1
|
Hao Y, Li B, Huber SA, Liu W. Bibliometric analysis of trends in cardiac aging research over the past 20 years. Medicine (Baltimore) 2023; 102:e34870. [PMID: 37653740 PMCID: PMC10470686 DOI: 10.1097/md.0000000000034870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND In recent years, many studies have addressed cardiac aging and related diseases. This study aims to understand the research trend of cardiac aging and find new hot issues. METHODS We searched the web of science core collection database for articles published between 2003 and 2022 on the topic of "cardiac aging." Complete information including keywords, publication year, journal title, country, organization, and author were extracted for analysis. The VOS viewer software was used to generate network maps of keywords, countries, institutions, and author relationships for visual network analysis. RESULTS A total of 1002 papers were analyzed in the study. Overall, the number of annual publications on cardiac aging has increased since 2009, and new hot topics are emerging. The top 3 countries with the most publications were the United States (471 articles), China (209 articles) and Italy (101 articles). The University of Washington published the most papers (35 articles). The cluster analysis with author as the keyword found that the connections among different scholars are scattered and clustered in a small range. Network analysis based on keyword co-occurrence and year of publication identified relevant features and trends in cardiac aging research. According to the results of cluster analysis, all the articles are divided into 4 topics: "mechanisms of cardiac aging", "prevention and treatment of cardiac aging", "characteristics of cardiac aging", and "others." In recent years, the mechanism and treatment of cardiac aging have attracted the most attention. In both studies, animal models are used more often than in human populations. Mitochondrial dysfunction, autophagy and mitochondrial autophagy are hotspots in current research. CONCLUSION In this study, bibliometric analysis was used to analyze the research trend of cardiac aging in the past 20 years. The mechanism and treatment of cardiac aging are the most concerned contents. Mitochondrial dysfunction, autophagy and mitophagy are the focus of future research on cardiac aging.
Collapse
Affiliation(s)
- Yan Hao
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Harbin Medical University, Harbin, Heilongjiang, China
| | - Bohan Li
- Harbin Medical University, Harbin, Heilongjiang, China
| | - Sally A. Huber
- Department of Pathology and Laboratory Medicine, University of Vermont, Colchester, VT
| | - Wei Liu
- Harbin Medical University, Harbin, Heilongjiang, China
- Department of Geriatric Cardiovascular Division, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
2
|
Recombinant Adenovirus siRNA Knocking Down the Ndufs4 Gene Alleviates Myocardial Apoptosis Induced by Oxidative Stress Injury. Cardiol Res Pract 2023; 2023:8141129. [PMID: 36741296 PMCID: PMC9897913 DOI: 10.1155/2023/8141129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 01/29/2023] Open
Abstract
Oxidative stress results in myocardial cell apoptosis and even life-threatening heart failure in myocardial ischemia-reperfusion injury. Specific blocking of the complex I could reduce cell apoptosis. Ndufs4 is a nuclear-encoded subunit of the mitochondrial complex I and participates in the electron transport chain. In this study, we designed and synthesized siRNA sequences knocking down the rat Ndufs4 gene, constructed recombinant adenovirus Ndufs4 siRNA (Ad-Ndufs4 siRNA), and primarily verified the role of Ndufs4 in oxidative stress injury. The results showed that the adenovirus infection rate was about 90%, and Ndufs4 mRNA and protein were decreased by 76.7% and 64.9%, respectively. Furthermore, the flow cytometry assay indicated that the cell apoptosis rate of the Ndufs4 siRNA group was significantly decreased as compared with the H2O2-treated group. In conclusion, we successfully constructed Ndufs4 siRNA recombinant adenovirus; furthermore, the downexpression of the Ndufs4 gene may alleviate H2O2-induced H9c2 cell apoptosis.
Collapse
|
3
|
Protasoni M, Serrano M. Targeting Mitochondria to Control Ageing and Senescence. Pharmaceutics 2023; 15:352. [PMID: 36839673 PMCID: PMC9960816 DOI: 10.3390/pharmaceutics15020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/24/2023] Open
Abstract
Ageing is accompanied by a progressive impairment of cellular function and a systemic deterioration of tissues and organs, resulting in increased vulnerability to multiple diseases. Here, we review the interplay between two hallmarks of ageing, namely, mitochondrial dysfunction and cellular senescence. The targeting of specific mitochondrial features in senescent cells has the potential of delaying or even reverting the ageing process. A deeper and more comprehensive understanding of mitochondrial biology in senescent cells is necessary to effectively face this challenge. Here, we discuss the main alterations in mitochondrial functions and structure in both ageing and cellular senescence, highlighting the differences and similarities between the two processes. Moreover, we describe the treatments available to target these pathways and speculate on possible future directions of anti-ageing and anti-senescence therapies targeting mitochondria.
Collapse
Affiliation(s)
- Margherita Protasoni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge CB21 6GP, UK
| |
Collapse
|
4
|
Kampa RP, Sęk A, Bednarczyk P, Szewczyk A, Calderone V, Testai L. Flavonoids as new regulators of mitochondrial potassium channels: contribution to cardioprotection. J Pharm Pharmacol 2022; 75:466-481. [PMID: 36508341 DOI: 10.1093/jpp/rgac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Acute myocardial ischemia is one of the major causes of illness in western society. Reduced coronary blood supply leads to cell death and loss of cardiomyocyte population, resulting in serious and often irreversible consequences on myocardial function. Mitochondrial potassium (mitoK) channels have been identified as fine regulators of mitochondrial function and, consequently, in the metabolism of the whole cell, and in the mechanisms underlying the cardioprotection. Interestingly, mitoK channels represent a novel putative target for treating cardiovascular diseases, particularly myocardial infarction, and their modulators represent an interesting tool for pharmacological intervention. In this review, we took up the challenge of selecting flavonoids that show cardioprotective properties through the activation of mitoK channels.
Key findings
A brief overview of the main information on mitoK channels and their participation in the induction of cytoprotective processes was provided. Then, naringenin, quercetin, morin, theaflavin, baicalein, epigallocatechin gallate, genistein, puerarin, luteolin and proanthocyanidins demonstrated to be effective modulators of mitoK channels activity, mediating many beneficial effects.
Summary
The pathophysiological role of mitoK channels has been investigated as well as the impact of flavonoids on this target with particular attention to their potential role in the prevention of cardiovascular disorders.
Collapse
Affiliation(s)
- Rafał P Kampa
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
- Department of Pharmacy, University of Pisa , Italy
| | - Aleksandra Sęk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
- Faculty of Chemistry, University of Warsaw , Warsaw , Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, SGGW , Warsaw , Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa , Italy
| |
Collapse
|
5
|
Lozhkin A, Vendrov AE, Ramos-Mondragón R, Canugovi C, Stevenson MD, Herron TJ, Hummel SL, Figueroa CA, Bowles DE, Isom LL, Runge MS, Madamanchi NR. Mitochondrial oxidative stress contributes to diastolic dysfunction through impaired mitochondrial dynamics. Redox Biol 2022; 57:102474. [PMID: 36183542 PMCID: PMC9530618 DOI: 10.1016/j.redox.2022.102474] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022] Open
Abstract
Diastolic dysfunction (DD) underlies heart failure with preserved ejection fraction (HFpEF), a clinical syndrome associated with aging that is becoming more prevalent. Despite extensive clinical studies, no effective treatment exists for HFpEF. Recent findings suggest that oxidative stress contributes to the pathophysiology of DD, but molecular mechanisms underpinning redox-sensitive cardiac remodeling in DD remain obscure. Using transgenic mice with mitochondria-targeted NOX4 overexpression (Nox4TG618) as a model, we demonstrate that NOX4-dependent mitochondrial oxidative stress induces DD in mice as measured by increased E/E', isovolumic relaxation time, Tau Glantz and reduced dP/dtmin while EF is preserved. In Nox4TG618 mice, fragmentation of cardiomyocyte mitochondria, increased DRP1 phosphorylation, decreased expression of MFN2, and a higher percentage of apoptotic cells in the myocardium are associated with lower ATP-driven and maximal mitochondrial oxygen consumption rates, a decrease in respiratory reserve, and a decrease in citrate synthase and Complex I activities. Transgenic mice have an increased concentration of TGFβ and osteopontin in LV lysates, as well as MCP-1 in plasma, which correlates with a higher percentage of LV myocardial periostin- and ACTA2-positive cells compared with wild-type mice. Accordingly, the levels of ECM as measured by Picrosirius Red staining as well as interstitial deposition of collagen I are elevated in the myocardium of Nox4TG618 mice. The LV tissue of Nox4TG618 mice also exhibited increased ICaL current, calpain 2 expression, and altered/disrupted Z-disc structure. As it pertains to human pathology, similar changes were found in samples of LV from patients with DD. Finally, treatment with GKT137831, a specific NOX1 and NOX4 inhibitor, or overexpression of mCAT attenuated myocardial fibrosis and prevented DD in the Nox4TG618 mice. Together, our results indicate that mitochondrial oxidative stress contributes to DD by causing mitochondrial dysfunction, impaired mitochondrial dynamics, increased synthesis of pro-inflammatory and pro-fibrotic cytokines, activation of fibroblasts, and the accumulation of extracellular matrix, which leads to interstitial fibrosis and passive stiffness of the myocardium. Further, mitochondrial oxidative stress increases cardiomyocyte Ca2+ influx, which worsens CM relaxation and raises the LV filling pressure in conjunction with structural proteolytic damage.
Collapse
Affiliation(s)
- Andrey Lozhkin
- 1150 West Medical Center Drive, 7200 Medical Science Research Building III, Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48019, USA
| | - Aleksandr E Vendrov
- 1150 West Medical Center Drive, 7200 Medical Science Research Building III, Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48019, USA
| | - R Ramos-Mondragón
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Chandrika Canugovi
- 1150 West Medical Center Drive, 7200 Medical Science Research Building III, Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48019, USA
| | - Mark D Stevenson
- 1150 West Medical Center Drive, 7200 Medical Science Research Building III, Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48019, USA
| | - Todd J Herron
- Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI, 48109, USA
| | - Scott L Hummel
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Ann Arbor Veterans Affairs Health System, Ann Arbor, MI, USA
| | - C Alberto Figueroa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Dawn E Bowles
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Lori L Isom
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Marschall S Runge
- 1150 West Medical Center Drive, 7200 Medical Science Research Building III, Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48019, USA
| | - Nageswara R Madamanchi
- 1150 West Medical Center Drive, 7200 Medical Science Research Building III, Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48019, USA.
| |
Collapse
|
6
|
The Complement System, Aging, and Aging-Related Diseases. Int J Mol Sci 2022; 23:ijms23158689. [PMID: 35955822 PMCID: PMC9369321 DOI: 10.3390/ijms23158689] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 12/10/2022] Open
Abstract
The complement system is a part of the immune system and consists of multiple complement components with biological functions such as defense against pathogens and immunomodulation. The complement system has three activation pathways: the classical pathway, the lectin pathway, and the alternative pathway. Increasing evidence indicates that the complement system plays a role in aging. Complement plays a role in inflammatory processes, metabolism, apoptosis, mitochondrial function, and Wnt signaling pathways. In addition, the complement system plays a significant role in aging-related diseases, including Alzheimer’s disease, age-related macular degeneration, and osteoarthritis. However, the effect of complement on aging and aging-related diseases is still unclear. Thus, a better understanding of the potential relationship between complement, aging, and aging-related diseases will provide molecular targets for treating aging, while focusing on the balance of complement in during treatment. Inhibition of a single component does not result in a good outcome. In this review, we discussed the research progress and effects of complement in aging and aging-related diseases.
Collapse
|
7
|
Dela Justina V, Miguez JSG, Priviero F, Sullivan JC, Giachini FR, Webb RC. Sex Differences in Molecular Mechanisms of Cardiovascular Aging. FRONTIERS IN AGING 2022; 2:725884. [PMID: 35822017 PMCID: PMC9261391 DOI: 10.3389/fragi.2021.725884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is still the leading cause of illness and death in the Western world. Cardiovascular aging is a progressive modification occurring in cardiac and vascular morphology and physiology where increased endothelial dysfunction and arterial stiffness are observed, generally accompanied by increased systolic blood pressure and augmented pulse pressure. The effects of biological sex on cardiovascular pathophysiology have long been known. The incidence of hypertension is higher in men, and it increases in postmenopausal women. Premenopausal women are protected from CVD compared with age-matched men and this protective effect is lost with menopause, suggesting that sex-hormones influence blood pressure regulation. In parallel, the heart progressively remodels over the course of life and the pattern of cardiac remodeling also differs between the sexes. Lower autonomic tone, reduced baroreceptor response, and greater vascular function are observed in premenopausal women than men of similar age. However, postmenopausal women have stiffer arteries than their male counterparts. The biological mechanisms responsible for sex-related differences observed in cardiovascular aging are being unraveled over the last several decades. This review focuses on molecular mechanisms underlying the sex-differences of CVD in aging.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Fernanda R Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil.,Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - R Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
8
|
León BE, Kang S, Franca-Solomon G, Shang P, Choi DS. Alcohol-Induced Neuroinflammatory Response and Mitochondrial Dysfunction on Aging and Alzheimer's Disease. Front Behav Neurosci 2022; 15:778456. [PMID: 35221939 PMCID: PMC8866940 DOI: 10.3389/fnbeh.2021.778456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Mitochondria are essential organelles central to various cellular functions such as energy production, metabolic pathways, signaling transduction, lipid biogenesis, and apoptosis. In the central nervous system, neurons depend on mitochondria for energy homeostasis to maintain optimal synaptic transmission and integrity. Deficiencies in mitochondrial function, including perturbations in energy homeostasis and mitochondrial dynamics, contribute to aging, and Alzheimer's disease. Chronic and heavy alcohol use is associated with accelerated brain aging, and increased risk for dementia, especially Alzheimer's disease. Furthermore, through neuroimmune responses, including pro-inflammatory cytokines, excessive alcohol use induces mitochondrial dysfunction. The direct and indirect alcohol-induced neuroimmune responses, including pro-inflammatory cytokines, are critical for the relationship between alcohol-induced mitochondrial dysfunction. In the brain, alcohol activates microglia and increases inflammatory mediators that can impair mitochondrial energy production, dynamics, and initiate cell death pathways. Also, alcohol-induced cytokines in the peripheral organs indirectly, but synergistically exacerbate alcohol's effects on brain function. This review will provide recent and advanced findings focusing on how alcohol alters the aging process and aggravates Alzheimer's disease with a focus on mitochondrial function. Finally, we will contextualize these findings to inform clinical and therapeutic approaches towards Alzheimer's disease.
Collapse
Affiliation(s)
- Brandon Emanuel León
- Regenerative Sciences Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Shinwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Gabriela Franca-Solomon
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Pei Shang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
9
|
Messerer J, Wrede C, Schipke J, Brandenberger C, Abdellatif M, Eisenberg T, Madeo F, Sedej S, Mühlfeld C. Spermidine supplementation influences mitochondrial number and morphology in the heart of aged mice. J Anat 2021; 242:91-101. [PMID: 34958481 PMCID: PMC9773166 DOI: 10.1111/joa.13618] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/18/2023] Open
Abstract
Aging is associated with cardiac hypertrophy and progressive decline in heart function. One of the hallmarks of cellular aging is the dysfunction of mitochondria. These organelles occupy around 1/4 to 1/3 of the cardiomyocyte volume. During cardiac aging, the removal of defective or dysfunctional mitochondria by mitophagy as well as the dynamic equilibrium between mitochondrial fusion and fission is distorted. Here, we hypothesized that these changes affect the number of mitochondria and alter their three-dimensional (3D) characteristics in aged mouse hearts. The polyamine spermidine stimulates both mitophagy and mitochondrial biogenesis, and these are associated with improved cardiac function and prolonged lifespan. Therefore, we speculated that oral spermidine administration normalizes the number of mitochondria and their 3D morphology in aged myocardium. Young (4-months old) and old (24-months old) mice, treated or not treated with spermidine, were used in this study (n = 10 each). The number of mitochondria in the left ventricles was estimated by design-based stereology using the Euler-Poincaré characteristic based on a disector at the transmission electron microscopic level. The 3D morphology of mitochondria was investigated by 3D reconstruction (using manual contour drawing) from electron microscopic z-stacks obtained by focused ion beam scanning electron microscopy. The volume of the left ventricle and cardiomyocytes were significantly increased in aged mice with or without spermidine treatment. Although the number of mitochondria was similar in young and old control mice, it was significantly increased in aged mice treated with spermidine. The interfibrillar mitochondria from old mice exhibited a lower degree of organization and a greater variation in shape and size compared to young animals. The mitochondrial alignment along the myofibrils in the spermidine-treated mice appeared more regular than in control aged mice, however, old mitochondria from animals fed spermidine also showed a greater diversity of shape and size than young mitochondria. In conclusion, mitochondria of the aged mouse left ventricle exhibited changes in number and 3D ultrastructure that is likely the structural correlate of dysfunctional mitochondrial dynamics. Spermidine treatment reduced, at least in part, these morphological changes, indicating a beneficial effect on cardiac mitochondrial alterations associated with aging.
Collapse
Affiliation(s)
- Jil Messerer
- Institute of Functional and Applied AnatomyHannover Medical SchoolHannoverGermany
| | - Christoph Wrede
- Institute of Functional and Applied AnatomyHannover Medical SchoolHannoverGermany,Research Core Unit Electron MicroscopyHannover Medical SchoolHannoverGermany
| | - Julia Schipke
- Institute of Functional and Applied AnatomyHannover Medical SchoolHannoverGermany,Biomedical Research in Endstage and Obstructive Lung Disease HannoverMember of the German Center for Lung Research (DZL)HannoverGermany
| | - Christina Brandenberger
- Institute of Functional and Applied AnatomyHannover Medical SchoolHannoverGermany,Biomedical Research in Endstage and Obstructive Lung Disease HannoverMember of the German Center for Lung Research (DZL)HannoverGermany
| | | | - Tobias Eisenberg
- BioTechMed GrazGrazAustria,Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria,Field of Excellence BioHealth—University of GrazGrazAustria
| | - Frank Madeo
- BioTechMed GrazGrazAustria,Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria,Field of Excellence BioHealth—University of GrazGrazAustria
| | - Simon Sedej
- Department of CardiologyMedical University of GrazGrazAustria,BioTechMed GrazGrazAustria,Faculty of MedicineUniversity of MariborMariborSlovenia
| | - Christian Mühlfeld
- Institute of Functional and Applied AnatomyHannover Medical SchoolHannoverGermany,Research Core Unit Electron MicroscopyHannover Medical SchoolHannoverGermany,Biomedical Research in Endstage and Obstructive Lung Disease HannoverMember of the German Center for Lung Research (DZL)HannoverGermany
| |
Collapse
|
10
|
Sekhar RV. GlyNAC Supplementation Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Aging Hallmarks, Metabolic Defects, Muscle Strength, Cognitive Decline, and Body Composition: Implications for Healthy Aging. J Nutr 2021; 151:3606-3616. [PMID: 34587244 DOI: 10.1093/jn/nxab309] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/10/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular increases in oxidative stress (OxS) and decline in mitochondrial function are identified as key defects in aging, but underlying mechanisms are poorly understood and interventions are lacking. Defects linked to OxS and impaired mitochondrial fuel oxidation, such as inflammation, insulin resistance, endothelial dysfunction, and aging hallmarks, are present in older humans and are associated with declining strength and cognition, as well as the development of sarcopenic obesity. Investigations on the origins of elevated OxS and mitochondrial dysfunction in older humans led to the discovery that deficiencies of the antioxidant tripeptide glutathione (GSH) and its precursor amino acids glycine and cysteine may be contributory. Supplementation with GlyNAC (combination of glycine and N-acetylcysteine as a cysteine precursor) was found to improve/correct cellular glycine, cysteine, and GSH deficiencies; lower OxS; and improve mitochondrial function, inflammation, insulin resistance, endothelial dysfunction, genotoxicity, and multiple aging hallmarks; and improve muscle strength, exercise capacity, cognition, and body composition. This review discusses evidence from published rodent studies and human clinical trials to provide a detailed summary of available knowledge regarding the effects of GlyNAC supplementation on age-associated defects and aging hallmarks, as well as discussing why GlyNAC supplementation could be effective in promoting healthy aging. It is particularly exciting that GlyNAC supplementation appears to reverse multiple aging hallmarks, and if confirmed in a randomized clinical trial, it could introduce a transformative paradigm shift in aging and geriatrics. GlyNAC supplementation could be a novel nutritional approach to improve age-associated defects and promote healthy aging, and existing data strongly support the need for additional studies to explore the role and impact of GlyNAC supplementation in aging.
Collapse
Affiliation(s)
- Rajagopal V Sekhar
- Translational Metabolism Unit, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Kuschner CE, Kim N, Shoaib M, Choudhary RC, Nishikimi M, Yin T, Becker LB, Hoppel CL, Kim J. Understanding physiologic phospholipid maintenance in the context of brain mitochondrial phospholipid alterations after cardiac arrest. Mitochondrion 2021; 60:112-120. [PMID: 34384933 DOI: 10.1016/j.mito.2021.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/14/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022]
Abstract
Cardiac arrest (CA) induces whole-body ischemia resulting in mitochondrial dysfunction. We used isolated mitochondria to examine phospholipid alterations in the brain, heart, kidney, and liver post-CA. Our data shows that ischemia/reperfusion most significantly alters brain mitochondria phospholipids, predominately after resuscitation. Furthermore, the alterations do not appear to be a function of dysregulated importation of phospholipids, but caused by impaired intra-mitochondrial synthesis and/or remodeling of phospholipids. Our data demonstrates only brain mitochondria undergo significant alterations in phospholipids, providing a rationale for the high vulnerability of the brain to ischemia/reperfusion. Furthermore, analyzing this pathophysiologic state provides insight into physiologic mitochondrial phospholipid metabolism.
Collapse
Affiliation(s)
- Cyrus E Kuschner
- Laboratory for Critical Care Physiology, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Nancy Kim
- Laboratory for Critical Care Physiology, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Muhammad Shoaib
- Laboratory for Critical Care Physiology, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Rishabh C Choudhary
- Laboratory for Critical Care Physiology, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Mitsuaki Nishikimi
- Laboratory for Critical Care Physiology, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Charles L Hoppel
- Center for Mitochondrial Diseases and Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
12
|
Feng W, Liu J, Wang S, Hu Y, Pan H, Hu T, Guan H, Zhang D, Mao Y. Alginate oligosaccharide alleviates D-galactose-induced cardiac ageing via regulating myocardial mitochondria function and integrity in mice. J Cell Mol Med 2021; 25:7157-7168. [PMID: 34227740 PMCID: PMC8335675 DOI: 10.1111/jcmm.16746] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
Ageing is a crucial risk factor for the development of age‐related cardiovascular diseases. Therefore, the molecular mechanisms of ageing and novel anti‐ageing interventions need to be deeply studied. Alginate oligosaccharide (AOS) possesses high pharmacological activities and beneficial effects. Our study was undertaken to investigate whether AOS could be used as an anti‐ageing drug to alleviate cardiac ageing. D‐galactose (D‐gal)‐induced C57BL/6J ageing mice were established by subcutaneous injection of D‐gal (200 mg·kg‐1·d‐1) for 8 weeks. AOS (50, 100 and 150 mg·kg‐1·d‐1) were administrated intragastrically for the last 4 weeks. As a result, AOS prevented cardiac dysfunction in D‐gal‐induced ageing mice, including partially preserved ejection fraction (EF%) and fractional shortening (FS%). AOS inhibited D‐gal‐induced up‐regulation of natriuretic peptides A (ANP), brain natriuretic peptide (BNP) and ageing markers p53 and p21 in a dose‐dependent manner. To further explore the potential mechanisms contributing to the anti‐ageing protective effect of AOS, the age‐related mitochondrial compromise was analysed. Our data indicated that AOS alleviated D‐gal‐induced cardiac ageing by improving mitochondrial biogenesis, maintaining the mitochondrial integrity and enhancing the efficient removal of impaired mitochondria. AOS also decreased the ROS production and oxidative stress status, which, in turn, further inhibiting cardiac mitochondria from being destroyed. Together, these results demonstrate that AOS may be an effective therapeutic agent to alleviate cardiac ageing.
Collapse
Affiliation(s)
- Wenjing Feng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, China
| | - Jianya Liu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan Wang
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Hu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Pan
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting Hu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, China
| | - Yongjun Mao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
López-Lluch G. Coenzyme Q homeostasis in aging: Response to non-genetic interventions. Free Radic Biol Med 2021; 164:285-302. [PMID: 33454314 DOI: 10.1016/j.freeradbiomed.2021.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/28/2022]
Abstract
Coenzyme Q (CoQ) is a key component for many essential metabolic and antioxidant activities in cells in mitochondria and cell membranes. Mitochondrial dysfunction is one of the hallmarks of aging and age-related diseases. Deprivation of CoQ during aging can be the cause or the consequence of this mitochondrial dysfunction. In any case, it seems clear that aging-associated CoQ deprivation accelerates mitochondrial dysfunction in these diseases. Non-genetic prolongevity interventions, including CoQ dietary supplementation, can increase CoQ levels in mitochondria and cell membranes improving mitochondrial activity and delaying cell and tissue deterioration by oxidative damage. In this review, we discuss the importance of CoQ deprivation in aging and age-related diseases and the effect of prolongevity interventions on CoQ levels and synthesis and CoQ-dependent antioxidant activities.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Universidad Pablo de Olavide, Centro Andaluz de Biología Del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Carretera de Utrera Km. 1, 41013, Sevilla, Spain.
| |
Collapse
|
14
|
Yu Y, Wang F, Wang J, Zhang D, Zhao X. Ketogenic diet attenuates aging-associated myocardial remodeling and dysfunction in mice. Exp Gerontol 2020; 140:111058. [DOI: 10.1016/j.exger.2020.111058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 01/06/2023]
|
15
|
Mitochondrial biogenesis: a potential therapeutic target for osteoarthritis. Osteoarthritis Cartilage 2020; 28:1003-1006. [PMID: 32417558 DOI: 10.1016/j.joca.2020.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/02/2023]
Abstract
Mitochondrial dysfunction of human articular chondrocytes is considered a hallmark of cartilage degradation and OA pathogenesis. Due to the huge number of cellular processes in which mitochondria is implicated, even in the closed context of cellular respiration, the term mitochondrial function can refer to a variety of features which include fusion and fission, turnover (biogenesis and mitophagy), and plasticity. Mitochondrial biogenesis and mainly mitochondrial fusion and reduced mitophagy, contribute to the metabolic disorder and inflammation that occurs during OA. Reduced MFN2 and increased PARKIN expression represent potential therapeutic targets for the treatment of joint cartilage degradation during the OA process.
Collapse
|
16
|
Xu L, Wu Z, He Y, Chen Z, Xu K, Yu W, Fang W, Ma C, Moqbel SAA, Ran J, Xiong Y, Wu L. MFN2 contributes to metabolic disorders and inflammation in the aging of rat chondrocytes and osteoarthritis. Osteoarthritis Cartilage 2020; 28:1079-1091. [PMID: 32416221 DOI: 10.1016/j.joca.2019.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Metabolic disorders and inflammation of chondrocytes are major pathological changes in aging cells and osteoarthritis (OA). Recent studies demonstrated age-related mitochondrial dysfunction may be a key contributing factor in the development of OA. Mitofusin 2 (MFN2) is a key regulator of mitochondrial fusion, cell metabolism, autophagy and apoptosis. This study was performed to ascertain whether MFN2 was involved in the aging of chondrocytes and OA. METHODS Metabolic measurements were taken in rat chondrocytes between different ages (3-week, 5-month, 12-month). MFN2 activity was detected in both human and rat chondrocytes during aging and OA. Then, knockdown of MFN2 with small interfering RNA (siRNA) was performed to confirm whether MFN2 contributes to metabolic changes. Lentiviruses were used to establish MFN2-overexpression/knockdown OA models both in vivo and in vitro to confirm whether MFN2 contributes to OA progress. Further, regulatory mechanism of MFN2 was assessed and interaction between MFN2 and PARKIN was performed. RESULTS A metabolic shift to mitochondrial respiration was confirmed in rat chondrocytes during aging. MFN2 expression was elevated in both human and rat chondrocytes during aging and OA. Knockdown of MFN2 with siRNA reversed the age-related metabolic changes in rat chondrocytes. Overexpression of MFN2 exacerbated inflammation and OA progress, while knockdown of MFN2 ameliorated inflammation and OA progress. Further, MFN2 could be ubiquitinated by PARKIN, declined PARKIN expression during aging and OA might result in elevated MFN2 expression. CONCLUSIONS Elevated MFN2 contributes to metabolic changes and inflammation during aging of rat chondrocytes and osteoarthritis.
Collapse
Affiliation(s)
- L Xu
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Z Wu
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Y He
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Z Chen
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - K Xu
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - W Yu
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - W Fang
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - C Ma
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - S A A Moqbel
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - J Ran
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Y Xiong
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - L Wu
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
17
|
Pu X, Luo A, Su H, Zhang K, Tian C, Chen B, Chai P, Xia X. Optimization and mechanism of postponing aging of polysaccharides from Chinese herbal medicine formula. Toxicol Res (Camb) 2020; 9:239-248. [PMID: 32670555 DOI: 10.1093/toxres/tfaa020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/03/2020] [Indexed: 11/14/2022] Open
Abstract
To study the extraction technology of polysaccharides (AAP) from Chinese herbal medicine formula and its mechanism of delaying aging. First, L9(3)4 orthogonal test was used to optimize the optimal enzyme-assisted extraction parameters of polysaccharides. And the anti-aging effects was evaluated by detecting mitochondrial function, protein, DNA, adhesion molecules and cell cycle in aging rats. The optimal extraction process parameters were the cellulase concentration of 1.5%, the pH at 5, the enzyme temperature at 50°C and the extraction time of 180 min. The anti-aging results showed that AAP can effectively increase the activities of malate dehydrogenase, succinate dehydrogenase and superoxide dismutase. It also can decrease the activity of monoamine oxidase and methane dicarboxylic aldehyde levels in the brain tissue. Meanwhile, the polysaccharides enhanced telomerase activity while reduced p16 protein expression of the brain mitochondria. In addition, the polysaccharides continued to improve heart damage and significantly lessen mitochondrial DNA concentrations. For a certain period of time, it also enhanced the activity of superoxide dismutase, reduced glutathione, glutathione peroxidase and decreased protein carbonyl and methane dicarboxylic aldehyde content of kidney in D-galactose-induced aging rats. Furthermore, the polysaccharides restored the number of cells in the peripheral blood lines and BMNC through inhibiting the drop of the number of red blood cells, white blood cells, platelets in the peripheral blood and bone marrow mononuclear cell of the aging rats. At the same time, AAP accelerated G1 phase cell to enter S phase in cell cycle in aging rats. Our research suggests that the polysaccharides may be a potential anti-aging agent and can be further developed as a functional food or new drug to delay aging or treat aging-related diseases.
Collapse
Affiliation(s)
- Xiuying Pu
- School of Life Science and Engineering, Lanzhou University of Technology, The Key Lab of Screening, Evaluation and Advanced Processing of TCM and Tibetan Medicine, Gansu Educational Department, No. 287, Langongping Road, Qilihe District, Lanzhou 730050, Gansu, China
| | - Amiao Luo
- School of Life Science and Engineering, Lanzhou University of Technology, The Key Lab of Screening, Evaluation and Advanced Processing of TCM and Tibetan Medicine, Gansu Educational Department, No. 287, Langongping Road, Qilihe District, Lanzhou 730050, Gansu, China
| | - Hui Su
- School of Life Science and Engineering, Lanzhou University of Technology, The Key Lab of Screening, Evaluation and Advanced Processing of TCM and Tibetan Medicine, Gansu Educational Department, No. 287, Langongping Road, Qilihe District, Lanzhou 730050, Gansu, China
| | - Kaili Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, The Key Lab of Screening, Evaluation and Advanced Processing of TCM and Tibetan Medicine, Gansu Educational Department, No. 287, Langongping Road, Qilihe District, Lanzhou 730050, Gansu, China
| | - Changyi Tian
- School of Life Science and Engineering, Lanzhou University of Technology, The Key Lab of Screening, Evaluation and Advanced Processing of TCM and Tibetan Medicine, Gansu Educational Department, No. 287, Langongping Road, Qilihe District, Lanzhou 730050, Gansu, China
| | - Bo Chen
- School of Life Science and Engineering, Lanzhou University of Technology, The Key Lab of Screening, Evaluation and Advanced Processing of TCM and Tibetan Medicine, Gansu Educational Department, No. 287, Langongping Road, Qilihe District, Lanzhou 730050, Gansu, China
| | - Pengdi Chai
- School of Life Science and Engineering, Lanzhou University of Technology, The Key Lab of Screening, Evaluation and Advanced Processing of TCM and Tibetan Medicine, Gansu Educational Department, No. 287, Langongping Road, Qilihe District, Lanzhou 730050, Gansu, China
| | - Xiaoyu Xia
- School of Life Science and Engineering, Lanzhou University of Technology, The Key Lab of Screening, Evaluation and Advanced Processing of TCM and Tibetan Medicine, Gansu Educational Department, No. 287, Langongping Road, Qilihe District, Lanzhou 730050, Gansu, China
| |
Collapse
|
18
|
Schneider J, Han WH, Matthew R, Sauvé Y, Lemieux H. Age and sex as confounding factors in the relationship between cardiac mitochondrial function and type 2 diabetes in the Nile Grass rat. PLoS One 2020; 15:e0228710. [PMID: 32084168 PMCID: PMC7034865 DOI: 10.1371/journal.pone.0228710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Our study revisits the role of cardiac mitochondrial adjustments during the progression of type 2 diabetes mellitus (T2DM), while considering age and sex as potential confounding factors. We used the Nile Grass rats (NRs) as the animal model. After weaning, animals were fed either a Standard Rodent Chow Diet (SRCD group) or a Mazuri Chinchilla Diet (MCD group) consisting of high-fiber and low-fat content. Both males and females in the SRCD group, exhibited increased body mass, body mass index, and plasma insulin compared to the MCD group animals. However, the females were able to preserve their fasting blood glucose throughout the age range on both diets, while the males showed significant hyperglycemia starting at 6 months in the SRCD group. In the males, a higher citrate synthase activity-a marker of mitochondrial content-was measured at 2 months in the SRCD compared to the MCD group, and this was followed by a decline with age in the SRCD group only. In contrast, females preserved their mitochondrial content throughout the age range. In the males exclusively, the complex IV capacity expressed independently of mitochondrial content varied with age in a diet-specific pattern; the capacity was elevated at 2 months in the SRCD group, and at 6 months in the MCD group. In addition, females, but not males, were able to adjust their capacity to oxidize long-chain fatty acid in accordance with the fat content of the diet. Our results show clear sexual dimorphism in the variation of mitochondrial content and oxidative phosphorylation capacity with diet and age. The SRCD not only leads to T2DM but also exacerbates age-related cardiac mitochondrial defects. These observations, specific to male NRs, might reflect deleterious dietary-induced changes on their metabolism making them more prone to the cardiovascular consequences of aging and T2DM.
Collapse
Affiliation(s)
- Jillian Schneider
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Woo Hyun Han
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rebecca Matthew
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Sauvé
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
The Citrus Flavonoid Naringenin Protects the Myocardium from Ageing-Dependent Dysfunction: Potential Role of SIRT1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4650207. [PMID: 32047577 PMCID: PMC7003265 DOI: 10.1155/2020/4650207] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 02/04/2023]
Abstract
Sirtuin 1 (SIRT1) enzyme plays a pivotal role in the regulation of many physiological functions. In particular, it is implicated in ageing-related diseases, such as cardiac hypertrophy, myocardial infarct, and endothelial dysfunction; moreover, its expression decreases with age. Therefore, an effective strategy to extend the lifespan and improve cardiovascular function is the enhancement of the expression/activity of SIRT1 with exogenous agents. The Citrus flavonoid naringenin (NAR) presents structural similarity with the natural SIRT1 activator resveratrol. In this study, we demonstrate through in vitro assays that NAR significantly activates SIRT1 enzyme and shows antisenescence effects. The binding mode of NAR into SIRT1 was detailed investigated through in silico studies. Moreover, chronic administration (for six months) of NAR (100 mg/kg/day) to 6-month-old mice leads to an enhancement of SIRT1 expression and a marked reduction of reactive oxygen species production in myocardial tissue. Furthermore, at the end of the treatment, the plasma levels of two well-known markers of cardiovascular inflammation, TNF-α and IL6, are significantly reduced in 12-month-old mice treated with NAR, as well as the cardiovascular risk (total cholesterol/HDL ratio) compared to control mice. Finally, the age-associated fibrotic remodeling, which is well detected through a Mallory trichrome staining in the vehicle-treated 12-month-old mice, is significantly reduced by the chronic treatment with NAR. Moreover, an improvement of myocardium functionality is highlighted by the enhancement of citrate synthase activity and stabilization of the mitochondrial membrane potential after NAR treatment. Taken together, these results suggest that a nutraceutical approach with NAR may have positive impacts on many critical hallmarks of myocardial senescence, contributing to improve the cardiac performance in aged subjects.
Collapse
|
20
|
Metabolic Biomarkers in Aging and Anti-Aging Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:247-264. [PMID: 31493231 DOI: 10.1007/978-3-030-25650-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although human life expectancy has increased significantly over the last two centuries, this has not been paralleled by a similar rise in healthy life expectancy. Thus, an important goal of anti-aging research has been to reduce the impact of age-associated diseases as a way of extending the human healthspan. This review will explore some of the potential avenues which have emerged from this research as the most promising strategies and drug targets for therapeutic interventions to promote healthy aging.
Collapse
|
21
|
Drug-Induced Mitochondrial Toxicity in the Geriatric Population: Challenges and Future Directions. BIOLOGY 2019; 8:biology8020032. [PMID: 31083551 PMCID: PMC6628177 DOI: 10.3390/biology8020032] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial function declines with age, leading to a variety of age-related diseases (metabolic, central nervous system-related, cancer, etc.) and medication usage increases with age due to the increase in diseases. Drug-induced mitochondrial toxicity has been described for many different drug classes and can lead to liver, muscle, kidney and central nervous system injury and, in rare cases, to death. Many of the most prescribed medications in the geriatric population carry mitochondrial liabilities. We have demonstrated that, over the past decade, each class of drugs that demonstrated mitochondrial toxicity contained drugs with both more and less adverse effects on mitochondria. As patient treatment is often essential, we suggest using medication(s) with the best safety profile and the avoidance of concurrent usage of multiple medications that carry mitochondrial liabilities. In addition, we also recommend lifestyle changes to further improve one’s mitochondrial function, such as weight loss, exercise and nutrition.
Collapse
|
22
|
Chocron ES, Munkácsy E, Pickering AM. Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:285-297. [PMID: 30419337 PMCID: PMC6310633 DOI: 10.1016/j.bbadis.2018.09.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022]
Abstract
The mitochondrial genome (mtDNA) represents a tiny fraction of the whole genome, comprising just 16.6 kilobases encoding 37 genes involved in oxidative phosphorylation and the mitochondrial translation machinery. Despite its small size, much interest has developed in recent years regarding the role of mtDNA as a determinant of both aging and age-associated diseases. A number of studies have presented compelling evidence for key roles of mtDNA in age-related pathology, although many are correlative rather than demonstrating cause. In this review we will evaluate the evidence supporting and opposing a role for mtDNA in age-associated functional declines and diseases. We provide an overview of mtDNA biology, damage and repair as well as the influence of mitochondrial haplogroups, epigenetics and maternal inheritance in aging and longevity.
Collapse
Affiliation(s)
- E Sandra Chocron
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Andrew M Pickering
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA; Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| |
Collapse
|
23
|
Zhang X, Liu C, Liu C, Wang Y, Zhang W, Xing Y. Trimetazidine and l‑carnitine prevent heart aging and cardiac metabolic impairment in rats via regulating cardiac metabolic substrates. Exp Gerontol 2019; 119:120-127. [PMID: 30639303 DOI: 10.1016/j.exger.2018.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND This study aimed to investigate the effects of trimetazidine and l‑carnitine on heart aging and cardiac metabolism in the natural aging rats and explore the possible mechanism regarding the regulation of cardiac metabolic substrates. METHODS A total of 28 young (2-month-old) and 28 aged (14-month-old) male Sprague-Dawley rats were randomly allocated to the following groups: young control (YC, n = 8), young trimetazidine (YT, n = 10), young l‑carnitine (YL, n = 10), aging control (AC, n = 8), aging trimetazidine (AT, n = 10), and aging l‑carnitine (AL, n = 10). All rats were intragastrically treated with saline, trimetazidine, or l‑carnitine for 4 weeks. Blood sample parameters (MDA, SOD, Glu, TG, TC, LDL-c, HDL-c, AST, ALT, ALP, BUN, Cr, LDH), Echocardiographic paramerters, ATP levels of cardiac apex, cardiac pathology (HE staining and mitochondrial ultrastructures), and cardiac metabolism-related parameters (glucose transporter type-4[GLUT-4], carnitine palmitoyl transferase‑1[CPT-1]) were analyzed in each group. RESULTS The left ventricular ejection fractions were normal in most groups, with a higher value observed in the AT group than in the AC group. The AC group showed decreased ATP levels of cardiac apex compared with the YC group. But both trimetazidine and l‑carnitine attenuated the aging-induced decrease in ATP levels of cardiac apex. The AC group also showed increased myocardial fiber fragmentations and dissolutions, and interstitial proliferation compared with the YC group. However both trimetazidine and l‑carnitine protected against the aging-induced pathological changes in myocardium. Furthermore, both trimetazidine and l‑carnitine prevented mitochondria of cardiomyocytes from aging-induced injury. Both the AT and AL groups had significantly fewer focal cavitations and higher mitochondrial matrix electron densities than the AC group. GLUT-4 and CPT-1 protein levels were significantly lower while GLUT-4/CPT-1 ratios were higher in aging rats than YC rats. The AT and AL groups had significantly higher GLUT-4 and CPT-1 levels than the AC group, with more significant changes observed in the AT group. CONCLUSIONS Trimetazidine and l‑carnitine may partially improve the age-related changes of rat myocardial metabolisms and heart function via regulating cardiac metabolic substrates, with trimetazidine being superior. Interestingly, they may also reduce cardiac energy generation and impair mitochondrial structures in young rats. These findings suggest that age should be taken as an independent factor during the use of metabolic modulatory drugs in the patients with cardiovascular diseases because it may completely change the effects of drugs.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Gerontology, Qilu Hospital, Shandong University, Jinan 250012, China; Department of Cardiology, Shandong General Police Hospital, Jinan 250000, China
| | - Chun Liu
- Department of Gerontology, Qilu Hospital, Shandong University, Jinan 250012, China; Department of Life Science, Shandong Academy of Medical Science, Jinan 250062, China
| | - Congcong Liu
- Department of Gerontology, Qilu Hospital, Shandong University, Jinan 250012, China; Department of Cardiology, Shandong General Police Hospital, Jinan 250000, China
| | - Yan Wang
- Department of Gerontology, Qilu Hospital, Shandong University, Jinan 250012, China; Department of Cardiology, Shandong General Police Hospital, Jinan 250000, China
| | - Wenhua Zhang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Yanqiu Xing
- Department of Gerontology, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
24
|
Age-Dependent Protein Expression of Serine/Threonine Phosphatases and Their Inhibitors in the Human Cardiac Atrium. Adv Med 2019; 2019:2675972. [PMID: 30719459 PMCID: PMC6334353 DOI: 10.1155/2019/2675972] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Heart failure and aging of the heart show many similarities regarding hemodynamic and biochemical parameters. There is evidence that heart failure in experimental animals and humans is accompanied and possibly exacerbated by increased activity of protein phosphatase (PP) 1 and/or 2A. Here, we wanted to study the age-dependent protein expression of major members of the protein phosphatase family in human hearts. Right atrial samples were obtained during bypass surgery. Patients (n=60) were suffering from chronic coronary artery disease (CCS 2-3; New York Heart Association (NYHA) stage 1-3). Age ranged from 48 to 84 years (median 69). All patients included in the study were given β-adrenoceptor blockers. Other medications included angiotensin-converting enzyme (ACE) or angiotensin-receptor-1 (AT1) inhibitors, statins, nitrates, and acetylsalicylic acid (ASS). 100 µg of right atrial homogenates was used for western blotting. Antibodies against catalytic subunits (and their major regulatory proteins) of all presently known cardiac serine/threonine phosphatases were used for antigen detection. In detail, we studied the expression of the catalytic subunit of PP1 (PP1c); I1 PP1 and I2 PP1, proteins that can inhibit the activity of PP1c; the catalytic subunit of PP2A (PP2Ac); regulatory A-subunit of PP2A (PP2AA); regulatory B56α-subunit of PP2A (PP2AB); I1 PP2A and I2 PP2A, inhibitory subunits of PP2A; catalytic and regulatory subunits of calcineurin: PP2BA and PP2BB; PP2C; PP5; and PP6. All data were obtained within the linear range of the assay. There was a significant decline in PP2Ac and I2 PP2A expression in older patients, whereas all other parameters remained unchanged with age. It remains to be elucidated whether the decrease in the protein expression of I2 PP2A might elevate cardiac PP2A activity in a detrimental way or is overcome by a reduced protein expression and thus a reduced activity of PP2Ac.
Collapse
|
25
|
Chimienti G, Picca A, Sirago G, Fracasso F, Calvani R, Bernabei R, Russo F, Carter CS, Leeuwenburgh C, Pesce V, Marzetti E, Lezza AMS. Increased TFAM binding to mtDNA damage hot spots is associated with mtDNA loss in aged rat heart. Free Radic Biol Med 2018; 124:447-453. [PMID: 29969715 PMCID: PMC6319621 DOI: 10.1016/j.freeradbiomed.2018.06.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023]
Abstract
The well-known age-related mitochondrial dysfunction deeply affects heart because of the tissue's large dependence on mitochondrial ATP provision. Our study revealed in aged rat heart a significant 25% decrease in mtDNA relative content, a significant 29% increase in the 4.8 Kb mtDNA deletion relative content, and a significant inverse correlation between such contents as well as a significant 38% decrease in TFAM protein amount. The TFAM-binding activity to specific mtDNA regions increased at those encompassing the mtDNA replication origins, D-loop and Ori-L. The same mtDNA regions were screened for different kinds of oxidative damage, namely Single Strand Breaks (SSBs), Double Strand Breaks (DSBs), abasic sites (AP sites) and oxidized bases as 7,8-dihydro-8-oxoguanine (8oxoG). A marked increase in the relative content of mtDNA strand damage (SSBs, DSBs and AP sites) was found in the D-loop and Ori-L regions in the aged animals, unveiling for the first time in vivo an age-related, non-stochastic accumulation of oxidative lesions in these two regions that appear as hot spots of mtDNA damage. The use of Formamidopyrimidine glycosylase (Fpg) demonstrated also a significant age-related accumulation of oxidized purines particularly in the D-loop and Ori-L regions. The detected increased binding of TFAM to the mtDNA damage hot spots in aged heart suggests a link between TFAM binding to mtDNA and loss of mitochondrial genome likely through hindrance of repair processes.
Collapse
Affiliation(s)
- Guglielmina Chimienti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Anna Picca
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Teaching Hospital "Agostino Gemelli", Rome, Italy
| | - Giuseppe Sirago
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Flavio Fracasso
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Teaching Hospital "Agostino Gemelli", Rome, Italy
| | - Roberto Bernabei
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Teaching Hospital "Agostino Gemelli", Rome, Italy
| | - Francesco Russo
- Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases - I.R.C.C.S. "Saverio de Bellis", Castellana Grotte, Italy
| | - Christy S Carter
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 2004 Mowry Rd, Gainesville, FL 32611, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 2004 Mowry Rd, Gainesville, FL 32611, USA
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Teaching Hospital "Agostino Gemelli", Rome, Italy
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
26
|
Lewis SA, Takimoto T, Mehrvar S, Higuchi H, Doebley AL, Stokes G, Sheibani N, Ikeda S, Ranji M, Ikeda A. The effect of Tmem135 overexpression on the mouse heart. PLoS One 2018; 13:e0201986. [PMID: 30102730 PMCID: PMC6089435 DOI: 10.1371/journal.pone.0201986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023] Open
Abstract
Tissues with high-energy demand including the heart are rich in the energy-producing organelles, mitochondria, and sensitive to mitochondrial dysfunction. While alterations in mitochondrial function are increasingly recognized in cardiovascular diseases, the molecular mechanisms through which changes in mitochondria lead to heart abnormalities have not been fully elucidated. Here, we report that transgenic mice overexpressing a novel regulator of mitochondrial dynamics, transmembrane protein 135 (Tmem135), exhibit increased fragmentation of mitochondria and disease phenotypes in the heart including collagen accumulation and hypertrophy. The gene expression analysis showed that genes associated with ER stress and unfolded protein response, and especially the pathway involving activating transcription factor 4, are upregulated in the heart of Tmem135 transgenic mice. It also showed that gene expression changes in the heart of Tmem135 transgenic mice significantly overlap with those of aged mice in addition to the similarity in cardiac phenotypes, suggesting that changes in mitochondrial dynamics may be involved in the development of heart abnormalities associated with aging. Our study revealed the pathological consequence of overexpression of Tmem135, and suggested downstream molecular changes that may underlie those disease pathologies.
Collapse
Affiliation(s)
- Sarah Aileen Lewis
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tetsuya Takimoto
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Institute for Innovation, Ajinomoto Co., Inc., Tokyo, Japan
| | - Shima Mehrvar
- Department of Electrical Engineering, Biophotonics Laboratory, University of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Hitoshi Higuchi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna-Lisa Doebley
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Giangela Stokes
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nader Sheibani
- Department Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mahsa Ranji
- Department of Electrical Engineering, Biophotonics Laboratory, University of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
27
|
Panel M, Ghaleh B, Morin D. Mitochondria and aging: A role for the mitochondrial transition pore? Aging Cell 2018; 17:e12793. [PMID: 29888494 PMCID: PMC6052406 DOI: 10.1111/acel.12793] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
The cellular mechanisms responsible for aging are poorly understood. Aging is considered as a degenerative process induced by the accumulation of cellular lesions leading progressively to organ dysfunction and death. The free radical theory of aging has long been considered the most relevant to explain the mechanisms of aging. As the mitochondrion is an important source of reactive oxygen species (ROS), this organelle is regarded as a key intracellular player in this process and a large amount of data supports the role of mitochondrial ROS production during aging. Thus, mitochondrial ROS, oxidative damage, aging, and aging-dependent diseases are strongly connected. However, other features of mitochondrial physiology and dysfunction have been recently implicated in the development of the aging process. Here, we examine the potential role of the mitochondrial permeability transition pore (mPTP) in normal aging and in aging-associated diseases.
Collapse
Affiliation(s)
- Mathieu Panel
- INSERM U955, équipe 3; Créteil France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC; Créteil France
| | - Bijan Ghaleh
- INSERM U955, équipe 3; Créteil France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC; Créteil France
| | - Didier Morin
- INSERM U955, équipe 3; Créteil France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC; Créteil France
| |
Collapse
|
28
|
|
29
|
Colafella KMM, Denton KM. Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol 2018; 14:185-201. [PMID: 29380817 DOI: 10.1038/nrneph.2017.189] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although intrinsic mechanisms that regulate arterial blood pressure (BP) are similar in men and women, marked variations exist at the molecular, cellular and tissue levels. These physiological disparities between the sexes likely contribute to differences in disease onset, susceptibility, prevalence and treatment responses. Key systems that are important in the development of hypertension and cardiovascular disease (CVD), including the sympathetic nervous system, the renin-angiotensin-aldosterone system and the immune system, are differentially activated in males and females. Biological age also contributes to sexual dimorphism, as premenopausal women experience a higher degree of cardioprotection than men of similar age. Furthermore, sex hormones such as oestrogen and testosterone as well as sex chromosome complement likely contribute to sex differences in BP and CVD. At the cellular level, differences in cell senescence pathways may contribute to increased longevity in women and may also limit organ damage caused by hypertension. In addition, many lifestyle and environmental factors - such as smoking, alcohol consumption and diet - may influence BP and CVD in a sex-specific manner. Evidence suggests that cardioprotection in women is lost under conditions of obesity and type 2 diabetes mellitus. Treatment strategies for hypertension and CVD that are tailored according to sex could lead to improved outcomes for affected patients.
Collapse
Affiliation(s)
- Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University Wellington Road, Clayton, Victoria 3800, Australia.,Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Victoria 3800, Australia.,Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University Wellington Road, Clayton, Victoria 3800, Australia.,Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|
30
|
Wang S, Hu B, Ding Z, Dang Y, Wu J, Li D, Liu X, Xiao B, Zhang W, Ren R, Lei J, Hu H, Chen C, Chan P, Li D, Qu J, Tang F, Liu GH. ATF6 safeguards organelle homeostasis and cellular aging in human mesenchymal stem cells. Cell Discov 2018; 4:2. [PMID: 29423270 PMCID: PMC5798892 DOI: 10.1038/s41421-017-0003-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Loss of organelle homeostasis is a hallmark of aging. However, it remains elusive how this occurs at gene expression level. Here, we report that human mesenchymal stem cell (hMSC) aging is associated with dysfunction of double-membrane organelles and downregulation of transcription factor ATF6. CRISPR/Cas9-mediated inactivation of ATF6 in hMSCs, not in human embryonic stem cells and human adipocytes, results in premature cellular aging, characteristic of loss of endomembrane homeostasis. Transcriptomic analyses uncover cell type-specific constitutive and stress-induced ATF6-regulated genes implicated in various layers of organelles’ homeostasis regulation. FOS was characterized as a constitutive ATF6 responsive gene, downregulation of which contributes to hMSC aging. Our study unravels the first ATF6-regulated gene expression network related to homeostatic regulation of membrane organelles, and provides novel mechanistic insights into aging-associated attrition of human stem cells.
Collapse
Affiliation(s)
- Si Wang
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China.,2State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.,3University of Chinese Academy of Sciences, 100049 Beijing, China.,4National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, 100053 Beijing, China
| | - Boqiang Hu
- 5Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, 100871 Beijing, China.,6Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Zhichao Ding
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China.,3University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yujiao Dang
- 5Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, 100871 Beijing, China.,6Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Jun Wu
- 7Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Di Li
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China.,3University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaoling Liu
- 8School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, 100084 Beijing, China
| | - Bailong Xiao
- 8School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, 100084 Beijing, China
| | - Weiqi Zhang
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China.,4National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, 100053 Beijing, China
| | - Ruotong Ren
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China.,4National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, 100053 Beijing, China
| | - Jinghui Lei
- 4National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, 100053 Beijing, China
| | - Huifang Hu
- 2State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Chang Chen
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China.,3University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Piu Chan
- 4National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, 100053 Beijing, China
| | - Dong Li
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China.,3University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jing Qu
- 2State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.,3University of Chinese Academy of Sciences, 100049 Beijing, China.,4National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, 100053 Beijing, China
| | - Fuchou Tang
- 5Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, 100871 Beijing, China.,6Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China.,9Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, 100871 Beijing, China.,10Biomedical Institute for Pioneering Investigation via Convergence, Peking University, 100871 Beijing, China
| | - Guang-Hui Liu
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China.,3University of Chinese Academy of Sciences, 100049 Beijing, China.,4National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, 100053 Beijing, China.,11Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, 510632 Guangzhou, China
| |
Collapse
|