1
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
2
|
Moore JP. Interoceptive signals from the heart and coronary circulation in health and disease. Auton Neurosci 2024; 253:103180. [PMID: 38677129 DOI: 10.1016/j.autneu.2024.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
This review considers interoceptive signalling from the heart and coronary circulation. Vagal and cardiac sympathetic afferent sensory nerve endings are distributed throughout the atria, ventricles (mainly left), and coronary artery. A small proportion of cardiac receptors attached to thick myelinated vagal afferents are tonically active during the cardiac cycle. Dependent upon location, these mechanoreceptors detect fluctuations in atrial volume and coronary arterial perfusion. Atrial volume and coronary arterial signals contribute to beat-to-beat feedback control and physiological homeostasis. Most cardiac receptors are attached to thinly myelinated or nonmyelinated C fibres, many of which are unresponsive to the cardiac cycle. Of these, there are many chemically sensitive cardiac receptors which are activated during myocardial stress by locally released endogenous substances. In contrast, some tonically inactive receptors become activated by irregular ventricular wall mechanics or by distortion of the ischaemic myocardium. Furthermore, some are excited both by chemical mediators of ischaemia and wall abnormalities. Reflex responses arising from cardiac receptors attached to thinly myelinated or nonmyelinated are complex. Impulses that project centrally through vagal afferents elicit sympathoinhibition and hypotension, whereas impulses travelling in cardiac sympathetic afferents and spinal pathways elicit sympathoexcitation and hypertension. Two opposing cardiac reflexes may provide a mechanism for fine-tuning a composite haemodynamic response during myocardial stress. Sympathetic afferents provide the primary pathway for transmission of cardiac nociception to the central nervous system. However, activation of sympathetic afferents may increase susceptibility to life-threatening arrhythmias. Notably, the cardiac sympathetic afferent reflex predominates in pathophysiological states including hypertension and heart failure.
Collapse
|
3
|
Paz Y, Levy Y, Grosman-Rimon L, Shinfeld A. Nonpharmacological interventions for 'no-option' refractory angina patients. J Cardiovasc Med (Hagerstown) 2024; 25:13-22. [PMID: 37942734 DOI: 10.2459/jcm.0000000000001566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Refractory angina pectoris (RAP) defined as chronic anginal chest pain because of coronary artery disease (CAD) is a major problem. The increase in the number of patients with RAP in recent years is because of the increasing aging population and improved survival rates among patients with CAD. Management of patients with RAP is often extremely challenging. In this review, we present several interventional approaches for RAP, including device therapies, lifestyle intervention, and cell therapies. Some of these treatments are currently used in the management of RAP, whereas other treatments are under investigation.
Collapse
Affiliation(s)
- Yoav Paz
- General Intensive Care Unit, Sourasky Medical Center, Tel Aviv, Israel, affiliated with Sackler Faculty of Medicine, Tel Aviv University
| | - Yair Levy
- Department of Medicine, Meir Hospital, Kfar-Saba, Israel
| | - Liza Grosman-Rimon
- School of Graduate Studies, Levinsky-Wingate Academic College, Wingate Institute, Netanya, Israel
| | - Amihay Shinfeld
- Department of Cardiac Surgery, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| |
Collapse
|
4
|
Wang B, Qin Z, Li M, Arner A, Steen S. Pharmacological and mechanical properties of isolated pig coronary veins. Front Physiol 2023; 14:1275736. [PMID: 38028806 PMCID: PMC10651723 DOI: 10.3389/fphys.2023.1275736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Recent successful cardiac transplantation from pig to non-human primates and the first pig-to-human transplantation has put the focus on the properties of the pig heart. In contrast to the coronary arteries, the coronary veins are less well characterized and the aim was to examine the mechanical and pharmacological properties of coronary veins in comparison to the arteries. Vessel segments from the left anterior descending coronary artery (LAD) and the concomitant vein were isolated from pig hearts in cardioplegia and examined in vitro. The wall thickness, active tension and active stress at optimal circumference were lower in coronary veins, reflecting the lower intravascular pressure in vivo. Reverse transcription polymerase chain reaction (RT-PCR) analysis of myosin isoforms showed that the vein could be characterized as having a slower smooth muscle phenotype compared to the artery. Both vessel types contracted in response to the thromboxane agonist U46619 with EC50 values of about 20 nM. The artery contracted in response to acetylcholine. Precontracted arteries relaxed in noradrenaline and substance P. In contrast, the veins relaxed in acetylcholine, contracted in noradrenaline and were unresponsive to substance P. In conclusion, these results demonstrate significant differences between the coronary artery and vein in the smooth muscle properties and in the responses to sympathetic and parasympathetic stimuli.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Igelösa Life Science AB, Lund, Sweden
| | - Zhi Qin
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Igelösa Life Science AB, Lund, Sweden
| | - Mei Li
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Igelösa Life Science AB, Lund, Sweden
| | - Anders Arner
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Stig Steen
- Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Martin D, Reihe C, Drummer S, Roessler K, Boomer S, Nelson M. Venoconstrictor responses to activation of bradykinin-sensitive pericardial afferents involve the region of the hypothalamic paraventricular nucleus. Physiol Rep 2022; 10:e15221. [PMID: 35307973 PMCID: PMC8935126 DOI: 10.14814/phy2.15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023] Open
Abstract
Veins are important in the control of venous return, cardiac output, and cardiovascular homeostasis. However, the effector systems modulating venous function remain to be fully elucidated. We demonstrated that activation of bradykinin-sensitive pericardial afferents elicited systemic venoconstriction. The hypothalamic paraventricular nucleus (PVN) is an important site modulating autonomic outflow to the venous compartment. We tested the hypothesis that the PVN region is involved in the venoconstrictor response to pericardial injection of bradykinin. Rats were anesthetized with urethane/alpha chloralose and instrumented for recording arterial pressure, vena caval pressure, and mean circulatory filling pressure (MCFP), an index of venous tone. The rats were fitted with a pericardial catheter and PVN injector guide tubes. Mean arterial pressure (MAP), heart rate (HR), and MCFP responses to pericardial injection of bradykinin (1, 10 µg/kg) were recorded before and after PVN injection of omega conotoxin GVIA (200 ng/200 nl). Pericardial injection of saline produced no systematic effects on MAP, HR, or MCFP. In contrast, pericardial injection of bradykinin was associated with short latency increases in MAP (16 ± 4 to 18 ± 2 mm Hg) and MCFP 0.35 ± 0.19 to 1.01 ± 0.27 mm Hg. Heart rate responses to pericardial BK were highly variable, but HR was significantly increased (15 ± 9 bpm) at the higher BK dose. Conotoxin injection in the PVN region did not affect baseline values for these variables. However, injection of conotoxin into the area of the PVN largely attenuated the pressor (-1 ± 3 to 6 ± 3 mm Hg), MCFP (-0.19 ± 0.07 to 0.20 ± 0.18 mm Hg), and HR (4 ± 14 bpm) responses to pericardial bradykinin injection. We conclude that the PVN region is involved in the venoconstrictor responses to pericardial bradykinin injection.
Collapse
Affiliation(s)
- Doug Martin
- Division of Basic Biomedical SciencesUniversity of South DakotaVermillionSouth DakotaUSA
| | - Casey Reihe
- Division of Basic Biomedical SciencesUniversity of South DakotaVermillionSouth DakotaUSA
| | - Sam Drummer
- Division of Basic Biomedical SciencesUniversity of South DakotaVermillionSouth DakotaUSA
| | - Kyle Roessler
- Division of Basic Biomedical SciencesUniversity of South DakotaVermillionSouth DakotaUSA
| | - Shane Boomer
- Division of Basic Biomedical SciencesUniversity of South DakotaVermillionSouth DakotaUSA
| | - Madeleine Nelson
- Division of Basic Biomedical SciencesUniversity of South DakotaVermillionSouth DakotaUSA
| |
Collapse
|
6
|
Ganzer PD, Loeian MS, Roof SR, Teng B, Lin L, Friedenberg DA, Baumgart IW, Meyers EC, Chun KS, Rich A, Tsao AL, Muir WW, Weber DJ, Hamlin RL. Dynamic detection and reversal of myocardial ischemia using an artificially intelligent bioelectronic medicine. SCIENCE ADVANCES 2022; 8:eabj5473. [PMID: 34985951 PMCID: PMC8730601 DOI: 10.1126/sciadv.abj5473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Myocardial ischemia is spontaneous, frequently asymptomatic, and contributes to fatal cardiovascular consequences. Importantly, myocardial sensory networks cannot reliably detect and correct myocardial ischemia on their own. Here, we demonstrate an artificially intelligent and responsive bioelectronic medicine, where an artificial neural network (ANN) supplements myocardial sensory networks, enabling reliable detection and correction of myocardial ischemia. ANNs were first trained to decode spontaneous cardiovascular stress and myocardial ischemia with an overall accuracy of ~92%. ANN-controlled vagus nerve stimulation (VNS) significantly mitigated major physiological features of myocardial ischemia, including ST depression and arrhythmias. In contrast, open-loop VNS or ANN-controlled VNS following a caudal vagotomy essentially failed to reverse cardiovascular pathophysiology. Last, variants of ANNs were used to meet clinically relevant needs, including interpretable visualizations and unsupervised detection of emerging cardiovascular stress. Overall, these preclinical results suggest that ANNs can potentially supplement deficient myocardial sensory networks via an artificially intelligent bioelectronic medicine system.
Collapse
Affiliation(s)
- Patrick D. Ganzer
- Medical Devices and Neuromodulation, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
- Department of Biomedical Engineering, University of Miami, 1320 S Dixie Hwy., Coral Gables, FL 33146, USA
- The Miami Project to Cure Paralysis, University of Miami, 1095 NW 14th Terrace #48, Miami, FL 33136, USA
- Corresponding author.
| | - Masoud S. Loeian
- Medical Devices and Neuromodulation, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | - Steve R. Roof
- QTest Labs, 6456 Fiesta Dr., Columbus, OH 43235, USA
| | - Bunyen Teng
- QTest Labs, 6456 Fiesta Dr., Columbus, OH 43235, USA
| | - Luan Lin
- Health Analytics, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | - David A. Friedenberg
- Health Analytics, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | - Ian W. Baumgart
- Medical Devices and Neuromodulation, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | - Eric C. Meyers
- Medical Devices and Neuromodulation, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | - Keum S. Chun
- Medical Devices and Neuromodulation, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | - Adam Rich
- Health Analytics, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | - Allison L. Tsao
- Cardiovascular Section, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - William W. Muir
- QTest Labs, 6456 Fiesta Dr., Columbus, OH 43235, USA
- College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA
| | - Doug J. Weber
- Department of Mechanical Engineering and Neuroscience, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA
| | - Robert L. Hamlin
- QTest Labs, 6456 Fiesta Dr., Columbus, OH 43235, USA
- Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH 43201, USA
| |
Collapse
|
7
|
Hemodynamic patterns associated with activation of bradykinin-sensitive pericardial afferents. Curr Res Physiol 2022; 5:73-78. [PMID: 35141530 PMCID: PMC8814590 DOI: 10.1016/j.crphys.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
The heart is endowed with reflexogenic areas capable of powerful blood pressure responses. Relatively little work has studied the hemodynamic mechanisms underlying these responses and whether these are sexually dimorphic. We hypothesized that activation of bradykinin-sensitive pericardial afferents would produce a sexually dimorphic cardiac output response. Male and female Sprague Dawley rats were anesthetized and instrumented with catheters for recording arterial pressure, with an aortic arch flow probe to record cardiac output and with a catheter in the pericardial sac. Mean arterial pressure (MAP), cardiac index (CI) and total peripheral resistance index (TPRI) responses to pericardial bradykinin injection (0.1, 1 μg/kg) were recorded. Pericardial bradykinin injection caused similar increases in MAP in male and female rats. However, the underlying hemodynamic patterns varied considerably. We identified a cluster of CI responders and TPRI responders in both male and female rats. Within CI responders, females exhibited greater CI increases than males. Conversely, in TPRI responders, males exhibited a greater TPRI increase than females. We conclude that aggregate activation of bradykinin-sensitive pericardial afferents is associated with a relatively uniform pressor response but different hemodynamic patterns with males exhibiting a more robust vascular response and females a more robust cardiac output response. Mixed cardiac afferent activation caused similar pressor responses in male and female rats. Subsets of cardiac output and vascular resistance responders were identified. Cardiac output responses were greater in female rats.
Collapse
|
8
|
Hadaya J, Ardell JL. Autonomic Modulation for Cardiovascular Disease. Front Physiol 2020; 11:617459. [PMID: 33414727 PMCID: PMC7783451 DOI: 10.3389/fphys.2020.617459] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Dysfunction of the autonomic nervous system has been implicated in the pathogenesis of cardiovascular disease, including congestive heart failure and cardiac arrhythmias. Despite advances in the medical and surgical management of these entities, progression of disease persists as does the risk for sudden cardiac death. With improved knowledge of the dynamic relationships between the nervous system and heart, neuromodulatory techniques such as cardiac sympathetic denervation and vagal nerve stimulation (VNS) have emerged as possible therapeutic approaches for the management of these disorders. In this review, we present the structure and function of the cardiac nervous system and the remodeling that occurs in disease states, emphasizing the concept of increased sympathoexcitation and reduced parasympathetic tone. We review preclinical evidence for vagal nerve stimulation, and early results of clinical trials in the setting of congestive heart failure. Vagal nerve stimulation, and other neuromodulatory techniques, may improve the management of cardiovascular disorders, and warrant further study.
Collapse
Affiliation(s)
- Joseph Hadaya
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, United States.,UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA, United States.,Molecular, Cellular, and Integrative Physiology Program, UCLA, Los Angeles, CA, United States
| | - Jeffrey L Ardell
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, United States.,UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA, United States
| |
Collapse
|
9
|
Abstract
The article discusses pharmacologic and interventional therapeutic options for patients with refractory angina. Refractory angina refers to long-lasting symptoms (≥3 months) due to established reversible ischemia in the presence of obstructive coronary artery disease, which cannot be controlled by escalating medical therapy with second-line and third-line pharmacologic agents, bypass grafting, or stenting. Due to an aging population, increased number of comorbidities, and advances in coronary artery disease treatment, incidence of refractory angina is growing. Although the number of therapeutic options is increasing, there is a lack of randomized clinical trials that could help create recommendations for this group of patients.
Collapse
Affiliation(s)
- Marcin Makowski
- Department of Interventional Cardiology, Medical University of Lodz, Central Clinical Hospital, ul. Pomorska 251, Lodz 92-213, Poland.
| | | | - Marzenna Zielińska
- Department of Interventional Cardiology, Medical University of Lodz, Central Clinical Hospital, ul. Pomorska 251, Lodz 92-213, Poland
| |
Collapse
|
10
|
Gallone G, Baldetti L, Tzanis G, Gramegna M, Latib A, Colombo A, Henry TD, Giannini F. Refractory Angina: From Pathophysiology to New Therapeutic Nonpharmacological Technologies. JACC Cardiovasc Interv 2020; 13:1-19. [PMID: 31918927 DOI: 10.1016/j.jcin.2019.08.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Despite optimal combination of guideline-directed anti-ischemic therapies and myocardial revascularization, a substantial proportion of patients with stable coronary artery disease continues to experience disabling symptoms and is often referred as "no-option." The appraisal of the pathways linking ischemia to symptom perception indicates a complex model of heart-brain interactions in the generation of the subjective anginal experience and inspired novel approaches that may be clinically effective in alleviating the angina burden of this population. Conversely, the prevailing ischemia-centered view of angina, with the focus on traditional myocardial revascularization as the sole option to address ischemia on top of medical therapy, hinders the experimental characterization and broad-scale clinical implementation of strongly needed therapeutic options. The interventionist, often the first physician to establish the diagnosis of refractory angina pectoris (RAP) following coronary angiography, should be aware of the numerous emerging technologies with the potential to improve quality of life in the growing population of RAP patients. This review describes the current landscape and the future perspectives on nonpharmacological treatment technologies for patients with RAP, with a view on the underlying physiopathological rationale and current clinical evidence.
Collapse
Affiliation(s)
- Guglielmo Gallone
- Division of Cardiology, Department of Medical Sciences, Città della Scienza e della Salute Hospital, University of Turin, Turin, Italy
| | - Luca Baldetti
- Unit of Cardiovascular Interventions, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Georgios Tzanis
- Unit of Cardiovascular Interventions, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Gramegna
- Unit of Cardiovascular Interventions, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Azeem Latib
- Department of Cardiology, Montefiore Medical Center, Bronx, New York. https://twitter.com/azeemlatib
| | - Antonio Colombo
- Interventional Cardiology Unit, GVM Care and Research Maria Cecilia Hospital, Cotignola, Italy
| | - Timothy D Henry
- The Christ Hospital Heart and Vascular Center / The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, Ohio; University of Florida, Gainesville, Florida
| | - Francesco Giannini
- Interventional Cardiology Unit, GVM Care and Research Maria Cecilia Hospital, Cotignola, Italy.
| |
Collapse
|
11
|
Hung CS, Huang CC, Pan SC, Ma HP, Huang CC, Guo YLL, Ho YL. Acute particulate matter exposure is associated with disturbances in heart rate complexity in patients with prior myocardial infarction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:138842. [PMID: 32446047 DOI: 10.1016/j.scitotenv.2020.138842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ambient air pollutants can increase cardiovascular mortality. One possible mechanism is the effect on the autonomic balance of the cardiovascular system. Studies on acute effects of particulate matter (PM) exposure on heart rate variability (HRV), a surrogate marker for autonomic balance, in patients with prior myocardial infarction (MI) revealed inconsistent results. METHOD We prospectively enrolled participants with acute MI. These participants received a 24-hour Holter electrocardiography examination and echocardiography six months after the index MI. Linear [standard deviation of all normal to normal intervals, standard deviation of NN intervals (SDNN), and a low-frequency to high-frequency ratio (LF/HF)] and non-linear parameters of heart rate variability [multiscale entropy (MSE)] were calculated to show autonomic balance. Data for PM2.5, PM2.5-10, and PM10, were obtained from a fixed-site station in Taiwan. Linear mixed effect models were used to estimate acute effects (within 0-3 days) of PM exposure (per 10 μg/m3) on heart rate variability. RESULTS A total of 90 participants were enrolled in this study with a mean age of 58.7 (13.3) and 83 (92.2%) male participants. Traditional HRV parameters, SDNN and LF/HF, were positively correlated with two-day lagged PM2.5-10 and PM10 [adjusted beta coefficient: SDNN: 130.3 and 58.5; LH/HF: 0.32 and 0.21 (all p < or = 0.01)]. MSE slopes 1-5 were negatively correlated with same-day PM2.5-10 and PM10 (adjusted beta coefficient -0.011 (p = 0.01) and -0.005 (p = 0.02), respectively). The left ventricular ejection fraction was negatively correlated with one-day lagged PM2.5-10, and PM10 (adjusted beta coefficient -0.49 and -0.4, respectively; both p < 0.05), after adjusting for MI size. CONCLUSION Our results suggest that coarse PM may acutely affect cardiac autonomic balance. MSE is a sensitive marker for detecting changes in autonomic imbalance in patients with prior MI following acute PM exposure.
Collapse
Affiliation(s)
- Chi-Sheng Hung
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Chang Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Chun Pan
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taipei, Taiwan
| | - Hsi-Pin Ma
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Chun Huang
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and NTU Hospital, Taipei, Taiwan
| | - Yue-Liang Leon Guo
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and NTU Hospital, Taipei, Taiwan.
| | - Yi-Lwun Ho
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Sadowski B. Differential role of specific cardiovascular neuropeptides in pain regulation: Relevance to cardiovascular diseases. Neuropeptides 2020; 81:102046. [PMID: 32284215 DOI: 10.1016/j.npep.2020.102046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
In many instances, the perception of pain is disproportionate to the strength of the algesic stimulus. Excessive or inadequate pain sensation is frequently observed in cardiovascular diseases, especially in coronary ischemia. The mechanisms responsible for individual differences in the perception of cardiovascular pain are not well recognized. Cardiovascular disorders may provoke pain in multiple ways engaging molecules released locally in the heart due to tissue ischemia, inflammation or cellular stress, and through neurogenic and endocrine mechanisms brought into action by hemodynamic disturbances. Cardiovascular neuropeptides, namely angiotensin II (Ang II), angiotensin-(1-7) [Ang-(1-7)], vasopressin, oxytocin, and orexins belong to this group. Although participation of these peptides in the regulation of circulation and pain has been firmly established, their mutual interaction in the regulation of pain in cardiovascular diseases has not been profoundly analyzed. In the present review we discuss the regulation of the release, and mechanisms of the central and systemic actions of these peptides on the cardiovascular system in the context of their central and peripheral nociceptive (Ang II) and antinociceptive [Ang-(1-7), vasopressin, oxytocin, orexins] properties. We also consider the possibility that they may play a significant role in the modulation of pain in cardiovascular diseases. The rationale for focusing attention on these very compounds was based on the following premises (1) cardiovascular disturbances influence the release of these peptides (2) they regulate vascular tone and cardiac function and can influence the intensity of ischemia - the factor initiating pain signals in the cardiovascular system, (3) they differentially modulate nociception through peripheral and central mechanisms, and their effect strongly depends on specific receptors and site of action. Accordingly, an altered release of these peptides and/or pharmacological blockade of their receptors may have a significant but different impact on individual sensation of pain and comfort of an individual patient.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, Poland
| | - Bogdan Sadowski
- School of Engineering and Health, Bitwy Warszawskiej 1920 r. 18, Warsaw, Poland
| |
Collapse
|
13
|
Activation of bradykinin-sensitive pericardial afferents increases systemic venous tone in conscious rats. Auton Neurosci 2020; 223:102624. [PMID: 31901785 DOI: 10.1016/j.autneu.2019.102624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 11/22/2022]
Abstract
Our understanding of reflex regulation of veins lags behind that of the arterial system. While the cardiac sympathetic afferent reflex (CSAR) exerts control over sympathetic outflow, its effect on venous tone is not known. We tested the hypothesis that activation of pericardial bradykinin sensitive afferents elicits systemic venoconstriction. Male and female Sprague Dawley rats were chronically instrumented for measurement of arterial pressure and mean circulatory filling pressure, an index of venous tone, and with an indwelling pericardial catheter. Mean arterial pressure, heart rate and mean circulatory filling pressure responses were assessed in conscious rats in response to graded pericardial injections of bradykinin (1.5-20 μg/kg) before and after ganglionic blockade, and to intravenous norepinephrine (0.05-0.8 μg/kg). Bradykinin B2 receptor was assessed by Western blot. Pericardial bradykinin injections caused graded increases in mean arterial pressure, heart rate and mean circulatory filling pressure. These responses were markedly attenuated after autonomic blockade. The increments in mean circulatory filling pressure were attenuated in female rats. There were no differences in the venoconstrictor responses to norepinephrine or ventricular bradykinin receptor expression between male and females. We interpret these findings to indicate that activation of bradykinin sensitive pericardial afferents elicits a sexually dimorphic, autonomically mediated systemic venoconstrictor response. Differences in venous smooth muscle responses to norepinephrine or ventricular bradykinin receptor expression do not account for the sexual dimorphism. We conclude that systemic venoconstriction contributes to the overall hemodynamic response to activation of the cardiac sympathetic afferent reflex and that this effect is sexually dimorphic.
Collapse
|
14
|
Sparv D, Hofmann R, Gunnarsson A, James S, Hedberg C, Lauermann J, Torild P, Omerovic E, Bergström K, Haugen E, Bergström C, Linder R, Borg P, Haaga U, Olsson A, Böving E, Östlund O, Rylance R, Witt N, Erlinge D. The Analgesic Effect of Oxygen in Suspected Acute Myocardial Infarction: A Substudy of the DETO2X-AMI Trial. JACC Cardiovasc Interv 2019; 11:1590-1597. [PMID: 30139465 DOI: 10.1016/j.jcin.2018.04.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVES In this substudy of the DETO2X-AMI (An Efficacy and Outcome Study of Supplemental Oxygen Treatment in Patients With Suspected Myocardial Infarction) trial, the authors aimed to assess the analgesic effect of moderate-flow oxygen supplementation in patients with suspected acute myocardial infarction (AMI) treated with percutaneous coronary intervention (PCI) and to study the effect of oxygen supplementation on the use of opiates and sedatives during PCI. BACKGROUND Routine oxygen in normoxemic patients with AMI does not provide clinical benefit. However, oxygen may relieve ischemic pain. METHODS Patients were randomly allocated to oxygen or ambient air according to the main study protocol. After PCI, peak level of pain during PCI was measured by the Visual Analogue Scale. The total amount of opiates and sedatives was reported. RESULTS A total of 622 patients were enrolled: 330 in the oxygen group and 292 in the ambient air group. There was no significant difference in peak level of pain (oxygen 4.0 [1.0 to 6.0] vs. air 3.0 [0.6 to 6.0]; p = 0.37), use of opiates (mg) (oxygen 0.0 [0.0 to 3.0] vs. air 0.0 [0.0 to 3.0]; p = 0.31), or use of sedatives between the groups (median [interquartile range]) (oxygen 2.5 [0.0 to 2.5] vs. air 2.5 [0.0 to 2.5]; p = 0.74). CONCLUSIONS In the present study, the authors did not find any analgesic effect of routine oxygen as compared with ambient air, and no differences in the use of sedatives and opiates during PCI. Our results indicate that moderate-flow oxygen supplementation does not relieve pain in normoxemic patients with suspected AMI undergoing treatment with PCI and should thus not be used for this purpose.
Collapse
Affiliation(s)
- David Sparv
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden.
| | - Robin Hofmann
- Department of Clinical Science and Education, Division of Cardiology, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Annika Gunnarsson
- Department of Cardiology, Uppsala University Hospital, Uppsala, Sweden
| | - Stefan James
- Department of Medical Sciences and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Camilla Hedberg
- Department of Internal Medicine, Division of Cardiology, Ryhov Hospital, Jönköping, Sweden
| | - Jörg Lauermann
- Department of Internal Medicine, Division of Cardiology, Ryhov Hospital, Jönköping, Sweden
| | - Petronella Torild
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elmir Omerovic
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Espen Haugen
- Department of Cardiology, Sundsvall Regional Hospital, Sundsvall, Sweden
| | - Camilla Bergström
- Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| | - Rikard Linder
- Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| | - Pia Borg
- Svensk PCI Värmland AB, Karlstad, Sweden
| | - Urban Haaga
- Department of Cardiology, Central Hospital Karlstad, Karlstad, Sweden
| | - Anneli Olsson
- Department of Cardiology, Skane University Hospital, Lund, Sweden
| | - Elin Böving
- Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| | - Ollie Östlund
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Rebecca Rylance
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Nils Witt
- Department of Clinical Science and Education, Division of Cardiology, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | | |
Collapse
|
15
|
Fu LW, Tjen-A-Looi SC, Barvarz S, Guo ZL, Malik S. Role of opioid receptors in modulation of P2X receptor-mediated cardiac sympathoexcitatory reflex response. Sci Rep 2019; 9:17224. [PMID: 31748569 PMCID: PMC6868205 DOI: 10.1038/s41598-019-53754-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/31/2019] [Indexed: 01/15/2023] Open
Abstract
Myocardial ischemia evokes powerful reflex responses through activation of vagal and sympathetic afferents in the heart through the release of ischemic metabolites. We have demonstrated that extracellular ATP stimulates cardiac sympathetic afferents through P2 receptor-mediated mechanism, and that opioid peptides suppress these afferents' activity. However, the roles of both P2 receptor and endogenous opioids in cardiac sympathoexcitatory reflex (CSR) responses remain unclear. We therefore hypothesized that activation of cardiac P2 receptor evokes CSR responses by stimulating cardiac sympathetic afferents and these CSR responses are modulated by endogenous opioids. We observed that intrapericardial injection of α,β-methylene ATP (α,β-meATP, P2X receptor agonist), but not ADP (P2Y receptor agonist), caused a graded increase in mean arterial pressure in rats with sinoaortic denervation and vagotomy. This effect of α,β-meATP was abolished by blockade of cardiac neural transmission with intrapericardial procaine treatment and eliminated by intrapericardial A-317491, a selective P2X2/3 and P2X3 receptor antagonist. Intrapericardial α,β-meATP also evoked CSR response in vagus-intact rats. Furthermore, the P2X receptor-mediated CSR responses were enhanced by intrapericardial naloxone, a specific opioid receptor antagonist. These data suggest that stimulation of cardiac P2X2/3 and P2X3, but not P2Y receptors, powerfully evokes CSR responses through activation of cardiac spinal afferents, and that endogenous opioids suppress the P2X receptor-mediated CSR responses.
Collapse
Affiliation(s)
- Liang-Wu Fu
- Susan Samueli Integrative Health Institute and Department of Medicine, School of Medicine, University of California at Irvine, Irvine, CA, 92697, USA.
| | - Stephanie C Tjen-A-Looi
- Susan Samueli Integrative Health Institute and Department of Medicine, School of Medicine, University of California at Irvine, Irvine, CA, 92697, USA
| | - Sherwin Barvarz
- Susan Samueli Integrative Health Institute and Department of Medicine, School of Medicine, University of California at Irvine, Irvine, CA, 92697, USA
| | - Zhi-Ling Guo
- Susan Samueli Integrative Health Institute and Department of Medicine, School of Medicine, University of California at Irvine, Irvine, CA, 92697, USA
| | - Shaista Malik
- Susan Samueli Integrative Health Institute and Department of Medicine, School of Medicine, University of California at Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
16
|
Salavatian S, Ardell SM, Hammer M, Gibbons D, Armour JA, Ardell JL. Thoracic spinal cord neuromodulation obtunds dorsal root ganglion afferent neuronal transduction of the ischemic ventricle. Am J Physiol Heart Circ Physiol 2019; 317:H1134-H1141. [PMID: 31538809 DOI: 10.1152/ajpheart.00257.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Aberrant afferent signaling drives adverse remodeling of the cardiac nervous system in ischemic heart disease. The study objective was to determine whether thoracic spinal dorsal column stimulation (SCS) modulates cardiac afferent sensory transduction of the ischemic ventricle. In anesthetized canines (n = 16), extracellular activity generated by 62 dorsal root ganglia (DRG) soma (T1-T3), with verified myocardial ischemic (MI) sensitivity, were evaluated with and without 20-min preemptive SCS (T1-T3 spinal level; 50 Hz, 90% motor threshold). Transient MI was induced by 1-min coronary artery occlusion (CAO) of the left anterior descending (LAD) or circumflex (LCX) artery, randomized as to sequence. LAD and LCX CAO activated cardiac-related DRG neurons (LAD: 0.15 ± 0.04-1.05 ± 0.20 Hz, P < 0.00002; LCX: 0.08 ± 0.02-1.90 ± 0.45 Hz, P < 0.0003). SCS decreased basal neuronal activity of neurons that responded to LAD (0.15 ± 0.04 to 0.02 ± 0.01 Hz, P < 0.006) and LCX (0.08 ± 0.02 to 0.02 ± 0.01 Hz, P < 0.003). SCS suppressed responsiveness to transient MI (LAD: 1.05 ± 0.20-0.03 ± 0.01 Hz; P < 0.0001; LCX: 1.90 ± 0.45-0.03 ± 0.01 Hz; P < 0.001). Suprathreshold SCS (1 Hz) did not activate DRG neurons antidromically (n = 10 animals). Ventricular fibrillation (VF) was associated with a rapid increase in DRG activity to a maximum of 4.39 ± 1.07 Hz at 20 s after VF induction and a return to 90% of baseline within 10 s thereafter. SCS obtunds the capacity of DRG ventricular neurites to transduce the ischemic myocardium to second-order spinal neurons, a mechanism that would blunt reflex sympathoexcitation to myocardial ischemic stress, thereby contributing to its capacity to cardioprotect.NEW & NOTEWORTHY Aberrant afferent signaling drives adverse remodeling of the cardiac nervous system in ischemic heart disease. This study determined that thoracic spinal column stimulation (SCS) obtunds the capacity of dorsal root ganglia ventricular afferent neurons to transduce the ischemic myocardium to second-order spinal neurons, a mechanism that would blunt reflex sympathoexcitation to myocardial ischemic stress. This modulation does not reflect antidromic actions of SCS but likely reflects efferent-mediated changes at the myocyte-sensory neurite interface.
Collapse
Affiliation(s)
- Siamak Salavatian
- Neurocardiology Research Program of Excellence, University of California, Los Angeles, California.,Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - Sarah M Ardell
- Neurocardiology Research Program of Excellence, University of California, Los Angeles, California.,Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - Mathew Hammer
- Neurocardiology Research Program of Excellence, University of California, Los Angeles, California.,Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - David Gibbons
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - J Andrew Armour
- Neurocardiology Research Program of Excellence, University of California, Los Angeles, California.,Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - Jeffrey L Ardell
- Neurocardiology Research Program of Excellence, University of California, Los Angeles, California.,Cardiac Arrhythmia Center, University of California, Los Angeles, California
| |
Collapse
|
17
|
Zhou M, Liu Y, Xiong L, Quan D, He Y, Tang Y, Huang H, Huang C. Cardiac Sympathetic Afferent Denervation Protects Against Ventricular Arrhythmias by Modulating Cardiac Sympathetic Nerve Activity During Acute Myocardial Infarction. Med Sci Monit 2019; 25:1984-1993. [PMID: 30877783 PMCID: PMC6436207 DOI: 10.12659/msm.914105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Augmented cardiac sympathetic afferent reflex (CSAR) plays a role in enhanced sympathetic activity. Given that a strategy for abolishing augmented CSAR-induced sympathetic activation may be beneficial for protecting against ventricular arrhythmias (VAs) triggered by acute myocardial infarction (AMI), we investigated whether cardiac sympathetic afferent denervation (CSAD) could protect against VAs by modulating cardiac sympathetic nerve activity in an AMI dog model. Material/Methods Twenty-two anesthetized dogs were assigned to the CSAD group (n=9) and the sham group (n=13) randomly. CSAD was produced by epicardial application of resiniferatoxin. Heart rate variability (HRV), ventricular action potential duration (APD), APD dispersion, beat-to-beat variability of repolarization (BVR), effective refractory period (ERP) of ventricles, ERP dispersion, plasma norepinephrine (NE) concentration, and left stellate ganglion (LSG) neural activity were determined at baseline and after CSAD. We designed an AMI model by occluding the left anterior coronary artery, and performed analysis of VAs for 60 minutes using electrocardiography. Then, levels of c-fos and nerve growth factor (NGF) were determined. Results Relative to baseline values, CSAD prolonged ERP and APD of ventricles, increased HRV, decreased APD dispersion, BVR, ERP dispersion and serum NE concentration, and attenuated LSG activity in the CSAD group. AMI triggered a remarkable increase in LSG activity and function but decreased the HRV of the sham group animals relative to the CSAD group. Moreover, the CSAD group had higher levels of VAs relative to the sham group. This was accompanied by a corresponding decrease in proteins quantities of NGF and c-fos in the CSAD group in the LSG after AMI compared to the sham group. Conclusions CSAD can suppress LSG neural activity, hence enhance the electrophysiological stability and protect the heart from AMI-triggered VAs.
Collapse
Affiliation(s)
- Mingmin Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland).,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China (mainland).,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China (mainland)
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland).,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China (mainland).,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China (mainland)
| | - Liang Xiong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland).,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China (mainland).,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China (mainland)
| | - Dajun Quan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland).,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China (mainland).,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China (mainland)
| | - Yan He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland).,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China (mainland).,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China (mainland)
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland).,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China (mainland).,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China (mainland)
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland).,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China (mainland).,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China (mainland)
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland).,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China (mainland).,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
18
|
Effect of myocardial ischemic preconditioning on ischemia-reperfusion stimulation-induced activation in rat thoracic spinal cord with functional MRI. Int J Cardiol 2019; 285:59-64. [PMID: 30905517 DOI: 10.1016/j.ijcard.2019.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Myocardial ischemia and reperfusion-evoked spinal reflexes involve nociceptive signals that trigger neuronal excitation through cardiac afferents, projecting into the thoracic spinal cord. Ischemic preconditioning (IPC) involves brief episodes of sublethal ischemia and reperfusion enhances the resistance of the myocardium to subsequent ischemic insults. This study investigated the effects of IPC on ischemia-reperfusion (I/R) stimulation-induced activation in the thoracic spinal cord of rats. METHODS A new remotely controlled I/R model was established. The infarct size was determined as a percentage of area at risk (IS/AAR) and arrhythmia scores were evaluated. Non-invasive in vivo fMRI was used for signal quantitative analysis of thoracic spinal spatiotemporal. The role of IPC on the excitability of substantia gelatinosa (SG) neurons was assessed by spinal patch clamp recording technique. The altered expressions of c-Fos, SP, and CGRP in T4 segment were detected by immunohistochemical staining. RESULTS The novel I/R model was induced successfully and reliably utilized, and IPC treatment markedly reduced the myocardial infarct size. fMRI analysis revealed that IPC reduced the increased BOLD signals induced by prolonged ischemia-reperfusion. Patch clamp recording showed that IPC treatment reversed the enhanced excitability of SG neurons during I/R treatment. The results of immunofluorescent staining indicated that IPC mitigated the I/R-induced dramatic increase of c-Fos, and reduced the release of SP and CGRP in dorsal horns of spinal cord. CONCLUSIONS These results suggested that IPC suppressed neuronal activation induced by I/R stimuli in rat thoracic spinal cord using spinal cord fMRI and patch clamp recording techniques.
Collapse
|
19
|
Kolettis TM. Autonomic function and ventricular tachyarrhythmias during acute myocardial infarction. World J Exp Med 2018; 8:8-11. [PMID: 30191139 PMCID: PMC6125141 DOI: 10.5493/wjem.v8.i1.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/05/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023] Open
Abstract
Most cases of sudden cardiac death are attributed to sustained ventricular tachyarrhythmias (VTs), triggered by acute coronary occlusion. Autonomic dysfunction, an important arrhythmogenic mechanism in this setting, is being actively investigated, aiming at the advent of preventive strategies. Recent experimental studies have shown vagal withdrawal after anterior myocardial infarction, coinciding with high incidence of VTs, followed by more gradual sympathetic activation coinciding with a second arrhythmia peak. This article summarizes recent knowledge on this intriguing topic, generating hypotheses that can be investigated in future experimental and clinical studies.
Collapse
Affiliation(s)
- Theofilos M Kolettis
- Department of Cardiology, Cardiovascular Research Institute and University of Ioannina Medical School, Ioannina 45500, Greece
| |
Collapse
|
20
|
Zou L, Gong Y, Zhao S, Yi Z, Han X, Wu B, Jia T, Li L, Yuan H, Shi L, Zhang C, Gao Y, Li G, Xu H, Liu H, Liang S, Liu S. Downregulation of P2Y12in the superior cervical ganglia alleviates abnormal sympathetic activity after myocardial ischemia. J Cell Physiol 2017; 233:3375-3383. [DOI: 10.1002/jcp.26184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Lifang Zou
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Yingxin Gong
- First Clinical Department; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
| | - Shanhong Zhao
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Zhihua Yi
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
- Nursing College; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
| | - Xinyao Han
- First Clinical Department; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
| | - Bing Wu
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Tianyu Jia
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Lin Li
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Huilong Yuan
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Liran Shi
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Chunping Zhang
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
- Department of Cell Biology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
| | - Yun Gao
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Guilin Li
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Hong Xu
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Hui Liu
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Shangdong Liang
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Shuangmei Liu
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| |
Collapse
|
21
|
Laranjo S, Geraldes V, Oliveira M, Rocha I. Insights into the background of autonomic medicine. Rev Port Cardiol 2017; 36:757-771. [PMID: 29037833 DOI: 10.1016/j.repc.2017.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 12/12/2016] [Accepted: 01/08/2017] [Indexed: 12/27/2022] Open
Abstract
Knowledge of the physiology underlying the autonomic nervous system is pivotal for understanding autonomic dysfunction in clinical practice. Autonomic dysfunction may result from primary modifications of the autonomic nervous system or be secondary to a wide range of diseases that cause severe morbidity and mortality. Together with a detailed history and physical examination, laboratory assessment of autonomic function is essential for the analysis of various clinical conditions and the establishment of effective, personalized and precise therapeutic schemes. This review summarizes the main aspects of autonomic medicine that constitute the background of cardiovascular autonomic dysfunction.
Collapse
Affiliation(s)
- Sérgio Laranjo
- Instituto de Fisiologia da Faculdade de Medicina e Centro Cardiovascular, Universidade de Lisboa, Lisboa, Portugal
| | - Vera Geraldes
- Instituto de Fisiologia da Faculdade de Medicina e Centro Cardiovascular, Universidade de Lisboa, Lisboa, Portugal
| | - Mário Oliveira
- Instituto de Fisiologia da Faculdade de Medicina e Centro Cardiovascular, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel Rocha
- Instituto de Fisiologia da Faculdade de Medicina e Centro Cardiovascular, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
22
|
Insights into the background of autonomic medicine. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.repce.2017.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Oliveira-Silva I, Leicht AS, Moraes MR, Simões HG, Del Rosso S, Córdova C, Boullosa DA. Heart Rate and Cardiovascular Responses to Commercial Flights: Relationships with Physical Fitness. Front Physiol 2016; 7:648. [PMID: 28082914 PMCID: PMC5186762 DOI: 10.3389/fphys.2016.00648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/09/2016] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to examine the influence of physical fitness on cardiac autonomic control in passengers prior to, during and following commercial flights. Twenty-two, physically active men (36.4 ± 6.4 years) undertook assessments of physical fitness followed by recordings of 24-h heart rate (HR), heart rate variability (HRV), and blood pressure (BP) on a Control (no flight) and Experimental (flight) day. Recordings were analyzed using a two-way analysis of variance for repeated measures with relationships between variables examined via Pearson product-moment correlation coefficients. Compared to the Control day, 24-h HR was significantly greater (>7%) and HRV measures (5–39%) significantly lower on the Experimental day. During the 1-h flight, HR (24%), and BP (6%) were increased while measures of HRV (26–45%) were reduced. Absolute values of HRV during the Experimental day and relative changes in HRV measures (Control-Experimental) were significantly correlated with measures of aerobic fitness (r = 0.43 to 0.51; −0.53 to −0.52) and body composition (r = −0.63 to −0.43; 0.48–0.61). The current results demonstrated that short-term commercial flying significantly altered cardiovascular function including the reduction of parasympathetic modulations. Further, greater physical fitness and lower body fat composition were associated with greater cardiac autonomic control for passengers during flights. Enhanced physical fitness and leaner body composition may enable passengers to cope better with the cardiovascular stress and high allostatic load associated with air travel for enhanced passenger well-being.
Collapse
Affiliation(s)
- Iransé Oliveira-Silva
- Post-Graduate Program in Physical Education, Catholic University of BrasiliaÁguas Claras, Brazil; Physical Education, UniEVANGÉLICA - Centro UniversitárioAnápolis, Brazil
| | - Anthony S Leicht
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University Townsville, QLD, Australia
| | - Milton R Moraes
- Post-Graduate Program in Physical Education, Catholic University of Brasilia Águas Claras, Brazil
| | - Herbert G Simões
- Post-Graduate Program in Physical Education, Catholic University of Brasilia Águas Claras, Brazil
| | - Sebastián Del Rosso
- Post-Graduate Program in Physical Education, Catholic University of Brasilia Águas Claras, Brazil
| | - Cláudio Córdova
- Post-Graduate Program in Physical Education, Catholic University of Brasilia Águas Claras, Brazil
| | - Daniel A Boullosa
- Post-Graduate Program in Physical Education, Catholic University of BrasiliaÁguas Claras, Brazil; Sport and Exercise Science, College of Healthcare Sciences, James Cook UniversityTownsville, QLD, Australia
| |
Collapse
|
24
|
Abstract
Cardiac control is mediated via a series of reflex control networks involving somata in the (i) intrinsic cardiac ganglia (heart), (ii) intrathoracic extracardiac ganglia (stellate, middle cervical), (iii) superior cervical ganglia, (iv) spinal cord, (v) brainstem, and (vi) higher centers. Each of these processing centers contains afferent, efferent, and local circuit neurons, which interact locally and in an interdependent fashion with the other levels to coordinate regional cardiac electrical and mechanical indices on a beat-to-beat basis. This control system is optimized to respond to normal physiological stressors (standing, exercise, and temperature); however, it can be catastrophically disrupted by pathological events such as myocardial ischemia. In fact, it is now recognized that autonomic dysregulation is central to the evolution of heart failure and arrhythmias. Autonomic regulation therapy is an emerging modality in the management of acute and chronic cardiac pathologies. Neuromodulation-based approaches that target select nexus points of this hierarchy for cardiac control offer unique opportunities to positively affect therapeutic outcomes via improved efficacy of cardiovascular reflex control. As such, understanding the anatomical and physiological basis for such control is necessary to implement effectively novel neuromodulation therapies. © 2016 American Physiological Society. Compr Physiol 6:1635-1653, 2016.
Collapse
Affiliation(s)
- Jeffrey L Ardell
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| | - John Andrew Armour
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
25
|
Mistrova E, Kruzliak P, Chottova Dvorakova M. Role of substance P in the cardiovascular system. Neuropeptides 2016; 58:41-51. [PMID: 26706184 DOI: 10.1016/j.npep.2015.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 01/03/2023]
Abstract
This article provides an overview of the structure and function of substance P signalling system and its involvement in the cardiovascular regulation. Substance P is an undecapeptide originating from TAC1 gen and belonging to the tachykinin family. The biological actions of substance P are mainly mediated through neurokinin receptor 1 since substance P is the ligand with the highest affinity to neurokinin receptor 1. Substance P is widely distributed within the central and peripheral nervous systems as well as in the cardiovascular system. Substance P is involved in the regulation of heart frequency, blood pressure and in the stretching of vessels. Substance P plays an important role in ischemia and reperfusion and cardiovascular response to stress. Additionally, it has been also implicated in angiogenesis, pain transmission and inflammation. The substance P/neurokinin receptor 1 receptor system is involved in the molecular bases of many human pathological processes. Antagonists of neurokinin receptor 1 receptor could provide clinical solutions for a variety of diseases. Neurokinin receptor 1 antagonists are already used in the prevention of chemotherapy induced nausea and vomiting.
Collapse
Affiliation(s)
- Eliska Mistrova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Peter Kruzliak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic; 2(nd) Department of Internal Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Magdalena Chottova Dvorakova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| |
Collapse
|
26
|
Ardell JL, Andresen MC, Armour JA, Billman GE, Chen PS, Foreman RD, Herring N, O'Leary DS, Sabbah HN, Schultz HD, Sunagawa K, Zucker IH. Translational neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol 2016; 594:3877-909. [PMID: 27098459 DOI: 10.1113/jp271869] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various 'levels' become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics.
Collapse
Affiliation(s)
- J L Ardell
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - M C Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - J A Armour
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - G E Billman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - P-S Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R D Foreman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - D S O'Leary
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - H N Sabbah
- Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - H D Schultz
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Sunagawa
- Department of Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - I H Zucker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
27
|
Ito BR, Covell JW, Curtis GP. Low Intensity Epicardial Pacing During the Absolute Refractory Period Augments Left Ventricular Function Mediated by Local Catecholamine Release. J Cardiovasc Electrophysiol 2016; 27:1102-9. [PMID: 27279561 DOI: 10.1111/jce.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Biventricular epicardial (Epi) pacing can augment left ventricular (LV) function in heart failure. We postulated that these effects might involve catecholamine release from local autonomic nerve activation. To evaluate this hypothesis we applied low intensity Epi electrical stimuli during the absolute refractory period (ARP), thus avoiding altered activation sequence. METHODS Anesthetized pigs (n = 6) were instrumented with an LV pressure (LVP) transducer, left atrial (LA) and LV Epi pacing electrodes, and sonomicrometer segment length (SL) gauges placed proximal and remote to the LV stimulation site. A catheter was placed into the great cardiac vein adjacent to the LV pacing site for norepinephrine (NE) analysis. During LA pacing at constant rate, 3 pulses (0.8 milliseconds, 2-3x threshold) were applied to the LV Epi electrodes during the ARP. An experimental run consisted of baseline, stimulation (10 minutes), and recovery (5 minutes), repeated 3 times before and after β1 - receptor blockade (BB, metoprolol). RESULTS ARP stimulation produced significant increases in cardiac function reflected by elevated LVP, LV, dP/dtmax , and reduced time to LV dP/dtmax . This was accompanied by increased coronary NE levels and increases in LVP versus SL loop area in the remote myocardial segment. In contrast, the proximal segment exhibited early shortening and decreased loop area. BB abolished the changes in SL and LV function despite continued NE release. CONCLUSION These results demonstrate that ARP EPI stimulation induces NE release mediating augmented global LV function. This effect may contribute to the beneficial effect of biventricular Epi pacing in heart failure in some patients.
Collapse
Affiliation(s)
- Bruce R Ito
- Donald P. Shiley Bioscience Center, San Diego State University, San Diego, California, USA. .,University of California, San Diego, California, USA.
| | | | - Guy P Curtis
- Scripps Clinic and Research, San Diego and La Jolla, California, USA
| |
Collapse
|
28
|
Abstract
Autonomic regulation therapy (ART) is a rapidly emerging therapy in the management of congestive heart failure secondary to systolic dysfunction. Modulation of the cardiac neuronal hierarchy can be achieved with bioelectronics modulation of the spinal cord, cervical vagus, baroreceptor, or renal nerve ablation. This review will discuss relevant preclinical and clinical research in ART for systolic heart failure. Understanding mechanistically what is being stimulated within the autonomic nervous system by such device-based therapy and how the system reacts to such stimuli is essential for optimizing stimulation parameters and for the future development of effective ART.
Collapse
|
29
|
Pauziene N, Alaburda P, Rysevaite-Kyguoliene K, Pauza AG, Inokaitis H, Masaityte A, Rudokaite G, Saburkina I, Plisiene J, Pauza DH. Innervation of the rabbit cardiac ventricles. J Anat 2015; 228:26-46. [PMID: 26510903 DOI: 10.1111/joa.12400] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2015] [Indexed: 11/28/2022] Open
Abstract
The rabbit is widely used in experimental cardiac physiology, but the neuroanatomy of the rabbit heart remains insufficiently examined. This study aimed to ascertain the architecture of the intrinsic nerve plexus in the walls and septum of rabbit cardiac ventricles. In 51 rabbit hearts, a combined approach involving: (i) histochemical acetylcholinesterase staining of intrinsic neural structures in total cardiac ventricles; (ii) immunofluorescent labelling of intrinsic nerves, nerve fibres (NFs) and neuronal somata (NS); and (iii) transmission electron microscopy of intrinsic ventricular nerves and NFs was used. Mediastinal nerves access the ventral and lateral surfaces of both ventricles at a restricted site between the root of the ascending aorta and the pulmonary trunk. The dorsal surface of both ventricles is supplied by several epicardial nerves extending from the left dorsal ganglionated nerve subplexus on the dorsal left atrium. Ventral accessing nerves are thicker and more numerous than dorsal nerves. Intrinsic ventricular NS are rare on the conus arteriosus and the root of the pulmonary trunk. The number of ventricular NS ranged from 11 to 220 per heart. Four chemical phenotypes of NS within ventricular ganglia were identified, i.e. ganglionic cells positive for choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and biphenotypic, i.e. positive for both ChAT/nNOS and for ChAT/tyrosine hydroxylase. Clusters of small intensely fluorescent cells are distributed within or close to ganglia on the root of the pulmonary trunk, but not on the conus arteriosus. The largest and most numerous intrinsic nerves proceed within the epicardium. Scarce nerves were found near myocardial blood vessels, but the myocardium contained only a scarce meshwork of NFs. In the endocardium, large numbers of thin nerves and NFs proceed along the bundle of His and both its branches up to the apex of the ventricles. The endocardial meshwork of fine NFs was approximately eight times denser than the myocardial meshwork. Adrenergic NFs predominate considerably in all layers of the ventricular walls and septum, whereas NFs of other neurochemical phenotypes were in the minority and their amount differed between the epicardium, myocardium and endocardium. The densities of NFs positive for nNOS and ChAT were similar in the epicardium and endocardium, but NFs positive for nNOS in the myocardium were eight times more abundant than NFs positive for ChAT. Potentially sensory NFs positive for both calcitonin gene-related peptide and substance P were sparse in the myocardial layer, but numerous in epicardial nerves and particularly abundant within the endocardium. Electron microscopic observations demonstrate that intrinsic ventricular nerves have a distinctive morphology, which may be attributed to remodelling of the peripheral nerves after their access into the ventricular wall. In conclusion, the rabbit ventricles display complex structural organization of intrinsic ventricular nerves, NFs and ganglionic cells. The results provide a basic anatomical background for further functional analysis of the intrinsic nervous system in the cardiac ventricles.
Collapse
Affiliation(s)
- Neringa Pauziene
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Paulius Alaburda
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Audrys G Pauza
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Hermanas Inokaitis
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Aiste Masaityte
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gabriele Rudokaite
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Inga Saburkina
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgita Plisiene
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius H Pauza
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
30
|
Beaumont E, Southerland EM, Hardwick JC, Wright GL, Ryan S, Li Y, KenKnight BH, Armour JA, Ardell JL. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction. Am J Physiol Heart Circ Physiol 2015; 309:H1198-206. [PMID: 26276818 PMCID: PMC4666924 DOI: 10.1152/ajpheart.00393.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022]
Abstract
This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions.
Collapse
Affiliation(s)
- Eric Beaumont
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Elizabeth M Southerland
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | - Gary L Wright
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Shannon Ryan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Ying Li
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | - J Andrew Armour
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Medicine, University of California Los Angeles Health System, Los Angeles, California
| | - Jeffrey L Ardell
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Medicine, University of California Los Angeles Health System, Los Angeles, California
| |
Collapse
|
31
|
Effect of protons on the mechanical response of rat muscle nociceptive fibers and neurons in vitro. Neurosci Res 2015; 92:46-52. [DOI: 10.1016/j.neures.2014.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 11/02/2014] [Accepted: 11/05/2014] [Indexed: 01/16/2023]
|
32
|
Blackshaw LA. Transient receptor potential cation channels in visceral sensory pathways. Br J Pharmacol 2014; 171:2528-36. [PMID: 24641218 DOI: 10.1111/bph.12641] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/09/2014] [Accepted: 01/20/2014] [Indexed: 01/03/2023] Open
Abstract
The extensive literature on this subject is in direct contrast to the limited range of clinical uses for ligands of the transient receptor potential cation channels (TRPs) in diseases of the viscera. TRPV1 is the most spectacular example of this imbalance, as it is in other systems, but it is nonetheless the only TRP target that is currently targeted clinically in bladder sensory dysfunction. It is not clear why this discrepancy exists, but a likely answer is in the promiscuity of TRPs as sensors and transducers for environmental mechanical and chemical stimuli. This review first describes the different sensory pathways from the viscera, and on which nociceptive and non-nociceptive neurones within these pathways TRPs are expressed. They not only fulfil roles as both mechano- and chemo-sensors on visceral afferents, but also form an effector mechanism for cell activation after activation of GPCR and cytokine receptors. Their role may be markedly changed in diseased states, including chronic pain and inflammation. Pain presents the most obvious potential for further development of therapeutic interventions targeted at TRPs, but forms of inflammation are emerging as likely to benefit also. However, despite much basic research, we are still at the beginning of exploring such potential in visceral sensory pathways.
Collapse
Affiliation(s)
- L Ashley Blackshaw
- Wingate Institute for Neurogastroenterology, Centre for Digestive Diseases, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
33
|
Passamani LM, Abdala AP, Moraes DJDA, Sampaio KN, Mill JG, Paton JFR. Temporal profile and mechanisms of the prompt sympathoexcitation following coronary ligation in Wistar rats. PLoS One 2014; 9:e101886. [PMID: 25006809 PMCID: PMC4090177 DOI: 10.1371/journal.pone.0101886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/12/2014] [Indexed: 11/18/2022] Open
Abstract
Our aim was to assess the timing and mechanisms of the sympathoexcitation that occurs immediately after coronary ligation. We recorded thoracic sympathetic (tSNA) and phrenic activities, heart rate (HR) and perfusion pressure in Wistar rats subjected to either ligation of the left anterior descending coronary artery (LAD) or Sham operated in the working heart-brainstem preparation. Thirty minutes after LAD ligation, tSNA had increased (basal: 2.5±0.2 µV, 30 min: 3.5±0.3 µV), being even higher at 60 min (5.2±0.5 µV, P<0.01); while no change was observed in Sham animals. HR increased significantly 45 min after LAD (P<0.01). Sixty minutes after LAD ligation, there was: (i) an augmented peripheral chemoreflex - greater sympathoexcitatory response (50, 45 and 27% of increase to 25, 50 and 75 µL injections of NaCN 0.03%, respectively, when compared to Sham, P<0.01); (ii) an elevated pressor response (32±1 versus 23±1 mmHg in Sham, P<0.01) and a reduced baroreflex sympathetic gain (1.3±0.1 versus Sham 2.0±0.1%.mmHg-1, P<0.01) to phenylephrine injection; (iii) an elevated cardiac sympathetic tone (ΔHR after atenolol: -108±8 versus -82±7 bpm in Sham, P<0.05). In contrast, no changes were observed in cardiac vagal tone and bradycardic response to both baroreflex and chemoreflex between LAD and Sham groups. The immediate sympathoexcitatory response in LAD rats was dependent on an excitatory spinal sympathetic cardiocardiac reflex, whereas at 3 h an angiotensin II type 1 receptor mechanism was essential since Losartan curbed the response by 34% relative to LAD rats administered saline (P<0.05). A spinal reflex appears key to the immediate sympathoexcitatory response after coronary ligation. Therefore, the sympathoexcitatory response seems to be maintained by an angiotensinergic mechanism and concomitant augmentation of sympathoexcitatory reflexes.
Collapse
Affiliation(s)
- Luciana Mesquita Passamani
- School of Physiology & Pharmacology, Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol, United Kingdom
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ana Paula Abdala
- School of Physiology & Pharmacology, Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Davi José de Almeida Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karla Nívea Sampaio
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - José Geraldo Mill
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Julian Francis Richmond Paton
- School of Physiology & Pharmacology, Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Foreman RD, Linderoth B. Neural mechanisms of spinal cord stimulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013. [PMID: 23206679 DOI: 10.1016/b978-0-12-404706-8.00006-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuromodulation, specifically spinal cord stimulation (SCS), relieves pain and improves organ function. This chapter discusses the limited information presently available about the underlying mechanisms that explain the beneficial effects of treating patients with SCS. Where applicable, information is presented about translational research that illustrates the importance of collaboration between clinicians, basic scientists, and engineers. This chapter presents the infant stage of studies that attempt to explain the mechanisms which come into play for treating neuropathic pain, ischemic pain in peripheral vascular disease, and diseases of the visceral organs, specifically the gastrointestinal tract and the heart. The basic science studies will demonstrate how SCS acts on various pain syndromes and diseases via multiple pathways in the central nervous system as well as in somatic structures and visceral organs.
Collapse
Affiliation(s)
- Robert D Foreman
- Department of Physiology, Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | | |
Collapse
|
35
|
Fu LW, Longhurst JC. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia. Am J Physiol Heart Circ Physiol 2013; 305:H76-85. [PMID: 23645463 DOI: 10.1152/ajpheart.00091.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T₂-T₅) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32-3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the responses of cardiac sympathetic afferent nerves to myocardial ischemia and ischemic mediators like ATP and bradykinin.
Collapse
Affiliation(s)
- Liang-Wu Fu
- Department of Medicine, School of Medicine, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
36
|
Xu B, Zheng H, Patel KP. Relative contributions of the thalamus and the paraventricular nucleus of the hypothalamus to the cardiac sympathetic afferent reflex. Am J Physiol Regul Integr Comp Physiol 2013; 305:R50-9. [PMID: 23616108 DOI: 10.1152/ajpregu.00004.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiac sympathetic afferent reflex (CSAR) is induced by stimulating the cardiac sympathetic afferents, which evokes increases in sympathetic outflow and arterial pressure. In the present study, we attempted to identify the contribution of thalamic and hypothalamic nuclei involved in the CSAR. First, we observed that there was an increase in the number of c-Fos-labeled cells in the paraventricular nucleus (PVN) (190 ± 18 vs. 101 ± 15; P < 0.05), the paraventricular nucleus of the thalamus (PVT) (239 ± 23 vs. 151 ± 15; P < 0.05), and the mediodorsal thalamic nucleus (MD) (92 ± 9 vs. 63 ± 6; P < 0.05) following epicardial application of bradykinin (BK) compared with the control group (P < 0.05). Second, using extracellular single-unit recording, we found 25% of spontaneously active neurons in the thalamus were stimulated by epicardial application of BK or capsaicin in intact rats. However, 24% of spontaneously active neurons in the thalamus were still stimulated by epicardial application of BK or capsaicin despite vagotomy and sinoaortic denervation. None of the neurons in the thalamus responded to baroreflex changes in arterial pressure, induced by intravenous injection of phenylephrine or sodium nitroprusside. The CSAR was inhibited by microinjection of muscimol or lidocaine into the PVN. However, it was not inhibited or blocked by microinjection of muscimol or lidocaine into the thalamus. Taken together, these data suggest that the thalamus, while activated, is not critical for autonomic adjustments in response to activation of the CSAR. On the other hand, the PVN is critically involved in the central pathway of the CSAR.
Collapse
Affiliation(s)
- Bo Xu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | |
Collapse
|
37
|
Lupiński SŁ, Schlicker E, Pędzińska-Betiuk A, Malinowska B. Acute myocardial ischemia enhances the vanilloid TRPV1 and serotonin 5-HT3 receptor-mediated Bezold-Jarisch reflex in rats. Pharmacol Rep 2012; 63:1450-9. [PMID: 22358093 DOI: 10.1016/s1734-1140(11)70709-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/02/2011] [Indexed: 11/26/2022]
Abstract
The Bezold-Jarisch reflex is characterized by a sudden bradycardia associated with hypotension induced by the activation of the vanilloid TRPV1 and serotonin 5-HT(3) receptors. This reflex is associated with several health conditions, including myocardial infarction. The aim of the present study was to elucidate the influence of acute experimental myocardial ischemia on the reflex bradycardia induced by anandamide and phenylbiguanide, agonists of the TRPV1 and 5-HT(3) receptors, respectively. In urethane-anesthetized rats, the rapid iv injection of anandamide (0.6 μmol/kg) or phenylbiguanide (0.03 μmol/kg) decreased heart rate (HR) by about 7-10% of the basal values. Myocardial ischemia (MI) was induced by ligation of the left anterior coronary artery. The agonists were injected 5 min before MI (S(1)) and 10, 20 and 30 min thereafter (S(2)-S(4)). MI potentiated the anandamide-induced reflex bradycardia by approximately 105% at S(2) and 70% at S(3) but had no effect at S(4). This amplificatory effect of MI was virtually abolished by the TRPV1 receptor antagonist capsazepine (1 μmol/kg) and was not modified by the cannabinoid CB(1) receptor antagonist rimonabant (0.1 μmol/kg). MI also amplified the reflex bradycardia elicited by phenylbiguanide by approximately 110, 60 and 90% (S(2), S(3) and S(4), respectively), and this effect was sensitive to the 5-HT(3) receptor antagonist ondansetron (3 μmol/kg). In conclusion, our results suggest that acute myocardial ischemia augments the Bezold-Jarisch reflex induced via activation of TRPV1 and 5-HT(3) receptors located on sensory vagal nerves in the heart.
Collapse
Affiliation(s)
- Sebastian Ł Lupiński
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza 2A, PL 15-089 Białystok, Poland
| | | | | | | |
Collapse
|
38
|
Abstract
The temporal relationship between the development of heart failure and activation of the neurohumoral systems involved in chronic heart failure (CHF) has not been precisely defined. When a compensatory mechanism switches to a deleterious contributing factor in the progression of the disease is unclear. This article addresses these issues through evaluating the contribution of various cardiovascular reflexes and cellular mechanisms to the sympathoexcitation in CHF. It also sheds light on some of the important central mechanisms that contribute to the increase in sympathetic nerve activity in CHF.
Collapse
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA.
| | | | | |
Collapse
|
39
|
Characterization of thromboxane A₂ receptor and TRPV1 mRNA expression in cultured sensory neurons. Neurosci Lett 2012; 515:12-7. [PMID: 22425716 DOI: 10.1016/j.neulet.2012.02.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/17/2012] [Accepted: 02/28/2012] [Indexed: 11/20/2022]
Abstract
Thromboxane A(2) (TxA(2)) is an arachidonic acid metabolite that stimulates platelet aggregation and vasoconstriction when released from platelets and other cell types during tissue trauma. More recent research has demonstrated that TxA(2) can also stimulate vagal and spinal sensory nerves. The purpose of this study was twofold. One, we compared the expression of the TxA(2) receptor (TxA2R) in neurons from two sensory ganglia: the nodose ganglion (NG) containing cell bodies of vagal afferent nerves and the thoracic dorsal root ganglion (DRG) containing cell bodies of spinal afferent nerves. Two, we determined if TxA2R co-localizes with mRNA for the nociceptive marker, TRPV1, which is the receptor for the noxious substance capsaicin. We found a greater percentage of neurons in the NG that are positive for TxA2R expression than in the DRG. We also found that there was no correlation of expression of TxA2R with TRPV1. These data suggest that while TxA2R is expressed in both vagal and spinal neurons, TxA(2) may elicit stronger vagal or parasympathetic reflexes in the rabbit when released during tissue trauma depending on the location of release. Our data also indicate that TxA(2) is likely to stimulate both nociceptive and non-nociceptive neurons thereby broadening the types of neurons and reflexes that it may excite.
Collapse
|
40
|
Fu LW, Guo ZL, Longhurst JC. Ionotropic glutamate receptors in the external lateral parabrachial nucleus participate in processing cardiac sympathoexcitatory reflexes. Am J Physiol Heart Circ Physiol 2012; 302:H1444-53. [PMID: 22268111 DOI: 10.1152/ajpheart.00984.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulation of cardiac sympathetic afferents during myocardial ischemia with metabolites such as bradykinin (BK) evokes sympathoexcitatory reflex responses and activates neurons in the external lateral parabrachial nucleus (elPBN). The present study tested the hypothesis that this region in the pons processes sympathoexcitatory cardiac reflexes through an ionotropic glutamate receptor mechanism. The ischemic metabolite BK (0.1-1 μg) was injected into the pericardial space of anesthetized and bilaterally vagotomized or intact cats. Hemodynamic and renal sympathetic nerve activity (RSNA) responses to repeated administration of BK before and after unilateral 50-nl microinjections of kynurenic acid (Kyn; 25 mM), 2-amino-5-phosphonopentanoic acid (AP5; 25 mM), and 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzol(F)quinoxaline (NBQX; 10 mM) into the elPBN were recorded. Intrapericardial BK evoked significant increases in mean arterial pressure (MAP) and RSNA in seven vagotomized cats. After blockade of glutamate receptors with the nonselective glutamate receptor antagonist Kyn, the BK-evoked reflex increases in MAP (50 ± 6 vs. 29 ± 2 mmHg) and RSNA (59 ± 8.6 vs. 29 ± 4.7%, before vs. after) were significantly attenuated. The BK-evoked responses returned to pre-Kyn levels 85 min after the application of Kyn. Similarly, BK-evoked reflex responses were reversibly attenuated by blockade of glutamate N-methyl-d-aspartate (NMDA) receptors with AP5 (n = 5) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors with NBQX (n = 5). In contrast, we observed that the repetitive administration of BK evoked consistent reflex responses including MAP and RSNA before and after microinjection of 50 nl of the artificial cerebrospinal fluid vehicle into the elPBN in five animals. Microinjection of glutamate receptor antagonists into regions outside the elPBN did not alter BK-induced reflex responses. Microinjection of Kyn into the elPBN reversibly attenuated BK-induced reflex responses in four vagus intact animals. These data are the first to show that NMDA and AMPA ionotropic glutamate receptors in the elPBN play an important role in processing cardiac excitatory reflex responses.
Collapse
Affiliation(s)
- Liang-Wu Fu
- Department of Medicine, College of Medicine, University of California, Irvine, 92697, USA.
| | | | | |
Collapse
|
41
|
Hsieh BT, Chang CY, Chang YC, Cheng KY. Relationship between the level of essential metal elements in human hair and coronary heart disease. J Radioanal Nucl Chem 2011. [DOI: 10.1007/s10967-011-1174-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Ru F, Surdenikova L, Brozmanova M, Kollarik M. Adenosine-induced activation of esophageal nociceptors. Am J Physiol Gastrointest Liver Physiol 2011; 300:G485-93. [PMID: 21148396 PMCID: PMC3064123 DOI: 10.1152/ajpgi.00361.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Clinical studies implicate adenosine acting on esophageal nociceptive pathways in the pathogenesis of noncardiac chest pain originating from the esophagus. However, the effect of adenosine on esophageal afferent nerve subtypes is incompletely understood. We addressed the hypothesis that adenosine selectively activates esophageal nociceptors. Whole cell perforated patch-clamp recordings and single-cell RT-PCR analysis were performed on the primary afferent neurons retrogradely labeled from the esophagus in the guinea pig. Extracellular recordings were made from the isolated innervated esophagus. In patch-clamp studies, adenosine evoked activation (inward current) in a majority of putative nociceptive (capsaicin-sensitive) vagal nodose, vagal jugular, and spinal dorsal root ganglia (DRG) neurons innervating the esophagus. Single-cell RT-PCR analysis indicated that the majority of the putative nociceptive (transient receptor potential V1-positive) neurons innervating the esophagus express the adenosine receptors. The neural crest-derived (spinal DRG and vagal jugular) esophageal nociceptors expressed predominantly the adenosine A(1) receptor while the placodes-derived vagal nodose nociceptors expressed the adenosine A(1) and/or A(2A) receptors. Consistent with the studies in the cell bodies, adenosine evoked activation (overt action potential discharge) in esophageal nociceptive nerve terminals. Furthermore, the neural crest-derived jugular nociceptors were activated by the selective A(1) receptor agonist CCPA, and the placodes-derived nodose nociceptors were activated by CCPA and/or the selective adenosine A(2A) receptor CGS-21680. In contrast to esophageal nociceptors, adenosine failed to stimulate the vagal esophageal low-threshold (tension) mechanosensors. We conclude that adenosine selectively activates esophageal nociceptors. Our data indicate that the esophageal neural crest-derived nociceptors can be activated via the adenosine A(1) receptor while the placodes-derived esophageal nociceptors can be activated via A(1) and/or A(2A) receptors. Direct activation of esophageal nociceptors via adenosine receptors may contribute to the symptoms in esophageal diseases.
Collapse
Affiliation(s)
- F. Ru
- 1Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - L. Surdenikova
- 2Department of Pathophysiology, Jessenius Medical School, Comenius University, Martin, Slovakia
| | - M. Brozmanova
- 2Department of Pathophysiology, Jessenius Medical School, Comenius University, Martin, Slovakia
| | - M. Kollarik
- 1Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
43
|
Xu B, Chen WW, Fan ZD, Han Y, Xiong XQ, Gao XY, Zhu GQ. Responses of neurons in paraventricular nucleus to activation of cardiac afferents and acute myocardial ischaemia in rats. Exp Physiol 2011; 96:295-304. [DOI: 10.1113/expphysiol.2010.055475] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Birdsong WT, Fierro L, Williams FG, Spelta V, Naves LA, Knowles M, Marsh-Haffner J, Adelman JP, Almers W, Elde RP, McCleskey EW. Sensing muscle ischemia: coincident detection of acid and ATP via interplay of two ion channels. Neuron 2011; 68:739-49. [PMID: 21092862 DOI: 10.1016/j.neuron.2010.09.029] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2010] [Indexed: 01/17/2023]
Abstract
Ischemic pain--examples include the chest pain of a heart attack and the leg pain of a 30 s sprint--occurs when muscle gets too little oxygen for its metabolic need. Lactic acid cannot act alone to trigger ischemic pain because the pH change is so small. Here, we show that another compound released from ischemic muscle, adenosine tri-phosphate (ATP), works together with acid by increasing the pH sensitivity of acid-sensing ion channel number 3 (ASIC3), the molecule used by sensory neurons to detect lactic acidosis. Our data argue that ATP acts by binding to P2X receptors that form a molecular complex with ASICs; the receptor on sensory neurons appears to be P2X5, an electrically quiet ion channel. Coincident detection of acid and ATP should confer sensory selectivity for ischemia over other conditions of acidosis.
Collapse
Affiliation(s)
- William T Birdsong
- Vollum Institute, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fu LW, Longhurst JC. A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia. Am J Physiol Heart Circ Physiol 2010; 299:H1762-71. [PMID: 20870803 DOI: 10.1152/ajpheart.00822.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Myocardial ischemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Brief myocardial ischemia leads to ATP release in the interstitial space. Furthermore, exogenous ATP and α,β-methylene ATP (α,β-meATP), a P2X receptor agonist, stimulate cutaneous group III and IV sensory nerve fibers. The present study tested the hypothesis that endogenous ATP excites cardiac afferents during ischemia through activation of P2 receptors. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anesthetized cats. Single fields of 45 afferents (conduction velocities = 0.25-4.92 m/s) were identified in the left ventricle with a stimulating electrode. Five minutes of myocardial ischemia stimulated 39 of 45 cardiac afferents (8 Aδ, 37 C fibers). Epicardial application of ATP (1-4 μmol) stimulated six ischemically sensitive cardiac afferents in a dose-dependent manner. Additionally, epicardial ATP (2 μmol), ADP (2 μmol), a P2Y agonist, and α,β-meATP (0.5 μmol) significantly activated eight other ischemically sensitive afferents. Third, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist, abolished the responses of six afferents to epicardial ATP (2 μmol) and attenuated the ischemia-related increase in activity of seven other afferents by 37%. In the absence of P2 receptor blockade, cardiac afferents responded consistently to repeated application of ATP (n = 6) and to recurrent myocardial ischemia (n = 6). Finally, six ischemia-insensitive cardiac spinal afferents did not respond to epicardial ATP (2-4 μmol), although these afferents did respond to epicardial bradykinin. Taken together, these data indicate that, during ischemia, endogenously released ATP activates ischemia-sensitive, but not ischemia-insensitive, cardiac spinal afferents through stimulation of P2 receptors likely located on the cardiac sensory neurites.
Collapse
Affiliation(s)
- Liang-Wu Fu
- Department of Medicine, School of Medicine, University of California, Irvine, Irvine, California, USA.
| | | |
Collapse
|
46
|
Morrey C, Brazin J, Seyedi N, Corti F, Silver RB, Levi R. Interaction between sensory C-fibers and cardiac mast cells in ischemia/reperfusion: activation of a local renin-angiotensin system culminating in severe arrhythmic dysfunction. J Pharmacol Exp Ther 2010; 335:76-84. [PMID: 20668055 DOI: 10.1124/jpet.110.172262] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Renin, the rate-limiting enzyme in the activation of the renin-angiotensin system (RAS), is synthesized and stored in cardiac mast cells. In ischemia/reperfusion, cardiac sensory nerves release neuropeptides such as substance P that, by degranulating mast cells, might promote renin release, thus activating a local RAS and ultimately inducing cardiac dysfunction. We tested this hypothesis in whole hearts ex vivo, in cardiac nerve terminals in vitro, and in cultured mast cells. We found that substance P-containing nerves are juxtaposed to renin-containing cardiac mast cells. Chemical stimulation of these nerves elicited substance P release that was accompanied by renin release, with the latter being preventable by mast cell stabilization or blockade of substance P receptors. Substance P caused degranulation of mast cells in culture and elicited renin release, and both of these were prevented by substance P receptor blockade. Ischemia/reperfusion in ex vivo hearts caused the release of substance P, which was associated with an increase in renin and norepinephrine overflow and with sustained reperfusion arrhythmias; substance P receptor blockade prevented these changes. Substance P, norepinephrine, and renin were also released by acetaldehyde, a known product of ischemia/reperfusion, from cardiac synaptosomes and cultured mast cells, respectively. Collectively, our findings indicate that an important link exists in the heart between sensory nerves and renin-containing mast cells; substance P released from sensory nerves plays a significant role in the release of mast cell renin in ischemia/reperfusion and in the activation of a local cardiac RAS. This culminates in angiotensin production, norepinephrine release, and arrhythmic cardiac dysfunction.
Collapse
Affiliation(s)
- Christopher Morrey
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065-4896, USA
| | | | | | | | | | | |
Collapse
|
47
|
Fu LW, Guo ZL, Longhurst JC. Endogenous endothelin stimulates cardiac sympathetic afferents during ischaemia. J Physiol 2010; 588:2473-86. [PMID: 20442267 DOI: 10.1113/jphysiol.2010.188730] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Myocardial ischaemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Previous studies have shown that a brief period of myocardial ischaemia increases endothelin in cardiac venous plasma draining ischaemic myocardium and that exogenous endothelin excites cutaneous group III and IV sensory nerve fibres. The present study tested the hypothesis that endogenous endothelin stimulates cardiac afferents during ischaemia through direct activation of endothelin A receptors (ET(A)Rs). Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anaesthetized cats. Single fields of 38 afferents (CV = 0.25-3.86 m s(-1)) were identified in the left or right ventricle with a stimulating electrode. Five minutes of myocardial ischaemia stimulated all 38 cardiac afferents (8 Adelta, 30 C-fibres) and the responses of these 38 afferents to chemical stimuli were further studied in the following protocols. In the first protocol, injection of endothelin 1 (ET-1, 1, 2 and 4 microg) into the left atrium (LA) stimulated seven ischaemically sensitive cardiac afferents in a dose-dependent manner. Second, BQ-123, a selective ET(A)R antagonist, abolished the responses of nine afferents to 2 microg of ET-1 injected into the left atrium and attenuated the ischaemia-related increase in activity of eight other afferents by 51%. In contrast, blockade of ET(B) receptors caused inconsistent responses to exogenous ET-1 as well as to ischaemia. Furthermore, in the absence of ET(A)R blockade, cardiac afferents responded consistently to repeated administration of ET-1 (n = 7) and to recurrent myocardial ischaemia (n = 7). Finally, using an immunocytochemical staining approach, we observed that ET(A) receptors were expressed in cardiac sensory neurons in thoracic dorsal root ganglia. Taken together, these data indicate that endogenous endothelin contributes to activation of cardiac afferents during myocardial ischaemia through direct stimulation of ET(A) receptors likely to be located in the cardiac sensory nervous system.
Collapse
Affiliation(s)
- Liang-Wu Fu
- Department of Medicine, School of Medicine, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|