1
|
Lv X, Zhang Y, Sun K, Yang Q, Luo J, Tao L, Lu P. De novo design of mini-protein binders broadly neutralizing Clostridioides difficile toxin B variants. Nat Commun 2024; 15:8521. [PMID: 39358329 PMCID: PMC11447207 DOI: 10.1038/s41467-024-52582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
Clostridioides difficile toxin B (TcdB) is the key virulence factor accounting for C. difficile infection-associated symptoms. Effectively neutralizing different TcdB variants with a universal solution poses a significant challenge. Here we present the de novo design and characterization of pan-specific mini-protein binders against major TcdB subtypes. Our design successfully binds to the first receptor binding interface (RBI-1) of the varied TcdB subtypes, exhibiting affinities ranging from 20 pM to 10 nM. The cryo-electron microscopy (cryo-EM) structures of the mini protein binder in complex with TcdB1 and TcdB4 are consistent with the computational design models. The engineered and evolved variants of the mini-protein binder and chondroitin sulfate proteoglycan 4 (CSPG4), another natural receptor that binds to the second RBI (RBI-2) of TcdB, better neutralize major TcdB variants both in cells and in vivo, as demonstrated by the colon-loop assay using female mice. Our findings provide valuable starting points for the development of therapeutics targeting C. difficile infections (CDI).
Collapse
Affiliation(s)
- Xinchen Lv
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yuanyuan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Hangzhou Medical College Affiliated People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Ke Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Qi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Jianhua Luo
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Liang Tao
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China.
| | - Peilong Lu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
2
|
Meléndez-Sánchez D, Hernández L, Ares M, Méndez Tenorio A, Flores-Luna L, Torres J, Camorlinga-Ponce M. Genomic and phenotypic studies among Clostridioides difficile isolates show a high prevalence of clade 2 and great diversity in clinical isolates from Mexican adults and children with healthcare-associated diarrhea. Microbiol Spectr 2024; 12:e0394723. [PMID: 38864670 PMCID: PMC11218462 DOI: 10.1128/spectrum.03947-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
Clostridioides difficile (C. difficile) is widely distributed in the intestinal tract of humans, animals, and in the environment. It is the most common cause of diarrhea associated with the use of antimicrobials in humans and among the most common healthcare-associated infections worldwide. Its pathogenesis is mainly due to the production of toxin A (TcdA), toxin B (TcdB), and a binary toxin (CDT), whose genetic variants may be associated with disease severity. We studied genetic diversity in 39 C. difficile isolates from adults and children attended at two Mexican hospitals, using different gene and genome typing methods and investigated their association with in vitro expression of toxins. Whole-genome sequencing in 39 toxigenic C. difficile isolates were used for multilocus sequence typing, tcdA, and tcdB typing sequence type, and phylogenetic analysis. Strains were grown in broth media, and expression of toxin genes was measured by real-time PCR and cytotoxicity in cell-culture assays. Clustering of strains by genome-wide phylogeny matched clade classification, forming different subclusters within each clade. The toxin profile tcdA+/tcdB+/cdt+ and clade 2/ST1 were the most prevalent among isolates from children and adults. Isolates presented two TcdA and three TcdB subtypes, of which TcdA2 and TcdB2 were more prevalent. Prevalent clades and toxin subtypes in strains from children differed from those in adult strains. Toxin gene expression or cytotoxicity was not associated with genotyping or toxin subtypes. In conclusion, genomic and phenotypic analysis shows high diversity among C. difficile isolates from patients with healthcare-associated diarrhea. IMPORTANCE Clostridioides difficile is a toxin-producing bacterial pathogen recognized as the most common cause of diarrhea acquired primarily in healthcare settings. This bacterial species is diverse; its global population has been divided into five different clades using multilocus sequence typing, and strains may express different toxin subtypes that may be related to the clades and, importantly, to the severity and progression of disease. Genotyping of children strains differed from adults suggesting toxins might present a reduced toxicity. We studied extensively cytotoxicity, expression of toxins, whole genome phylogeny, and toxin typing in clinical C. difficile isolates. Most isolates presented a tcdA+/ tcdB+/cdt+ pattern, with high diversity in cytotoxicity and clade 2/ST1 was the most prevalent. However, they all had the same TcdA2/TcdB2 toxin subtype. Advances in genomics and bioinformatics tools offer the opportunity to understand the virulence of C. difficile better and find markers for better clinical use.
Collapse
Affiliation(s)
- D. Meléndez-Sánchez
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Laura Hernández
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
| | - Miguel Ares
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, Instituto Mexicano del Seguro Social, México City, México
| | - A. Méndez Tenorio
- Laboratorio de Bioinformática y Biotecnología Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, México
| | - Lourdes Flores-Luna
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, Instituto Mexicano del Seguro Social, México City, México
| | - M. Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, Instituto Mexicano del Seguro Social, México City, México
| |
Collapse
|
3
|
Pourliotopoulou E, Karampatakis T, Kachrimanidou M. Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection. Microorganisms 2024; 12:1004. [PMID: 38792835 PMCID: PMC11124097 DOI: 10.3390/microorganisms12051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains produce an additional toxin, the C. difficile transferase (CDT), which further enhances the virulence and pathogenicity of C. difficile. These toxins disrupt colonic epithelial barrier integrity, and induce inflammation and cellular damage, leading to CDI symptoms. Significant progress has been made in the past decade in elucidating the molecular mechanisms of TcdA, TcdB, and CDT, which provide insights into the management of CDI and the future development of novel treatment strategies based on anti-toxin therapies. While antibiotics are common treatments, high recurrence rates necessitate alternative therapies. Bezlotoxumab, targeting TcdB, is the only available anti-toxin, yet limitations persist, prompting ongoing research. This review highlights the current knowledge of the structure and mechanism of action of C. difficile toxins and their role in disease. By comprehensively describing the toxin-mediated mechanisms, this review provides insights for the future development of novel treatment strategies and the management of CDI.
Collapse
Affiliation(s)
- Evdokia Pourliotopoulou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
4
|
Barth H, Worek F, Steinritz D, Papatheodorou P, Huber-Lang M. Trauma-toxicology: concepts, causes, complications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2935-2948. [PMID: 37999755 PMCID: PMC11074020 DOI: 10.1007/s00210-023-02845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Trauma and toxic substances are connected in several aspects. On the one hand, toxic substances can be the reason for traumatic injuries in the context of accidental or violent and criminal circumstances. Examples for the first scenario is the release of toxic gases, chemicals, and particles during house fires, and for the second scenario, the use of chemical or biological weapons in the context of terroristic activities. Toxic substances can cause or enhance severe, life-threatening trauma, as described in this review for various chemical warfare, by inducing a tissue trauma accompanied by break down of important barriers in the body, such as the blood-air or the blood-gut barriers. This in turn initiates a "vicious circle" as the contribution of inflammatory responses to the traumatic damage enhances the macro- and micro-barrier breakdown and often results in fatal outcome. The development of sophisticated methods for detection and identification of toxic substances as well as the special treatment of the intoxicated trauma patient is summarized in this review. Moreover, some highly toxic substances, such as the protein toxins from the pathogenic bacterium Clostridioides (C.) difficile, cause severe post-traumatic complications which significantly worsens the outcome of hospitalized patients, in particular in multiply injured trauma patients. Therefore, novel pharmacological options for the treatment of such patients are necessarily needed and one promising strategy might be the neutralization of the toxins that cause the disease. This review summarizes recent findings on the molecular and cellular mechanisms of toxic chemicals and bacterial toxins that contribute to barrier breakdown in the human body as wells pharmacological options for treatment, in particular in the context of intoxicated trauma patients. "trauma-toxicology" comprises concepts regrading basic research, development of novel pharmacological/therapeutic options and clinical aspects in the complex interplay and "vicious circle" of severe tissue trauma, barrier breakdown, pathogen and toxin exposure, tissue damage, and subsequent clinical complications.
Collapse
Affiliation(s)
- Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University of Ulm Medical Center, Ulm, Germany.
| |
Collapse
|
5
|
Zhou Y, Zhan X, Luo J, Li D, Zhou R, Zhang J, Pan Z, Zhang Y, Jia T, Zhang X, Li Y, Tao L. Structural dynamics of the CROPs domain control stability and toxicity of Paeniclostridium sordellii lethal toxin. Nat Commun 2023; 14:8426. [PMID: 38114525 PMCID: PMC10730571 DOI: 10.1038/s41467-023-44169-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Paeniclostridium sordellii lethal toxin (TcsL) is a potent exotoxin that causes lethal toxic shock syndrome associated with fulminant bacterial infections. TcsL belongs to the large clostridial toxin (LCT) family. Here, we report that TcsL with varied lengths of combined repetitive oligopeptides (CROPs) deleted show increased autoproteolysis as well as higher cytotoxicity. We next present cryo-EM structures of full-length TcsL, at neutral (pH 7.4) and acidic (pH 5.0) conditions. The TcsL at neutral pH exhibits in the open conformation, which resembles reported TcdB structures. Low pH induces the conformational change of partial TcsL to the closed form. Two intracellular interfaces are observed in the closed conformation, which possibly locks the cysteine protease domain and hinders the binding of the host receptor. Our findings provide insights into the structure and function of TcsL and reveal mechanisms for CROPs-mediated modulation of autoproteolysis and cytotoxicity, which could be common across the LCT family.
Collapse
Affiliation(s)
- Yao Zhou
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Xiechao Zhan
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| | - Jianhua Luo
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Diyin Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Ruoyu Zhou
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Jiahao Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Zhenrui Pan
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Tianhui Jia
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Xiaofeng Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yanyan Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Liang Tao
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
6
|
Schumacher J, Nienhaus A, Heber S, Matylitsky J, Chaves-Olarte E, Rodríguez C, Barth H, Papatheodorou P. Exploring the inhibitory potential of the antiarrhythmic drug amiodarone against Clostridioides difficile toxins TcdA and TcdB. Gut Microbes 2023; 15:2256695. [PMID: 37749884 PMCID: PMC10524773 DOI: 10.1080/19490976.2023.2256695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023] Open
Abstract
The intestinal pathogen Clostridioides difficile is the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis in humans. The symptoms of C. difficile-associated diseases (CDADs) are directly associated with the pathogen's toxins TcdA and TcdB, which enter host cells and inactivate Rho and/or Ras GTPases by glucosylation. Membrane cholesterol is crucial during the intoxication process of TcdA and TcdB, and likely involved during pore formation of both toxins in endosomal membranes, a key step after cellular uptake for the translocation of the glucosyltransferase domain of both toxins from endosomes into the host cell cytosol. The licensed drug amiodarone, a multichannel blocker commonly used in the treatment of cardiac dysrhythmias, is also capable of inhibiting endosomal acidification and, as shown recently, cholesterol biosynthesis. Thus, we were keen to investigate in vitro with cultured cells and human intestinal organoids, whether amiodarone preincubation protects from TcdA and/or TcdB intoxication. Amiodarone conferred protection against both toxins independently and in combination as well as against toxin variants from the clinically relevant, epidemic C. difficile strain NAP1/027. Further mechanistic studies suggested that amiodarone's mode-of-inhibition involves also interference with the translocation pore of both toxins. Our study opens the possibility of repurposing the licensed drug amiodarone as a novel pan-variant antitoxin therapeutic in the context of CDADs.
Collapse
Affiliation(s)
- Judith Schumacher
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Astrid Nienhaus
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Heber
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Jauheni Matylitsky
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
7
|
Abeyawardhane DL, Sevdalis SE, Adipietro KA, Godoy-Ruiz R, Varney KM, Nawaz IF, Spittel AX, Rustandi RR, Silin VI, des Georges A, Pozharski E, Weber DJ. Membrane binding and pore formation is Ca 2+ -dependent for the Clostridioides difficile binary toxin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553786. [PMID: 37645845 PMCID: PMC10462154 DOI: 10.1101/2023.08.18.553786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The C. difficile binary toxin (CDT) enters host cells via endosomal delivery like many other 'AB'-type binary toxins. In this study, the cell-binding component of CDT, termed CDTb, was found to bind and form pores in lipid bilayers upon depleting free Ca 2+ ion concentrations, and not by lowering pH, as found for other binary toxins (i.e., anthrax). Cryoelectron microscopy, nuclear magnetic resonance spectroscopy, surface plasmon resonance, electrochemical impedance spectroscopy, CDT toxicity studies, and site directed mutagenesis show that dissociation of Ca 2+ from a single site in receptor binding domain 1 (RBD1) of CDTb is consistent with a molecular mechanism in which Ca 2+ dissociation from RBD1 induces a "trigger" via conformational exchange that enables CDTb to bind and form pores in endosomal membrane bilayers as free Ca 2+ concentrations decrease during CDT endosomal delivery.
Collapse
|
8
|
Naz F, Petri WA. Host Immunity and Immunization Strategies for Clostridioides difficile Infection. Clin Microbiol Rev 2023; 36:e0015722. [PMID: 37162338 PMCID: PMC10283484 DOI: 10.1128/cmr.00157-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Clostridioides difficile infection (CDI) represents a significant challenge to public health. C. difficile-associated mortality and morbidity have led the U.S. CDC to designate it as an urgent threat. Moreover, recurrence or relapses can occur in up to a third of CDI patients, due in part to antibiotics being the primary treatment for CDI and the major cause of the disease. In this review, we summarize the current knowledge of innate immune responses, adaptive immune responses, and the link between innate and adaptive immune responses of the host against CDI. The other major determinants of CDI, such as C. difficile toxins, the host microbiota, and related treatments, are also described. Finally, we discuss the known therapeutic approaches and the current status of immunization strategies for CDI, which might help to bridge the knowledge gap in the generation of therapy against CDI.
Collapse
Affiliation(s)
- Farha Naz
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Rosenkranz AA, Slastnikova TA. Prospects of Using Protein Engineering for Selective Drug Delivery into a Specific Compartment of Target Cells. Pharmaceutics 2023; 15:pharmaceutics15030987. [PMID: 36986848 PMCID: PMC10055131 DOI: 10.3390/pharmaceutics15030987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A large number of proteins are successfully used to treat various diseases. These include natural polypeptide hormones, their synthetic analogues, antibodies, antibody mimetics, enzymes, and other drugs based on them. Many of them are demanded in clinical settings and commercially successful, mainly for cancer treatment. The targets for most of the aforementioned drugs are located at the cell surface. Meanwhile, the vast majority of therapeutic targets, which are usually regulatory macromolecules, are located inside the cell. Traditional low molecular weight drugs freely penetrate all cells, causing side effects in non-target cells. In addition, it is often difficult to elaborate a small molecule that can specifically affect protein interactions. Modern technologies make it possible to obtain proteins capable of interacting with almost any target. However, proteins, like other macromolecules, cannot, as a rule, freely penetrate into the desired cellular compartment. Recent studies allow us to design multifunctional proteins that solve these problems. This review considers the scope of application of such artificial constructs for the targeted delivery of both protein-based and traditional low molecular weight drugs, the obstacles met on the way of their transport to the specified intracellular compartment of the target cells after their systemic bloodstream administration, and the means to overcome those difficulties.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
10
|
Cryo-EM structures of the translocational binary toxin complex CDTa-bound CDTb-pore from Clostridioides difficile. Nat Commun 2022; 13:6119. [PMID: 36253419 PMCID: PMC9576733 DOI: 10.1038/s41467-022-33888-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Some bacteria express a binary toxin translocation system, consisting of an enzymatic subunit and translocation pore, that delivers enzymes into host cells through endocytosis. The most clinically important bacterium with such a system is Clostridioides difficile (formerly Clostridium). The CDTa and CDTb proteins from its system represent important therapeutic targets. CDTb has been proposed to be a di-heptamer, but its physiological heptameric structure has not yet been reported. Here, we report the cryo-EM structure of CDTa bound to the CDTb-pore, which reveals that CDTa binding induces partial unfolding and tilting of the first CDTa α-helix. In the CDTb-pore, an NSS-loop exists in 'in' and 'out' conformations, suggesting its involvement in substrate translocation. Finally, 3D variability analysis revealed CDTa movements from a folded to an unfolded state. These dynamic structural information provide insights into drug design against hypervirulent C. difficile strains.
Collapse
|
11
|
Kwon JE, Jo SH, Song WS, Lee JS, Jeon HJ, Park JH, Kim YR, Baek JH, Kim MG, Kwon SY, Kim JS, Yang YH, Kim YG. Investigation of metabolic crosstalk between host and pathogenic Clostridioides difficile via multiomics approaches. Front Bioeng Biotechnol 2022; 10:971739. [PMID: 36118584 PMCID: PMC9478559 DOI: 10.3389/fbioe.2022.971739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Clostridioides difficile is a gram-positive anaerobic bacterium that causes antibiotic-associated infections in the gut. C. difficile infection develops in the intestine of a host with an imbalance of the intestinal microbiota and, in severe cases, can lead to toxic megacolon, intestinal perforation, and even death. Despite its severity and importance, however, the lack of a model to understand host-pathogen interactions and the lack of research results on host cell effects and response mechanisms under C. difficile infection remain limited. Here, we developed an in vitro anaerobic-aerobic C. difficile infection model that enables direct interaction between human gut epithelial cells and C. difficile through the Mimetic Intestinal Host–Microbe Interaction Coculture System. Additionally, an integrative multiomics approach was applied to investigate the biological changes and response mechanisms of host cells caused by C. difficile in the early stage of infection. The C. difficile infection model was validated through the induction of disaggregation of the actin filaments and disruption of the intestinal epithelial barrier as the toxin-mediated phenotypes following infection progression. In addition, an upregulation of stress-induced chaperones and an increase in the ubiquitin proteasomal pathway were identified in response to protein stress that occurred in the early stage of infection, and downregulation of proteins contained in the electron transfer chain and ATP synthase was observed. It has been demonstrated that host cell energy metabolism is inhibited through the glycolysis of Caco-2 cells and the reduction of metabolites belonging to the TCA cycle. Taken together, our C. difficile infection model suggests a new biological response pathway in the host cell induced by C. difficile during the early stage of infection at the molecular level under anaerobic-aerobic conditions. Therefore, this study has the potential to be applied to the development of future therapeutics through basic metabolic studies of C. difficile infection.
Collapse
Affiliation(s)
- Ji-Eun Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Won-Suk Song
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Jae-Seung Lee
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Hyo-Jin Jeon
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Ji-Hyeon Park
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Ye-Rim Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Ji-Hyun Baek
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Min-Gyu Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Seo-Young Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul, South Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
- *Correspondence: Yun-Gon Kim,
| |
Collapse
|
12
|
Pneumolysin boosts the neuroinflammatory response to Streptococcus pneumoniae through enhanced endocytosis. Nat Commun 2022; 13:5032. [PMID: 36028511 PMCID: PMC9418233 DOI: 10.1038/s41467-022-32624-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
In pneumococcal meningitis, bacterial growth in the cerebrospinal fluid results in lysis, the release of toxic factors, and subsequent neuroinflammation. Exposure of primary murine glia to Streptococcus pneumoniae lysates leads to strong proinflammatory cytokine and chemokine production, blocked by inhibition of the intracellular innate receptor Nod1. Lysates enhance dynamin-dependent endocytosis, and dynamin inhibition reduces neuroinflammation, blocking ligand internalization. Here we identify the cholesterol-dependent cytolysin pneumolysin as a pro-endocytotic factor in lysates, its elimination reduces their proinflammatory effect. Only pore-competent pneumolysin enhances endocytosis in a dynamin-, phosphatidylinositol-3-kinase- and potassium-dependent manner. Endocytic enhancement is limited to toxin-exposed parts of the membrane, the effect is rapid and pneumolysin permanently alters membrane dynamics. In a murine model of pneumococcal meningitis, mice treated with chlorpromazine, a neuroleptic with a complementary endocytosis inhibitory effect show reduced neuroinflammation. Thus, the dynamin-dependent endocytosis emerges as a factor in pneumococcal neuroinflammation, and its enhancement by a cytolysin represents a proinflammatory control mechanism.
Collapse
|
13
|
Mattana M, Tomasello R, Cammarata C, Di Carlo P, Fasciana T, Giordano G, Lucchesi A, Siragusa S, Napolitano M. Clostridium difficile Induced Inflammasome Activation and Coagulation Derangements. Microorganisms 2022; 10:microorganisms10081624. [PMID: 36014040 PMCID: PMC9416296 DOI: 10.3390/microorganisms10081624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
C. difficile enterocolitis (CDAC) is the most common hospital infection, burdened by an increased incidence of coagulation-related complications such as deep vein thrombosis (DVT) and disseminated intravascular coagulation (DIC) as well as a significant sepsis-related mortality. In this review, we analyzed the available data concerning the correlation between coagulation complications related to C. difficile infection (CDI) and inflammasome activation, in particular the pyrin-dependent one. The little but solid available preclinical and clinical evidence shows that inflammasome activation increases the risk of venous thromboembolism (VTE). As proof of this, it has been observed that in vitro inhibition of the molecules (e.g., tissue factor) mainly involved in coagulation activation could block the process. In vivo studies show that it could be possible to reduce the incidence of complications associated with C. difficile infection (CDI) and mortality due to a state of hypercoagulability. A personalized therapeutic approach to reduce the inflammatory activity and prevent thromboembolic complications could be preliminarily defined to reduce mortality.
Collapse
Affiliation(s)
- Marta Mattana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Riccardo Tomasello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Claudia Cammarata
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Paola Di Carlo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Teresa Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Giulio Giordano
- Division of Internal Medicine, Hematology Service, Regional Hospital “A. Cardarelli”, 86100 Campobasso, Italy
| | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Sergio Siragusa
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Mariasanta Napolitano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
- Correspondence: ; Tel.: +39-0916554519; Fax: +39-0916554500
| |
Collapse
|
14
|
Schnizlein MK, Young VB. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 2022; 19:508-520. [PMID: 35468953 DOI: 10.1038/s41575-022-00610-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection is a substantial health and economic burden worldwide. Great strides have been made over the past several years in characterizing the physiology of C. difficile infection, particularly regarding how gut microorganisms and their host work together to provide colonization resistance. As mammalian hosts and their indigenous gut microbiota have co-evolved, they have formed a complex yet stable relationship that prevents invading microorganisms from establishing themselves. In this Review, we discuss the latest advances in our understanding of C. difficile physiology that have contributed to its success as a pathogen, including its versatile survival factors and ability to adapt to unique niches. Using discoveries regarding microorganism-host and microorganism-microorganism interactions that constitute colonization resistance, we place C. difficile within the fiercely competitive gut environment. A comprehensive understanding of these relationships is required to continue the development of precision medicine-based treatments for C. difficile infection.
Collapse
Affiliation(s)
- Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Wu Y, Mahtal N, Paillares E, Swistak L, Sagadiev S, Acharya M, Demeret C, Werf SVD, Guivel-Benhassine F, Schwartz O, Petracchini S, Mettouchi A, Caramelle L, Couvineau P, Thai R, Barbe P, Keck M, Brodin P, Machelart A, Sencio V, Trottein F, Sachse M, Chicanne G, Payrastre B, Ville F, Kreis V, Popoff MR, Johannes L, Cintrat JC, Barbier J, Gillet D, Lemichez E. C910 chemical compound inhibits the traffiking of several bacterial AB toxins with cross-protection against influenza virus. iScience 2022; 25:104537. [PMID: 35769882 PMCID: PMC9234246 DOI: 10.1016/j.isci.2022.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
The development of anti-infectives against a large range of AB-like toxin-producing bacteria includes the identification of compounds disrupting toxin transport through both the endolysosomal and retrograde pathways. Here, we performed a high-throughput screening of compounds blocking Rac1 proteasomal degradation triggered by the Cytotoxic Necrotizing Factor-1 (CNF1) toxin, which was followed by orthogonal screens against two toxins that hijack the endolysosomal (diphtheria toxin) or retrograde (Shiga-like toxin 1) pathways to intoxicate cells. This led to the identification of the molecule C910 that induces the enlargement of EEA1-positive early endosomes associated with sorting defects of CNF1 and Shiga toxins to their trafficking pathways. C910 protects cells against eight bacterial AB toxins and the CNF1-mediated pathogenic Escherichia coli invasion. Interestingly, C910 reduces influenza A H1N1 and SARS-CoV-2 viral infection in vitro. Moreover, parenteral administration of C910 to mice resulted in its accumulation in lung tissues and a reduction in lethal influenza infection.
Collapse
Affiliation(s)
- Yu Wu
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Nassim Mahtal
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SCBM, 91191 Gif-sur-Yvette, France
| | - Eléa Paillares
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Léa Swistak
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Sara Sagadiev
- Seattle Children’s Research Institute, Jack R MacDonald Building, 1900 9th Avenue, Seattle, WA 98101, USA
| | - Mridu Acharya
- Seattle Children’s Research Institute, Jack R MacDonald Building, 1900 9th Avenue, Seattle, WA 98101, USA
| | - Caroline Demeret
- Unité Génétique Moléculaire des Virus à ARN, UMR 3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Sylvie Van Der Werf
- Unité Génétique Moléculaire des Virus à ARN, UMR 3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Florence Guivel-Benhassine
- Unité virus et immunité, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Olivier Schwartz
- Unité virus et immunité, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Serena Petracchini
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Amel Mettouchi
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Lucie Caramelle
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Pierre Couvineau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Robert Thai
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Peggy Barbe
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Mathilde Keck
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Priscille Brodin
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Arnaud Machelart
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Valentin Sencio
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - François Trottein
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Martin Sachse
- Unité Technologie et service BioImagerie Ultrastructurale, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Gaëtan Chicanne
- Inserm, UMR1297 and Université Toulouse III Paul Sabatier, I2MC, 31024 Toulouse, France
| | - Bernard Payrastre
- Inserm, UMR1297 and Université Toulouse III Paul Sabatier, I2MC, 31024 Toulouse, France
| | - Florian Ville
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SCBM, 91191 Gif-sur-Yvette, France
| | - Victor Kreis
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Michel-Robert Popoff
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology unit, Endocytic Trafficking and Intracellular Delivery team, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris, France
| | - Jean-Christophe Cintrat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SCBM, 91191 Gif-sur-Yvette, France
| | - Julien Barbier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Emmanuel Lemichez
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| |
Collapse
|
16
|
Ghadaksaz A, Nodoushan SM, Sedighian H, Behzadi E, Fooladi AAI. Evaluation of the Role of Probiotics As a New Strategy to Eliminate Microbial Toxins: a Review. Probiotics Antimicrob Proteins 2022; 14:224-237. [PMID: 35031968 DOI: 10.1007/s12602-021-09893-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 01/17/2023]
Abstract
Probiotics are living microorganisms that have favorable effects on human and animal health. The most usual types of microorganisms recruited as probiotics are lactic acid bacteria (LAB) and bifidobacteria. To date, numerous utilizations of probiotics have been reported. In this paper, it is suggested that probiotic bacteria can be recruited to remove and degrade different types of toxins such as mycotoxins and algal toxins that damage host tissues and the immune system causing local and systemic infections. These microorganisms can remove toxins by disrupting, changing the permeability of the plasma membrane, producing metabolites, inhibiting the protein translation, hindering the binding to GTP binding proteins to GM1 receptors, or by preventing the interaction between toxins and adhesions. Here, we intend to review the mechanisms that probiotic bacteria use to eliminate and degrade microbial toxins.
Collapse
Affiliation(s)
- Abdolamir Ghadaksaz
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Somayeh Mousavi Nodoushan
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-E-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St, Tehran, Iran.
| |
Collapse
|
17
|
Nibbering B, Gerding DN, Kuijper EJ, Zwittink RD, Smits WK. Host Immune Responses to Clostridioides difficile: Toxins and Beyond. Front Microbiol 2022; 12:804949. [PMID: 34992590 PMCID: PMC8724541 DOI: 10.3389/fmicb.2021.804949] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is often resistant to the actions of antibiotics to treat other bacterial infections and the resulting C. difficile infection (CDI) is among the leading causes of nosocomial infectious diarrhea worldwide. The primary virulence mechanism contributing to CDI is the production of toxins. Treatment failures and recurrence of CDI have urged the medical community to search for novel treatment options. Strains that do not produce toxins, so called non-toxigenic C. difficile, have been known to colonize the colon and protect the host against CDI. In this review, a comprehensive description and comparison of the immune responses to toxigenic C. difficile and non-toxigenic adherence, and colonization factors, here called non-toxin proteins, is provided. This revealed a number of similarities between the host immune responses to toxigenic C. difficile and non-toxin proteins, such as the influx of granulocytes and the type of T-cell response. Differences may reflect genuine variation between the responses to toxigenic or non-toxigenic C. difficile or gaps in the current knowledge with respect to the immune response toward non-toxigenic C. difficile. Toxin-based and non-toxin-based immunization studies have been evaluated to further explore the role of B cells and reveal that plasma cells are important in protection against CDI. Since the success of toxin-based interventions in humans to date is limited, it is vital that future research will focus on the immune responses to non-toxin proteins and in particular non-toxigenic strains.
Collapse
Affiliation(s)
- Britt Nibbering
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Dale N Gerding
- Department of Veterans Affairs, Research Service, Edward Hines Jr. VA Hospital, Hines, IL, United States
| | - Ed J Kuijper
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wiep Klaas Smits
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
18
|
Papatheodorou P, Kindig S, Badilla-Lobo A, Fischer S, Durgun E, Thuraisingam T, Witte A, Song S, Aktories K, Chaves-Olarte E, Rodríguez C, Barth H. The Compound U18666A Inhibits the Intoxication of Cells by Clostridioides difficile Toxins TcdA and TcdB. Front Microbiol 2021; 12:784856. [PMID: 34912322 PMCID: PMC8667575 DOI: 10.3389/fmicb.2021.784856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
The intestinal pathogen Clostridioides (C.) difficile is a major cause of diarrhea both in hospitals and outpatient in industrialized countries. This bacterium produces two large exotoxins, toxin A (TcdA) and toxin B (TcdB), which are directly responsible for the onset of clinical symptoms of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and the severe, life-threatening pseudomembranous colitis. Both toxins are multidomain proteins and taken up into host eukaryotic cells via receptor-mediated endocytosis. Within the cell, TcdA and TcdB inactivate Rho and/or Ras protein family members by glucosylation, which eventually results in cell death. The cytotoxic mode of action of the toxins is the main reason for the disease. Thus, compounds capable of inhibiting the cellular uptake and/or mode-of-action of both toxins are of high therapeutic interest. Recently, we found that the sterol regulatory element-binding protein 2 (SREBP-2) pathway, which regulates cholesterol content in membranes, is crucial for the intoxication of cells by TcdA and TcdB. Furthermore, it has been shown that membrane cholesterol is required for TcdA- as well as TcdB-mediated pore formation in endosomal membranes, which is a key step during the translocation of the glucosyltransferase domain of both toxins from endocytic vesicles into the cytosol of host cells. In the current study, we demonstrate that intoxication by TcdA and TcdB is diminished in cultured cells preincubated with the compound U18666A, an established inhibitor of cholesterol biosynthesis and/or intracellular transport. U18666A-pretreated cells were also less sensitive against TcdA and TcdB variants from the epidemic NAP1/027 C. difficile strain. Our study corroborates the crucial role of membrane cholesterol for cell entry of TcdA and TcdB, thus providing a valuable basis for the development of novel antitoxin strategies in the context of CDADs.
Collapse
Affiliation(s)
| | - Selina Kindig
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Adriana Badilla-Lobo
- Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Ebru Durgun
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Tharani Thuraisingam
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Alexander Witte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Shuo Song
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
19
|
Motamedi H, Fathollahi M, Abiri R, Kadivarian S, Rostamian M, Alvandi A. A worldwide systematic review and meta-analysis of bacteria related to antibiotic-associated diarrhea in hospitalized patients. PLoS One 2021; 16:e0260667. [PMID: 34879104 PMCID: PMC8654158 DOI: 10.1371/journal.pone.0260667] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Antibiotic-associated diarrhea (AAD) is a major hospital problem and a common adverse effect of antibiotic treatment. The aim of this study was to investigate the prevalence of the most important bacteria that cause AAD in hospitalized patients. MATERIALS AND METHODS PubMed, Web of Science and Scopus databases were searched using multiple relevant keywords and screening carried out based on inclusion/exclusion criteria from March 2001 to October 2021. The random-effects model was used to conduct the meta-analysis. RESULTS Of the 7,377 identified articles, 56 met the inclusion criteria. Pooling all studies, the prevalence of Clostridioides (Clostridium) difficile, Clostridium perfringens, Klebsiella oxytoca, and Staphylococcus aureus as AAD-related bacteria among hospitalized patients were 19.6%, 14.9%, 27%, and 5.2%, respectively. The prevalence of all four bacteria was higher in Europe compared to other continents. The highest resistance of C. difficile was estimated to ciprofloxacin and the lowest resistances were reported to chloramphenicol, vancomycin, and metronidazole. There was no or little data on antibiotic resistance of other bacteria. CONCLUSIONS The results of this study emphasize the need for a surveillance program, as well as timely public and hospital health measures in order to control and treat AAD infections.
Collapse
Affiliation(s)
- Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Matin Fathollahi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sepide Kadivarian
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhooshang Alvandi
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
20
|
Hirschenberger M, Stadler N, Fellermann M, Sparrer KMJ, Kirchhoff F, Barth H, Papatheodorou P. CRISPA: A Non-viral, Transient Cas9 Delivery System Based on Reengineered Anthrax Toxin. Front Pharmacol 2021; 12:770283. [PMID: 34733166 PMCID: PMC8558532 DOI: 10.3389/fphar.2021.770283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Translating the CRISPR/Cas9 genome editing technology into clinics is still hampered by rather unspecific, unsafe and/or inconvenient approaches for the delivery of its main components - the Cas9 endonuclease and a guide RNA - into cells. Here, we describe the development of a novel transient and non-viral Cas9 delivery strategy based on the translocation machinery of the Bacillus anthracis anthrax toxin, PA (protective antigen). We show that Cas9 variants fused to the N-terminus of the lethal factor or to a hexahistidine tag are shuttled through channels formed by PA into the cytosol of human cells. As proof-of-principle, we applied our new approach, denoted as CRISPA, to knock out lipolysis-stimulated lipoprotein receptor (LSR) in the human colon cancer cell line HCT116 and green-fluorescent protein (GFP) in human embryonic kidney 293T cells stably expressing GFP. Notably, we confirmed that the transporter PA can be adapted to recognize specific host cell-surface receptor proteins and may be optimized for cell type-selective delivery of Cas9. Altogether, CRISPA provides a novel, transient and non-viral way to deliver Cas9 into specific cells. Thus, this system is an additional step towards safe translation of the CRISPR/Cas9 technology into clinics.
Collapse
Affiliation(s)
- Maximilian Hirschenberger
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany.,Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Nicole Stadler
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Maximilian Fellermann
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | |
Collapse
|
21
|
Ernst K, Landenberger M, Nieland J, Nørgaard K, Frick M, Fois G, Benz R, Barth H. Characterization and Pharmacological Inhibition of the Pore-Forming Clostridioides difficile CDTb Toxin. Toxins (Basel) 2021; 13:toxins13060390. [PMID: 34071730 PMCID: PMC8226936 DOI: 10.3390/toxins13060390] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
The clinically highly relevant Clostridioides (C.) difficile releases several AB-type toxins that cause diseases such as diarrhea and pseudomembranous colitis. In addition to the main virulence factors Rho/Ras-glycosylating toxins TcdA and TcdB, hypervirulent strains produce the binary AB-type toxin CDT. CDT consists of two separate proteins. The binding/translocation B-component CDTb facilitates uptake and translocation of the enzyme A-component CDTa to the cytosol of cells. Here, CDTa ADP-ribosylates G-actin, resulting in depolymerization of the actin cytoskeleton. We previously showed that CDTb exhibits cytotoxicity in the absence of CDTa, which is most likely due to pore formation in the cytoplasmic membrane. Here, we further investigated this cytotoxic effect and showed that CDTb impairs CaCo-2 cell viability and leads to redistribution of F-actin without affecting tubulin structures. CDTb was detected at the cytoplasmic membrane in addition to its endosomal localization if CDTb was applied alone. Chloroquine and several of its derivatives, which were previously identified as toxin pore blockers, inhibited intoxication of Vero, HCT116, and CaCo-2 cells by CDTb and CDTb pores in vitro. These results further strengthen pore formation by CDTb in the cytoplasmic membrane as the underlying cytotoxic mechanism and identify pharmacological pore blockers as potent inhibitors of cytotoxicity induced by CDTb and CDTa plus CDTb.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (M.L.); (J.N.); (K.N.)
- Correspondence: (K.E.); (H.B.)
| | - Marc Landenberger
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (M.L.); (J.N.); (K.N.)
| | - Julian Nieland
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (M.L.); (J.N.); (K.N.)
| | - Katharina Nørgaard
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (M.L.); (J.N.); (K.N.)
| | - Manfred Frick
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany; (M.F.); (G.F.)
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany; (M.F.); (G.F.)
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs-University Bremen, 28759 Bremen, Germany;
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (M.L.); (J.N.); (K.N.)
- Correspondence: (K.E.); (H.B.)
| |
Collapse
|
22
|
Pérez-Reytor D, Puebla C, Karahanian E, García K. Use of Short-Chain Fatty Acids for the Recovery of the Intestinal Epithelial Barrier Affected by Bacterial Toxins. Front Physiol 2021; 12:650313. [PMID: 34108884 PMCID: PMC8181404 DOI: 10.3389/fphys.2021.650313] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/26/2021] [Indexed: 01/22/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are carboxylic acids produced as a result of gut microbial anaerobic fermentation. They activate signaling cascades, acting as ligands of G-protein-coupled receptors, such as GPR41, GPR43, and GPR109A, that can modulate the inflammatory response and increase the intestinal barrier integrity by enhancing the tight junction proteins functions. These junctions, located in the most apical zone of epithelial cells, control the diffusion of ions, macromolecules, and the entry of microorganisms from the intestinal lumen into the tissues. In this sense, several enteric pathogens secrete diverse toxins that interrupt tight junction impermeability, allowing them to invade the intestinal tissue and to favor gastrointestinal colonization. It has been recently demonstrated that SCFAs inhibit the virulence of different enteric pathogens and have protective effects against bacterial colonization. Here, we present an overview of SCFAs production by gut microbiota and their effects on the recovery of intestinal barrier integrity during infections by microorganisms that affect tight junctions. These properties make them excellent candidates in the treatment of infectious diseases that cause damage to the intestinal epithelium.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carlos Puebla
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Eduardo Karahanian
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
23
|
Landenberger M, Nieland J, Roeder M, Nørgaard K, Papatheodorou P, Ernst K, Barth H. The cytotoxic effect of Clostridioides difficile pore-forming toxin CDTb. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183603. [PMID: 33689753 DOI: 10.1016/j.bbamem.2021.183603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023]
Abstract
Clostridioides (C.) difficile is clinically highly relevant and produces several AB-type protein toxins, which are the causative agents for C. difficile-associated diarrhea and pseudomembranous colitis. Treatment with antibiotics can lead to C. difficile overgrowth in the gut of patients due to the disturbed microbiota. C. difficile releases large Rho/Ras-GTPase glucosylating toxins TcdA and TcdB, which are considered as the major virulence factors for C. difficile-associated diseases. In addition to TcdA and TcdB, C. difficile strains isolated from severe cases of colitis produce a third toxin called CDT. CDT is a member of the family of clostridial binary actin ADP-ribosylating toxins and consists of two separate protein components. The B-component, CDTb, binds to the receptor and forms a complex with and facilitates transport and translocation of the enzymatically active A-component, CDTa, into the cytosol of target cells by forming trans-membrane pores through which CDTa translocates. In the cytosol, CDTa ADP-ribosylates G-actin causing depolymerization of the actin cytoskeleton and, eventually, cell death. In the present study, we report that CDTb exhibits a cytotoxic effect in the absence of CDTa. We show that CDTb causes cell rounding and impairs cell viability and the epithelial integrity of CaCo-2 monolayers in the absence of CDTa. CDTb-induced cell rounding depended on the presence of LSR, the specific cellular receptor of CDT. The isolated receptor-binding domain of CDTb was not sufficient to cause cell rounding. CDTb-induced cell rounding was inhibited by enzymatically inactive CDTa or a pore-blocker, implying that CDTb pores in cytoplasmic membranes contribute to cytotoxicity.
Collapse
Affiliation(s)
- Marc Landenberger
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Julian Nieland
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Maurice Roeder
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Katharina Nørgaard
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
24
|
Dudzicz S, Wiecek A, Adamczak M. Clostridioides difficile Infection in Chronic Kidney Disease-An Overview for Clinicians. J Clin Med 2021; 10:E196. [PMID: 33430465 PMCID: PMC7827228 DOI: 10.3390/jcm10020196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Increased incidence of Clostridioides difficile infection (CDI), occurrence of severe and complicated CDI, and more frequent occurrence of drug-resistant, recurrent or non-hospital CDI has become a worldwide clinical problem. CDI is more common in patients with chronic kidney disease (CKD) than in the general population. CDI seems to be associated with frequent hospitalization, frequently used antibiotic therapy, dysbiosis, and abnormalities of the immune system observed in CKD patients. Dysbiosis is a common disorder found in CKD patients. It may be related to insufficient fiber content in the diet, reduced amount of consumed fluids and often reduced physical activity, constipation, impaired gastrointestinal motility, multidrug pharmacotherapy, and uremic milieu in CKD stage 5. In patients with CKD the clinical manifestations of CDI are similar to the general population; however, more frequent recurrence of CDI and higher prevalence of severe CDI are reported. Moreover, the increase in CDI related mortality is observed more in CKD patients than in the general population. The aim of this review paper is to summarize the current knowledge concerning the epidemiology, pathogenesis, clinical picture, and prevention and treatment in CKD patients.
Collapse
Affiliation(s)
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027 Katowice, Poland; (S.D.); (M.A.)
| | | |
Collapse
|
25
|
Ernst K, Sailer J, Braune M, Barth H. Intoxication of mammalian cells with binary clostridial enterotoxins is inhibited by the combination of pharmacological chaperone inhibitors. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:941-954. [PMID: 33284399 PMCID: PMC8102464 DOI: 10.1007/s00210-020-02029-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023]
Abstract
Binary enterotoxins Clostridioides difficile CDT toxin, Clostridium botulinum C2 toxin, and Clostridium perfringens iota toxin consist of two separate protein components. The B-components facilitate receptor-mediated uptake into mammalian cells and form pores into endosomal membranes through which the enzymatic active A-components translocate into the cytosol. Here, the A-components ADP-ribosylate G-actin which leads to F-actin depolymerization followed by rounding of cells which causes clinical symptoms. The protein folding helper enzymes Hsp90, Hsp70, and peptidyl-prolyl cis/trans isomerases of the cyclophilin (Cyp) and FK506 binding protein (FKBP) families are required for translocation of A-components of CDT, C2, and iota toxins from endosomes to the cytosol. Here, we demonstrated that simultaneous inhibition of these folding helpers by specific pharmacological inhibitors protects mammalian, including human, cells from intoxication with CDT, C2, and iota toxins, and that the inhibitor combination displayed an enhanced effect compared to application of the individual inhibitors. Moreover, combination of inhibitors allowed a concentration reduction of the individual compounds as well as decreasing of the incubation time with inhibitors to achieve a protective effect. These results potentially have implications for possible future therapeutic applications to relieve clinical symptoms caused by bacterial toxins that depend on Hsp90, Hsp70, Cyps, and FKBPs for their membrane translocation into the cytosol of target cells.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Judith Sailer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Maria Braune
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
26
|
Schöttelndreier D, Langejürgen A, Lindner R, Genth H. Low Density Lipoprotein Receptor-Related Protein-1 (LRP1) Is Involved in the Uptake of Clostridioides difficile Toxin A and Serves as an Internalizing Receptor. Front Cell Infect Microbiol 2020; 10:565465. [PMID: 33194803 PMCID: PMC7604483 DOI: 10.3389/fcimb.2020.565465] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/28/2020] [Indexed: 01/24/2023] Open
Abstract
Toxin producing Clostridioides difficile strains cause gastrointestinal infections with the large glucosylating protein toxins A (TcdA) and B (TcdB) being major virulence factors responsible for the onset of symptoms. TcdA and TcdB enter their target cells via receptor-mediated endocytosis. Inside the cell, the toxins glucosylate and thereby inactivate small GTPases of the Rho-/Ras subfamilies resulting in actin reorganization and cell death. The receptors of TcdA are still elusive, glycoprotein 96 (gp96), the low density lipoprotein receptor family (LDLR) and sulfated glycosaminoglycans (sGAGs) have most recently been suggested as receptors for TcdA. In this study, we provide evidence on rapid endocytosis of Low density lipoprotein Receptor-related Protein-1 (LRP1) into fibroblasts and Caco-2 cells by exploiting biotinylation of cell surface proteins. In contrast, gp96 was not endocytosed either in the presence or absence of TcdA. The kinetics of internalization of TfR and LRP1 were comparable in the presence and the absence of TcdA, excluding that TcdA facilitates its internalization by triggering internalization of its receptors. Exploiting fibroblasts with a genetic deletion of LRP1, TcdA was about one order of magnitude less potent in LRP1-deficient cells as compared to the corresponding control cells. In contrast, TcdB exhibited a comparable potency in LRP1-proficient and -deficient fibroblasts. These findings suggested a role of LRP1 in the cellular uptake of TcdA but not of TcdB. Correspondingly, binding of TcdA to the cell surface of LRP1-deficient fibroblasts was reduced as compared with LRP1-proficient fibroblasts. Finally, TcdA bound to LRP1 ligand binding type repeat cluster II (amino acid 786–1,165) and cluster IV (amino acid 3332-3779). In conclusion, LRP1 appears to serve as an endocytic receptor and gp96 as a non-endocytic receptor for TcdA.
Collapse
Affiliation(s)
| | - Anna Langejürgen
- Institutes for Toxicology, Hannover Medical School, Hannover, Germany
| | - Robert Lindner
- Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Harald Genth
- Institutes for Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Gut Microbiota and Intestinal Trans-Epithelial Permeability. Int J Mol Sci 2020; 21:ijms21176402. [PMID: 32899147 PMCID: PMC7503654 DOI: 10.3390/ijms21176402] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Constant remodeling of tight junctions to regulate trans-epithelial permeability is essential in maintaining intestinal barrier functions and thus preventing diffusion of small molecules and bacteria to host systemic circulation. Gut microbiota dysbiosis and dysfunctional gut barrier have been correlated to a large number of diseases such as obesity, type 2 diabetes and inflammatory bowel disease. This led to the hypothesis that gut bacteria-epithelial cell interactions are key regulators of epithelial permeability through the modulation of tight junctions. Nevertheless, the molecular basis of host-pathogen interactions remains unclear mostly due to the inability of most in vitro models to recreate the differentiated tissue structure and components observed in the normal intestinal epithelium. Recent advances have led to the development of a novel cellular model derived from intestinal epithelial stem cells, the so-called organoids, encompassing all epithelial cell types and reproducing physiological properties of the intestinal tissue. We summarize herein knowledge on molecular aspects of intestinal barrier functions and the involvement of gut bacteria-epithelial cell interactions. This review also focuses on epithelial organoids as a promising model for epithelial barrier functions to study molecular aspects of gut microbiota-host interaction.
Collapse
|
28
|
Korbmacher M, Fischer S, Landenberger M, Papatheodorou P, Aktories K, Barth H. Human α-Defensin-5 Efficiently Neutralizes Clostridioides difficile Toxins TcdA, TcdB, and CDT. Front Pharmacol 2020; 11:1204. [PMID: 32903430 PMCID: PMC7435013 DOI: 10.3389/fphar.2020.01204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Infections with the pathogenic bacterium Clostridioides (C.) difficile are coming more into focus, in particular in hospitalized patients after antibiotic treatment. C. difficile produces the exotoxins TcdA and TcdB. Since some years, hypervirulent strains are described, which produce in addition the binary actin ADP-ribosylating toxin CDT. These strains are associated with more severe clinical presentations and increased morbidity and frequency. Once in the cytosol of their target cells, the catalytic domains of TcdA and TcdB glucosylate and thereby inactivate small Rho-GTPases whereas the enzyme subunit of CDT ADP-ribosylates G-actin. Thus, enzymatic activity of the toxins leads to destruction of the cytoskeleton and breakdown of the epidermal gut barrier integrity. This causes clinical symptoms ranging from mild diarrhea to life-threatening pseudomembranous colitis. Therefore, pharmacological inhibition of the secreted toxins is of peculiar medical interest. Here, we investigated the neutralizing effect of the human antimicrobial peptide α-defensin-5 toward TcdA, TcdB, and CDT in human cells. The toxin-neutralizing effects of α-defensin-5 toward TcdA, TcdB, and CDT as well as their medically relevant combination were demonstrated by analyzing toxins-induced changes in cell morphology, intracellular substrate modification, and decrease of trans-epithelial electrical resistance. For TcdA, the underlying mode of inhibition is most likely based on the formation of inactive toxin-defensin-aggregates whereas for CDT, the binding- and transport-component might be influenced. The application of α-defensin-5 delayed intoxication of cells in a time- and concentration-dependent manner. Due to its effect on the toxins, α-defensin-5 should be considered as a candidate to treat severe C. difficile-associated diseases.
Collapse
Affiliation(s)
- Michael Korbmacher
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Marc Landenberger
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | | | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
29
|
Bassotti G, Marchegiani A, Marconi P, Fettucciari K. The cytotoxic synergy between Clostridioides difficile toxin B and proinflammatory cytokines: an unholy alliance favoring the onset of Clostridioides difficile infection and relapses. Microbiologyopen 2020; 9:e1061. [PMID: 32657021 PMCID: PMC7424247 DOI: 10.1002/mbo3.1061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile infection (CDI) represents an important health problem worldwide, with significant morbidity and mortality. This infection has also high recurrence rates, whose pathophysiological grounds are still poorly understood. Based on our experiments in vitro with Clostridioides difficile toxin B and existing experimental and clinical evidence, we propose that primary CDI and relapses might be favored by a mechanism that involves the enhancement of the toxicity of toxin B by proinflammatory cytokines, tumor necrosis factor alpha, and interferon gamma on the enteric glial cells and their network in an environment characterized by a strong dysmicrobism.
Collapse
Affiliation(s)
- Gabrio Bassotti
- Gastroenterology & Hepatology Section, Department of Medicine, University of Perugia Medical School, Perugia, Italy.,Gastroenterology & Hepatology Unit, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Pierfrancesco Marconi
- Department of Experimental Medicine, University of Perugia Medical School, Perugia, Italy
| | - Katia Fettucciari
- Department of Experimental Medicine, University of Perugia Medical School, Perugia, Italy
| |
Collapse
|
30
|
Schwartz R, Guichard A, Franc NC, Roy S, Bier E. A Drosophila Model for Clostridium difficile Toxin CDT Reveals Interactions with Multiple Effector Pathways. iScience 2020; 23:100865. [PMID: 32058973 PMCID: PMC7011083 DOI: 10.1016/j.isci.2020.100865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/05/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile infections (CDIs) cause severe and occasionally life-threatening diarrhea. Hyper-virulent strains produce CDT, a toxin that ADP-ribosylates actin monomers and inhibits actin polymerization. We created transgenic Drosophila lines expressing the catalytic subunit CDTa to investigate its interaction with host signaling pathways in vivo. When expressed in the midgut, CDTa reduces body weight and fecal output and compromises survival, suggesting severe impairment of digestive functions. At the cellular level, CDTa induces F-actin network collapse, elimination of the intestinal brush border, and disruption of intercellular junctions. We confirm toxin-dependent re-distribution of Rab11 to enterocytes' apical surface and observe suppression of CDTa phenotypes by a Dominant-Negative form of Rab11 or RNAi of the dedicated Rab11GEF Crag (DENND4). We also report that Calmodulin (Cam) is required to mediate CDTa activity. In parallel, chemical inhibition of the Cam/Calcineurin pathway by Cyclosporin A or FK506 also reduces CDTa phenotypes, potentially opening new avenues for treating CDIs.
Collapse
Affiliation(s)
- Ruth Schwartz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA
| | - Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA; Tata Institute for Genetics and Society-UCSD, La Jolla, CA 92093-0335, USA
| | - Nathalie C Franc
- Franc Consulting, San Diego, CA 92117-3314, USA; The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sitara Roy
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA; Tata Institute for Genetics and Society-UCSD, La Jolla, CA 92093-0335, USA.
| |
Collapse
|
31
|
Kouhsari E, Douraghi M, Krutova M, Fakhre Yaseri H, Talebi M, Baseri Z, Moqarabzadeh V, Sholeh M, Amirmozafari N. The emergence of metronidazole and vancomycin reduced susceptibility in Clostridium difficile isolates in Iran. J Glob Antimicrob Resist 2019; 18:28-33. [PMID: 30703583 DOI: 10.1016/j.jgar.2019.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/17/2018] [Accepted: 01/21/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Clostridium difficile (C. difficile) is the main causative agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis. The accumulation of antimicrobial resistance in C. difficile strains can drive C. difficile infection (CDI) epidemiology. This study was undertaken to evaluate the antimicrobial resistance patterns of toxigenic C. difficile isolates cultured from diarrhoeal stool samples of hospitalised patients with suspected CDI in three tertiary care hospitals in Tehran, Iran. METHODS Two hundred and fifty diarrhoeal stool samples were investigated by toxigenic culture using cycloserine-cefoxitin-fructose agar and the VERO cell line. Antimicrobial susceptibility to metronidazole, vancomycin, clindamycin, tetracycline, and moxifloxacin was performed by disk diffusion and Etest methods on Brucella Blood Agar supplemented with hemin and vitamin K. RESULTS Thirty-five stool samples (14.0%) proved positive using C. difficile toxigenic culture. According to Clinical and Laboratory Standards Institute breakpoints, the following resistance was identified in C. difficile isolates: metronidazole (2 of 35); moxifloxacin (7 of 35); clindamycin (18 of 35); and tetracycline (5 of 35). Using European Committee on Antimicrobial Susceptibility Testing breakpoints, three of 35 isolates showed reduced-susceptibility for vancomycin and 14 of 35 for metronidazole. In addition, the results showed a good correlation between the inhibition zone diameter (disk diffusion) and MIC values (Etest); Pearson correlation coefficient 0.7400.95 (P< 0.001). CONCLUSIONS Multidrug resistance was observed in Iranian clinical toxigenic C. difficile isolates, including reduced susceptibility to first-line CDI treatment drugs. In addition, disk diffusion can be used as a cost-effective option for the antimicrobial susceptibility testing of C. difficile isolates.
Collapse
Affiliation(s)
- Ebrahim Kouhsari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran; Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Hashem Fakhre Yaseri
- Research Center for Gastroenterology and Liver Disease, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Baseri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Moqarabzadeh
- Department of Biostatistics, School of Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
The Antibiotic Bacitracin Protects Human Intestinal Epithelial Cells and Stem Cell-Derived Intestinal Organoids from Clostridium difficile Toxin TcdB. Stem Cells Int 2019; 2019:4149762. [PMID: 31467562 PMCID: PMC6701344 DOI: 10.1155/2019/4149762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/11/2019] [Indexed: 01/05/2023] Open
Abstract
Bacitracin is an established antibiotic for local application and inhibits the cell wall synthesis of Gram-positive bacteria. Recently, we discovered a completely different mode of action of bacitracin and reported that this drug protects human cells from intoxication by a variety of medically relevant bacterial protein toxins including CDT, the binary actin ADP-ribosylating toxin of Clostridium (C.) difficile. Bacitracin prevents the transport of CDT into the cytosol of target cells, most likely by inhibiting the transport function of the binding subunit of this toxin. Here, we tested the effect of bacitracin towards TcdB, a major virulence factor of C. difficile contributing to severe C. difficile-associated diseases (CDAD) including pseudomembranous colitis. Bacitracin protected stem cell-derived human intestinal organoids as well as human gut epithelial cells from intoxication with TcdB. Moreover, it prevented the TcdB-induced disruption of epithelia formed by gut epithelium cells in vitro and maintained the barrier function as detected by measuring transepithelial electrical resistance (TEER). In the presence of bacitracin, TcdB was not able reach its substrate Rac1 in the cytosol of human epithelial cells, most likely because its pH-dependent transport across cell membranes into the cytosol is decreased by bacitracin. In conclusion, in addition to its direct antibiotic activity against C. difficile and its inhibitory effect towards the toxin CDT, bacitracin neutralizes the exotoxin TcdB of this important pathogenic bacterium.
Collapse
|
33
|
Papatheodorou P, Song S, López-Ureña D, Witte A, Marques F, Ost GS, Schorch B, Chaves-Olarte E, Aktories K. Cytotoxicity of Clostridium difficile toxins A and B requires an active and functional SREBP-2 pathway. FASEB J 2018; 33:4883-4892. [PMID: 30592645 DOI: 10.1096/fj.201801440r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Clostridium difficile is associated with antibiotic-associated diarrhea and pseudomembranous colitis in humans. Its 2 major toxins, toxins A and B, enter host cells and inactivate GTPases of the Ras homologue/rat sarcoma family by glucosylation. Pore formation of the toxins in the endosomal membrane enables the translocation of their glucosyltransferase domain into the cytosol, and membrane cholesterol is crucial for this process. Here, we asked whether the activity of the sterol regulatory element-binding protein 2 (SREBP-2) pathway, which regulates the cholesterol content in membranes, affects the susceptibility of target cells toward toxins A and B. We show that the SREBP-2 pathway is crucial for the intoxication process of toxins A and B by using pharmacological inhibitors (PF-429242, 25-hydroxycholesterol) and cells that are specifically deficient in SREBP-2 pathway signaling. SREBP-2 pathway inhibition disturbed the cholesterol-dependent pore formation of toxin B in cellular membranes. Preincubation with the cholesterol-lowering drug simvastatin protected cells from toxin B intoxication. Inhibition of the SREBP-2 pathway was without effect when the enzyme portion of toxin B was introduced into target cells via the cell delivery property of anthrax protective antigen. Taken together, these findings allowed us to identify the SREBP-2 pathway as a suitable target for the development of antitoxin therapeutics against C. difficile toxins A and B.-Papatheodorou, P., Song, S., López-Ureña, D., Witte, A., Marques, F., Ost, G. S., Schorch, B., Chaves-Olarte, E., Aktories, K. Cytotoxicity of Clostridium difficile toxins A and B requires an active and functional SREBP-2 pathway.
Collapse
Affiliation(s)
- Panagiotis Papatheodorou
- Institut für Experimentelle and Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany; and
| | - Shuo Song
- Institut für Experimentelle and Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany; and
| | - Diana López-Ureña
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Alexander Witte
- Institut für Experimentelle and Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany; and
| | - Felícia Marques
- Institut für Experimentelle and Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany; and
| | - Gerhard Stefan Ost
- Institut für Experimentelle and Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany; and
| | - Björn Schorch
- Institut für Experimentelle and Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany; and
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Klaus Aktories
- Institut für Experimentelle and Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany; and
| |
Collapse
|
34
|
Ernst K, Kling C, Landenberger M, Barth H. Combined Pharmacological Inhibition of Cyclophilins, FK506-Binding Proteins, Hsp90, and Hsp70 Protects Cells From Clostridium botulinum C2 Toxin. Front Pharmacol 2018; 9:1287. [PMID: 30483129 PMCID: PMC6243138 DOI: 10.3389/fphar.2018.01287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022] Open
Abstract
The Clostridium botulinum C2 toxin is an exotoxin causing severe enterotoxic symptoms. The C2 toxin consists of the binding/translocation component C2II, and the enzymatic active component C2I. After proteolytic activation, C2IIa forms heptamers that bind C2I. The C2IIa/C2I complex is taken up into mammalian target cells via receptor-mediated endocytosis. Acidification of endosomes leads to conformational changes in both components. C2IIa heptamers form a pore into the endosomal membrane, and C2I becomes unfolded and translocates through the narrow C2IIa pores into the cytosol of the cell. Here, C2I covalently transfers an ADP-ribose moiety from its co-substrate NAD+ onto G-actin, which leads to depolymerization of F-actin resulting in rounding up of adherent cells. Translocation of C2I into the cytosol depends on the activity of the chaperones Hsp90 and Hsp70 and peptidyl-prolyl cis/trans isomerases of the cyclophilin (Cyp) and FK506-binding protein (FKBP) families. Here, we demonstrated that C2I is detected in close proximity with Hsp90, Cyp40, and FKBP51 in cells, indicating their interaction. This interaction was dependent on the concentration of C2 toxin and detected in mammalian Vero and human HeLa cells. Moreover, the present study reveals that combination of radicicol, VER-155008, cyclosporine A, and FK506, which are specific pharmacological inhibitors of Hsp90, Hsp70, Cyps, and FKBPs, respectively, resulted in a stronger inhibition of intoxication of cells with C2 toxin compared to application of the single inhibitors. Thus, the combination of inhibitors showed enhanced protection of cells against the cytotoxic effects of C2 toxin. Cell viability was not significantly impaired by application of the inhibitor combination. Moreover, we confirmed that the combination of radicicol, VER-155008, CsA, and FK506 in particular inhibit the membrane translocation step of C2I into the cytosol whereas receptor binding and enzyme activity of the toxin were not affected. Our findings further characterize the mode of action of Hsp90, Hsp70, Cyps, and FKBPs during membrane translocation of bacterial toxins and furthermore supply starting points for developing of novel therapeutic strategies against diseases caused by bacterial toxins that depend on Hsp90, Hsp70, Cyps, and FKBPs.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Carolin Kling
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Marc Landenberger
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
35
|
Wang S, Wang Y, Cai Y, Kelly CP, Sun X. Novel Chimeric Protein Vaccines Against Clostridium difficile Infection. Front Immunol 2018; 9:2440. [PMID: 30405630 PMCID: PMC6204379 DOI: 10.3389/fimmu.2018.02440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection (CDI) is the leading cause of world-wide nosocomial acquired diarrhea in adults. Active vaccination is generally accepted as a logical and cost-effective approach to prevent CDI. In this paper, we have generated two novel chimeric proteins; one designated Tcd169, comprised of the glucosyltransferase domain (GT), the cysteine proteinase domain (CPD), and receptor binding domain (RBD) of TcdB, and the RBD of TcdA; the other designated Tcd169FI, which contains Salmonella typhimurium flagellin (sFliC) and Tcd169. Both proteins were expressed in and purified from Bacillus megaterium. Point mutations were made in the GT (W102A, D288N) and CPD (C698) of TcdB to ensure that Tcd169 and Tcd169FI were atoxic. Immunization with Tcd169 or Tcd169Fl induced protective immunity against TcdA/TcdB challenge through intraperitoneal injection, also provided mice full protection against infection with a hyper-virulent C. difficile strain (BI/NAP1/027). In addition, inclusion of sFlic in the fusion protein (Tcd169Fl) enhanced its protective immunity against toxin challenge, reduced C. difficile numbers in feces from Tcd169Fl-immunized mice infected C. difficile. Our data show that Tcd169 and Tcd169FI fusion proteins may represent alternative vaccine candidates against CDI.
Collapse
Affiliation(s)
- Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yuanguo Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ying Cai
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ciaran P. Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|