11 through KDM1A, and promotes ferroptosis in breast cancer. J Adv Res 2024:S2090-1232(24)00152-8. [PMID: 38615741 DOI: 10.1016/j.jare.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
INTRODUCTION Breast cancer (BC) is the most common malignancy in women with unfavorite prognosis. OBJECTIVES Tanshinone IIA (Tan IIA) inhibits BC progression, however, the underlying mechanism remains largely undefined. METHODS The cytotoxicity of Tan IIA was assessed by CCK-8 and LDH assays. Ferroptosis was monitored by the level of MDA, Fe2+, lipid ROS and GSH. IHC and western blot were employed to detect the localization and expression of SLC7A11, PIAS4, KDM1A and other key molecules. The SUMOylation of SLC7A11 was detected by Ni-beads pull-down assay and co-IP. Luciferase and ChIP assays were employed to detect the direct association between KDM1A and PIAS4 promoter. The proliferative and metastatic properties of BC cells were assessed by colony formation, CCK-8 and Transwell assays, respectively. The in vitro findings were verified in xenograft and lung metastasis models. RESULTS Tan IIA promoted ferroptosis by suppressing SLC7A11 in BC cells. Silencing of PIAS4 or KDM1A inhibited cell growth and metastasis in BC. Mechanistically, PIAS4 facilitated the SUMOylation of SLC7A11 via direct binding to SLC7A11, and KDM1A acted as a transcriptional activator of PIAS4. Functional studies further revealed that Tan IIA decreased KDM1A expression, thus suppressing PIAS4 expression transcriptionally. The inhibition of PIAS4-dependent SUMOylation of SLC7A11 further induced ferroptosis, thereby inhibiting proliferation and metastasis in BC. CONCLUSION Tan IIA promoted ferroptosis and inhibited tumor growth and metastasis via suppressing KDM1A/PIAS4/SLC7A11 axis.
Collapse
Affiliation(s)
- Na Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, China
| | - KeJing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, China
| | - Xin Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, China
| | - Lei Guo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, China.
| |
Collapse
|
4
|
Shi L, Shangguan J, Lu Y, Rong J, Yang Q, Yang Y, Xie C, Shu X. ROS-mediated up-regulation of SAE1 by Helicobacter pylori promotes human gastric tumor genesis and progression. J Transl Med 2024; 22:148. [PMID: 38351014 PMCID: PMC10863176 DOI: 10.1186/s12967-024-04913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a major risk factor of gastric cancer (GC). The SUMO-activating enzyme SAE1(SUMO-activating enzyme subunit 1), which is indispensable for protein SUMOylation, involves in human tumorigenesis. In this study, we used the TIMER and TCGA database to explore the SAE1 expression in GC and normal tissues and Kaplan-Meier Plotter platform for survival analysis of GC patients. GC tissue microarray and gastric samples from patients who underwent endoscopic treatment were employed to detect the SAE1expression. Our results showed that SAE1 was overexpressed in GC tissues and higher SAE1 expression was associated with worse clinical characteristics of GC patients. Cell and animal models showed that H. pylori infection upregulated SAE1, SUMO1, and SUMO2/3 protein expression. Functional assays suggested that suppression of SAE1 attenuated epithelial-mesenchymal transition (EMT) biomarkers and cell proliferation abilities induced by H. pylori. Cell and animal models of ROS inhibition in H. pylori showed that ROS could mediate the H. pylori-induced upregulation of SAE1, SUMO1, and SUMO2/3 protein. RNA sequencing was performed and suggested that knockdown of SAE1 could exert an impact on IGF-1 expression. General, increased SUMOylation modification is involved in H. pylori-induced GC.
Collapse
Affiliation(s)
- Liu Shi
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Gastroenterology, The Affiliated Ganzhou Hospital of Nanchang University, No.16, Meiguan Avenue, Ganzhou, 341000, Jiangxi, China
| | - Jianfang Shangguan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Ying Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Jianfang Rong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Qinyu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Yihan Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
5
|
Han J, Mu Y, Huang J. Preserving genome integrity: The vital role of SUMO-targeted ubiquitin ligases. CELL INSIGHT 2023; 2:100128. [PMID: 38047137 PMCID: PMC10692494 DOI: 10.1016/j.cellin.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 12/05/2023]
Abstract
Various post-translational modifications (PTMs) collaboratively fine-tune protein activities. SUMO-targeted ubiquitin E3 ligases (STUbLs) emerge as specialized enzymes that recognize SUMO-modified substrates through SUMO-interaction motifs and subsequently ubiquitinate them via the RING domain, thereby bridging the SUMO and ubiquitin signaling pathways. STUbLs participate in a wide array of molecular processes, including cell cycle regulation, DNA repair, replication, and mitosis, operating under both normal conditions and in response to challenges such as genotoxic stress. Their ability to catalyze various types of ubiquitin chains results in diverse proteolytic and non-proteolytic outcomes for target substrates. Importantly, STUbLs are strategically positioned in close proximity to SUMO proteases and deubiquitinases (DUBs), ensuring precise and dynamic control over their target proteins. In this review, we provide insights into the unique properties and indispensable roles of STUbLs, with a particular emphasis on their significance in preserving genome integrity in humans.
Collapse
Affiliation(s)
- Jinhua Han
- Institute of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yanhua Mu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jun Huang
- Institute of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
6
|
Meng Z, Bian X, Ma L, Zhang G, Ma Q, Xu Q, Liu J, Wang R, Lun J, Lin Q, Zhao G, Jiang H, Qiu W, Fang J, Lu Z. UBC9 stabilizes PFKFB3 to promote aerobic glycolysis and proliferation of glioblastoma cells. Int J Biochem Cell Biol 2023; 165:106491. [PMID: 38149579 DOI: 10.1016/j.biocel.2023.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/28/2023]
Abstract
Cancer cells prefer to utilizing aerobic glycolysis to generate energy and anabolic metabolic intermediates for cell growth. However, whether the activities of glycolytic enzymes can be regulated by specific posttranslational modifications, such as SUMOylation, in response to oncogenic signallings, thereby promoting the Warburg effect, remain largely unclear. Here, we demonstrate that phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key glycolytic enzyme, interacts with SUMO-conjugating enzyme UBC9 and is SUMOylated at K302 in glioblastoma cells. Expression of UBC9, which competitively prevents the binding of ubiquitin E3 ligase APC/C to PFKFB3 and subsequent PFKFB3 polyubiquitination, increases PFKFB3 stability and expression. Importantly, EGFR activation increases the interaction between UBC9 and PFKFB3, leading to increased SUMOylation and expression of PFKFB3. This increase is blocked by inhibition of EGFR-induced AKT activation whereas expression of activate AKT by itself was sufficient to recapitulate EGF-induced effect. Knockout of PFKFB3 expression decreases EGF-enhanced lactate production and GBM cell proliferation and this decrease was fully rescued by reconstituted expression of WT PFKFB3 whereas PFKFB3 K302R mutant expression abrogates EGF- and UBC9-regulated lactate production and GBM cell proliferation. These findings reveal a previously unknown mechanism underlying the regulation of the Warburg effect through the EGFR activation-induced and UBC9-mediated SUMOylation and stabilization of PFKFB3.
Collapse
Affiliation(s)
- Zhaoyuan Meng
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, School of Basic Medicine of Qingdao University, Qingdao 266000, China
| | - Xueli Bian
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China; School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Leina Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Gang Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Qingxia Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Qianqian Xu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Juanjuan Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Runze Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Jie Lun
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Qian Lin
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Gaoxiang Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Hongfei Jiang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Jing Fang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, School of Basic Medicine of Qingdao University, Qingdao 266000, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
7
|
Wang K, Zhou W, Hu G, Wang L, Cai R, Tian T. TFEB SUMOylation in macrophages accelerates atherosclerosis by promoting the formation of foam cells through inhibiting lysosomal activity. Cell Mol Life Sci 2023; 80:358. [PMID: 37950772 PMCID: PMC11071895 DOI: 10.1007/s00018-023-04981-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/13/2023]
Abstract
Atherosclerosis (AS) is a serious cardiovascular disease. One of its hallmarks is hyperlipidemia. Inhibiting the formation of macrophage foam cells is critical for alleviating AS. Transcription factor EB (TFEB) can limit the formation of macrophage foam cells by upregulating lysosomal activity. We examined whether TFEB SUMOylation is involved in this progress during AS. In this study, we investigated the role of TFEB SUMOylation in macrophages in AS using TFEB SUMOylation deficiency Ldlr-/- (TFEB-KR: Ldlr-/-) transgenic mice and TFEB-KR bone marrow-derived macrophages. We observed that TFEB-KR: Ldlr-/- atherosclerotic mice had thinner plaques and macrophages with higher lysosomal activity when compared to WT: Ldlr-/- mice. TFEB SUMOylation in macrophages decreased after oxidized low-density lipoprotein (OxLDL) treatment in vitro. Compared with wild type macrophages, TFEB-KR macrophages exhibited less lipid deposition after OxLDL treatment. Our study demonstrated that in AS, deSUMOylation of TFEB could inhibit the formation of macrophage foam cells through enhancing lysosomal biogenesis and autophagy, further reducing the accumulation of lipids in macrophages, and ultimately alleviating the development of AS. Thus, TFEB SUMOylation can be a switch to modulate macrophage foam cells formation and used as a potential target for AS therapy.
Collapse
Affiliation(s)
- Kezhou Wang
- Department of Pathology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Urology, Renji Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gaolei Hu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifeng Wang
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Rd., Shanghai, China
| | - Rong Cai
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tian Tian
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Rd., Shanghai, China.
| |
Collapse
|
8
|
Nie XY, Xue Y, Li L, Jiang Z, Qin B, Wang Y, Wang S. A functional intact SUMOylation machinery in Aspergillus flavus contributes to fungal and aflatoxin contamination of food. Int J Food Microbiol 2023; 398:110241. [PMID: 37167787 DOI: 10.1016/j.ijfoodmicro.2023.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/08/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
SUMO adducts occur in Aspergillus flavus, and are implicated in fungal biology, while the underlying mechanism and the SUMOylation apparatus components in this saprophytic food spoilage mould, remain undefined. Herein, genes encoding SUMOylation cascade enzymes in A. flavus, including two heterodimeric SUMO E1 activating enzymes, a unique SUMO E2 conjugating enzyme, and one of SUMO E3 ligases, were identified and functionally analyzed. Global SUMO adducts immunoassay, multiple morphological comparison, aflatoxin attributes test, fungal infection and transcriptomic analyses collectively revealed that: E1 and E2 were essential for intracellular SUMOylation, and contributed to both stress response and fungal virulence-related events, including sporulation, colonization, aflatoxins biosynthesis; the primary E3 in this fungus, AfSizA, might serve as the molecular linkage of SUMOylation pathway to fungal virulence rather than SUMOylation-mediated stress adaptation. These findings demonstrated that SUMOylation machinery in A. flavus was functionally intact and contributed to multiple pathobiological processes, hence offering ideas and targets to control food contamination by this mycotoxigenic fungus.
Collapse
Affiliation(s)
- Xin-Yi Nie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Yang Xue
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhixin Jiang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bei Qin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
9
|
Li S, Ni Y, Li C, Xiang Q, Zhao Y, Xu H, Huang W, Wang Y, Wang Y, Zhan J, Liu Y. Long noncoding RNA SNHG1 alleviates high glucose-induced vascular smooth muscle cells calcification/senescence by post-transcriptionally regulating Bhlhe40 and autophagy via Atg10. J Physiol Biochem 2023; 79:83-105. [PMID: 36194366 PMCID: PMC9905201 DOI: 10.1007/s13105-022-00924-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging regulators of vascular diseases, yet their role in diabetic vascular calcification/aging remains poorly understood. In this study, we identified a down-expressed lncRNA SNHG1 in high glucose (HG)-induced vascular smooth muscle cells (HA-VSMCs), which induced excessive autophagy and promoted HA-VSMCs calcification/senescence. Overexpression of SNHG1 alleviated HG-induced HA-VSMCs calcification/senescence. The molecular mechanisms of SNHG1 in HA-VSMCs calcification/senescence were explored by RNA pull-down, RNA immunoprecipitation, RNA stability assay, luciferase reporter assay, immunoprecipitation and Western blot assays. In one mechanism, SNHG1 directly interacted with Bhlhe40 mRNA 3'-untranslated region and increased Bhlhe40 mRNA stability and expression. In another mechanism, SNHG1 enhanced Bhlhe40 protein SUMOylation by serving as a scaffold to facilitate the binding of SUMO E3 ligase PIAS3 and Bhlhe40 protein, resulting in increased nuclear translocation of Bhlhe40 protein. Moreover, Bhlhe40 suppressed the expression of Atg10, which is involved in the process of autophagosome formation. Collectively, the protective effect of SNHG1 on HG-induced HA-VSMCs calcification/senescence is accomplished by stabilizing Bhlhe40 mRNA and promoting the nuclear translocation of Bhlhe40 protein. Our study could provide a novel approach for diabetic vascular calcification/aging.
Collapse
Affiliation(s)
- Shuang Li
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Yuqing Ni
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Chen Li
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Qunyan Xiang
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Yan Zhao
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Hui Xu
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Wu Huang
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Yanjiao Wang
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Yi Wang
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Junkun Zhan
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China.
| | - Youshuo Liu
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China.
| |
Collapse
|
10
|
Dufour D, Dumontet T, Sahut-Barnola I, Carusi A, Onzon M, Pussard E, Wilmouth JJ, Olabe J, Lucas C, Levasseur A, Damon-Soubeyrand C, Pointud JC, Roucher-Boulez F, Tauveron I, Bossis G, Yeh ET, Breault DT, Val P, Lefrançois-Martinez AM, Martinez A. Loss of SUMO-specific protease 2 causes isolated glucocorticoid deficiency by blocking adrenal cortex zonal transdifferentiation in mice. Nat Commun 2022; 13:7858. [PMID: 36543805 PMCID: PMC9772323 DOI: 10.1038/s41467-022-35526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
SUMOylation is a dynamic posttranslational modification, that provides fine-tuning of protein function involved in the cellular response to stress, differentiation, and tissue development. In the adrenal cortex, an emblematic endocrine organ that mediates adaptation to physiological demands, the SUMOylation gradient is inversely correlated with the gradient of cellular differentiation raising important questions about its role in functional zonation and the response to stress. Considering that SUMO-specific protease 2 (SENP2), a deSUMOylating enzyme, is upregulated by Adrenocorticotropic Hormone (ACTH)/cAMP-dependent Protein Kinase (PKA) signalling within the zona fasciculata, we generated mice with adrenal-specific Senp2 loss to address these questions. Disruption of SENP2 activity in steroidogenic cells leads to specific hypoplasia of the zona fasciculata, a blunted reponse to ACTH and isolated glucocorticoid deficiency. Mechanistically, overSUMOylation resulting from SENP2 loss shifts the balance between ACTH/PKA and WNT/β-catenin signalling leading to repression of PKA activity and ectopic activation of β-catenin. At the cellular level, this blocks transdifferentiation of β-catenin-positive zona glomerulosa cells into fasciculata cells and sensitises them to premature apoptosis. Our findings indicate that the SUMO pathway is critical for adrenal homeostasis and stress responsiveness.
Collapse
Affiliation(s)
- Damien Dufour
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Typhanie Dumontet
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, MI, USA
| | - Isabelle Sahut-Barnola
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Aude Carusi
- IGMM, Université de Montpellier, CNRS, Montpellier, France
| | - Méline Onzon
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Eric Pussard
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris (APHP), Physiologie et Physiopathologie Endocriniennes, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - James Jr Wilmouth
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Julie Olabe
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Cécily Lucas
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Endocrinologie Moléculaire et Maladies Rares, Centre Hospitalier Universitaire, Université Claude Bernard Lyon 1, Bron, France
| | - Adrien Levasseur
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Christelle Damon-Soubeyrand
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Jean-Christophe Pointud
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Florence Roucher-Boulez
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Endocrinologie Moléculaire et Maladies Rares, Centre Hospitalier Universitaire, Université Claude Bernard Lyon 1, Bron, France
| | - Igor Tauveron
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Service d'Endocrinologie, Centre Hospitalier Universitaire Gabriel Montpied, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Edward T Yeh
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Pierre Val
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Anne-Marie Lefrançois-Martinez
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Antoine Martinez
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France.
| |
Collapse
|
11
|
Zhang S, Jin B, Liang W, Guo A, Luo X, Pu L, Chen X, Cai X, Wang S. Identification and expression analysis of a new small ubiquitin-like modifier from Taenia pisiformis. Exp Parasitol 2022; 242:108403. [DOI: 10.1016/j.exppara.2022.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022]
|
12
|
SUMOylation targeting mitophagy in cardiovascular diseases. J Mol Med (Berl) 2022; 100:1511-1538. [PMID: 36163375 DOI: 10.1007/s00109-022-02258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Small ubiquitin-like modifier (SUMO) plays a key regulatory role in cardiovascular diseases, such as cardiac hypertrophy, hypertension, atherosclerosis, and cardiac ischemia-reperfusion injury. As a multifunctional posttranslational modification molecule in eukaryotic cells, SUMOylation is essentially associated with the regulation of mitochondrial dynamics, especially mitophagy, which is involved in the progression and development of cardiovascular diseases. SUMOylation targeting mitochondrial-associated proteins is admittedly considered to regulate mitophagy activation and mitochondrial functions and dynamics, including mitochondrial fusion and fission. SUMOylation triggers mitochondrial fusion to promote mitochondrial dysfunction by modifying Fis1, OPA1, MFN1/2, and DRP1. The interaction between SUMO and DRP1 induces SUMOylation and inhibits lysosomal degradation of DRP1, which is further involved in the regulation of mitochondrial fission. Both SUMOylation and deSUMOylation contribute to the initiation and activation of mitophagy by regulating the conjugation of MFN1/2 SERCA2a, HIF1α, and PINK1. SUMOylation mediated by the SUMO molecule has attracted much attention due to its dual roles in the development of cardiovascular diseases. In this review, we systemically summarize the current understanding underlying the expression, regulation, and structure of SUMO molecules; explore the biochemical functions of SUMOylation in the initiation and activation of mitophagy; discuss the biological roles and mechanisms of SUMOylation in cardiovascular diseases; and further provide a wider explanation of SUMOylation and deSUMOylation research to provide a possible therapeutic strategy for cardiovascular diseases. Considering the precise functions and exact mechanisms of SUMOylation in mitochondrial dysfunction and mitophagy will provide evidence for future experimental research and may serve as an effective approach in the development of novel therapeutic strategies for cardiovascular diseases. Regulation and effect of SUMOylation in cardiovascular diseases via mitophagy. SUMOylation is involved in multiple cardiovascular diseases, including cardiac hypertrophy, hypertension, atherosclerosis, and cardiac ischemia-reperfusion injury. Since it is expressed in multiple cells associated with cardiovascular disease, SUMOylation can be regulated by numerous ligases, including the SENP family proteins PIAS1, PIASy/4, UBC9, and MAPL. SUMOylation regulates the activation and degradation of PINK1, SERCA2a, PPARγ, ERK5, and DRP1 to mediate mitochondrial dynamics, especially mitophagy activation. Mitophagy activation regulated by SUMOylation further promotes or inhibits ventricular diastolic dysfunction, perfusion injury, ventricular remodelling and ventricular noncompaction, which contribute to the development of cardiovascular diseases.
Collapse
|
13
|
Zhu Y, Lin X, Zhou X, Prochownik EV, Wang F, Li Y. Posttranslational control of lipogenesis in the tumor microenvironment. J Hematol Oncol 2022; 15:120. [PMID: 36038892 PMCID: PMC9422141 DOI: 10.1186/s13045-022-01340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolic reprogramming of cancer cells within the tumor microenvironment typically occurs in response to increased nutritional, translation and proliferative demands. Altered lipid metabolism is a marker of tumor progression that is frequently observed in aggressive tumors with poor prognosis. Underlying these abnormal metabolic behaviors are posttranslational modifications (PTMs) of lipid metabolism-related enzymes and other factors that can impact their activity and/or subcellular localization. This review focuses on the roles of these PTMs and specifically on how they permit the re-wiring of cancer lipid metabolism, particularly within the context of the tumor microenvironment.
Collapse
Affiliation(s)
- Yahui Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.,School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xingrong Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China.
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China. .,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
14
|
Dai Z, Etebari K, Asgari S. N 6-methyladenosine modification of the Aedes aegypti transcriptome and its alteration upon dengue virus infection in Aag2 cell line. Commun Biol 2022; 5:607. [PMID: 35725909 PMCID: PMC9209429 DOI: 10.1038/s42003-022-03566-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The N6-methyladenosine (m6A) modification of RNA has been reported to affect viral infections. Studies have confirmed the role of m6A in replication of several vector-borne flaviviruses, including dengue virus (DENV), in mammalian cells. Here, we explored the role of m6A in DENV replication in the mosquito Aedes aegypti Aag2 cell line. We first determined the presence of m6A on the RNAs from mosquito cells and using methylated RNA immunoprecipitation and sequencing (MeRIP-Seq) identified m6A modification of the mosquito transcriptome and those that changed upon DENV infection. Depletion of m6A methyltransferases and the m6A binding protein YTHDF3 RNAs decreased the replication of DENV. In particular, we found that the Ae. aegypti ubiquitin carrier protein 9 (Ubc9) is m6A modified and its expression increases after DENV infection. Silencing of the gene and ectopic expression of Ubc9 led to reduced and increased DENV replication, respectively. The abundance of Ubc9 mRNA and its stability were reduced with the inhibition of m6A modification, implying that m6A modification of Ubc9 might enhance expression of the gene. We also show that the genome of DENV is m6A modified at five sites in mosquito cells. Altogether, this work reveals the involvement of m6A modification in Ae. aegypti-DENV interaction. Analysis of m6A RNA modifications in the mosquito transcriptome and their changes upon dengue virus infection provides insight into the role of epigenetics in regulating viral replication in mosquitoes.
Collapse
Affiliation(s)
- Zhenkai Dai
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
15
|
Oliveira FRMB, Soares ES, Harms C, Cimarosti HI, Sordi R. SUMOylation in peripheral tissues under low perfusion-related pathological states. J Cell Biochem 2022; 123:1133-1147. [PMID: 35652521 DOI: 10.1002/jcb.30293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/06/2022]
Abstract
SUMOylation is described as a posttranslational protein modification (PTM) that is involved in the pathophysiological processes underlying several conditions related to ischemia- and reperfusion-induced damage. Increasing evidence suggests that, under low oxygen levels, SUMOylation might be part of an endogenous mechanism, which is triggered by injury to protect cells within the central nervous system. However, the role of ischemia-induced SUMOylation in the periphery is still unclear. This article summarizes the results of recent studies regarding SUMOylation profiles in several diseases characterized by impaired blood flow to the cardiorenal, gastrointestinal, and respiratory systems. Our review shows that although ischemic injury per se does not always increase SUMOylation levels, as seen in strokes, it seems that in most cases the positive modulation of protein SUMOylation after peripheral ischemia might be a protective mechanism. This complex relationship warrants further investigation, as the role of SUMOylation during hypoxic conditions differs from organ to organ and is still not fully elucidated.
Collapse
Affiliation(s)
- Filipe R M B Oliveira
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Ericks S Soares
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Christoph Harms
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Centre for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Einstein Centre for Neuroscience, Berlin, Germany
| | - Helena I Cimarosti
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil.,Postgraduate Program in Neuroscience, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Regina Sordi
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil
| |
Collapse
|
16
|
Zhou B, Zhu Y, Xu W, Zhou Q, Tan L, Zhu L, Chen H, Feng L, Hou T, Wang X, Chen D, Jin H. Hypoxia Stimulates SUMOylation-Dependent Stabilization of KDM5B. Front Cell Dev Biol 2022; 9:741736. [PMID: 34977006 PMCID: PMC8719622 DOI: 10.3389/fcell.2021.741736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
Hypoxia is an important characteristic of the tumor microenvironment. Tumor cells can survive and propagate under the hypoxia stress by activating a series of adaption response. Herein, we found that lysine-specific demethylase 5B (KDM5B) was upregulated in gastric cancer (GC) under hypoxia conditions. The genetic knockdown or chemical inhibition of KDM5B impaired the growth of GC cell adapted to hypoxia. Interestingly, the upregulation of KDM5B in hypoxia response was associated with the SUMOylation of KDM5B. SUMOylation stabilized KDM5B protein by reducing the competitive modification of ubiquitination. Furthermore, the protein inhibitor of activated STAT 4 (PIAS4) was determined as the SUMO E3 ligase, showing increased interaction with KDM5B under hypoxia conditions. The inhibition of KDM5B caused significant downregulation of hypoxia-inducible factor-1α (HIF-1α) protein and target genes under hypoxia. As a result, co-targeting KDM5B significantly improved the antitumor efficacy of antiangiogenic therapy in vivo. Taken together, PIAS4-mediated SUMOylation stabilized KDM5B protein by disturbing ubiquitination-dependent proteasomal degradation to overcome hypoxia stress. Targeting SUMOylation-dependent KDM5B upregulation might be considered when the antiangiogenic therapy was applied in cancer treatment.
Collapse
Affiliation(s)
- Bingluo Zhou
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiran Zhu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenxia Xu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiyin Zhou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linghui Tan
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liyuan Zhu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianlun Hou
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dingwei Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Zhang G, Zou J, Shi J, Qian B, Qiu K, Liu Q, Xie T, He Z, Xu H, Liao Y, Wu Y, Li Y, Xiao G, Yuan Y, Xiao R, Wu G, Zou X. Knockdown of ubiquitin-like modifier-activating enzyme 2 promotes apoptosis of clear cell renal cell carcinoma cells. Cell Death Dis 2021; 12:1067. [PMID: 34753901 PMCID: PMC8578554 DOI: 10.1038/s41419-021-04347-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Small ubiquitin-related modifier (SUMO) proteins are involved in the development of tumors. Ubiquitin-like modifier-activating enzyme 2 (UBA2) is an important member of the SUMO modification system; however, its role in clear cell renal cell carcinoma (ccRCC) is unclear. Therefore, we investigated the expression and function of UBA2 in ccRCC. Both mRNA and protein expression levels of UBA2 were found to be higher in ccRCC than in normal renal tissues and significantly related to the tumor size, Fuhrman grade, and tumor stage. UBA2 knockdown inhibited ccRCC cell growth, promoted apoptosis in vitro and in vivo, and decreased the abundance of a p53 mutant, c-Myc, and key enzymes of the SUMO modification system. Meanwhile, overexpression of UBA2 had the opposite effects. Overexpression of the p53 mutant or c-Myc alleviated the effects of UBA2 knockdown on ccRCC cell proliferation and apoptosis. In conclusion, targeting UBA2 may have a therapeutic potential against ccRCC.
Collapse
Affiliation(s)
- Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Junrong Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jinglin Shi
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Biao Qian
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Kaiyang Qiu
- Department of Urology, Wan'an People's Hospital, Ji'an, Jiangxi, 343800, China
| | - Quanliang Liu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Tianpeng Xie
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zhihua He
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Hui Xu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yunfeng Liao
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yuting Wu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yanmin Li
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Guancheng Xiao
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yuanhu Yuan
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Rihai Xiao
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Gengqing Wu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
18
|
Du X, Shi J. UBA2 promotes the progression of renal cell carcinoma by suppressing the p53 signaling. Ir J Med Sci 2021; 191:1555-1560. [PMID: 34467471 DOI: 10.1007/s11845-021-02763-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Renal cell carcinoma or RCC is a type of malignancy commonly occurred in the human kidney especially in the adults. The pathogenesis of RCC involves the complex networking of multiple signaling pathways, and the underlying molecular mechanisms remain largely unclear. OBJECTIVES This study aimed to elucidate the regulatory functions of UBA2 and explore its potential downstream molecules during the tumor progression in RCC. METHODS In this paper, the expression of UBA2 and associated molecules was examined by RT-qPCR and western blotting. The proliferative activity of RCC cells was determined using CCK-8 assay and immunofluorescence staining of proliferation-related marker Ki-67. Moreover, the cell distribution and apoptosis were evaluated by flow cytometry. RESULTS Our results revealed the upregulation of UBA2 in RCC tissues and cells, and the high-expression of UBA2 was also associated with bigger tumor size, more advanced stage, and poorer overall survival in RCC patients. In addition, UBA2 knockdown was able to suppress the growth of RCC cells and induced cell cycle arrest at G0/G1 phase. Furthermore, the p53 signaling could be the novel target of UBA2 in RCC, and UBA2 affected the biological behaviors of RCC cells in a p53-dependent manner. CONCLUSION In summary, UBA2 was able to enhance the proliferation, inhibit the apoptosis, and suppress cell cycle arrest in RCC cells by targeting the p53 pathway.
Collapse
Affiliation(s)
- Xinbo Du
- Department of Urology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Jianguo Shi
- Department of Urology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| |
Collapse
|
19
|
Zhang Y, Ma Y, Wu G, Xie M, Luo C, Huang X, Tian F, Chen J, Li X. SENP1 promotes MCL pathogenesis through regulating JAK-STAT5 pathway and SOCS2 expression. Cell Death Discov 2021; 7:192. [PMID: 34312374 PMCID: PMC8313533 DOI: 10.1038/s41420-021-00578-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Mantle cell lymphoma (MCL) is highly aggressive and its treatment remains challenging, understanding its pathogenesis is critical for future targeted therapy. SUMO specific proteases 1 (SENP1) is an important protein that regulates the balance between SUMOylation and deSUMOylation. We found that SENP1 was upregulated in MCL patient samples and cell lines. Knockdown of SENP1 could inhibit the proliferation and promote the apoptosis of MCL cells. We also found that SENP1 knockdown caused inhibition of the JAK-STAT5 pathway and upregulation of tumor suppressor cytokine signaling 2 (SOCS2). Moreover, MCL tumor growth in vivo was significantly suppressed after SENP1 knockdown in a xenograft nude mouse model. In summary, our results showed that SENP1 is involved in the pathogenesis of MCL and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Hematology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanni Ma
- Department of Hematology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guixian Wu
- Department of Hematology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingling Xie
- Department of Hematology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chengxin Luo
- Department of Hematology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiangtao Huang
- Department of Hematology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Feng Tian
- Department of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Xi Li
- Department of Hematology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
20
|
Chang YC, Oram MK, Bielinsky AK. SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. Int J Mol Sci 2021; 22:ijms22105391. [PMID: 34065507 PMCID: PMC8161396 DOI: 10.3390/ijms22105391] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)-targeted E3 ubiquitin ligases (STUbLs) are specialized enzymes that recognize SUMOylated proteins and attach ubiquitin to them. They therefore connect the cellular SUMOylation and ubiquitination circuits. STUbLs participate in diverse molecular processes that span cell cycle regulated events, including DNA repair, replication, mitosis, and transcription. They operate during unperturbed conditions and in response to challenges, such as genotoxic stress. These E3 ubiquitin ligases modify their target substrates by catalyzing ubiquitin chains that form different linkages, resulting in proteolytic or non-proteolytic outcomes. Often, STUbLs function in compartmentalized environments, such as the nuclear envelope or kinetochore, and actively aid in nuclear relocalization of damaged DNA and stalled replication forks to promote DNA repair or fork restart. Furthermore, STUbLs reside in the same vicinity as SUMO proteases and deubiquitinases (DUBs), providing spatiotemporal control of their targets. In this review, we focus on the molecular mechanisms by which STUbLs help to maintain genome stability across different species.
Collapse
|
21
|
Li X, Meng Y. Construction of a SUMOylation regulator-based prognostic model in low-grade glioma. J Cell Mol Med 2021; 25:5434-5442. [PMID: 33951297 PMCID: PMC8184686 DOI: 10.1111/jcmm.16553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/23/2022] Open
Abstract
Low‐grade glioma (LGG) is an intracranial malignant tumour that mainly originates from astrocytes and oligodendrocytes. SUMOylation is one of the post‐translational modifications but studies of SUMOylation in LGG is quite limited. Transcriptome data, single nucleotide variant (SNV) data and clinical data of LGG were derived from public databases. The differences between the expression of SUMOylation regulators in LGG and normal brain tissue were analysed. Cox regression was used to construct a prognostic model in the training cohort. Kaplan‐Meier survival curves and ROC curves were plotted in the training and the validation cohort to evaluate the effectiveness of the prognostic model. GO and KEGG analyses were applied to preliminarily analyse the biological functions. Compared with normal brain tissue, SENP1 and SENP7 were up‐regulated and SENP5 was down‐regulated in LGG. SUMOylation regulators may be involved in functions such as mRNA splicing, DNA replication, ATPase activity and spliceosome. One prognostic model was established based on the 4 SUMOylation regulator‐related signatures (RFWD3, MPHOSPH9, WRN and NUP155), which had a good predictive ability for overall survival. This study is expected to provide targets for the diagnosis and treatment of low‐grade glioma.
Collapse
Affiliation(s)
- Xiaozhi Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yutong Meng
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Role of Host-Mediated Post-Translational Modifications (PTMs) in RNA Virus Pathogenesis. Int J Mol Sci 2020; 22:ijms22010323. [PMID: 33396899 PMCID: PMC7796338 DOI: 10.3390/ijms22010323] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins’ functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.
Collapse
|
23
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 854] [Impact Index Per Article: 213.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
24
|
Liang JX, Gao W, Zeng XW, Cheng GP, Cai L, Tao KY, Yang X. SUMO4 small interfering RNA attenuates invasion and migration via the JAK2/STAT3 pathway in non-small cell lung cancer cells. Oncol Lett 2020; 20:225. [PMID: 32968447 PMCID: PMC7500055 DOI: 10.3892/ol.2020.12088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/09/2020] [Indexed: 11/24/2022] Open
Abstract
Small ubiquitin-like modifier 4 (SUMO4) is the latest member of the sumoylation family, which enhances the stability of protein, regulates the distribution and localization of the protein, and affects the transcription activity of the protein. However, the role of SUMO4 in non-small cell lung cancer (NSCLC) has not yet been reported. The present study first demonstrated that SUMO4 was upregulated in a number of tissues from patients with NSCLC. Immunohistochemistry was performed to demonstrate the expression level of SUMO4 in lung cancer tumor tissues. Following the transfection, The EMT status and signaling pathway activation regulated by SUMO4-siRNA was assessed by western blotting. The Transwell and wound healing assays were performed to investigate the regulatory effect of SUMO4-siRNA on cell migration and invasion. Cell Counting Kit-8 assay was performed to investigate whether SUMO4-siRNA affected the chemosensitivity of the NSCLC cells to cisplatin. Statistical analysis of immunohistochemical results from the tissues showed that the overexpression of SUMO4 was significantly associated with sex, tumor type, history of smoking, T stage and poor prognosis. It was also identified that SUMO4 small interfering RNA attenuated invasion and migration in NSCLC cell lines, as well chemosensitivity to cisplatin via the inhibition of the JAK2/STAT3 pathway. In conclusion, SUMO4 may play an important role in the poor prognosis of patients with NSCLC. The present study indicates that SUMO4 may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jin-Xiao Liang
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Wei Gao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310000, P.R. China
| | - Xiao-Wei Zeng
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China.,School of The Second Clinical Medical College, Zhejiang Chinese Medical University City College, Hangzhou, Zhejiang 310000, P.R. China
| | - Guo-Ping Cheng
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Lei Cai
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Kai-Yi Tao
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Xun Yang
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
25
|
Savyon M, Engelender S. SUMOylation in α-Synuclein Homeostasis and Pathology. Front Aging Neurosci 2020; 12:167. [PMID: 32670048 PMCID: PMC7330056 DOI: 10.3389/fnagi.2020.00167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
The accumulation and aggregation of α-synuclein are central to Parkinson’s disease (PD), yet the molecular mechanisms responsible for these events are not fully understood. Post-translational modifications of α-synuclein regulate several of its properties, including degradation, interaction with proteins and membranes, aggregation and toxicity. SUMOylation is a post-translational modification involved in various nuclear and extranuclear processes, such as subcellular protein targeting, mitochondrial fission and synaptic plasticity. Protein SUMOylation increases in response to several stressful situations, from viral infections to trauma. In this framework, an increasing amount of evidence has implicated SUMOylation in several neurodegenerative diseases, including PD. This review will discuss recent findings in the role of SUMOylation as a regulator of α-synuclein accumulation, aggregation and toxicity, and its possible implication in neurodegeneration that underlies PD.
Collapse
Affiliation(s)
- Mor Savyon
- Department of Biochemistry, The B. Rappaport Faculty of Medicine and Institute of Medical Research, Technion - Israel Institute of Technology, Haifa, Israel
| | - Simone Engelender
- Department of Biochemistry, The B. Rappaport Faculty of Medicine and Institute of Medical Research, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
26
|
SUMOylation stabilizes hSSB1 and enhances the recruitment of NBS1 to DNA damage sites. Signal Transduct Target Ther 2020; 5:80. [PMID: 32576812 PMCID: PMC7311467 DOI: 10.1038/s41392-020-0172-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Human single-stranded DNA-binding protein 1 (hSSB1) is required for the efficient recruitment of the MRN complex to DNA double-strand breaks and is essential for the maintenance of genome integrity. However, the mechanism by which hSSB1 recruits NBS1 remains elusive. Here, we determined that hSSB1 undergoes SUMOylation at both K79 and K94 under normal conditions and that this modification is dramatically enhanced in response to DNA damage. SUMOylation of hSSB1, which is specifically fine-tuned by PIAS2α, and SENP2, not only stabilizes the protein but also enhances the recruitment of NBS1 to DNA damage sites. Cells with defective hSSB1 SUMOylation are sensitive to ionizing radiation, and global inhibition of SUMOylation by either knocking out UBC9 or adding SUMOylation inhibitors significantly enhances the sensitivity of cancer cells to etoposide. Our findings reveal that SUMOylation, as a novel posttranslational modification of hSSB1, is critical for the functions of this protein, indicating that the use of SUMOylation inhibitors (e.g., 2-D08 and ML-792) may be a new strategy that would benefit cancer patients being treated with chemo- or radiotherapy.
Collapse
|
27
|
Alvarez-Rodriguez M, Martinez C, Wright D, Barranco I, Roca J, Rodriguez-Martinez H. The Transcriptome of Pig Spermatozoa, and Its Role in Fertility. Int J Mol Sci 2020; 21:ijms21051572. [PMID: 32106598 PMCID: PMC7084236 DOI: 10.3390/ijms21051572] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
In the study presented here we identified transcriptomic markers for fertility in the cargo of pig ejaculated spermatozoa using porcine-specific micro-arrays (GeneChip® miRNA 4.0 and GeneChip® Porcine Gene 1.0 ST). We report (i) the relative abundance of the ssc-miR-1285, miR-16, miR-4332, miR-92a, miR-671-5p, miR-4334-5p, miR-425-5p, miR-191, miR-92b-5p and miR-15b miRNAs, and (ii) the presence of 347 up-regulated and 174 down-regulated RNA transcripts in high-fertility breeding boars, based on differences of farrowing rate (FS) and litter size (LS), relative to low-fertility boars in the (Artificial Insemination) AI program. An overrepresentation analysis of the protein class (PANTHER) identified significant fold-increases for C-C chemokine binding (GO:0019957): CCR7, which activates B- and T-lymphocytes, 8-fold increase), XCR1 and CXCR4 (with ubiquitin as a natural ligand, 1.24-fold increase), cytokine receptor activity (GO:0005126): IL23R receptor of the IL23 protein, associated to JAK2 and STAT3, 3.4-fold increase), the TGF-receptor (PC00035) genes ACVR1C and ACVR2B (12-fold increase). Moreover, two micro-RNAs (miR-221 and mir-621) were down- and up-regulated, respectively, in high-fertility males. In conclusion, boars with different fertility performance possess a wide variety of differentially expressed RNA present in spermatozoa that would be attractive targets as non-invasive molecular markers for predicting fertility.
Collapse
Affiliation(s)
- Manuel Alvarez-Rodriguez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (C.M.); (H.R.-M.)
- Correspondence: e-mail: ; Phone: +46-(0)729427883
| | - Cristina Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (C.M.); (H.R.-M.)
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering, Linköping University, SE-58183 Linköping, Sweden
| | - Isabel Barranco
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain;
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (C.M.); (H.R.-M.)
| |
Collapse
|
28
|
Li Y, Li J, Hou Y, Huang L, Bian Y, Song G, Qiao C. Circadian clock gene Clock is involved in the pathogenesis of preeclampsia through hypoxia. Life Sci 2020; 247:117441. [PMID: 32074481 DOI: 10.1016/j.lfs.2020.117441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To study the effect of the circadian clock gene Clock on the biological behavior of trophoblasts and its role in the pathogenesis of preeclampsia. METHODS Quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expression of Clock mRNA. Western blot and immunohistochemistry were used to detect the expression and localization of Clock protein. CoCl2 was used to induce the hypoxic trophoblast cells. Cell invasion assay, wound healing assay and MTT assays were used to detect the invasion, migration, and proliferation ability. Reduced uterine perfusion pressure (RUPP) rat model was established by surgically clamping the abdominal aorta and uterine arteries. Transfection of si-Clock was used to silencing the expression of Clock. RESULTS Clock mRNA expression was increased in placenta of preeclampsia and CoCl2-induced hypoxic trophoblasts, while protein was decreased. But the trend was opposite in RUPP rat models. Hypoxia can also change the expression rhythm of Clock. The proliferation, migration and invasion ability of trophoblasts decreased after hypoxia, while these abilities restored to near normal level after silencing Clock. CONCLUSION The expression of Clock gene in human placenta tissue, hypoxia cell model and RUPP rat model suggests that it may regulate the biological behavior of trophoblast cells through hypoxia, and then participate in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Jiapo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Yue Hou
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Ling Huang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Yue Bian
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Guiyu Song
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, China
| | - Chong Qiao
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
29
|
Zhang Y, Xu S, Chen Z, Xie M, Ma Y, Wu G, Huang X, Luo C, Huang Z, Sun Y, Huang Y, Li X, Hou Y, Chen J. Zfp521 SUMOylation facilities erythroid hematopoietic reconstitution under stress. Biosci Biotechnol Biochem 2020; 84:943-953. [PMID: 31916512 DOI: 10.1080/09168451.2019.1703639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zinc finger protein 521 (Zfp521) is a key transcriptional factor in regulation of hematopoiesis. SUMOylation, a protein post-translational modification process, plays important roles in various biological process including hematopoiesis. However, whether Zfp521 can be SUMOylated and how it affects hematopoiesis is unknown. In this study, we confirmed that Zfp521 can be modified by SUMO1 and lysine 1146 was the primary SUMOylation site. Under homeostatic condition, Zfp521 SUMOylation-deficient mice had normal mature blood cells and primitive cells. However, in bone marrow (BM) transplantation assay, recipient mice transplanted with BM cells from Zfp521 SUMOylation-deficient mice had a significantly decreased R2 population of erythroid lineage in BM and spleen compared with those transplanted with BM cells from wild-type mice. Our results found a novel function of Zfp521 SUMOylation in erythroid reconstitution under stress, which might be a new therapeutic target in future.
Collapse
Affiliation(s)
- Yali Zhang
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Shuangnian Xu
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Zhe Chen
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Mingling Xie
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yanni Ma
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Guixian Wu
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiangtao Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Chengxin Luo
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Zhen Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yanni Sun
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yongxiu Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xi Li
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yu Hou
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Jieping Chen
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
30
|
Lee A, Zhu Y, Sabo Y, Goff SP. Embryonic Cells Redistribute SUMO1 upon Forced SUMO1 Overexpression. mBio 2019; 10:e01856-19. [PMID: 31796536 PMCID: PMC6890988 DOI: 10.1128/mbio.01856-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022] Open
Abstract
Conjugation of small ubiquitin-like modifiers (SUMOs) to substrate proteins is a posttranslational protein modification that affects a diverse range of physiological processes. Global inhibition of SUMO conjugation in mice results in embryonic lethality, reflecting the importance of the SUMO pathways for embryonic development. Here, we demonstrated that SUMO1 overexpression was not well tolerated in murine embryonic carcinoma and embryonic stem (ES) cells and that only a few clones were recovered after transduction with vectors delivering SUMO1 expression constructs. Differentiated NIH/3T3 cells overexpress SUMO1 without deleterious effects and maintain high levels of both conjugated and free forms of SUMO1. The few embryonic cells surviving after forced overexpression retained all their SUMO1 in the form of a few high-molecular-weight conjugates and maintained undetectable levels of free SUMO1. The absence of free SUMO in embryonic cells was seen specifically upon overexpression of SUMO1, but not SUMO2. Moreover, blocking SUMO1 conjugation to endogenous substrates by C-terminal mutations of SUMO1 or by overexpression of a SUMO1 substrate "sponge" or by overexpression of the deSUMOylating enzyme SUMO-specific peptidase 1 (SENP1) dramatically restored free SUMO1 overexpression. The data suggest that overexpression of SUMO1 protein leading to an excess accumulation of critical SUMO1-conjugated substrates is not tolerated in embryonic cells. Surviving embryonic cells exhibit SUMO1 conjugation to allowed substrates but a complete absence of free SUMO1.IMPORTANCE Embryonic stem (ES) cells exhibit unusual transcriptional, proteomic, and signal response profiles, reflecting their unusual needs for rapid differentiation and replication. The work reported here demonstrated that mouse embryonic cell lines did not tolerate the overexpression of SUMO1, the small ubiquitin-like modifier protein that is covalently attached to many substrates to alter their intracellular localization and functionality. Forced SUMO1 overexpression is toxic to ES cells, and surviving cell populations adapt by dramatically reducing the levels of free SUMO1. Such a response is not seen in differentiated cells or with SUMO2 or with nonconjugatable SUMO1 mutants or in the presence of a SUMO1 "sponge" substrate that accepts the modification. The findings suggest that excess SUMO1 modification of specific substrates is not tolerated by embryonic cells and highlight a distinctive need for these cells to control the levels of SUMO1 available for conjugation.
Collapse
Affiliation(s)
- Andreia Lee
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Yiping Zhu
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Yosef Sabo
- Department of Medicine, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
| |
Collapse
|
31
|
Zhang S. Screening and verification for proteins that interact with leucine aminopeptidase of Taenia pisiformis using a yeast two-hybrid system. Parasitol Res 2019; 118:3387-3398. [PMID: 31728719 DOI: 10.1007/s00436-019-06510-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022]
Abstract
Leucine aminopeptidase of Taenia pisiformis (TpLAP) belonging to the M17 peptidase family has been implicated as a stage-differentially expressed protein in the adult stage of T. pisiformis. In order to further dissect the biological functions of TpLAP in the growth and development of adult worms, TpLAP-interacting partners were investigated. In this study, a yeast two-hybrid (Y2H) cDNA library from adult T. pisiformis was constructed. Using pGBKT7-TpLAP as bait, proteins interacting with TpLAP were screened by Y2H system and positive preys were sequenced and analyzed using the Basic Local Alignment Search Tool (BLAST). Our results showed that six genuine TpLAP-interacting proteins, including LAP, dynein light chain (DLC), SUMO-conjugating enzyme (UBC9), histone-lysine n-methyltransferase, trans-acting transcriptional, and one unknown protein, were identified via Y2H assay. Furthermore, the interaction between TpLAP and UBC9 of T. pisiformis (TpUBC9), an important protein involved in SUMOylation pathway, was further validated by one-to-one Y2H assay, co-immunoprecipitation, and confocal analysis. These findings provide a deeper understanding of the biological functions of TpLAP and offer the first clue that TpLAP may act as a novel SUMOylated substrate, suggesting that the SUMO modification pathway plays an important role in regulation of adult worm growth and development.
Collapse
Affiliation(s)
- Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Yanchangbu, Lanzhou, Gansu Province, 730046, People's Republic of China.
| |
Collapse
|
32
|
Reyes-Gutierrez P, Carrasquillo-Rodríguez JW, Imbalzano AN. Promotion of adipogenesis by JMJD6 requires the AT hook-like domain and is independent of its catalytic function. PLoS One 2019; 14:e0216015. [PMID: 31430278 PMCID: PMC6701753 DOI: 10.1371/journal.pone.0216015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/03/2019] [Indexed: 12/25/2022] Open
Abstract
JMJD6 is a member of the Jumonji C domain containing enzymes that demethylate and/or hydroxylate substrate proteins. It is a multi-functional protein that has been implicated in disparate aspects of transcriptional and post-transcriptional control of gene expression, including but not limited to enhancer and promoter binding, release of paused RNA polymerase II, control of splicing, and interaction with the translation machinery. JMJD6 contributes to multiple aspects of animal development, including adipogenesis modeled in culture. We mutated proposed or characterized domains in the JMJD6 protein to better understand the requirement for JMJD6 in adipogenic differentiation. Mutation of JMJD6 amino acids that mediate binding of iron and 2-oxogluterate, which are required cofactors for enzymatic activity, had no impact on JMJD6 function, showing that catalytic activity is not required for JMJD6 contributions to adipogenic differentiation. In addition, we documented the formation of JMJD6 oligomers and showed that catalytic activity is not required for oligomerization, as has been reported previously. We also observed no effect of mutations in the sumoylation site and in the poly-serine stretch. In contrast, mutation of the AT hook-like structure, which mediates interaction with DNA and/or RNA, compromised JMJD6 function by blocking its ability to interact with chromatin at genes that express regulators of adipogenesis. The ability of JMJD6 to interact with nucleic acids may be a critical requirement for its function in adipogenic differentiation. The requirement for the AT hook-like domain and the lack of requirement for catalytic activity giving rise to the idea that co-activation of transcription by JMJD6 may be functioning as a scaffold protein that supports the interactions of other critical regulators.
Collapse
Affiliation(s)
- Pablo Reyes-Gutierrez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jake W. Carrasquillo-Rodríguez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hatlem D, Trunk T, Linke D, Leo JC. Catching a SPY: Using the SpyCatcher-SpyTag and Related Systems for Labeling and Localizing Bacterial Proteins. Int J Mol Sci 2019; 20:E2129. [PMID: 31052154 PMCID: PMC6539128 DOI: 10.3390/ijms20092129] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023] Open
Abstract
The SpyCatcher-SpyTag system was developed seven years ago as a method for protein ligation. It is based on a modified domain from a Streptococcus pyogenes surface protein (SpyCatcher), which recognizes a cognate 13-amino-acid peptide (SpyTag). Upon recognition, the two form a covalent isopeptide bond between the side chains of a lysine in SpyCatcher and an aspartate in SpyTag. This technology has been used, among other applications, to create covalently stabilized multi-protein complexes, for modular vaccine production, and to label proteins (e.g., for microscopy). The SpyTag system is versatile as the tag is a short, unfolded peptide that can be genetically fused to exposed positions in target proteins; similarly, SpyCatcher can be fused to reporter proteins such as GFP, and to epitope or purification tags. Additionally, an orthogonal system called SnoopTag-SnoopCatcher has been developed from an S. pneumoniae pilin that can be combined with SpyCatcher-SpyTag to produce protein fusions with multiple components. Furthermore, tripartite applications have been produced from both systems allowing the fusion of two peptides by a separate, catalytically active protein unit, SpyLigase or SnoopLigase. Here, we review the current state of the SpyCatcher-SpyTag and related technologies, with a particular emphasis on their use in vaccine development and in determining outer membrane protein localization and topology of surface proteins in bacteria.
Collapse
Affiliation(s)
- Daniel Hatlem
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Thomas Trunk
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Dirk Linke
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Jack C Leo
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
34
|
Odeh HM, Coyaud E, Raught B, Matunis MJ. The SUMO-specific isopeptidase SENP2 is targeted to intracellular membranes via a predicted N-terminal amphipathic α-helix. Mol Biol Cell 2018; 29:1878-1890. [PMID: 29874116 PMCID: PMC6085828 DOI: 10.1091/mbc.e17-07-0445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sumoylation regulates a wide range of essential cellular functions, many of which are associated with activities in the nucleus. Although there is also emerging evidence for the involvement of the small ubiquitin-related modifier (SUMO) at intracellular membranes, the mechanisms by which sumoylation is regulated at membranes is largely unexplored. In this study, we report that the SUMO-specific isopeptidase, SENP2, uniquely associates with intracellular membranes. Using in vivo analyses and in vitro binding assays, we show that SENP2 is targeted to intracellular membranes via a predicted N-terminal amphipathic α-helix that promotes direct membrane binding. Furthermore, we demonstrate that SENP2 binding to intracellular membranes is regulated by interactions with the nuclear import receptor karyopherin-α. Consistent with membrane association, biotin identification (BioID) revealed interactions between SENP2 and endoplasmic reticulum, Golgi, and inner nuclear membrane-associated proteins. Collectively, our findings indicate that SENP2 binds to intracellular membranes where it interacts with membrane-associated proteins and has the potential to regulate their sumoylation and membrane-associated functions.
Collapse
Affiliation(s)
- Hana M Odeh
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
35
|
Horita H, Law A, Middleton K. Utilizing Optimized Tools to Investigate PTM Crosstalk: Identifying Potential PTM Crosstalk of Acetylated Mitochondrial Proteins. Proteomes 2018; 6:proteomes6020024. [PMID: 29786648 PMCID: PMC6027404 DOI: 10.3390/proteomes6020024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/11/2018] [Accepted: 05/19/2018] [Indexed: 12/15/2022] Open
Abstract
Post-translational modification (PTM) crosstalk is recognized as a major cell-regulatory mechanism, and studies of several proteins have validated the premise that PTMs work in concert. Previous work by our group investigated the potential PTM crosstalk on proteins in the EGFR-Ras-c-Fos axis by utilizing a comprehensive set of PTM reagents termed Signal-Seeker toolkits. In this study, these tools were used to investigate the potential PTM crosstalk that occurs in acetylated mitochondrial proteins in response to a mitochondrial stress-inducing agent hydrogen peroxide (H2O2). Mitochondrial protein acetylation has been shown to participate in PTM crosstalk as exemplified by the regulation of the pyruvate dehydrogenase complex via kinase, phosphatase, acetyltransferase, and deacetylase activities. Changes in the acetylated state of mitochondrial proteins were investigated, in response to H2O2, using a novel anti acetyl lysine (Ac-K) antibody. Signal-Seeker PTM detection tools were used to validate the acetylation state of ten mitochondrial targets, as well as their endogenous acetylation state in response to H2O2. Importantly, the endogenous acetylation, ubiquitination, SUMOylation 2/3, and tyrosine phosphorylation state of four target mitochondrial proteins were also investigated with the toolkit. Each of the four proteins had unique PTM profiles, but diverging acetylation and ubiquitin or SUMO 2/3 signals appeared to be a common theme. This proof-of-concept study identifies the Signal-Seeker toolkits as a useful tool to investigate potential PTM crosstalk.
Collapse
Affiliation(s)
- Henrick Horita
- Research and Development Department, Cytoskeleton Inc., Denver, CO 80223, USA.
| | - Andy Law
- Research and Development Department, Cytoskeleton Inc., Denver, CO 80223, USA.
| | - Kim Middleton
- Research and Development Department, Cytoskeleton Inc., Denver, CO 80223, USA.
| |
Collapse
|
36
|
MacDonald PE. A post-translational balancing act: the good and the bad of SUMOylation in pancreatic islets. Diabetologia 2018; 61:775-779. [PMID: 29330559 DOI: 10.1007/s00125-017-4543-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022]
Abstract
Post-translational modification of proteins contributes to the control of cell function and survival. The balance of these in insulin-producing pancreatic beta cells is important for the maintenance of glucose homeostasis. Protection from the damaging effects of reactive oxygen species is required for beta cell survival, but if this happens at the expense of insulin secretory function then the ability of islets to respond to changing metabolic conditions may be compromised. In this issue of Diabetologia, He et al ( https://doi.org/10.1007/s00125-017-4523-9 ) show that post-translational attachment of small ubiquitin-like modifier (SUMO) to target lysine residues (SUMOylation) strikes an important balance between the protection of beta cells from oxidative stress and the maintenance of insulin secretory function. They show that SUMOylation is required to stabilise nuclear factor erythroid 2-related factor 2 (NRF2) and increase antioxidant gene expression. Decreasing SUMOylation in beta cells impairs their antioxidant capacity, causes cell death, hyperglycaemia, and increased sensitivity to streptozotocin-induced diabetes, while increasing SUMOylation is protective. However, this protection from overt diabetes occurs in concert with glucose intolerance due to impaired beta cell function. A possible role for SUMOylation as a key factor balancing beta cell protection vs beta cell responsiveness to metabolic cues is discussed in this Commentary.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
- Alberta Diabetes Institute, LKS Centre, Rm. 6-126, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
37
|
Chymkowitch P, Enserink JM. Regulation of tRNA synthesis by posttranslational modifications of RNA polymerase III subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:310-319. [PMID: 29127063 DOI: 10.1016/j.bbagrm.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
RNA polymerase III (RNAPIII) transcribes tRNA genes, 5S RNA as well as a number of other non-coding RNAs. Because transcription by RNAPIII is an energy-demanding process, its activity is tightly linked to the stress levels and nutrient status of the cell. Multiple signaling pathways control RNAPIII activity in response to environmental cues, but exactly how these pathways regulate RNAPIII is still poorly understood. One major target of these pathways is the transcriptional repressor Maf1, which inhibits RNAPIII activity under conditions that are detrimental to cell growth. However, recent studies have found that the cell can also directly regulate the RNAPIII machinery through phosphorylation and sumoylation of RNAPIII subunits. In this review we summarize post-translational modifications of RNAPIII subunits that mainly have been identified in large-scale proteomics studies, and we highlight several examples to discuss their relevance for regulation of RNAPIII.
Collapse
Affiliation(s)
- Pierre Chymkowitch
- Department of Microbiology, Oslo University Hospital, NO-0027 Oslo, Norway.
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371, Norway.
| |
Collapse
|
38
|
The Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus Inhibits Expression of SUMO/Sentrin-Specific Peptidase 6 To Facilitate Establishment of Latency. J Virol 2017; 91:JVI.00806-17. [PMID: 28615201 DOI: 10.1128/jvi.00806-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), which belongs to the Gammaherpesviridae, typically displays two different phases in its life cycle, the latent phase and the lytic phase. Latency-associated nuclear antigen (LANA), the primary viral product during latency, has been reported to bind to a series of cellular gene promoters to modulate gene transcription. To systemically elucidate the cellular genes regulated by LANA, we identified genome-wide LANA binding sites by chromatin immunoprecipitation coupled with sequencing (ChIP-seq). We stratified ChIP-seq data and found that LANA might be involved in the macromolecule catabolic process. Specifically, we found and verified that LANA could directly bind to the promoter of the SUMO/sentrin-specific peptidase 6 (SENP6) gene in vivo and in vitro LANA could repress SENP6 promoter activity in a dose-dependent manner in a reporter gene assay. LANA expression was sufficient to inhibit endogenous SENP6 expression at both the RNA and protein levels. Moreover, SENP6 overexpression in KSHV-infected cells reduced LANA at the protein level. Mechanistically, we found that SENP6 could interact with LANA and reduce the formation of sumoylated LANA, which relies on the desumoylation ability of SENP6. During de novo infection, SENP6 overexpression would decrease the abundance of LANA and enhance viral gene expression, which would hamper the establishment of latency. Taken together, these data suggest that KSHV-encoded LANA could inhibit SENP6 expression to regulate the abundance of itself, which may play an important role in controlling the establishment of latency.IMPORTANCE LANA, as a key latent protein produced by KSHV, is responsible for episome persistence and regulates viral reactivation. In the present study, our results demonstrated that LANA could bind to the promoter region of the SENP6 gene and inhibit SENP6 expression while the regulated SENP6 could in turn modulate the abundance of LANA through desumoylation. This delicate regulation may provide important insights to explain the abundance of LANA during KSHV latency.
Collapse
|