1
|
Aponte-Diaz D, Harris JM, Kang TE, Korboukh V, Sotoudegan MS, Gray JL, Yennawar NH, Moustafa IM, Macadam A, Cameron CE. Non-lytic spread of poliovirus requires the nonstructural protein 3CD. mBio 2025; 16:e0327624. [PMID: 39665531 PMCID: PMC11708018 DOI: 10.1128/mbio.03276-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Non-enveloped viruses like poliovirus (PV) have evolved the capacity to spread by non-lytic mechanisms. For PV, this mechanism exploits the host secretory autophagy pathway. Virions are selectively incorporated into autophagosomes, double-membrane vesicles that travel to the plasma membrane, fuse, and release single-membrane vesicles containing virions. Loading of cellular cargo into autophagosomes relies on direct or indirect interactions with microtubule-associated protein 1B-light chain 3 (LC3) that are mediated by motifs referred to as LC3-interaction regions (LIRs). We have identified a PV mutant with a severe defect in non-lytic spread. An F-to-Y substitution in a putative LIR of the nonstructural protein 3CD prevented virion incorporation into LC3-positive autophagosomes and virion trafficking to the plasma membrane for release. Using high-angle annular dark-field scanning transmission electron microscopy to monitor PV-induced autophagosome biogenesis, for the first time, we show that virus-induced autophagic signals yield normal autophagosomes, even in the absence of virions. The F-to-Y derivative of PV 3CD was unable to support normal autophagosome biogenesis. Together, these studies make a compelling case for the direct role of a viral nonstructural protein in the formation and loading of the vesicular carriers used for non-lytic spread that may depend on the proper structure, accessibility, and/or dynamics of its LIR. The studies of PV 3CD protein reported here will hopefully provoke a more deliberate look at the presence and function of LIR motifs in viral proteins of viruses known to use autophagy as the basis for non-lytic spread. IMPORTANCE Poliovirus (PV) and other enteroviruses hijack the cellular secretory autophagy pathway for non-lytic virus transmission. While much is known about the cellular factors required for non-lytic transmission, much less is known about viral factors contributing to transmission. We have discovered a PV nonstructural protein required for multiple steps of the pathway leading to vesicle-enclosed virions. This discovery should facilitate the identification of the specific steps of the cellular secretory autophagy pathway and corresponding factors commandeered by the virus and may uncover novel targets for antiviral therapy.
Collapse
Affiliation(s)
- David Aponte-Diaz
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jayden M. Harris
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tongjia Ella Kang
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victoria Korboukh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mohamad S. Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer L. Gray
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ibrahim M. Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew Macadam
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Potters Bar, Herts., United Kingdom
| | - Craig E. Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Aponte-Diaz D, Harris JM, Kang TE, Korboukh V, Sotoudegan MS, Gray JL, Yennawar NH, Moustafa IM, Macadam A, Cameron CE. Non-lytic spread of poliovirus requires the nonstructural protein 3CD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619132. [PMID: 39464037 PMCID: PMC11507938 DOI: 10.1101/2024.10.18.619132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Non-enveloped viruses like poliovirus (PV) have evolved the capacity to spread by non-lytic mechanisms. For PV, this mechanism exploits the host secretory autophagy pathway. Virions are selectively incorporated into autophagosomes, double-membrane vesicles that travel to the plasma membrane, fuse, and release single-membrane vesicles containing virions. Loading of cellular cargo into autophagosomes relies on direct or indirect interactions with microtubule-associated protein 1B-light chain 3 (LC3) that are mediated by motifs referred to as LC3-interaction regions (LIRs). We have identified a PV mutant with a severe defect in non-lytic spread. An F-to-Y substitution in a putative LIR of the nonstructural protein 3CD prevented virion incorporation into LC3-positive autophagosomes and virion trafficking to the plasma membrane for release. Using high-angle annular dark-field scanning transmission electron microscopy to monitor PV-induced autophagosome biogenesis, for the first time, we show that virus-induced autophagic signals yield normal autophagosomes, even in the absence of virions. The F-to-Y derivative of PV 3CD was unable to support normal autophagosome biogenesis. Together, these studies make a compelling case for a direct role of a viral nonstructural protein in the formation and loading of the vesicular carriers used for non-lytic spread that may depend on the proper structure, accessibility, and/or dynamics of its LIR. The studies of PV 3CD protein reported here will hopefully provoke a more deliberate look at the presence and function of LIR motifs in viral proteins of viruses known to use autophagy as the basis for non-lytic spread.
Collapse
Affiliation(s)
- David Aponte-Diaz
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jayden M Harris
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tongjia Ella Kang
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria Korboukh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Present address: Strategic Alliances and Program Management, C4 Therapeutics, Inc., Watertown, MA 02472, USA
| | - Mohamad S Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer L Gray
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew Macadam
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Herts. EN6 3QG, UK
| | - Craig E Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Yang S, Liu H, Chen Z, Wang H, Li X, Zhou X, Zhao A. Japanese encephalitis virus perturbs PML-nuclear bodies by engaging in interactions with distinct porcine PML isoforms. Front Cell Infect Microbiol 2023; 13:1239234. [PMID: 37928180 PMCID: PMC10623349 DOI: 10.3389/fcimb.2023.1239234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Promyelocytic leukemia (PML) protein constitutes an indispensable element within PML-nuclear bodies (PML-NBs), playing a pivotal role in the regulation of multiple cellular functions while coordinating the innate immune response against viral invasions. Simultaneously, numerous viruses elude immune detection by targeting PML-NBs. Japanese encephalitis virus (JEV) is a flavivirus that causes Japanese encephalitis, a severe neurological disease that affects humans and animals. However, the mechanism through which JEV evades immunity via PML-NBs has been scarcely investigated. In the present study, PK15 cells were infected with JEV, and the quantity of intracellular PML-NBs was enumerated. The immunofluorescence results indicated that the number of PML-NBs was significantly reduced in JEV antigen-positive cells compared to viral antigen-negative cells. Subsequently, ten JEV proteins were cloned and transfected into PK15 cells. The results revealed that JEV non-structural proteins, NS2B, NS3, NS4A, NS4B, and NS5, significantly diminished the quantity of PML-NBs. Co-transfection was performed with the five JEV proteins and various porcine PML isoforms. The results demonstrated that NS2B colocalized with PML4 and PML5, NS4A colocalized with PML1 and PML4, NS4B colocalized with PML1, PML3, PML4, and PML5, while NS3 and NS5 interacted with all five PML isoforms. Furthermore, ectopic expression of PML isoforms confirmed that PML1, PML3, PML4, and PML5 inhibited JEV replication. These findings suggest that JEV disrupts the structure of PML-NBs through interaction with PML isoforms, potentially leading to the attenuation of the host's antiviral immune response.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
4
|
Fu Y, Wang T, Zhou S, Zhou J, Zhao Y, Chen D, Zheng L. A novel narnavirus isolated from Colletotrichum curcumae strain 780-2T. Arch Virol 2023; 168:226. [PMID: 37561160 DOI: 10.1007/s00705-023-05847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023]
Abstract
The complete genome of a novel mycovirus, Colletotrichum curcumae narnavirus 1 (CcNV1), derived from the phytopathogenic fungus Colletotrichum curcumae strain 780-2T, was sequenced and analyzed. The full sequence of CcNV1 is 3,374 nucleotides in length and contains a single large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) of 1,087 amino acids with a molecular mass of 124.2 kDa that shares the closest similarity with that of Monilinia narnavirus H (53.02% identity). RdRp phylogeny analysis showed that CcNV1 is a new member of the proposed genus "Betanarnavirus" within the family Narnaviridae. This is the first report of a novel narnavirus infecting the phytopathogenic fungus C. curcumae, the causal agent of leaf blight of Curcuma wenyujin.
Collapse
Affiliation(s)
- Yujia Fu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, 572025, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Plant Protection, Ministry of Education, Hainan University, 570228, Haikou, Hainan, China
| | - Tian Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, 572025, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Plant Protection, Ministry of Education, Hainan University, 570228, Haikou, Hainan, China
| | - Siyu Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, 572025, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Plant Protection, Ministry of Education, Hainan University, 570228, Haikou, Hainan, China
| | - Jingyi Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, 572025, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Plant Protection, Ministry of Education, Hainan University, 570228, Haikou, Hainan, China
| | - Yang Zhao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, 572025, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Plant Protection, Ministry of Education, Hainan University, 570228, Haikou, Hainan, China
| | - Daipeng Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, 572025, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Plant Protection, Ministry of Education, Hainan University, 570228, Haikou, Hainan, China
| | - Li Zheng
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, 572025, Sanya, China.
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Plant Protection, Ministry of Education, Hainan University, 570228, Haikou, Hainan, China.
| |
Collapse
|
5
|
Metallo-antiviral aspirants: Answer to the upcoming virusoutbreak. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2023; 8:100104. [PMID: 37035854 PMCID: PMC10070197 DOI: 10.1016/j.ejmcr.2023.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023]
Abstract
In light of the current SARS-CoV-2 outbreak, about one million research papers (articles, reviews, communications, etc.) were published in the last one and a half years. It was also noticed that in the past few years; infectious diseases, mainly those of viral origin, burdened the public health systems worldwide. The current wave of the Covid-19 pandemic has unmasked critical demand for compounds that can be swiftly mobilized for the treatment of re-emerging or emerging viral infections. With the potential chemical and structural characteristics of organic motifs, the coordination compounds might be a promising and flexible option for drug development. Their therapeutic consequence may be tuned by varying metal nature and its oxidation number, ligands characteristics, and stereochemistry of the species formed. The emerging successes of cisplatin in cancer chemotherapy inspire researchers to make new efforts for studying metallodrugs as antivirals. Metal-based compounds have immense therapeutic potential in terms of structural diversity and possible mechanisms of action; therefore, they might offer an excellent opportunity to achieve new antivirals. This review is an attempt to summarize the current status of antiviral therapies against SARS-CoV-2 from the available literature sources, discuss the specific challenges and solutions in the development of metal-based antivirals, and also talk about the possibility to accelerate discovery efforts in this direction.
Collapse
|
6
|
Aljuaid A, Salam A, Almehmadi M, Baammi S, Alshabrmi FM, Allahyani M, Al-Zaydi KM, Izmirly AM, Almaghrabi S, Baothman BK, Shahab M. Structural Homology-Based Drug Repurposing Approach for Targeting NSP12 SARS-CoV-2. Molecules 2022; 27:7732. [PMID: 36431833 PMCID: PMC9694939 DOI: 10.3390/molecules27227732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2, also known as SARS-CoV-2, is the causative agent of the COVID-19 global pandemic. SARS-CoV-2 has a highly conserved non-structural protein 12 (NSP-12) involved in RNA-dependent RNA polymerase (RdRp) activity. For the identification of potential inhibitors for NSP-12, computational approaches such as the identification of homologous proteins that have been previously targeted by FDA-approved antivirals can be employed. Herein, homologous proteins of NSP-12 were retrieved from Protein DataBank (PDB) and the evolutionary conserved sequence and structure similarity of the active site of the RdRp domain of NSP-12 was characterized. The identified homologous structures of NSP-12 belonged to four viral families: Coronaviridae, Flaviviridae, Picornaviridae, and Caliciviridae, and shared evolutionary conserved relationships. The multiple sequences and structural alignment of homologous structures showed highly conserved amino acid residues that were located at the active site of the RdRp domain of NSP-12. The conserved active site of the RdRp domain of NSP-12 was evaluated for binding affinity with the FDA-approved antivirals, i.e., Sofosbuvir and Dasabuvir in a molecular docking study. The molecular docking of Sofosbuvir and Dasabuvir with the active site that contains conserved motifs (motif A-G) of the RdRp domain of NSP-12 revealed significant binding affinity. Furthermore, MD simulation also inferred the potency of Sofosbuvir and Dasabuvir. In conclusion, targeting the active site of the RdRp domain of NSP-12 with Dasabuvir and Sofosbuvir might reduce viral replication and pathogenicity and could be further studied for the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdus Salam
- Precision Medicine Lab, Laboratory Building, Rehman Medical Institute, Phase-V, Hayatabad, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Soukayna Baammi
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khadijah M. Al-Zaydi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 23738, Saudi Arabia
| | - Abdullah M. Izmirly
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Sarah Almaghrabi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bandar K. Baothman
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Parise A, Ciardullo G, Prejanò M, Lande ADL, Marino T. On the Recognition of Natural Substrate CTP and Endogenous Inhibitor ddhCTP of SARS-CoV-2 RNA-Dependent RNA Polymerase: A Molecular Dynamics Study. J Chem Inf Model 2022; 62:4916-4927. [PMID: 36219674 DOI: 10.1021/acs.jcim.2c01002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The novel coronavirus SARS-CoV-2 is the causative agent of the COVID-19 outbreak that is affecting the entire planet. As the pandemic is still spreading worldwide, with multiple mutations of the virus, it is of interest and of help to employ computational methods for identifying potential inhibitors of the enzymes responsible for viral replication. Attractive antiviral nucleotide analogue RNA-dependent RNA polymerase (RdRp) chain terminator inhibitors are investigated with this purpose. This study, based on molecular dynamics (MD) simulations, addresses the important aspects of the incorporation of an endogenously synthesized nucleoside triphosphate, ddhCTP, in comparison with the natural nucleobase cytidine triphosphate (CTP) in RdRp. The ddhCTP species is the product of the viperin antiviral protein as part of the innate immune response. The absence of the ribose 3'-OH in ddhCTP could have important implications in its inhibitory mechanism of RdRp. We built an in silico model of the RNA strand embedded in RdRp using experimental methods, starting from the cryo-electron microscopy structure and exploiting the information obtained by spectrometry on the RNA sequence. We determined that the model was stable during the MD simulation time. The obtained results provide deeper insights into the incorporation of nucleoside triphosphates, whose molecular mechanism by the RdRp active site still remains elusive.
Collapse
Affiliation(s)
- Angela Parise
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, CS, Italy.,Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| | - Giada Ciardullo
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Aurélien de la Lande
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
8
|
Ramaswamy K, Rashid M, Ramasamy S, Jayavelu T, Venkataraman S. Revisiting Viral RNA-Dependent RNA Polymerases: Insights from Recent Structural Studies. Viruses 2022; 14:2200. [PMID: 36298755 PMCID: PMC9612308 DOI: 10.3390/v14102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
RNA-dependent RNA polymerases (RdRPs) represent a distinctive yet versatile class of nucleic acid polymerases encoded by RNA viruses for the replication and transcription of their genome. The structure of the RdRP is comparable to that of a cupped right hand consisting of fingers, palm, and thumb subdomains. Despite the presence of a common structural core, the RdRPs differ significantly in the mechanistic details of RNA binding and polymerization. The present review aims at exploring these incongruities in light of recent structural studies of RdRP complexes with diverse cofactors, RNA moieties, analogs, and inhibitors.
Collapse
Affiliation(s)
- Kavitha Ramaswamy
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Mariya Rashid
- Taiwan International Graduate Program, Molecular Cell Biology (National Defense Medical Center and Academia Sinica), Taipei 115, Taiwan;
| | - Selvarajan Ramasamy
- National Research Center for Banana, Somarasempettai−Thogaimalai Rd, Podavur, Tamil Nadu 639103, India;
| | - Tamilselvan Jayavelu
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Sangita Venkataraman
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| |
Collapse
|
9
|
Kumar S, Verma A, Yadav P, Dubey SK, Azhar EI, Maitra SS, Dwivedi VD. Molecular pathogenesis of Japanese encephalitis and possible therapeutic strategies. Arch Virol 2022; 167:1739-1762. [PMID: 35654913 PMCID: PMC9162114 DOI: 10.1007/s00705-022-05481-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/10/2022] [Indexed: 12/26/2022]
Abstract
Japanese encephalitis virus (JEV), a single-stranded, enveloped RNA virus, is a health concern across Asian countries, associated with severe neurological disorders, especially in children. Primarily, pigs, bats, and birds are the natural hosts for JEV, but humans are infected incidentally. JEV requires a few host proteins for its entry and replication inside the mammalian host cell. The endoplasmic reticulum (ER) plays a significant role in JEV genome replication and assembly. During this process, the ER undergoes stress due to its remodelling and accumulation of viral particles and unfolded proteins, leading to an unfolded protein response (UPR). Here, we review the overall strategy used by JEV to infect the host cell and various cytopathic effects caused by JEV infection. We also highlight the role of JEV structural proteins (SPs) and non-structural proteins (NSPs) at various stages of the JEV life cycle that are involved in up- and downregulation of different host proteins and are potentially relevant for developing efficient therapeutic drugs.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Akanksha Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Pardeep Yadav
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - S. S. Maitra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| |
Collapse
|
10
|
Caldwell HS, Pata JD, Ciota AT. The Role of the Flavivirus Replicase in Viral Diversity and Adaptation. Viruses 2022; 14:1076. [PMID: 35632818 PMCID: PMC9143365 DOI: 10.3390/v14051076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Flaviviruses include several emerging and re-emerging arboviruses which cause millions of infections each year. Although relatively well-studied, much remains unknown regarding the mechanisms and means by which these viruses readily alternate and adapt to different hosts and environments. Here, we review a subset of the different aspects of flaviviral biology which impact host switching and viral fitness. These include the mechanism of replication and structural biology of the NS3 and NS5 proteins, which reproduce the viral genome; rates of mutation resulting from this replication and the role of mutational frequency in viral fitness; and the theory of quasispecies evolution and how it contributes to our understanding of genetic and phenotypic plasticity.
Collapse
Affiliation(s)
- Haley S. Caldwell
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA;
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
| | - Janice D. Pata
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Alexander T. Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA;
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
| |
Collapse
|
11
|
Pathania S, Rawal RK, Singh PK. RdRp (RNA-dependent RNA polymerase): A key target providing anti-virals for the management of various viral diseases. J Mol Struct 2022; 1250:131756. [PMID: 34690363 PMCID: PMC8520695 DOI: 10.1016/j.molstruc.2021.131756] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023]
Abstract
With the arrival of the Covid-19 pandemic, anti-viral agents have regained center stage in the arena of medicine. Out of the various drug targets involved in managing RNA-viral infections, the one that dominates almost all RNA viruses is RdRp (RNA-dependent RNA polymerase). RdRp are proteins that are involved in the replication of RNA-based viruses. Inhibition of RdRps has been an integral approach for managing various viral infections such as dengue, influenza, HCV (Hepatitis), BVDV, etc. Inhibition of the coronavirus RdRp is currently rigorously explored for the treatment of Covid-19 related complications. So, keeping in view the importance and current relevance of this drug target, we have discussed the importance of RdRp in developing anti-viral agents against various viral diseases. Different reported inhibitors have also been discussed, and emphasis has been laid on highlighting the inhibitor's pharmacophoric features and SAR profile.
Collapse
Affiliation(s)
- Shelly Pathania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Ravindra K. Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana-133207, Haryana, India,CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India,Corresponding authors
| | - Pankaj Kumar Singh
- Faculty of Medicine, Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, FI-20014, Finland,Corresponding authors
| |
Collapse
|
12
|
Detailed Analyses of Molecular Interactions between Favipiravir and RNA Viruses In Silico. Viruses 2022; 14:v14020338. [PMID: 35215932 PMCID: PMC8879546 DOI: 10.3390/v14020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/05/2023] Open
Abstract
There are currently no antiviral agents for human metapneumovirus (HMPV), respiratory syncytial virus (RSV), mumps virus (MuV), or measles virus (MeV). Favipiravir has been developed as an anti-influenza agent, and this agent may be effective against these viruses in vitro. However, the molecular mechanisms through which the agent affects virus replication remain to be fully elucidated. Thus, to clarify the detailed molecular interactions between favipiravir and the RNA-dependent RNA polymerase (RdRp) of HMPV, RSV, MuV, MeV, and influenza virus, we performed in silico studies using authentic bioinformatics technologies. As a result, we found that the active form of favipiravir (favipiravir ribofuranosyl-5′-triphosphate [F-RTP]) can bind to the RdRp active sites of HMPV, RSV, MuV, and MeV. The aspartic acid residue of RdRp active sites was involved in the interaction. Moreover, F-RTP was incorporated into the growing viral RNA chain in the presence of nucleotide triphosphate and magnesium ions. The results suggested that favipiravir shows two distinct mechanisms in various viruses: RdRp active site inhibition and/or genome replication inhibition.
Collapse
|
13
|
Gao S, Huang T, Song L, Xu S, Cheng Y, Cherukupalli S, Kang D, Zhao T, Sun L, Zhang J, Zhan P, Liu X. Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Acta Pharm Sin B 2022; 12:581-599. [PMID: 34485029 PMCID: PMC8405450 DOI: 10.1016/j.apsb.2021.08.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Novel therapies are urgently needed to improve global treatment of SARS-CoV-2 infection. Herein, we briefly provide a concise report on the medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors with representative examples in different strategies from the medicinal chemistry perspective.
Collapse
Affiliation(s)
- Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Tianguang Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Ji'nan 250012, China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Ji'nan 250012, China,Corresponding authors. Tel./fax: +86 531 88382005 (Peng Zhan), +86 531 88380270 (Xinyong Liu).
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Ji'nan 250012, China,Corresponding authors. Tel./fax: +86 531 88382005 (Peng Zhan), +86 531 88380270 (Xinyong Liu).
| |
Collapse
|
14
|
Ebenezer O, Damoyi N, Shapi M. Predicting New Anti-Norovirus Inhibitor With the Help of Machine Learning Algorithms and Molecular Dynamics Simulation-Based Model. Front Chem 2021; 9:753427. [PMID: 34869204 PMCID: PMC8636098 DOI: 10.3389/fchem.2021.753427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
Hepatitis C virus (HCV) inhibitors are essential in the treatment of human norovirus (HuNoV). This study aimed to map out HCV NS5B RNA-dependent RNA polymerase inhibitors that could potentially be responsible for the inhibitory activity of HuNoV RdRp. It is necessary to develop robust machine learning and in silico methods to predict HuNoV RdRp compounds. In this study, Naïve Bayesian and random forest models were built to categorize norovirus RdRp inhibitors from the non-inhibitors using their molecular descriptors and PubChem fingerprints. The best model observed had accuracy, specificity, and sensitivity values of 98.40%, 97.62%, and 97.62%, respectively. Meanwhile, an external test set was used to validate model performance before applicability to the screened HCV compounds database. As a result, 775 compounds were predicted as NoV RdRp inhibitors. The pharmacokinetics calculations were used to filter out the inhibitors that lack drug-likeness properties. Molecular docking and molecular dynamics simulation investigated the inhibitors' binding modes and residues critical for the HuNoV RdRp receptor. The most active compound, CHEMBL167790, closely binds to the binding pocket of the RdRp enzyme and depicted stable binding with RMSD 0.8-3.2 Å, and the RMSF profile peak was between 1.0-4.0 Å, and the conformational fluctuations were at 450-460 residues. Moreover, the dynamic residue cross-correlation plot also showed the pairwise correlation between the binding residues 300-510 of the HuNoV RdRp receptor and CHEMBL167790. The principal component analysis depicted the enhanced movement of protein atoms. Moreover, additional residues such as Glu510 and Asn505 interacted with CHEMBL167790 via water bridge and established H-bond interactions after the simulation. http://zinc15.docking.org/substances/ZINC000013589565.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban, South Africa
| | | | | |
Collapse
|
15
|
Choong YS, Lim TS, Liu H, Jiang R, Cai Z, Ge Y. Potential Inhibition of COVID-19 RNA-dependent RNA Polymerase by Hepatitis C Virus Non-nucleoside Inhibitors: An In-silico Perspective. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201104123750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a
novel member of the genus betacoronavirus in the Coronaviridae family. It has been identified as
the causative agent of coronavirus disease 2019 (COVID-19), spreading rapidly in Asia, America
and Europe. Like some other RNA viruses, RNA replication and transcription of SARS-CoV-2 rely
on its RNA-dependent RNA polymerase (RdRP), which is a therapeutic target of clinical
importance. Crystal structure of SARS-CoV-2 was solved recently (PDB ID 6M71) with some
missing residues.
Objective:
We used SARS-CoV-2 RdRP as a target protein to screen for possible chemical
molecules with potential anti-viral effects.
Methods:
Here we modelled the missing residues 896-905 via homology modelling and then
analysed the interactions of Hepatitis C virus allosteric non-nucleoside inhibitors (NNIs) in the
reported NNIs binding sites in SARS-CoV-2 RdRP.
Results:
We found that MK-3281, filibuvir, setrobuvir and dasabuvir might be able to inhibit
SARS-CoV-2 RdRP based on their binding affinities in the respective binding sites.
Conclusion:
Further in vitro and in vivo experimental research will be carried out to evaluate their
effectiveness in COVID-19 treatment in the near future.
Collapse
Affiliation(s)
- Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Hanyun Liu
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rubin Jiang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Zimu Cai
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Yuan Ge
- College of Marine Life Science, Ocean University of China, Qingdao, China
| |
Collapse
|
16
|
Fu J, Ai J, Bao C, Zhang J, Wu Q, Zhu L, Hu J, Xing Z. Evolution of the GII.3[P12] Norovirus from 2010 to 2019 in Jiangsu, China. Gut Pathog 2021; 13:34. [PMID: 34039425 PMCID: PMC8149921 DOI: 10.1186/s13099-021-00430-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/12/2021] [Indexed: 12/28/2022] Open
Abstract
Objectives Norovirus genotype GII.3[P12] strains have been an important pathogen for sporadic gastroenteritis infection. In previous studies of GII.3[P12], the number of specimens and time span are relatively small, which is difficult to truly reflect the infection and evolution of this type of norovirus. Here we report a molecular epidemiological study of the NoVs prevalent in Jiangsu between 2010 and 2019 to investigate the evolution of the GII.3[P12] strains in China. Methods In this study 60 GII.3[P12] norovirus strains were sequenced and analyzed for evolution, recombination, and selection pressure using bioanalysis software. Results The GII.3[P12] strains were continuously detected during the study period, which showed a high constituent ratio in males, in winter and among children aged 0–11 months, respectively. A time-scaled evolutionary tree showed that both GII.P12 RdRp and GII.3 VP1 sequences were grouped into three major clusters (Cluster I–III). Most GII.3[P12] strains were mainly located in sub-cluster (SC) II of Cluster III. A SimPlot analysis identified GII.3[P12] strain to be as an ORF1-intragenic recombinant of GII.4[P12] and GII.3[P21]. The RdRp genes of the GII.3[P12] showed a higher mean substitution rate than those of all GII.P12, while the VP1 genes of the GII.3[P12] showed a lower mean substitution rate than those of all GII.3. Alignment of the GII.3 capsid sequences revealed that three HBGA binding sites of all known GII.3 strains remained conserved, while several amino acid mutations in the predicted antibody binding sites were detected. The mutation at 385 was within predicted antibody binding regions, close to host attachment factor binding sites. Positive and negative selection sites were estimated. Two common positively selected sites (sites 385 and 406) were located on the surface of the protruding domain. Moreover, an amino acid substitution (aa204) was estimated to be near the active site of the RdRp protein. Conclusions We conducted a comprehensive analysis on the epidemic and evolution of GII.3[P12] noroviruses and the results suggested that evolution was possibly driven by intergenic recombination and mutations in some key amino acid sites. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00430-8.
Collapse
Affiliation(s)
- Jianguang Fu
- Medical School and the Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, 22 Hankou Road, Gulou District, Nanjing, 210093, China.,Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jing Ai
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Changjun Bao
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
| | - Jun Zhang
- Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Qingbin Wu
- Soochow University Affiliated Children's Hospital, Suzhou, China
| | - Liguo Zhu
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jianli Hu
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zheng Xing
- College of Veterinary Medicine, Department of Veterinary Biomedical Sciences, University of Minnesota At Twin Cities, Saint Paul, MN, 55108, USA.
| |
Collapse
|
17
|
Genomic characterization of a nebovirus strain with a novel RdRp genotype in yaks. Arch Virol 2021; 166:967-972. [PMID: 33420817 DOI: 10.1007/s00705-020-04951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Neboviruses (NeVs) are important causative agents of calf diarrhea that belong to the family Caliciviridae. In this study, we investigated the genomic characteristics of a NeV strain from yaks that has a novel RdRp genotype. The complete genome of this strain (YAK/NRG-A9/19/CH) is 7454 nt in length and shares 68.3%-79.7% nt sequence identity with those of other NeVs. The RNA-dependent RNA polymerase (RdRp) gene of this strain shares 66.5%-78.5% nt sequence identity (74.0%-89.3% aa sequence identity) with the eight available complete NeV RdRp sequences, and a phylogenetic analysis based on these sequences showed that the new strain formed an independent branch, indicating that the RdRp of strain YAK/NRG-A9/19/CH may represent a novel RdRp genotype of NeV. These results contribute to a further understanding of the molecular characteristics and genetic evolution of NeVs.
Collapse
|
18
|
Maheden K, Todd B, Gordon CJ, Tchesnokov EP, Götte M. Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs. Enzymes 2021; 49:315-354. [PMID: 34696837 PMCID: PMC8517576 DOI: 10.1016/bs.enz.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The treatment of viral infections remains challenging, in particular in the face of emerging pathogens. Broad-spectrum antiviral drugs could potentially be used as a first line of defense. The RNA-dependent RNA polymerase (RdRp) of RNA viruses serves as a logical target for drug discovery and development efforts. Herein we discuss compounds that target RdRp of poliovirus, hepatitis C virus, influenza viruses, respiratory syncytial virus, and the growing data on coronaviruses. We focus on nucleotide analogs and mechanisms of action and resistance.
Collapse
Affiliation(s)
- Kieran Maheden
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Brendan Todd
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology at University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
19
|
Freedman H, Kundu J, Tchesnokov EP, Law JLM, Nieman JA, Schinazi RF, Tyrrell DL, Gotte M, Houghton M. Application of Molecular Dynamics Simulations to the Design of Nucleotide Inhibitors Binding to Norovirus Polymerase. J Chem Inf Model 2020; 60:6566-6578. [PMID: 33259199 DOI: 10.1021/acs.jcim.0c00742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The RNA-dependent RNA polymerase (RdRp) of norovirus is an attractive target of antiviral agents aimed at providing protection against norovirus-associated gastroenteritis. Here, we perform molecular dynamics simulations of the crystal structure of norovirus RdRp in complex with several known binders, as well as free-energy simulations by free-energy perturbation (FEP) to determine binding free energies of these molecules relative to the natural nucleotide substrates. We determine experimental EC50 values and nucleotide incorporation efficiencies for several of these compounds. Moreover, we investigate the mechanism of inhibition of some of these ligands. Using FEP, we screened a virtual nucleotide library with 121 elements for binding to the polymerase and successfully identified two novel chain terminators.
Collapse
Affiliation(s)
- Holly Freedman
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Juthika Kundu
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Egor Petrovitch Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - John Lok Man Law
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - James A Nieman
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Raymond F Schinazi
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - D Lorne Tyrrell
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Matthias Gotte
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael Houghton
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
20
|
Noreen, Ali R, Badshah SL, Faheem M, Abbasi SW, Ullah R, Bari A, Jamal SB, Mahmood HM, Haider A, Haider S. Identification of potential inhibitors of Zika virus NS5 RNA-dependent RNA polymerase through virtual screening and molecular dynamic simulations. Saudi Pharm J 2020; 28:1580-1591. [PMID: 33424251 PMCID: PMC7783101 DOI: 10.1016/j.jsps.2020.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/15/2020] [Indexed: 01/11/2023] Open
Abstract
Zika virus (ZIKV) is one of the mosquito borne flavivirus with several outbreaks in past few years in tropical and subtropical regions. The non-structural proteins of flaviviruses are suitable active targets for inhibitory drugs due to their role in pathogenicity. In ZIKV, the non-structural protein 5 (NS5) RNA-Dependent RNA polymerase replicates its genome. Here we have performed virtual screening to identify suitable ligands that can potentially halt the ZIKV NS5 RNA dependent RNA polymerase (RdRp). During this process, we searched and screened a library of ligands against ZIKV NS5 RdRp. The selected ligands with significant binding energy and ligand-receptor interactions were further processed. Among the selected docked conformations, top five was further optimized at atomic level using molecular dynamic simulations followed by binding free energy calculations. The interactions of ligands with the target structure of ZIKV RdRp revealed that they form strong bonds within the active sites of the receptor molecule. The efficacy of these drugs against ZIKV can be further analyzed through in-vitro and in-vivo studies.
Collapse
Affiliation(s)
- Noreen
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
- Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Roshan Ali
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmacuitcal Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Hafiz Majid Mahmood
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Vlachakis D, Papakonstantinou E, Mitsis T, Pierouli K, Diakou I, Chrousos G, Bacopoulou F. Molecular mechanisms of the novel coronavirus SARS-CoV-2 and potential anti-COVID19 pharmacological targets since the outbreak of the pandemic. Food Chem Toxicol 2020; 146:111805. [PMID: 33038452 PMCID: PMC7543766 DOI: 10.1016/j.fct.2020.111805] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
The novel coronavirus SARS-CoV-2 has emerged as a severe threat against public health and global economies. COVID-19, the disease caused by this virus, is highly contagious and has led to an ongoing pandemic. SARS-CoV-2 affects, mainly, the respiratory system, with most severe cases primarily showcasing acute respiratory distress syndrome. Currently, no targeted therapy exists, and since the number of infections and death toll keeps rising, it has become a necessity to study possible therapeutic targets. Antiviral drugs can target various stages of the viral infection, and in the case of SARS-CoV-2, both structural and non-structural proteins have been proposed as potential drug targets. This review focuses on the most researched SARS-CoV-2 proteins, their structure, function, and possible therapeutic approaches.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece; University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 8 Levadias Street, Athens, 11527, Greece; Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, Athens, 11527, Greece; Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Strand, London WC2R 2LS, UK
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - George Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 8 Levadias Street, Athens, 11527, Greece; Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, Athens, 11527, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 8 Levadias Street, Athens, 11527, Greece.
| |
Collapse
|
22
|
Wakchaure PD, Ghosh S, Ganguly B. Revealing the Inhibition Mechanism of RNA-Dependent RNA Polymerase (RdRp) of SARS-CoV-2 by Remdesivir and Nucleotide Analogues: A Molecular Dynamics Simulation Study. J Phys Chem B 2020; 124:10641-10652. [PMID: 33190493 DOI: 10.1021/acs.jpcb.0c06747] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Antiviral drug therapy against SARS-CoV-2 is not yet established and posing a serious global health issue. Remdesivir is the first antiviral compound approved by the US FDA for the SARS-CoV-2 treatment for emergency use, targeting RNA-dependent RNA polymerase (RdRp) enzyme. In this work, we have examined the action of remdesivir and other two ligands screened from the library of nucleotide analogues using docking and molecular dynamics (MD) simulation studies. The MD simulations have been performed for all the ligand-bound RdRp complexes for the 30 ns time scale. This is one of the earlier reports to perform the MD simulations studies using the SARS-CoV-2 RdRp crystal structure (PDB ID 7BTF). The MD trajectories were analyzed and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations were performed to calculate the binding free energy. The binding energy data reveal that compound-17 (-59.6 kcal/mol) binds more strongly as compared to compound-8 (-46.3 kcal/mol) and remdesivir (-29.7 kcal/mol) with RdRp. The detailed analysis of trajectories shows that the remdesivir binds in the catalytic site and forms a hydrogen bond with the catalytic residues from 0 to 0.46 ns. Compound-8 binds in the catalytic site but does not form direct hydrogen bonds with catalytic residues. Compound-17 showed the formation of hydrogen bonds with catalytic residues throughout the simulation process. The MD simulation results such as hydrogen bonding, the center of mass distance analysis, snapshots at a different time interval, and binding energy suggest that compound-17 binds strongly with RdRp of SARS-CoV-2 and has the potential to develop as a new antiviral against COVID-19. Further, the frontier molecular orbital analysis and molecular electrostatic potential (MESP) iso-surface analysis using DFT calculations shed light on the superior binding of compound-17 with RdRp compared to remdesivir and compound-8. The computed as well as the experimentally reported pharmacokinetics and toxicity parameters of compound-17 is encouraging and therefore can be one of the potential candidates for the treatment of COVID-19.
Collapse
Affiliation(s)
- Padmaja D Wakchaure
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364 002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shibaji Ghosh
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364 002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364 002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Zhang W, Wu Q. Applications of phage-derived RNA-based technologies in synthetic biology. Synth Syst Biotechnol 2020; 5:343-360. [PMID: 33083579 PMCID: PMC7564126 DOI: 10.1016/j.synbio.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
As the most abundant biological entities with incredible diversity, bacteriophages (also known as phages) have been recognized as an important source of molecular machines for the development of genetic-engineering tools. At the same time, phages are crucial for establishing and improving basic theories of molecular biology. Studies on phages provide rich sources of essential elements for synthetic circuit design as well as powerful support for the improvement of directed evolution platforms. Therefore, phages play a vital role in the development of new technologies and central scientific concepts. After the RNA world hypothesis was proposed and developed, novel biological functions of RNA continue to be discovered. RNA and its related elements are widely used in many fields such as metabolic engineering and medical diagnosis, and their versatility led to a major role of RNA in synthetic biology. Further development of RNA-based technologies will advance synthetic biological tools as well as provide verification of the RNA world hypothesis. Most synthetic biology efforts are based on reconstructing existing biological systems, understanding fundamental biological processes, and developing new technologies. RNA-based technologies derived from phages will offer abundant sources for synthetic biological components. Moreover, phages as well as RNA have high impact on biological evolution, which is pivotal for understanding the origin of life, building artificial life-forms, and precisely reprogramming biological systems. This review discusses phage-derived RNA-based technologies terms of phage components, the phage lifecycle, and interactions between phages and bacteria. The significance of RNA-based technology derived from phages for synthetic biology and for understanding the earliest stages of biological evolution will be highlighted.
Collapse
Affiliation(s)
- Wenhui Zhang
- MOE Key Lab. Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- MOE Key Lab. Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
- Corresponding author. MOE Key Lab. Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
24
|
Thu HT, Lien NTK, Lanh PT, Duong BTT, Hoa NT, Phuoc MH, Thai PH, Quyen DV. Genome analysis and phylogenetic characterization of two deformed wing virus strains from Apis cerana in Vietnam. PeerJ 2020; 8:e9911. [PMID: 33005491 PMCID: PMC7513742 DOI: 10.7717/peerj.9911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022] Open
Abstract
Background Deformed wing virus (DWV) is a virulent virus that causes honeybee disease. DWV can exist as a latent infection in honeybees, outbreak into epidemics, and cause serious damage to beekeeping cross the world, including Vietnam. Methods The two DWV strains circulating in Vietnamese honeybee, Apis cerana, were first isolated from adult honeybees in North Vietnam (DWV-NVN) and South Vietnam (DWV-SVN). Their complete nucleotide sequences were determined, aligned, and compared with other DWV strains. Results The two Vietnamese DWV strains comprised 10,113 bp and contained a large single open reading frame (ORF) of 2,893 amino acids, initiating at nucleotide 1,130 and terminating at nucleotide 9,812. Multiple nucleotide sequence alignment between these two DWV-VN strains and DWV strains in A. mellifera was performed. The DWV-VN strains showed a low genetic identity (from 91.4% to 92.0%) with almost of these strains, but lower identities (89.2% and 89.4%) with UK2 and (89.6%) with the China2 strain. Low identities (91.7% and 91.9%) were also observed between the China3 strain (in A. cerana) and the DWV-VN strains, respectively. The deduced amino acid sequence alignment showed high genetic similarities (97.0%–97.9%) when the USA1, Chile, Italy1, France, UK1, UK2, Japan, Korea2, China1, China2 and China3 strains were compared to the DWV-VN strains. This ratio was 96.7% and 96.8% when the Korea1 strain was compared to the DWV-SVN and DWV-NVN strains, respectively. Numerous amino acid substitutions were identified in the L, VP3, and RdRp sequences. Notably, we observed six substitutions positioned at amino acids 27 (E > I), 98 (S > T), 120 (A > V), 153 (M > T), 170 (D > F), and 174 (Y > F) in the L protein, two amino acid changes at positions 980 (S > A) and 1032 (E > T) in VP3, and one amino acid change at position 2627 (R > C) unique to the DWV-VN strains. Phylogenetic analysis based on complete genome sequences, RdRp sequences and Simplot analysis indicated that there was a significant difference between DWV-VN strains in A. cerana and DWV strains in A. mellifera. The results suggested that the genetic variations of the DWV-VN strains in A. cerana help them to adapt geographical conditions and may lead to change the viral pathogenicity of DWV-VN strains.
Collapse
Affiliation(s)
- Ha T Thu
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen T K Lien
- Laboratory of Functional Genomics, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Pham T Lanh
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Bui T T Duong
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen T Hoa
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Man H Phuoc
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Pham H Thai
- Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Dong Van Quyen
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
25
|
Bhatia R, Narang RK, Rawal RK. Repurposing of RdRp Inhibitors against SARS-CoV-2 through Molecular Docking Tools. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2666796701999200617155629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the present hour, the COVID-19 pandemic needs no introduction. There is continuous and
keen research in progress in order to discover or develop a suitable therapeutic candidate/vaccine against
the fatal, severe acute respiratory syndrome causing coronavirus (SARS-CoV-2). Drug repurposing is an
approach of utilizing the therapeutic potentials of previously approved drugs against some new targets or
pharmacological responses. In the presented work, we have evaluated the RNA dependent RNA polymerase
(RdRp) inhibitory potentials of FDA approved anti-viral drugs remdesivir, ribavirin, sofosbuvir
and galidesivir through molecular docking. The studies were carried out using MOE 2019.0102 software
against RdRp (PDB ID:7BTF, released on 8th April, 2020). All four drugs displayed good docking
scores and significant binding interactions with the amino acids of the receptor. The docking protocol
was validated by redocking of the ligands and the root mean square deviation (RMSD) value was found
to be less than 2. The 2D and 3D binding patterns of the drugs were studied and evaluated with the help
of poses. The drugs displayed excellent hydrogen bonding interactions within the cavity of the receptor
and displayed comparable docking scores. These drugs may serve as new therapeutic candidates or leads
against SARS-CoV-2.
Collapse
Affiliation(s)
- Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ferozepur G.T. Road, Moga-142 001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Ferozepur G.T. Road, Moga-142 001, Punjab, India
| | - Ravindra Kumar Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana-133207, Haryana, India
| |
Collapse
|
26
|
Abid N, Pietrucci D, Salemi M, Chillemi G. New Insights into the Effect of Residue Mutations on the Rotavirus VP1 Function Using Molecular Dynamic Simulations. J Chem Inf Model 2020; 60:5011-5025. [PMID: 32786703 DOI: 10.1021/acs.jcim.0c00475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rotavirus group A remains a major cause of diarrhea in infants and young children worldwide. The permanent emergence of new genotypes puts the potential effectiveness of vaccines under serious questions. Thirteen VP1 structures with mutations mapping to the RNA entry site were analyzed using molecular dynamics simulations, and the results were combined with the experimental findings reported previously. The results revealed structural fluctuations in the protein-protein recognition sites and in the bottleneck of the RNA entry site that may affect the interaction of different proteins and delay the initiation of the viral replication, respectively. Altogether, the structural analysis of VP1 in the region crucial for the initiation of the viral replication, mainly the bottleneck site, may boost efforts to develop antivirals, as they might complement the available vaccines.
Collapse
Affiliation(s)
- Nabil Abid
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Rue Ibn Sina, 5000 Monastir, Tunisia.,High Institute of Biotechnology of Sidi Thabet, Department of Biotechnology, University Manouba, BP-66, 2020 Ariana-Tunis, Tunisia
| | - Daniele Pietrucci
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Emerging Pathogens Institute, University of Florida, P.O. Box 100009, Gainesville, Florida 32610-3633, United States
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems, DIBAF, University of Tuscia, Via S. Camillo de Lellis s.n.c., 01100 Viterbo, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, Via Giovanni Amendola, 122/O, 70126 Bari, Italy
| |
Collapse
|
27
|
Ahmad M, Dwivedy A, Mariadasse R, Tiwari S, Kar D, Jeyakanthan J, Biswal BK. Prediction of Small Molecule Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus-2 RNA-dependent RNA Polymerase. ACS OMEGA 2020; 5:18356-18366. [PMID: 32743211 PMCID: PMC7391942 DOI: 10.1021/acsomega.0c02096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
The current COVID-19 outbreak warrants the design and development of novel anti-COVID therapeutics. Using a combination of bioinformatics and computational tools, we modelled the 3D structure of the RdRp (RNA-dependent RNA polymerase) of SARS-CoV2 (severe acute respiratory syndrome coronavirus-2) and predicted its probable GTP binding pocket in the active site. GTP is crucial for the formation of the initiation complex during RNA replication. This site was computationally targeted using a number of small molecule inhibitors of the hepatitis C RNA polymerase reported previously. Further optimizations suggested a lead molecule that may prove fruitful in the development of potent inhibitors against the RdRp of SARS-CoV2.
Collapse
Affiliation(s)
- Mohammed Ahmad
- National
Institute of Immunology, New Delhi 110067, India
| | | | - Richard Mariadasse
- Department
of Bioinformatics, Alagappa University, karaikudi 630004, Tamil Nadu, India
| | - Satish Tiwari
- National
Institute of Immunology, New Delhi 110067, India
| | - Deepsikha Kar
- National
Institute of Immunology, New Delhi 110067, India
| | - Jeyaraman Jeyakanthan
- Department
of Bioinformatics, Alagappa University, karaikudi 630004, Tamil Nadu, India
| | | |
Collapse
|
28
|
Wang Y, Anirudhan V, Du R, Cui Q, Rong L. RNA-dependent RNA polymerase of SARS-CoV-2 as a therapeutic target. J Med Virol 2020; 93:300-310. [PMID: 32633831 DOI: 10.1002/jmv.26264] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022]
Abstract
The global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), named coronavirus disease 2019, has infected more than 8.9 million people worldwide. This calls for urgent effective therapeutic measures. RNA-dependent RNA polymerase (RdRp) activity in viral transcription and replication has been recognized as an attractive target to design novel antiviral strategies. Although SARS-CoV-2 shares less genetic similarity with SARS-CoV (~79%) and Middle East respiratory syndrome coronavirus (~50%), the respective RdRps of the three coronaviruses are highly conserved, suggesting that RdRp is a good broad-spectrum antiviral target for coronaviruses. In this review, we discuss the antiviral potential of RdRp inhibitors (mainly nucleoside analogs) with an aim to provide a comprehensive account of drug discovery on SARS-CoV-2.
Collapse
Affiliation(s)
- Yanyan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Varada Anirudhan
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, China.,Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, China.,Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
29
|
Matos de Souza MR, Cunha MS, Okon A, Monteiro FLL, Campanati L, Wagner CR, da Costa LJ. In Vitro and In Vivo Characterization of the Anti-Zika Virus Activity of ProTides of 2'-C-β-Methylguanosine. ACS Infect Dis 2020; 6:1650-1658. [PMID: 32525653 DOI: 10.1021/acsinfecdis.0c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ProTide approach has emerged as a powerful tool to improve the intracellular delivery of nucleotide analogs with antiviral and anticancer activity. Here, we characterized the anti-ZIKV (ZIKV, Zika virus) activity of two ProTides of 2'-C-β-methylguanosine. ProTide UMN-1001 is a 2'-C-β-methylguanosine tryptamine phosphoramidate monoester, and ProTide UMN-1002 is a 2-(methylthio)-ethyl-2'-C-β-methylguanosine tryptamine phosphoramidate diester. UMN-1002 undergoes stepwise intracellular activation to the corresponding nucleotide monophosphate followed by P-N bond cleavage by intracellular histidine triad nucleotide binding protein 1 (Hint1). UMN-1001 is activated by Hint1 but is less cell-permeable than UMN-1002. UMN-1001 and UMN-1002 were found to be more potent than 2'-C-β-methylguanosine against ZIKV in human-derived microvascular endothelial and neuroblastoma cells and in reducing ZIKV RNA replication. Studies with a newborn mouse model of ZIKV infection demonstrated that, while treatment with 2'-C-β-methylguanosine and UMN-1001 was lethal, treatment with UMN-1002 was nontoxic and significantly reduced ZIKV infection. Our data suggests that anchimeric activated ProTides of 2'-C-β-methyl nucleosides should be further investigated for their potential as anti-ZIKV therapeutics.
Collapse
Affiliation(s)
| | | | - Aniekan Okon
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
30
|
Tchesnokov EP, Bailey-Elkin BA, Mark BL, Götte M. Independent inhibition of the polymerase and deubiquitinase activities of the Crimean-Congo Hemorrhagic Fever Virus full-length L-protein. PLoS Negl Trop Dis 2020; 14:e0008283. [PMID: 32497085 PMCID: PMC7271988 DOI: 10.1371/journal.pntd.0008283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/09/2020] [Indexed: 11/17/2022] Open
Abstract
Background The Crimean-Congo hemorrhagic fever virus (CCHFV) is a segmented negative-sense RNA virus that can cause severe human disease. The World Health Organization (WHO) has listed CCHFVas a priority pathogen with an urgent need for enhanced research activities to develop effective countermeasures. Here we adopted a biochemical approach that targets the viral RNA-dependent RNA polymerase (RdRp). The CCHFV RdRp activity is part of a multifunctional L protein that is unusually large with a molecular weight of ~450 kDa. The CCHFV L-protein also contains an ovarian tumor (OTU) domain that exhibits deubiquitinating (DUB) activity, which was shown to interfere with innate immune responses and viral replication. We report on the expression, characterization and inhibition of the CCHFV full-length L-protein and studied both RNA synthesis and DUB activity. Methodology/Principle findings Recombinant full-length CCHFV L protein was expressed in insect cells and purified to near homogeneity using affinity chromatography. RdRp activity was monitored with model primer/templates during elongation in the presence of divalent metal ions. We observed a 14-mer full length RNA product as well as the expected shorter products when omitting certain nucleotides from the reaction mixture. The D2517N mutation of the putative active site rendered the enzyme inactive. Inhibition of RNA synthesis was studies with the broad-spectrum antivirals ribavirin and favipiravir that mimic nucleotide substrates. The triphosphate form of these compounds act like ATP or GTP; however, incorporation of ATP or GTP is markedly favored over the inhibitors. We also studied the effects of bona fide nucleotide analogues 2’-deoxy-2’-fluoro-CTP (FdC) and 2’-deoxy-2’-amino-CTP and demonstrate increased inhibitory effects due to higher rates of incorporation. We further show that the CCHFV L full-length protein and the isolated OTU domain cleave Lys48- and Lys63-linked polyubiqutin chains. Moreover, the ubiquitin analogue CC.4 inhibits the CCHFV-associated DUB activity of the full-length L protein and the isolated DUB domain to a similar extent. Inhibition of DUB activity does not affect elongation of RNA synthesis, and inhibition of RNA synthesis does not affect DUB activity. Both domains are functionally independent under these conditions. Conclusions/Significance The requirements for high biosafety measures hamper drug discovery and development efforts with infectious CCHFV. The availability of full-length CCHFV L-protein provides an important tool in this regard. High-throughput screening (HTS) campaigns are now feasible. The same enzyme preparations can be employed to identify novel polymerase and DUB inhibitors. The tick-born Crimean-Congo hemorrhagic fever virus (CCHFV) causes severe human disease with high fatality rates. Outbreaks have been documented in a large geographic area from Africa to Asia. Unfortunately, vaccines that would prevent infection with the virus or antiviral drugs that can be administered for disease treatment are not available. Biosafety requirements further impede research in this area. The development of biochemical tools could potentially address this problem. Here we have expressed recombinant viral L-protein in insect cells. The L-protein is unusually large and exhibits RNA synthesis and deubiquitinating activities that are required for efficient viral growth. We have demonstrated that two distinct activities can be monitored in biochemical assays. Inhibition of these activities was shown with prototypic compounds. Hence, the purified L-protein provides an attractive target and tool for future drug discovery and development efforts.
Collapse
Affiliation(s)
- Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Li Ka Shing Institute of Virology at University of Alberta, Edmonton, Alberta, Canada
| | | | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Li Ka Shing Institute of Virology at University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Ortiz-Baez AS, Eden JS, Moritz C, Holmes EC. A Divergent Articulavirus in an Australian Gecko Identified Using Meta-Transcriptomics and Protein Structure Comparisons. Viruses 2020; 12:v12060613. [PMID: 32512909 PMCID: PMC7354609 DOI: 10.3390/v12060613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 02/02/2023] Open
Abstract
The discovery of highly divergent RNA viruses is compromised by their limited sequence similarity to known viruses. Evolutionary information obtained from protein structural modelling offers a powerful approach to detect distantly related viruses based on the conservation of tertiary structures in key proteins such as the RNA-dependent RNA polymerase (RdRp). We utilised a template-based approach for protein structure prediction from amino acid sequences to identify distant evolutionary relationships among viruses detected in meta-transcriptomic sequencing data from Australian wildlife. The best predicted protein structural model was compared with the results of similarity searches against protein databases. Using this combination of meta-transcriptomics and protein structure prediction we identified the RdRp (PB1) gene segment of a divergent negative-sense RNA virus, denoted Lauta virus (LTAV), in a native Australian gecko (Gehyra lauta). The presence of this virus was confirmed by PCR and Sanger sequencing. Phylogenetic analysis revealed that Lauta virus likely represents a newly described genus within the family Amnoonviridae, order Articulavirales, that is most closely related to the fish virus Tilapia tilapinevirus (TiLV). These findings provide important insights into the evolution of negative-sense RNA viruses and structural conservation of the viral replicase among members of the order Articulavirales.
Collapse
Affiliation(s)
- Ayda Susana Ortiz-Baez
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia; (A.S.O.-B.); (J-S.E.)
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia; (A.S.O.-B.); (J-S.E.)
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead NSW 2145, Australia
| | - Craig Moritz
- Research School of Biology & Centre for Biodiversity Analysis, The Australian National University, Acton ACT 6201, Australia;
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia; (A.S.O.-B.); (J-S.E.)
- Correspondence:
| |
Collapse
|
32
|
Buonaguro L, Tagliamonte M, Tornesello ML, Buonaguro FM. SARS-CoV-2 RNA polymerase as target for antiviral therapy. J Transl Med 2020; 18:185. [PMID: 32370758 PMCID: PMC7200052 DOI: 10.1186/s12967-020-02355-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 01/14/2023] Open
Abstract
A new human coronavirus named SARS-CoV-2 was identified in several cases of acute respiratory syndrome in Wuhan, China in December 2019. On March 11 2020, WHO declared the SARS-CoV-2 infection to be a pandemic, based on the involvement of 169 nations. Specific drugs for SARS-CoV-2 are obviously not available. Currently, drugs originally developed for other viruses or parasites are currently in clinical trials based on empiric data. In the quest of an effective antiviral drug, the most specific target for an RNA virus is the RNA-dependent RNA-polymerase (RdRp) which shows significant differences between positive-sense and negative-sense RNA viruses. An accurate evaluation of RdRps from different viruses may guide the development of new drugs or the repositioning of already approved antiviral drugs as treatment of SARS-CoV-2. This can accelerate the containment of the SARS-CoV-2 pandemic and, hopefully, of future pandemics due to other emerging zoonotic RNA viruses.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"-IRCCS, Via Mariano Semmola, 52, 80131, Naples, Italy.
| | - Maria Tagliamonte
- Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"-IRCCS, Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Maria Lina Tornesello
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"-IRCCS, 80131, Naples, Italy
| | - Franco M Buonaguro
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"-IRCCS, 80131, Naples, Italy
| |
Collapse
|
33
|
Markova DN, Christensen SM, Betrán E. Telomere-Specialized Retroelements in Drosophila: Adaptive Symbionts of the Genome, Neutral, or in Conflict? Bioessays 2019; 42:e1900154. [PMID: 31815300 DOI: 10.1002/bies.201900154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Indexed: 12/17/2022]
Abstract
Linear chromosomes shorten in every round of replication. In Drosophila, telomere-specialized long interspersed retrotransposable elements (LINEs) belonging to the jockey clade offset this shortening by forming head-to-tail arrays at Drosophila telomere ends. As such, these telomeric LINEs have been considered adaptive symbionts of the genome, protecting it from premature decay, particularly as Drosophila lacks a conventional telomerase holoenzyme. However, as reviewed here, recent work reveals a high degree of variation and turnover in the telomere-specialized LINE lineages across Drosophila. There appears to be no absolute requirement for LINE activity to maintain telomeres in flies, hence the suggestion that the telomere-specialized LINEs may instead be neutral or in conflict with the host, rather than adaptive.
Collapse
Affiliation(s)
- Dragomira N Markova
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Shawn M Christensen
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
34
|
Tyr82 Amino Acid Mutation in PB1 Polymerase Induces an Influenza Virus Mutator Phenotype. J Virol 2019; 93:JVI.00834-19. [PMID: 31462570 DOI: 10.1128/jvi.00834-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/19/2019] [Indexed: 01/16/2023] Open
Abstract
In various positive-sense single-stranded RNA viruses, a low-fidelity viral RNA-dependent RNA polymerase (RdRp) confers attenuated phenotypes by increasing the mutation frequency. We report a negative-sense single-stranded RNA virus RdRp mutant strain with a mutator phenotype. Based on structural data of RdRp, rational targeting of key residues, and screening of fidelity variants, we isolated a novel low-fidelity mutator strain of influenza virus that harbors a Tyr82-to-Cys (Y82C) single-amino-acid substitution in the PB1 polymerase subunit. The purified PB1-Y82C polymerase indeed showed an increased frequency of misincorporation compared with the wild-type PB1 in an in vitro biochemical assay. To further investigate the effects of position 82 on PB1 polymerase fidelity, we substituted various amino acids at this position. As a result, we isolated various novel mutators other than PB1-Y82C with higher mutation frequencies. The structural model of influenza virus polymerase complex suggested that the Tyr82 residue, which is located at the nucleoside triphosphate entrance tunnel, may influence a fidelity checkpoint. Interestingly, although the PB1-Y82C variant replicated with wild-type PB1-like kinetics in tissue culture, the 50% lethal dose of the PB1-Y82C mutant was 10 times lower than that of wild-type PB1 in embryonated chicken eggs. In conclusion, our data indicate that the Tyr82 residue of PB1 has a crucial role in regulating polymerase fidelity of influenza virus and is closely related to attenuated pathogenic phenotypes in vivo IMPORTANCE Influenza A virus rapidly acquires antigenic changes and antiviral drug resistance, which limit the effectiveness of vaccines and drug treatments, primarily owing to its high rate of evolution. Virus populations formed by quasispecies can contain resistance mutations even before a selective pressure is applied. To study the effects of the viral mutation spectrum and quasispecies, high- and low-fidelity variants have been isolated for several RNA viruses. Here, we report the discovery of a low-fidelity RdRp variant of influenza A virus that contains a substitution at Tyr82 in PB1. Viruses containing the PB1-Y82C substitution showed growth kinetics and viral RNA synthesis levels similar to those of the wild-type virus in cell culture; however, they had significantly attenuated phenotypes in a chicken egg infection experiment. These data demonstrated that decreased RdRp fidelity attenuates influenza A virus in vivo, which is a desirable feature for the development of safer live attenuated vaccine candidates.
Collapse
|
35
|
Matsushima Y, Mizukoshi F, Sakon N, Doan YH, Ueki Y, Ogawa Y, Motoya T, Tsukagoshi H, Nakamura N, Shigemoto N, Yoshitomi H, Okamoto-Nakagawa R, Suzuki R, Tsutsui R, Terasoma F, Takahashi T, Sadamasu K, Shimizu H, Okabe N, Nagasawa K, Aso J, Ishii H, Kuroda M, Ryo A, Katayama K, Kimura H. Evolutionary Analysis of the VP1 and RNA-Dependent RNA Polymerase Regions of Human Norovirus GII.P17-GII.17 in 2013-2017. Front Microbiol 2019; 10:2189. [PMID: 31611853 PMCID: PMC6777354 DOI: 10.3389/fmicb.2019.02189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023] Open
Abstract
Human norovirus (HuNoV) GII.P17-GII.17 (Kawasaki2014 variant) reportedly emerged in 2014 and caused gastroenteritis outbreaks worldwide. To clarify the evolution of both VP1 and RNA-dependent RNA polymerase (RdRp) regions of GII.P17-GII.17, we analyzed both global and novel Japanese strains detected during 2013-2017. Time-scaled phylogenetic trees revealed that the ancestral GII.17 VP1 region diverged around 1949, while the ancestral GII.P17 RdRp region diverged around 2010. The evolutionary rates of the VP1 and RdRp regions were estimated at ~2.7 × 10-3 and ~2.3 × 10-3 substitutions/site/year, respectively. The phylogenetic distances of the VP1 region exhibited no overlaps between intra-cluster and inter-cluster peaks in the GII.17 strains, whereas those of the RdRp region exhibited a unimodal distribution in the GII.P17 strains. Conformational epitope positions in the VP1 protein of the GII.P17-GII.17 strains were similar, although some substitutions, insertions and deletions had occurred. Strains belonging to the same cluster also harbored substitutions around the binding sites for the histo-blood group antigens of the VP1 protein. Moreover, some amino acid substitutions were estimated to be near the interface between monomers and the active site of the RdRp protein. These results suggest that the GII.P17-GII.17 virus has produced variants with the potential to alter viral antigenicity, host-binding capability, and replication property over the past 10 years.
Collapse
Affiliation(s)
- Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Fuminori Mizukoshi
- Department of Microbiology, Tochigi Prefectural Institute of Public Health and Environmental Science, Utsunomiya, Japan
| | - Naomi Sakon
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Yo Ueki
- Department of Microbiology, Miyagi Prefectural Institute of Public Health and Environment, Sendai, Japan
| | - Yasutaka Ogawa
- Division of Virology, Saitama Institute of Public Health, Saitama, Japan
| | - Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi, Japan
| | | | - Naoki Shigemoto
- Hiroshima Prefectural Technology Research Institute Public Health and Environment Center, Hiroshima, Japan
| | - Hideaki Yoshitomi
- Fukuoka Institute of Health and Environmental Sciences, Dazaifu, Japan
| | | | - Rieko Suzuki
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Japan
| | - Rika Tsutsui
- Aomori Prefecture Public Health and Environment Center, Aomori, Japan
| | - Fumio Terasoma
- Wakayama Prefectural Research Center of Environment and Public Health, Wakayama, Japan
| | - Tomoko Takahashi
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health, Morioka, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku, Japan
| | - Hideaki Shimizu
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Nobuhiko Okabe
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | | | - Jumpei Aso
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Kitasato University, Minato, Japan
| | - Hirokazu Kimura
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Department of Microbiology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
36
|
Smertina E, Urakova N, Strive T, Frese M. Calicivirus RNA-Dependent RNA Polymerases: Evolution, Structure, Protein Dynamics, and Function. Front Microbiol 2019; 10:1280. [PMID: 31244803 PMCID: PMC6563846 DOI: 10.3389/fmicb.2019.01280] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
The Caliciviridae are viruses with a positive-sense, single-stranded RNA genome that is packaged into an icosahedral, environmentally stable protein capsid. The family contains five genera (Norovirus, Nebovirus, Sapovirus, Lagovirus, and Vesivirus) that infect vertebrates including amphibians, reptiles, birds, and mammals. The RNA-dependent RNA polymerase (RdRp) replicates the genome of RNA viruses and can speed up evolution due to its error-prone nature. Studying calicivirus RdRps in the context of genuine virus replication is often hampered by a lack of suitable model systems. Enteric caliciviruses and RHDV in particular are notoriously difficult to propagate in cell culture; therefore, molecular studies of replication mechanisms are challenging. Nevertheless, research on recombinant proteins has revealed several unexpected characteristics of calicivirus RdRps. For example, the RdRps of RHDV and related lagoviruses possess the ability to expose a hydrophobic motif, to rearrange Golgi membranes, and to copy RNA at unusually high temperatures. This review is focused on the structural dynamics, biochemical properties, kinetics, and putative interaction partners of these RdRps. In addition, we discuss the possible existence of a conserved but as yet undescribed structural element that is shared amongst the RdRps of all caliciviruses.
Collapse
Affiliation(s)
- Elena Smertina
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Nadya Urakova
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
| | - Michael Frese
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
37
|
Netzler NE, Enosi Tuipulotu D, Vasudevan SG, Mackenzie JM, White PA. Antiviral Candidates for Treating Hepatitis E Virus Infection. Antimicrob Agents Chemother 2019; 63:e00003-19. [PMID: 30885901 PMCID: PMC6535575 DOI: 10.1128/aac.00003-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
Globally, hepatitis E virus (HEV) causes significant morbidity and mortality each year. Despite this burden, there are no specific antivirals available to treat HEV patients, and the only licensed vaccine is not available outside China. Ribavirin and alpha interferon are used to treat chronic HEV infections; however, severe side effects and treatment failure are commonly reported. Therefore, this study aimed to identify potential antivirals for further development to combat HEV infection. We selected 16 compounds from the nucleoside and nonnucleoside antiviral classes that range in developmental status from late preclinical to FDA approved and evaluated them as potential antivirals for HEV infection, using genotype 1 replicon luminescence studies and replicon RNA quantification. Two potent inhibitors of HEV replication included NITD008 (half-maximal effective concentration [EC50], 0.03 μM; half-maximal cytotoxic concentration [CC50], >100 μM) and GPC-N114 (EC50, 1.07 μM, CC50, >100 μM), and both drugs reduced replicon RNA levels in cell culture (>50% reduction with either 10 μM GPC-N114 or 2.50 μM NITD008). Furthermore, GPC-N114 and NITD008 were synergistic in combinational treatment (combination index, 0.4) against HEV replication, allowing for dose reduction indices of 20.42 and 8.82 at 50% inhibition, respectively. Sofosbuvir has previously exhibited mixed results against HEV as an antiviral, both in vitro and in a few clinical applications; however, in this study it was effective against the HEV genotype 1 replicon (EC50, 1.97 μM; CC50, >100 μM) and reduced replicon RNA levels (47.2% reduction at 10 μM). Together these studies indicate drug repurposing may be a promising pathway for development of antivirals against HEV infection.
Collapse
Affiliation(s)
- Natalie E Netzler
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | | | - Jason M Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
38
|
Fleming AM, Nguyen NLB, Burrows CJ. Colocalization of m 6A and G-Quadruplex-Forming Sequences in Viral RNA (HIV, Zika, Hepatitis B, and SV40) Suggests Topological Control of Adenosine N 6-Methylation. ACS CENTRAL SCIENCE 2019; 5:218-228. [PMID: 30834310 PMCID: PMC6396389 DOI: 10.1021/acscentsci.8b00963] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Indexed: 05/09/2023]
Abstract
This Outlook calls attention to two seemingly disparate and emerging fields regarding viral genomics that may be correlated in a way previously overlooked. First, we describe identification of conserved potential G-quadruplex-forming sequences (PQSs) in viral genomes relevant to human health. Studies have demonstrated that PQSs are highly conserved and can fold to G-quadruplexes (G4s) to regulate viral processes. Key examples include G4s as a countermeasure to the host's immune system or G4-guided regulation of replication or transcription. Second, emerging data are discussed concerning the epitranscriptomic modification N 6-methyladenosine (m6A) in viral RNA installed by host proteins in a consensus sequence favoring 5'-GG(m6A)C-3'. The proposed pathways by which m6A is written, read, and erased in viral RNA genomes and the impact this has on viral replication are described. The structural reason why certain sites are selected for modification while others are not is still mysterious. Finally, we discuss our new observations regarding these previous sequencing data that identify m6A installation within the loops of two-tetrad PQSs in the RNA genomes of the Zika, HIV, hepatitis B, and SV40 viruses. We hypothesize that conserved viral PQSs can provide a framework (sequence and/or structural) for m6A installation. We also discuss literature sources suggesting that PQSs as sites of RNA modification could be a general phenomenon. We anticipate our observations will provide ample opportunities for exciting discoveries regarding the interplay between G4 structures and epitranscriptomic modifications of RNA.
Collapse
Affiliation(s)
- Aaron M. Fleming
- Department of Chemistry, University
of Utah, Salt Lake
City, Utah 84112-0850, United States
| | - Ngoc L. B. Nguyen
- Department of Chemistry, University
of Utah, Salt Lake
City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University
of Utah, Salt Lake
City, Utah 84112-0850, United States
| |
Collapse
|
39
|
Bassetto M, Van Dycke J, Neyts J, Brancale A, Rocha-Pereira J. Targeting the Viral Polymerase of Diarrhea-Causing Viruses as a Strategy to Develop a Single Broad-Spectrum Antiviral Therapy. Viruses 2019; 11:v11020173. [PMID: 30791582 PMCID: PMC6409847 DOI: 10.3390/v11020173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/01/2023] Open
Abstract
Viral gastroenteritis is an important cause of morbidity and mortality worldwide, being particularly severe for children under the age of five. The most common viral agents of gastroenteritis are noroviruses, rotaviruses, sapoviruses, astroviruses and adenoviruses, however, no specific antiviral treatment exists today against any of these pathogens. We here discuss the feasibility of developing a broad-spectrum antiviral treatment against these diarrhea-causing viruses. This review focuses on the viral polymerase as an antiviral target, as this is the most conserved viral protein among the diverse viral families to which these viruses belong to. We describe the functional and structural similarities of the different viral polymerases, the antiviral effect of reported polymerase inhibitors and highlight common features that might be exploited in an attempt of designing such pan-polymerase inhibitor.
Collapse
Affiliation(s)
- Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF10 3NB Cardiff, UK.
| | - Jana Van Dycke
- KU Leuven-Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium.
| | - Johan Neyts
- KU Leuven-Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium.
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF10 3NB Cardiff, UK.
| | - Joana Rocha-Pereira
- KU Leuven-Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium.
| |
Collapse
|
40
|
Wolf YI, Kazlauskas D, Iranzo J, Lucía-Sanz A, Kuhn JH, Krupovic M, Dolja VV, Koonin EV. Origins and Evolution of the Global RNA Virome. mBio 2018; 9:e02329-18. [PMID: 30482837 PMCID: PMC6282212 DOI: 10.1128/mbio.02329-18] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 01/12/2023] Open
Abstract
Viruses with RNA genomes dominate the eukaryotic virome, reaching enormous diversity in animals and plants. The recent advances of metaviromics prompted us to perform a detailed phylogenomic reconstruction of the evolution of the dramatically expanded global RNA virome. The only universal gene among RNA viruses is the gene encoding the RNA-dependent RNA polymerase (RdRp). We developed an iterative computational procedure that alternates the RdRp phylogenetic tree construction with refinement of the underlying multiple-sequence alignments. The resulting tree encompasses 4,617 RNA virus RdRps and consists of 5 major branches; 2 of the branches include positive-sense RNA viruses, 1 is a mix of positive-sense (+) RNA and double-stranded RNA (dsRNA) viruses, and 2 consist of dsRNA and negative-sense (-) RNA viruses, respectively. This tree topology implies that dsRNA viruses evolved from +RNA viruses on at least two independent occasions, whereas -RNA viruses evolved from dsRNA viruses. Reconstruction of RNA virus evolution using the RdRp tree as the scaffold suggests that the last common ancestors of the major branches of +RNA viruses encoded only the RdRp and a single jelly-roll capsid protein. Subsequent evolution involved independent capture of additional genes, in particular, those encoding distinct RNA helicases, enabling replication of larger RNA genomes and facilitating virus genome expression and virus-host interactions. Phylogenomic analysis reveals extensive gene module exchange among diverse viruses and horizontal virus transfer between distantly related hosts. Although the network of evolutionary relationships within the RNA virome is bound to further expand, the present results call for a thorough reevaluation of the RNA virus taxonomy.IMPORTANCE The majority of the diverse viruses infecting eukaryotes have RNA genomes, including numerous human, animal, and plant pathogens. Recent advances of metagenomics have led to the discovery of many new groups of RNA viruses in a wide range of hosts. These findings enable a far more complete reconstruction of the evolution of RNA viruses than was attainable previously. This reconstruction reveals the relationships between different Baltimore classes of viruses and indicates extensive transfer of viruses between distantly related hosts, such as plants and animals. These results call for a major revision of the existing taxonomy of RNA viruses.
Collapse
Affiliation(s)
- Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Adriana Lucía-Sanz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
- Centro Nacional de Biotecnología, Madrid, Spain
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Mart Krupovic
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Aguado LC, Jordan TX, Hsieh E, Blanco-Melo D, Heard J, Panis M, Vignuzzi M, tenOever BR. Homologous recombination is an intrinsic defense against antiviral RNA interference. Proc Natl Acad Sci U S A 2018. [PMID: 30209219 DOI: 10.1073/pnas.181022911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
RNA interference (RNAi) is the major antiviral defense mechanism of plants and invertebrates, rendering the capacity to evade it a defining factor in shaping the viral landscape. Here we sought to determine whether different virus replication strategies provided any inherent capacity to evade RNAi in the absence of an antagonist. Through the exploitation of host microRNAs, we recreated an RNAi-like environment in vertebrates and directly compared the capacity of positive- and negative-stranded RNA viruses to cope with this selective pressure. Applying this defense against four distinct viral families revealed that the capacity to undergo homologous recombination was the defining attribute that enabled evasion of this defense. Independent of gene expression strategy, positive-stranded RNA viruses that could undergo strand switching rapidly excised genomic material, while negative-stranded viruses were effectively targeted and cleared upon RNAi-based selection. These data suggest a dynamic relationship between host antiviral defenses and the biology of virus replication in shaping pathogen prevalence.
Collapse
Affiliation(s)
- Lauren C Aguado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Tristan X Jordan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Emily Hsieh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Daniel Blanco-Melo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - John Heard
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maryline Panis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, Institute Pasteur, 75015 Paris, France
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| |
Collapse
|
42
|
Nncube NB, Ramharack P, Soliman MES. Using bioinformatics tools for the discovery of Dengue RNA-dependent RNA polymerase inhibitors. PeerJ 2018; 6:e5068. [PMID: 30280009 PMCID: PMC6161702 DOI: 10.7717/peerj.5068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022] Open
Abstract
Background Dengue fever has rapidly manifested into a serious global health concern. The emergence of various viral serotypes has prompted the urgent need for innovative drug design techniques. Of the viral non-structural enzymes, the NS5 RNA-dependent RNA polymerase has been established as a promising target due to its lack of an enzymatic counterpart in mammalian cells and its conserved structure amongst all serotypes. The onus is now on scientists to probe further into understanding this enzyme and its mechanism of action. The field of bioinformatics has evolved greatly over recent decades, with updated drug design tools now being publically available. Methods In this study, bioinformatics tools were used to provide a comprehensive sequence and structural analysis of the two most prominent serotypes of Dengue RNA-dependent RNA polymerase. A list of popular flavivirus inhibitors were also chosen to dock to the active site of the enzyme. The best docked compound was then used as a template to generate a pharmacophore model that may assist in the design of target-specific Dengue virus inhibitors. Results Comparative sequence alignment exhibited similarity between all three domains of serotype 2 and 3.Sequence analysis revealed highly conserved regions at residues Meth530, Thr543 Asp597, Glu616, Arg659 and Pro671. Mapping of the active site demonstrated two highly conserved residues: Ser710 and Arg729. Of the active site interacting residues, Ser796 was common amongst all ten docked compounds, indicating its importance in the drug design process. Of the ten docked flavivirus inhibitors, NITD-203 showed the best binding affinity to the active site. Further pharmacophore modeling of NITD-203 depicted significant pharmacophoric elements that are necessary for stable binding to the active site. Discussion This study utilized publically available bioinformatics tools to provide a comprehensive framework on Dengue RNA-dependent RNA polymerase. Based on docking studies, a pharmacophore model was also designed to unveil the crucial pharmacophoric elements that are required when constructing an efficacious DENV inhibitor. We believe that this study will be a cornerstone in paving the road toward the design of target-specific inhibitors against DENV RdRp.
Collapse
Affiliation(s)
- Nomagugu B Nncube
- Molecular Bio-computation and Drug Design laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Pritika Ramharack
- Molecular Bio-computation and Drug Design laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
43
|
Homologous recombination is an intrinsic defense against antiviral RNA interference. Proc Natl Acad Sci U S A 2018; 115:E9211-E9219. [PMID: 30209219 DOI: 10.1073/pnas.1810229115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RNA interference (RNAi) is the major antiviral defense mechanism of plants and invertebrates, rendering the capacity to evade it a defining factor in shaping the viral landscape. Here we sought to determine whether different virus replication strategies provided any inherent capacity to evade RNAi in the absence of an antagonist. Through the exploitation of host microRNAs, we recreated an RNAi-like environment in vertebrates and directly compared the capacity of positive- and negative-stranded RNA viruses to cope with this selective pressure. Applying this defense against four distinct viral families revealed that the capacity to undergo homologous recombination was the defining attribute that enabled evasion of this defense. Independent of gene expression strategy, positive-stranded RNA viruses that could undergo strand switching rapidly excised genomic material, while negative-stranded viruses were effectively targeted and cleared upon RNAi-based selection. These data suggest a dynamic relationship between host antiviral defenses and the biology of virus replication in shaping pathogen prevalence.
Collapse
|
44
|
Dulin D, Arnold JJ, van Laar T, Oh HS, Lee C, Perkins AL, Harki DA, Depken M, Cameron CE, Dekker NH. Signatures of Nucleotide Analog Incorporation by an RNA-Dependent RNA Polymerase Revealed Using High-Throughput Magnetic Tweezers. Cell Rep 2018; 21:1063-1076. [PMID: 29069588 PMCID: PMC5670035 DOI: 10.1016/j.celrep.2017.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 11/04/2022] Open
Abstract
RNA viruses pose a threat to public health that is exacerbated by the dearth of antiviral therapeutics. The RNA-dependent RNA polymerase (RdRp) holds promise as a broad-spectrum, therapeutic target because of the conserved nature of the nucleotide-substrate-binding and catalytic sites. Conventional, quantitative, kinetic analysis of antiviral ribonucleotides monitors one or a few incorporation events. Here, we use a high-throughput magnetic tweezers platform to monitor the elongation dynamics of a prototypical RdRp over thousands of nucleotide-addition cycles in the absence and presence of a suite of nucleotide analog inhibitors. We observe multiple RdRp-RNA elongation complexes; only a subset of which are competent for analog utilization. Incorporation of a pyrazine-carboxamide nucleotide analog, T-1106, leads to RdRp backtracking. This analysis reveals a mechanism of action for this antiviral ribonucleotide that is corroborated by cellular studies. We propose that induced backtracking represents a distinct mechanistic class of antiviral ribonucleotides. Several unique conformational states of an elongating RdRp exist Only one conformation incorporates nucleotide analogs with therapeutic potential An analog thought to be a chain terminator actually promotes RdRp backtracking Distinctive behavior of backtrack-inducing analog on virus variants in cell culture
Collapse
Affiliation(s)
- David Dulin
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands; Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich Alexander University Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91052 Erlangen, Germany
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Theo van Laar
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Hyung-Suk Oh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Cheri Lee
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Angela L Perkins
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
45
|
Freedman H, Winter P, Tuszynski J, Tyrrell DL, Houghton M. A computational approach for predicting off-target toxicity of antiviral ribonucleoside analogues to mitochondrial RNA polymerase. J Biol Chem 2018; 293:9696-9705. [PMID: 29739852 DOI: 10.1074/jbc.ra118.002588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/04/2018] [Indexed: 12/18/2022] Open
Abstract
In the development of antiviral drugs that target viral RNA-dependent RNA polymerases, off-target toxicity caused by the inhibition of the human mitochondrial RNA polymerase (POLRMT) is a major liability. Therefore, it is essential that all new ribonucleoside analogue drugs be accurately screened for POLRMT inhibition. A computational tool that can accurately predict NTP binding to POLRMT could assist in evaluating any potential toxicity and in designing possible salvaging strategies. Using the available crystal structure of POLRMT bound to an RNA transcript, here we created a model of POLRMT with an NTP molecule bound in the active site. Furthermore, we implemented a computational screening procedure that determines the relative binding free energy of an NTP analogue to POLRMT by free energy perturbation (FEP), i.e. a simulation in which the natural NTP molecule is slowly transformed into the analogue and back. In each direction, the transformation was performed over 40 ns of simulation on our IBM Blue Gene Q supercomputer. This procedure was validated across a panel of drugs for which experimental dissociation constants were available, showing that NTP relative binding free energies could be predicted to within 0.97 kcal/mol of the experimental values on average. These results demonstrate for the first time that free-energy simulation can be a useful tool for predicting binding affinities of NTP analogues to a polymerase. We expect that our model, together with similar models of viral polymerases, will be very useful in the screening and future design of NTP inhibitors of viral polymerases that have no mitochondrial toxicity.
Collapse
Affiliation(s)
- Holly Freedman
- From the Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology and
| | - Philip Winter
- the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Jack Tuszynski
- the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,the Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada and
| | - D Lorne Tyrrell
- From the Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology and
| | - Michael Houghton
- From the Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology and
| |
Collapse
|
46
|
Two Residues in NSP9 Contribute to the Enhanced Replication and Pathogenicity of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus. J Virol 2018; 92:JVI.02209-17. [PMID: 29321316 DOI: 10.1128/jvi.02209-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022] Open
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) possesses greater replicative capacity and pathogenicity than classical PRRSV. However, the factors that lead to enhanced replication and pathogenicity remain unclear. In our study, an alignment of all available full-length sequences of North American-type PRRSVs (n = 204) revealed two consistent amino acid mutations that differed between HP-PRRSV and classical PRRSV and were located at positions 519 and 544 in nonstructural protein 9. Next, a series of mutant viruses with either single or double amino acid replacements were generated from HP-PRRSV HuN4 and classical PRRSV CH-1a infectious cDNA clones. Deletion of either of the amino acids led to a complete loss of virus viability. In both Marc-145 and porcine alveolar macrophages, the replicative efficiencies of mutant viruses based on HuN4 were reduced compared to the parent, whereas the replication level of CH-1a-derived mutant viruses was increased. Plaque growth assays showed clear differences between mutant and parental viruses. In infected piglets, the pathogenicity of HuN4-derived mutant viruses, assessed through clinical symptoms, viral load in sera, histopathology examination, and thymus atrophy, was reduced. Our results indicate that the amino acids at positions 519 and 544 in NSP9 are involved in the replication efficiency of HP-PRRSV and contribute to enhanced pathogenicity. This study is the first to identify specific amino acids involved in PRRSV replication or pathogenicity. These findings will contribute to understanding the molecular mechanisms of PRRSV replication and pathogenicity, leading to better therapeutic and prognostic options to combat the virus.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), caused by porcine reproductive and respiratory syndrome virus (PRRSV), is a significant threat to the global pig industry. Highly pathogenic PRRSV (HP-PRRSV) first emerged in China in 2006 and has subsequently spread across Asia, causing considerable damage to local economies. HP-PRRSV strains possess a greater replication capacity and higher pathogenicity than classical PRRSV strains, although the mechanisms that underlie these characteristics are unclear. In the present study, we identified two mutations in HP-PRRSV strains that distinguish them from classical PRRSV strains. Further experiments that swapped the two mutations in an HP-PRRSV strain and a classical PRRSV strain demonstrated that they are involved in the replication efficiency of the virus and its virulence. Our findings have important implications for understanding the molecular mechanisms of PRRSV replication and pathogenicity and also provide new avenues of research for the study of other viruses.
Collapse
|
47
|
Recombinant RNA-Dependent RNA Polymerase Complex of Ebola Virus. Sci Rep 2018; 8:3970. [PMID: 29507309 PMCID: PMC5838098 DOI: 10.1038/s41598-018-22328-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/21/2018] [Indexed: 12/18/2022] Open
Abstract
Here we report on the expression, purification and characterization of recombinant ebola virus RNA-dependent RNA polymerase (EBOV RdRp). Active protein complexes composed of the large L protein and viral protein VP35 were isolated from insect cells and analyzed using a short primer/template substrate that allowed benchmarking against related enzymes. RNA synthesis by multiprotein complexes of EBOV, influenza B, respiratory syncytial virus (RSV) and monomeric enzymes of hepatitis C and Zika (ZIKV) viruses required a 5′-phosporylated primer. The minimum length of the primer varied between two and three nucleotides in this system. The EBOV enzyme utilizes Mg2+ as a co-factor and the D742A substitution provides an active site mutant that likely affects binding of the catalytic metal ions. Selectivity measurements with nucleotide analogues translate our assay into quantitative terms and facilitate drug discovery efforts. The related EBOV and RSV enzymes are not able to efficiently discriminate against ara-cytidine-5′-triphosphate. We demonstrate that this compound acts like a non-obligate chain-terminator.
Collapse
|
48
|
Venkataraman S, Prasad BVLS, Selvarajan R. RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution. Viruses 2018; 10:v10020076. [PMID: 29439438 PMCID: PMC5850383 DOI: 10.3390/v10020076] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 12/11/2022] Open
Abstract
RNA dependent RNA polymerase (RdRp) is one of the most versatile enzymes of RNA viruses that is indispensable for replicating the genome as well as for carrying out transcription. The core structural features of RdRps are conserved, despite the divergence in their sequences. The structure of RdRp resembles that of a cupped right hand and consists of fingers, palm and thumb subdomains. The catalysis involves the participation of conserved aspartates and divalent metal ions. Complexes of RdRps with substrates, inhibitors and metal ions provide a comprehensive view of their functional mechanism and offer valuable insights regarding the development of antivirals. In this article, we provide an overview of the structural aspects of RdRps and their complexes from the Group III, IV and V viruses and their structure-based phylogeny.
Collapse
Affiliation(s)
- Sangita Venkataraman
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India.
| | - Burra V L S Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurgaon 122413, India.
| | - Ramasamy Selvarajan
- ICAR National Research Centre for Banana, Thayanur Post, Tiruchirapalli 620102, India.
| |
Collapse
|
49
|
Graepel KW, Lu X, Case JB, Sexton NR, Smith EC, Denison MR. Proofreading-Deficient Coronaviruses Adapt for Increased Fitness over Long-Term Passage without Reversion of Exoribonuclease-Inactivating Mutations. mBio 2017; 8:e01503-17. [PMID: 29114026 PMCID: PMC5676041 DOI: 10.1128/mbio.01503-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
The coronavirus (CoV) RNA genome is the largest among the single-stranded positive-sense RNA viruses. CoVs encode a proofreading 3'-to-5' exoribonuclease within nonstructural protein 14 (nsp14-ExoN) that is responsible for CoV high-fidelity replication. Alanine substitution of ExoN catalytic residues [ExoN(-)] in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and murine hepatitis virus (MHV) disrupts ExoN activity, yielding viable mutant viruses with defective replication, up to 20-fold-decreased fidelity, and increased susceptibility to nucleoside analogues. To test the stability of the ExoN(-) genotype and phenotype, we passaged MHV-ExoN(-) 250 times in cultured cells (P250), in parallel with wild-type MHV (WT-MHV). Compared to MHV-ExoN(-) P3, MHV-ExoN(-) P250 demonstrated enhanced replication and increased competitive fitness without reversion at the ExoN(-) active site. Furthermore, MHV-ExoN(-) P250 was less susceptible than MHV-ExoN(-) P3 to multiple nucleoside analogues, suggesting that MHV-ExoN(-) was under selection for increased replication fidelity. We subsequently identified novel amino acid changes within the RNA-dependent RNA polymerase and nsp14 of MHV-ExoN(-) P250 that partially accounted for the reduced susceptibility to nucleoside analogues. Our results suggest that increased replication fidelity is selected in ExoN(-) CoVs and that there may be a significant barrier to ExoN(-) reversion. These results also support the hypothesis that high-fidelity replication is linked to CoV fitness and indicate that multiple replicase proteins could compensate for ExoN functions during replication.IMPORTANCE Uniquely among RNA viruses, CoVs encode a proofreading exoribonuclease (ExoN) in nsp14 that mediates high-fidelity RNA genome replication. Proofreading-deficient CoVs with disrupted ExoN activity [ExoN(-)] either are nonviable or have significant defects in replication, RNA synthesis, fidelity, fitness, and virulence. In this study, we showed that ExoN(-) murine hepatitis virus can adapt during long-term passage for increased replication and fitness without reverting the ExoN-inactivating mutations. Passage-adapted ExoN(-) mutants also demonstrate increasing resistance to nucleoside analogues that is explained only partially by secondary mutations in nsp12 and nsp14. These data suggest that enhanced resistance to nucleoside analogues is mediated by the interplay of multiple replicase proteins and support the proposed link between CoV fidelity and fitness.
Collapse
Affiliation(s)
- Kevin W Graepel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James Brett Case
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicole R Sexton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Everett Clinton Smith
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biology, the University of the South, Sewanee, Tennessee, USA
| | - Mark R Denison
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
50
|
Structure and Function of Caliciviral RNA Polymerases. Viruses 2017; 9:v9110329. [PMID: 29113097 PMCID: PMC5707536 DOI: 10.3390/v9110329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 11/16/2022] Open
Abstract
Caliciviruses are a leading agent of human and animal gastroenteritis and respiratory tract infections, which are growing concerns in immunocompromised individuals. However, no vaccines or therapeutics are yet available. Since the rapid rate of genetic evolution of caliciviruses is mainly due to the error-prone nature of RNA-dependent RNA polymerase (RdRp), this article focuses on recent studies of the structures and functions of RdRp from caliciviruses. It also provides recent advances in the interactions of RdRp with virion protein genome-linked (VPg) and RNA and the structural and functional features of its precursor.
Collapse
|