1
|
Medina-Feliciano JG, Valentín-Tirado G, Luna-Martínez K, Beltran-Rivera A, Miranda-Negrón Y, García-Arrarás JE. Single-cell RNA sequencing of the holothurian regenerating intestine reveals the pluripotency of the coelomic epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601561. [PMID: 39005414 PMCID: PMC11244903 DOI: 10.1101/2024.07.01.601561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In holothurians, the regenerative process following evisceration involves the development of a "rudiment" or "anlage" at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and HCR-FISH analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified thirteen distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.
Collapse
|
2
|
Wang Z, Xu Y, Huang L, Zhao J, Ye Y, Liu C, Wang B, Zhao H, Zhang H. Ultrastructural characteristics and morphological relationships of cardiomyocytes and telocytes in the myocardium of the bullfrog (Rana catesbeiana). Anat Histol Embryol 2024; 53:e13008. [PMID: 38230833 DOI: 10.1111/ahe.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/29/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Telocytes (TCs) are distinctive interstitial cells due to their characteristic structures and heterogeneity. They are suggested to participate in tissue repair/regeneration. TCs have been identified in many organs of various mammals. However, data on TCs in lower animals are still very limited. In this work, TCs were identified in the myocardium of the bullfrog (Rana catesbeiana) by light and transmission electron microscopy (TEM). The structural relationships between TCs and neighbouring cell types were measured using the ImageJ (FiJi) morphometric software. TCs with slender Tps (telepodes) were located around cardiomyocytes (CMC). TEM revealed TCs with long Tps in the stroma between CMC. The homocellular tight junctions were observed between the Tps. The Tps were also very close to the neighbouring CMC. The distance between Tps and CMC was 0.15 ± 0.08 μm. Notably, Tps were observed to adhere to the periphery of the satellite cells. The Tps and the satellite cells established heterocellular structural connections by tight junctions. Additionally, Tps were frequently observed in close proximity to mast cells (MCs). The distance between the Tps and the MCs was 0.19 ± 0.09 μm. These results confirmed that TCs are present in the myocardium of the bullfrog, and that TCs established structural relationships with neighbouring cell types, including satellite cells and MCs. These findings provide the anatomical evidence to support the note that TCs are involved in tissue regeneration.
Collapse
Affiliation(s)
- Zifan Wang
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Yizhen Xu
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Ling Huang
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiancheng Zhao
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Yaqiong Ye
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Canying Liu
- College of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Provincial Engineering Research Center for Animal Stem Cells of Ordinary Universities, Foshan, China
| | - Bingyun Wang
- College of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Provincial Engineering Research Center for Animal Stem Cells of Ordinary Universities, Foshan, China
| | - Haiquan Zhao
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Hui Zhang
- College of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Provincial Engineering Research Center for Animal Stem Cells of Ordinary Universities, Foshan, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Ketcham PD, Imholt F, Yan M, Smith HM, Asrar S, Yu L, Dolan CP, Qureshi O, Lin YL, Xia I, Hall PC, Falck AR, Sherman KM, Gaddy D, Suva LJ, Muneoka K, Brunauer R, Dawson LA. Microcomputed tomography staging of bone histolysis in the regenerating mouse digit. Wound Repair Regen 2023; 31:17-27. [PMID: 36177656 DOI: 10.1111/wrr.13054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/10/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
Humans and mice have the ability to regenerate the distal digit tip, the terminal phalanx (P3) in response to amputation. What distinguishes P3 regeneration from regenerative failure is formation of the blastema, a proliferative structure that undergoes morphogenesis to regenerate the amputated tissues. P3 regeneration is characterised by the phases of inflammation, tissue histolysis and expansive bone degradation with simultaneous blastema formation, wound closure and finally blastemal differentiation to restore the amputated structures. While each regenerating digit faithfully progresses through all phases of regeneration, phase progression has traditionally been delineated by time, that is, days postamputation (DPA), yet there is widespread variability in the timing of the individual phases. To diminish variability between digits during tissue histolysis and blastema formation, we have established an in-vivo method using microcomputed tomography (micro CT) scanning to identify five distinct stages of the early regeneration response based on anatomical changes of the digit stump. We report that categorising the initial phases of digit regeneration by stage rather than time greatly diminishes the variability between digits with respect to changes in bone volume and length. Also, stages correlate with the levels of cell proliferation, osteoclast recruitment and osteoprogenitor cell recruitment. Importantly, micro CT staging provides a means to estimate open versus closed digit wounds. We demonstrate two spatially distinct and stage specific bone repair/regeneration responses that occur during P3 regeneration. Collectively, these studies showcase the utility of micro CT imaging to infer the composition of radiolucent soft tissues during P3 blastema formation. Specifically, the staging system identifies the onset of cell proliferation, osteoclastogenesis, osteoprogenitor recruitment, the spatial initiation of de novo bone formation and epidermal closure.
Collapse
Affiliation(s)
- Paulina D Ketcham
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Felisha Imholt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Hannah M Smith
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Shabistan Asrar
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,DoD-VA Extremity Trauma and Amputation Centre of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Centre, Bethesda, Maryland, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Yu-Lieh Lin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ian Xia
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Patrick C Hall
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alyssa R Falck
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Kirby M Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Vogt G. Cytology, function and dynamics of stem and progenitor cells in decapod crustaceans. Biol Rev Camb Philos Soc 2021; 97:817-850. [PMID: 34914163 DOI: 10.1111/brv.12824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Stem cells play key roles in development, tissue homeostasis, regeneration, ageing and diseases. Comprehensive reviews on stem cells are available for the determinately growing mammals and insects and some lower invertebrates like hydra but are rare for larger, indeterminately growing invertebrates that can live for many decades. This paper reviews the cytology, function and dynamics of stem and progenitor cells in the decapod crustaceans, a species-rich and ecologically and economically important animal group that includes mainly indeterminate growers but also some determinate growers. Further advantages of decapods for stem cell research are almost 1000-fold differences in body size and longevity, the regeneration of damaged appendages and the virtual absence of age-related diseases and tumours in the indeterminately growing species. The available data demonstrate that the Decapoda possess a remarkable variety of structurally and functionally different stem cells in embryos and larvae, and in the epidermis, musculature, haematopoietic tissue, heart, brain, hepatopancreas, olfactory sense organs and gonads of adults. Some of these seem to be rather continuously active over a lifetime but others are cyclically activated and silenced in periods of days, weeks and years, depending on the specific organ and function. Stem cell proliferation is triggered by signals related to development, moulting, feeding, reproduction, injury, infection, environmental enrichment and social status. Some regulatory pathways have already been identified, including the evolutionarily conserved GATA-binding and runt-domain transcription factors, the widespread neurotransmitter serotonin, the arthropod-specific hormone 20-hydroxyecdysone and the novel astakine growth factors. Knowledge of stem cells in decapods primarily refines our picture on the development, growth and maintenance of tissues and organs in this animal group. Cultured decapod stem cells have good potential for toxicity testing and virus research with practical relevance for aquaculture. Knowledge of stem cells in decapods also broadens our understanding of the evolution of stem cells and regeneration in the animal kingdom. The stem cells of long-lived, indeterminately growing decapods may hold the key to understanding how stem and progenitor cells function into old age without adverse side effects, possibly evoking new ideas for the development of anti-ageing and anti-cancer treatments in humans.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Cell injury, retrodifferentiation and the cancer treatment paradox. Tumour Biol 2015; 36:7365-74. [PMID: 26346166 PMCID: PMC4605964 DOI: 10.1007/s13277-015-3981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/24/2015] [Indexed: 11/09/2022] Open
Abstract
This “opinion article” is an attempt to take an overview of some significant changes that have happened in our understanding of cancer status during the last half century and its evolution under the progressive influence of molecular biology. As an active worker in cancer research and developmental biology during most of this period, I would like to comment briefly on these changes and to give my critical appreciation of their outcome as it affects our knowledge of cancer development as well as the current treatment of the disease. A recall of my own contribution to the subject is also included. Two subjects are particularly developed: cell injury and cell-killing therapies. Cell injury, whatever its origin, has acquired the status of a pivotal event for the initiation of cancer emergence. It is postulated that cell injury, a potential case of cellular death, may also be the origin of a process of stepwise cell reversion (retrodifferentiation or retroprogrammation) leading, by division, mature or stem cells to progressive immaturity. The genetic instability and mutational changes that accompanies this process of cell injury and rejuvenation put normal cells in a status favourable to neoplastic transformation or may evolve cancer cells toward clones with higher malignant potentiality. Thus, cell injury suggests lifestyle as the major upstream initiator of cancer development although this not exclude randomness as an unavoidable contributor to the disease. Cell-killing agents (mainly cytotoxic drugs and radiotherapy) are currently used to treat cancer. At the same time, it is agreed that agents with high cell injury potential (ultraviolet light, ionising radiations, tobacco, environmental pollutants, etc.) contribute to the emergence of malignant tumours. This represents a real paradox. In spite of the progress accomplished in cancer survival, one is tempted to suggest that we have very few chances of really cure cancer as long as we continue to treat malignancies with cell-killing therapies. Indeed, the absence of alternatives to such treatments justifies the pursuit of current procedures of cancer care. But, this should be, precisely, an urgent stimulus to explore other therapeutic approaches. Tumour reversion, immunotherapy, stem cell management and genomic analysis of embryo-foetal development could be, among others, appropriated candidates for future active research.
Collapse
|
6
|
c-Myc regulates proliferation and Fgf10 expression in airway smooth muscle after airway epithelial injury in mouse. PLoS One 2013; 8:e71426. [PMID: 23967208 PMCID: PMC3742735 DOI: 10.1371/journal.pone.0071426] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/02/2013] [Indexed: 11/19/2022] Open
Abstract
During lung development, Fibroblast growth factor 10 (Fgf10), which is expressed in the distal mesenchyme and regulated by Wnt signaling, acts on the distal epithelial progenitors to maintain them and prevent them from differentiating into proximal (airway) epithelial cells. Fgf10-expressing cells in the distal mesenchyme are progenitors for parabronchial smooth muscle cells (PSMCs). After naphthalene, ozone or bleomycin-induced airway epithelial injury, surviving epithelial cells secrete Wnt7b which then activates the PSMC niche to induce Fgf10 expression. This Fgf10 secreted by the niche then acts on a subset of Clara stem cells to break quiescence, induce proliferation and initiate epithelial repair. Here we show that conditional deletion of the Wnt target gene c-Myc from the lung mesenchyme during development does not affect proper epithelial or mesenchymal differentiation. However, in the adult lung we show that after naphthalene-mediated airway epithelial injury c-Myc is important for the activation of the PSMC niche and as such induces proliferation and Fgf10 expression in PSMCs. Our data indicate that conditional deletion of c-Myc from PSMCs inhibits airway epithelial repair, whereas c-Myc ablation from Clara cells has no effect on airway epithelial regeneration. These findings may have important implications for understanding the misregulation of lung repair in asthma and COPD.
Collapse
|
7
|
Bertolotti E, Malagoli D, Franchini A. Skin wound healing in different agedXenopus laevis. J Morphol 2013; 274:956-64. [DOI: 10.1002/jmor.20155] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/20/2013] [Accepted: 03/09/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Evelina Bertolotti
- Department of Life Sciences; University of Modena and Reggio Emilia; 41125; Modena; Italy
| | - Davide Malagoli
- Department of Life Sciences; University of Modena and Reggio Emilia; 41125; Modena; Italy
| | - Antonella Franchini
- Department of Life Sciences; University of Modena and Reggio Emilia; 41125; Modena; Italy
| |
Collapse
|
8
|
Cheng CH, Leferovich J, Zhang XM, Bedelbaeva K, Gourevitch D, Hatcher CJ, Basson CT, Heber-Katz E, Marx KA. Keratin gene expression profiles after digit amputation in C57BL/6 vs. regenerative MRL mice imply an early regenerative keratinocyte activated-like state. Physiol Genomics 2013; 45:409-21. [PMID: 23512742 DOI: 10.1152/physiolgenomics.00142.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mouse strains C57BL/6 (B6) and MRL were studied by whole mouse genome chip microarray analyses of RNA isolated from amputation sites at different times pre- and postamputation at the midsecond phalange of the middle digit. Many keratin genes were highly differentially expressed. All keratin genes were placed into three temporal response classes determined by injury/preinjury ratios. One class, containing only Krt6 and Krt16, were uniquely expressed relative to the other two classes and exhibited different temporal responses in MRL vs. B6. Immunohistochemical staining for Krt6 and Krt16 in tissue sections, including normal digit, flank skin, and small intestine, and from normal and injured ear pinna tissue exhibited staining differences in B6 (low) and MRL (high) that were consistent with the microarray results. Krt10 staining showed no injury-induced differences, consistent with microarray expression. We analyzed Krt6 and Krt16 gene association networks and observed in uninjured tissue several genes with higher expression levels in MRL, but not B6, that were associated with the keratinocyte activated state: Krt6, Krt16, S100a8, S100a9, and Il1b; these data suggest that keratinocytes in the MRL strain, but not in B6, are in an activated state prior to wounding. These expression levels decreased in MRL at all times postwounding but rose in the B6, peaking at day 3. Other keratins significantly expressed in the normal basal keratinocyte state showed no significant strain differences. These data suggest that normal MRL skin is in a keratinocyte activated state, which may provide it with superior responses to wounding.
Collapse
Affiliation(s)
- Chia-Ho Cheng
- Center for Intelligent Biomaterials, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stewart R, Rascón CA, Tian S, Nie J, Barry C, Chu LF, Ardalani H, Wagner RJ, Probasco MD, Bolin JM, Leng N, Sengupta S, Volkmer M, Habermann B, Tanaka EM, Thomson JA, Dewey CN. Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema. PLoS Comput Biol 2013; 9:e1002936. [PMID: 23505351 PMCID: PMC3591270 DOI: 10.1371/journal.pcbi.1002936] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 01/08/2013] [Indexed: 01/09/2023] Open
Abstract
The salamander has the remarkable ability to regenerate its limb after amputation. Cells at the site of amputation form a blastema and then proliferate and differentiate to regrow the limb. To better understand this process, we performed deep RNA sequencing of the blastema over a time course in the axolotl, a species whose genome has not been sequenced. Using a novel comparative approach to analyzing RNA-seq data, we characterized the transcriptional dynamics of the regenerating axolotl limb with respect to the human gene set. This approach involved de novo assembly of axolotl transcripts, RNA-seq transcript quantification without a reference genome, and transformation of abundances from axolotl contigs to human genes. We found a prominent burst in oncogene expression during the first day and blastemal/limb bud genes peaking at 7 to 14 days. In addition, we found that limb patterning genes, SALL genes, and genes involved in angiogenesis, wound healing, defense/immunity, and bone development are enriched during blastema formation and development. Finally, we identified a category of genes with no prior literature support for limb regeneration that are candidates for further evaluation based on their expression pattern during the regenerative process.
Collapse
Affiliation(s)
- Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wu Y, Wang K, Karapetyan A, Fernando WA, Simkin J, Han M, Rugg EL, Muneoka K. Connective tissue fibroblast properties are position-dependent during mouse digit tip regeneration. PLoS One 2013; 8:e54764. [PMID: 23349966 PMCID: PMC3548775 DOI: 10.1371/journal.pone.0054764] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/14/2012] [Indexed: 02/06/2023] Open
Abstract
A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3) leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2), fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3) and incompetent (P2) levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of connective tissue cells that are associated with their regenerative capabilities.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Karen Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Adrine Karapetyan
- Department of Dermatology, University of California Irvine, Irvine, California, United States of America
| | | | - Jennifer Simkin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Manjong Han
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Elizabeth L. Rugg
- Department of Dermatology, University of California Irvine, Irvine, California, United States of America
| | - Ken Muneoka
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| |
Collapse
|
11
|
Lee E, Ju BG, Kim WS. Endogenous retinoic acid mediates the early events in salamander limb regeneration. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2012.729537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
12
|
Moriyasu M, Makanae A, Satoh A. Spatiotemporal regulation of keratin 5 and 17 in the axolotl limb. Dev Dyn 2012; 241:1616-24. [PMID: 22836940 DOI: 10.1002/dvdy.23839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Amphibians have greater regeneration capability than higher vertebrates. They can regenerate their limbs after an amputation. As a limb is regenerated, a regeneration-specific epithelium called the apical epithelial cap (AEC) is induced. The AEC is an essential structure for limb regeneration. Despite the importance of the AEC, molecular marker genes have not been well studied at the molecular level. RESULTS In the present study, keratin5 (KRT5) and KRT17 were investigated in an axolotl-regenerating limb. KRT5 and KRT17 were expressed in a regenerating limb but down-regulated in a differentiating limb. KRT5 showed characteristic regulation in a regenerating blastema. KRT5 was suppressed in the basal layer of the AEC. This KRT5 suppression was correlated to the blastema differentiation and nerve presence. Simple skin wounding could also upregulate both KRT5 and KRT17 gene expression. But these genes were suppressed within a shorter time than in limb regeneration. CONCLUSIONS The KRT5 and KRT17 gene profile can be a useful marker gene to investigate AEC in limb regeneration.
Collapse
Affiliation(s)
- Miyuki Moriyasu
- Okayama University, Research Core for Interdisciplinary Sciences (RCIS), Okayama, Japan
| | | | | |
Collapse
|
13
|
Weber CM, Martindale MQ, Tapscott SJ, Unguez GA. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus. PLoS One 2012; 7:e36819. [PMID: 22685526 PMCID: PMC3365140 DOI: 10.1371/journal.pone.0036819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 04/15/2012] [Indexed: 11/19/2022] Open
Abstract
The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes) revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these progenitor cells subsequently restore the original tissue.
Collapse
Affiliation(s)
- Christopher M. Weber
- Biology Department, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Mark Q. Martindale
- Kewalo Marine Lab, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Stephen J. Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Graciela A. Unguez
- Biology Department, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
14
|
Buckley G, Wong J, Metcalfe AD, Ferguson MWJ. Denervation affects regenerative responses in MRL/MpJ and repair in C57BL/6 ear wounds. J Anat 2011; 220:3-12. [PMID: 22066944 DOI: 10.1111/j.1469-7580.2011.01452.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The MRL/MpJ mouse displays the rare ability amongst mammals to heal injured ear tissue without scarring. Numerous studies have shown that the formation of a blastema-like structure leads to subsequent tissue regeneration in this model, indicating many parallels with amphibian limb regeneration and mammalian embryogenesis. We have recently shown that the MRL/MpJ mouse also possesses an enhanced capacity for peripheral nerve regeneration within the ear wound. Indeed, nerves are vital for the initial phase of blastema formation in the amphibian limb. In this study we investigated the capacity for wound regeneration in a denervated ear. The left ears of MRL/MpJ mice and C57BL/6 (a control strain known to have a poorer regenerative capacity) were surgically denervated at the base via an incision and nerve transection, immediately followed by a 2-mm ear punch wound. Immunohistochemical analysis showed a lack of neurofilament expression in the denervated ear wound. Histology revealed that denervation prevented blastema formation and chrondrogenesis, and also severely hindered normal healing, with disrupted re-epithelialisation, increasing wound size and progressive necrosis towards the ear tip. Denervation of the ear obliterated the regenerative capacity of the MRL/MpJ mouse, and also had a severe negative effect on the ear wound repair mechanisms of the C57BL/6 strain. These data suggest that innervation may be important not only for regeneration but also for normal wound repair processes.
Collapse
Affiliation(s)
- Gemma Buckley
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
15
|
Campbell LJ, Suárez-Castillo EC, Ortiz-Zuazaga H, Knapp D, Tanaka EM, Crews CM. Gene expression profile of the regeneration epithelium during axolotl limb regeneration. Dev Dyn 2011; 240:1826-40. [PMID: 21648017 PMCID: PMC3297817 DOI: 10.1002/dvdy.22669] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2011] [Indexed: 12/11/2022] Open
Abstract
Urodele amphibians are unique among adult vertebrates in their ability to regenerate missing limbs. The process of limb regeneration requires several key tissues including a regeneration-competent wound epidermis called the regeneration epithelium (RE). We used microarray analysis to profile gene expression of the RE in the axolotl, a Mexican salamander. A list of 125 genes and expressed sequence tags (ESTs) showed a ≥1.5-fold expression in the RE than in a wound epidermis covering a lateral cuff wound. A subset of the RE ESTs and genes were further characterized for expression level changes over the time-course of regeneration. This study provides the first large scale identification of specific gene expression in the RE.
Collapse
Affiliation(s)
- Leah J. Campbell
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Edna C. Suárez-Castillo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Humberto Ortiz-Zuazaga
- High Performance Computing facility, Río Piedras Campus, University of Puerto Rico, San Juan, PR, USA
- Department of Computer Science, Río Piedras Campus, University of Puerto Rico, San Juan, PR, USA
| | - Dunja Knapp
- Center for Regenerative Therapies, Dresden, Germany
| | | | - Craig M. Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Buckley G, Metcalfe AD, Ferguson MWJ. Peripheral nerve regeneration in the MRL/MpJ ear wound model. J Anat 2010; 218:163-72. [PMID: 20950365 DOI: 10.1111/j.1469-7580.2010.01313.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The MRL/MpJ mouse displays an accelerated ability to heal ear punch wounds without scar formation (whereas wounds on the dorsal surface of the trunk heal with scar formation), offering a rare opportunity for studying tissue regeneration in adult mammals. A blastema-like structure develops and subsequently the structure of the wounded ear is restored, including cartilage, skin, hair follicles and adipose tissue. We sought to assess if the MRL/MpJ strain also possessed an enhanced capacity for peripheral nerve regeneration. Female MRL/MpJ and C57BL/6 mice were wounded with a 2-mm excisional biopsy punch to the centre of each ear and two 4-mm excisional biopsy punches to the dorsal skin. Immunohistochemical dual staining of pan-neurofilament and CD31 markers was used to investigate reinnervation and vascularisation of both the dorsal surface of the trunk and ear wounds. The MRL/MpJ mouse ear exhibited a significantly (P > 0.01) higher density of regenerated nerves than C57BL/6 between 10 and 21 days post-wounding when the blastema-like structure was forming. Unlike dorsal skin wounds, nerve regeneration in the ear wound preceded vascularisation, recapitulating early mammalian development. Immunohistochemical data suggest that factors within the blastemal mesenchyme, such as aggrecan, may direct nerve regrowth in the regenerating ear tissue.
Collapse
Affiliation(s)
- Gemma Buckley
- Faculty of Life Sciences, UK Centre for Tissue Engineering, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
17
|
Kim ES, Kim GH, Kang ML, Kang YM, Kang KN, Hwang KC, Min BH, Kim JH, Kim MS. Potential induction of rat muscle-derived stem cells to neural-like cells by retinoic acid. J Tissue Eng Regen Med 2010; 5:410-4. [DOI: 10.1002/term.328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 04/27/2010] [Indexed: 12/29/2022]
|
18
|
Kumar A, Nevill G, Brockes JP, Forge A. A comparative study of gland cells implicated in the nerve dependence of salamander limb regeneration. J Anat 2010; 217:16-25. [PMID: 20456522 DOI: 10.1111/j.1469-7580.2010.01239.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Limb regeneration in salamanders proceeds by formation of the blastema, a mound of proliferating mesenchymal cells surrounded by a wound epithelium. Regeneration by the blastema depends on the presence of regenerating nerves and in earlier work it was shown that axons upregulate the expression of newt anterior gradient (nAG) protein first in Schwann cells of the nerve sheath and second in dermal glands underlying the wound epidermis. The expression of nAG protein after plasmid electroporation was shown to rescue a denervated newt blastema and allow regeneration to the digit stage. We have examined the dermal glands by scanning and transmission electron microscopy combined with immunogold labelling of the nAG protein. It is expressed in secretory granules of ductless glands, which apparently discharge by a holocrine mechanism. No external ducts were observed in the wound epithelium of the newt and axolotl. The larval skin of the axolotl has dermal glands but these are absent under the wound epithelium. The nerve sheath was stained post-amputation in innervated but not denervated blastemas with an antibody to axolotl anterior gradient protein. This antibody reacted with axolotl Leydig cells in the wound epithelium and normal epidermis. Staining was markedly decreased in the wound epithelium after denervation but not in the epidermis. Therefore, in both newt and axolotl the regenerating axons induce nAG protein in the nerve sheath and subsequently the protein is expressed by gland cells, under (newt) or within (axolotl) the wound epithelium, which discharge by a holocrine mechanism. These findings serve to unify the nerve dependence of limb regeneration.
Collapse
Affiliation(s)
- Anoop Kumar
- Institute for Structural and Molecular Biology, University College London, London, UK
| | | | | | | |
Collapse
|
19
|
Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Natl Acad Sci U S A 2010; 107:5845-50. [PMID: 20231440 DOI: 10.1073/pnas.1000830107] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Animals capable of regenerating multiple tissue types, organs, and appendages after injury are common yet sporadic and include some sponge, hydra, planarian, and salamander (i.e., newt and axolotl) species, but notably such regenerative capacity is rare in mammals. The adult MRL mouse strain is a rare exception to the rule that mammals do not regenerate appendage tissue. Certain commonalities, such as blastema formation and basement membrane breakdown at the wound site, suggest that MRL mice may share other features with classical regenerators. As reported here, MRL fibroblast-like cells have a distinct cell-cycle (G2/M accumulation) phenotype and a heightened basal and wound site DNA damage/repair response that is also common to classical regenerators and mammalian embryonic stem cells. Additionally, a neutral and alkaline comet assay displayed a persistent level of intrinsic DNA damage in cells derived from the MRL mouse. Similar to mouse ES cells, the p53-target p21 was not expressed in MRL ear fibroblasts. Because the p53/p21 axis plays a central role in the DNA damage response and cell cycle control, we directly tested the hypothesis that p21 down-regulation could functionally induce a regenerative response in an appendage of an otherwise nonregenerating mouse strain. Using the ear hole closure phenotype, a genetically mapped and reliable quantitative indicator of regeneration in the MRL mouse, we show that the unrelated Cdkn1a(tmi/Tyj)/J p21(-/-) mouse (unlike the B6129SF2/J WT control) closes ear holes similar to MRL mice, providing a firm link between cell cycle checkpoint control and tissue regeneration.
Collapse
|
20
|
Rychel AL, Swalla BJ. Anterior regeneration in the hemichordate Ptychodera flava. Dev Dyn 2009; 237:3222-32. [PMID: 18924231 DOI: 10.1002/dvdy.21747] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ptychodera flava is a hemichordate whose anterior structures regenerate reproducibly from posterior trunk pieces when amputated. We characterized the cellular processes of anterior regeneration with respect to programmed cell death and cell proliferation, after wound healing. We found scattered proliferating cells at day 2 of regeneration using a proliferating cell nuclear antigen antibody. On day 4, most proliferating cells were associated with the nerve tract under the epidermis, and on day 6, a small proboscis derived from proliferated cells was regenerated, and a mouth had broken though the epidermis. TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling) detected elevated levels of apoptosis in the endoderm that began furthest away from the region of wound healing, then moved anteriorly over 8 days. Posterior to anterior apoptosis is likely to remove digestive endoderm for later differentiation of pharyngeal endoderm. We hypothesize that P. flava regeneration is nerve dependent and that remodeling in the gut endoderm plays an important role in regeneration.
Collapse
Affiliation(s)
- Amanda L Rychel
- Biology Department, Center for Developmental Biology, and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195-1800, USA
| | | |
Collapse
|
21
|
Abstract
Most but not all phyla include examples of species that are able to regenerate large sections of the body plan. The mechanisms underlying regeneration on this scale are currently being studied in a variety of contexts in both vertebrates and invertebrates. Regeneration generally involves the formation of a wound epithelium after transection or injury, followed by the generation of regenerative progenitor cells and morphogenesis to give the regenerate. Common mechanisms may exist in relation to each of these aspects. For example, the initial proliferation of progenitor cells often depends on the nerve supply, whereas morphogenesis reflects the generation of positional disparity between adjacent cells-the principle of intercalation. These mechanisms are reviewed here across a range of contexts. We also consider the evolutionary origins of regeneration and how regeneration may relate to both agametic reproduction and to ontogeny.
Collapse
Affiliation(s)
- Jeremy P Brockes
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, England.
| | | |
Collapse
|
22
|
Kim HJ, Archer E, Escobedo N, Tapscott SJ, Unguez GA. Inhibition of mammalian muscle differentiation by regeneration blastema extract of Sternopygus macrurus. Dev Dyn 2008; 237:2830-43. [PMID: 18816861 DOI: 10.1002/dvdy.21702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tissue regeneration through stem cell activation and/or cell dedifferentiation is widely distributed across the animal kingdom. By comparison, regeneration in mammals is poor and this may reflect a limited dedifferentiation potential of mature cells. Because mammalian myotubes can dedifferentiate in the presence of newt blastema extract, the present study tested the dedifferentiation induction capability of the blastema from the teleost Sternopygus macrurus (SmBE). Our in vitro data showed that SmBE did not induce cell cycle reentry of myonuclei in myotubes. Instead, SmBE caused myotubes to detach and time-lapse imaging analyses characterized the cellular events before their detachment. Furthermore, SmBE enhanced myoblast proliferation and reversibly inhibited their differentiation. These data suggest the presence of protein factors in SmBE that regulate mammalian muscle physiology and differentiation, but do not support the conservation of a dedifferentiation induction capability by the blastema of S. macrurus.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Biology Department, New Mexico State University, Las Cruces, New Mexico, USA
| | | | | | | | | |
Collapse
|
23
|
Caldwell RL, Opalenik SR, Davidson JM, Caprioli RM, Nanney LB. Tissue profiling MALDI mass spectrometry reveals prominent calcium-binding proteins in the proteome of regenerative MRL mouse wounds. Wound Repair Regen 2008; 16:442-9. [PMID: 18282264 PMCID: PMC2891803 DOI: 10.1111/j.1524-475x.2007.00351.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
MRL/MpJ-Fas(lpr) mice exhibit the ability to regenerate ear tissue excised by dermal punches. This is an exceptional model to identify candidate proteins that may regulate regeneration in typically nonregenerative tissues. Identification of key molecules involved in regeneration can broaden our understanding of the wound-healing process and generate novel therapeutic approaches. Tissue profiling by matrix-assisted laser desorption ionization mass spectrometry is a rapid, powerful proteomic tool that allows hundreds of proteins to be detected from specific regions of intact tissue specimens. To identify these candidate molecules, protein expression in ear punches was examined after 4 and 7 days using tissue profiling of MRL/MpJ-Fas(lpr) mice and the nonregenerative mouse strain C57BL/6J. Spectral analysis revealed distinct proteomic differences between the regenerative and nonregenerative phenotypes, including the calcium-binding proteins calgranulin A and B, calgizzarin, and calmodulin. Spatial distributions for these differentially expressed proteins within the injured regions were confirmed by immunohistochemistry.
Collapse
Affiliation(s)
- Robert L. Caldwell
- Vanderbilt Orthopaedic Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Susan R. Opalenik
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jeffrey M. Davidson
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Richard M. Caprioli
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Lillian B. Nanney
- Department of Plastic Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- Medical Research Service, VA TVHS Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
24
|
|
25
|
Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 2007; 318:772-7. [PMID: 17975060 DOI: 10.1126/science.1147710] [Citation(s) in RCA: 370] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The limb blastemal cells of an adult salamander regenerate the structures distal to the level of amputation, and the surface protein Prod 1 is a critical determinant of their proximodistal identity. The anterior gradient protein family member nAG is a secreted ligand for Prod 1 and a growth factor for cultured newt blastemal cells. nAG is sequentially expressed after amputation in the regenerating nerve and the wound epidermis-the key tissues of the stem cell niche-and its expression in both locations is abrogated by denervation. The local expression of nAG after electroporation is sufficient to rescue a denervated blastema and regenerate the distal structures. Our analysis brings together the positional identity of the blastema and the classical nerve dependence of limb regeneration.
Collapse
Affiliation(s)
- Anoop Kumar
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
26
|
Abstract
We have previously shown that MRL/MpJ mice have a capacity for regeneration instead of scar formation following an ear punch wound. Understanding the differences that occur between scar-free regeneration or repair with scarring will have great impact upon advances in skin tissue engineering. A key question that remains unanswered in the MRL/MpJ mouse model is whether regeneration was restricted to the ear or whether it extended to the skin. A histological analysis was conducted up to 4 months post-wounding, not only with 2-mm punch wounds to the ear but also to the skin on the backs of the same animals. MRL/MpJ mouse ear wounds regenerate faster than control strains, with enhanced blastema formation, a markedly thickened tip epithelium and reduced scarring. Interestingly, in the excisional back wounds, none of these regenerative features was observed and both the C57BL/6 control and MRL/MpJ mice healed with scarring. This review gives an insight into how this regenerative capacity may be due to evolutionary processes as well as ear anatomy. The ear is thin and surrounded on both sides by epithelia, and the dorsal skin is devoid of cartilage and under greater tensile strain. Analysis of apoptosis during ear regeneration is also discussed, assessing the role and expression of various members of the Bcl-2 family of proteins. Ongoing studies are focusing on de novo cartilage development in the regenerating ear, as well as understanding the role of downstream signalling cascades in the process. Identification of such signals could lead to their manipulation and use in a novel tissue-engineered skin substitute with scar-free integration.
Collapse
Affiliation(s)
- Anthony D Metcalfe
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester, UK.
| | | | | | | |
Collapse
|
27
|
Beare AHM, Metcalfe AD, Ferguson MWJ. Location of injury influences the mechanisms of both regeneration and repair within the MRL/MpJ mouse. J Anat 2007; 209:547-59. [PMID: 17005026 PMCID: PMC2100365 DOI: 10.1111/j.1469-7580.2006.00641.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The adult MRL/MpJ mouse regenerates all differentiated structures after through-and-through ear punch wounding in a scar-free process. We investigated whether this regenerative capacity was also shown by skin wounds. Dorsal skin wounds were created, harvested and archived from the same animals (MRL/MpJ and C57BL/6 mice) that received through-and-through ear punch wounds. Re-epithelialization was complete in dorsal wounds in both strains by day 5 and extensive granulation tissue was present by day 14 post-wounding. By day 21, wounds from both strains contained dense amounts of collagen that healed with a scar. The average wound area, as well as alpha-smooth muscle actin expression and macrophage influx were investigated during dorsal skin wound healing and did not significantly differ between strains. Thus, MRL/MpJ mice regenerate ear wounds in a scar-free manner, but heal dorsal skin wounds by simple repair with scar formation. A significant conclusion can be drawn from these data; mechanisms of regeneration and repair can occur within the same animal, potentially utilizing similar molecules and signalling pathways that subtly diverge dependent upon the microenvironment of the injury.
Collapse
Affiliation(s)
- Alice H M Beare
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
28
|
Rinkevich Y, Paz G, Rinkevich B, Reshef R. Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi. PLoS Biol 2007; 5:e71. [PMID: 17341137 PMCID: PMC1808485 DOI: 10.1371/journal.pbio.0050071] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 01/10/2007] [Indexed: 11/19/2022] Open
Abstract
Regeneration in adult chordates is confined to a few model cases and terminates in restoration of restricted tissues and organs. Here, we study the unique phenomenon of whole body regeneration (WBR) in the colonial urochordate Botrylloides leachi in which an entire adult zooid is restored from a miniscule blood vessel fragment. In contrast to all other documented cases, regeneration is induced systemically in blood vessels. Multiple buds appear simultaneously in newly established regeneration niches within vasculature fragments, stemming from composites of pluripotent blood cells and terminating in one functional zooid. We found that retinoic acid (RA) regulates diverse developmental aspects in WBR. The homologue of the RA receptor and a retinaldehyde dehydrogenase-related gene were expressed specifically in blood cells within regeneration niches and throughout bud development. The addition of RA inhibitors as well as RNA interference knockdown experiments resulted in WBR arrest and bud malformations. The administration of all-trans RA to blood vessel fragments resulted in doubly accelerated regeneration and multibud formation, leading to restored colonies with multiple zooids. The Botrylloides system differs from known regeneration model systems by several fundamental criteria, including epimorphosis without the formation of blastema and the induction of a "multifocal regeneration niche" system. This is also to our knowledge the first documented case of WBR from circulating blood cells that restores not only the soma, but also the germ line. This unique Botrylloides WBR process could serve as a new in vivo model system for regeneration, suggesting that RA signaling may have had ancestral roles in body restoration events.
Collapse
Affiliation(s)
- Yuval Rinkevich
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ram Reshef
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
29
|
Nakatani Y, Kawakami A, Kudo A. Cellular and molecular processes of regeneration, with special emphasis on fish fins. Dev Growth Differ 2007; 49:145-54. [PMID: 17335435 DOI: 10.1111/j.1440-169x.2007.00917.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The phenomenon of 'epimorphic regeneration', a complete reformation of lost tissues and organs from adult differentiated cells, has been fascinating many biologists for many years. While most vertebrate species including humans do not have a remarkable ability for regeneration, the lower vertebrates such as urodeles and fish have exceptionally high regeneration abilities. In particular, the teleost fish has a high ability to regenerate a variety of tissues and organs including scales, muscles, spinal cord and heart among vertebrate species. Hence, an understanding of the regeneration mechanism in teleosts will provide an essential knowledge base for rational approaches to tissue and organ regeneration in mammals. In the last decade, small teleost fish such as the zebrafish and medaka have emerged as powerful animal models in which a variety of developmental, genetic and molecular approaches are applicable. In addition, rapid progress in the development of genome resources such as expressed sequence tags and genome sequences has accelerated the speed of the molecular analysis of regeneration. This review summarizes the current status of our understanding of the cellular and molecular basis of regeneration, particularly that regarding fish fins.
Collapse
Affiliation(s)
- Yuki Nakatani
- Department of Biological Information, Tokyo Institute of Technology, 4259-B-33 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
30
|
Abstract
In contrast to mammals, some fish and amphibians have retained the ability to regenerate complex body structures or organs, such as the limb, tail, eye lens, or even parts of the heart. One major difference in the response to injury is the appearance of a mesenchymal growth zone or blastema in these regenerative species instead of the scarring seen in mammals. This blastema is thought to largely derive from the dedifferentiation of various functional cell types, such as skeletal muscle, dermis, and cartilage. In the case of multinucleated skeletal muscle fibers, cell cycle reentry into S-phase as well as fragmentation into mononucleated progenitors is observed both in vitro and in vivo.
Collapse
Affiliation(s)
- Werner L Straube
- Max-Planck Institute of Molecular Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
31
|
Morrison JI, Lööf S, He P, Simon A. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. ACTA ACUST UNITED AC 2006; 172:433-40. [PMID: 16449193 PMCID: PMC2063652 DOI: 10.1083/jcb.200509011] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In contrast to mammals, salamanders can regenerate complex structures after injury, including entire limbs. A central question is whether the generation of progenitor cells during limb regeneration and mammalian tissue repair occur via separate or overlapping mechanisms. Limb regeneration depends on the formation of a blastema, from which the new appendage develops. Dedifferentiation of stump tissues, such as skeletal muscle, precedes blastema formation, but it was not known whether dedifferentiation involves stem cell activation. We describe a multipotent Pax7+ satellite cell population located within the skeletal muscle of the salamander limb. We demonstrate that skeletal muscle dedifferentiation involves satellite cell activation and that these cells can contribute to new limb tissues. Activation of salamander satellite cells occurs in an analogous manner to how the mammalian myofiber mobilizes stem cells during skeletal muscle tissue repair. Thus, limb regeneration and mammalian tissue repair share common cellular and molecular programs. Our findings also identify satellite cells as potential targets in promoting mammalian blastema formation.
Collapse
Affiliation(s)
- Jamie I Morrison
- Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
32
|
Morgunkova AA. The p53 Gene Family: Control of Cell Proliferation and Developmental Programs. BIOCHEMISTRY (MOSCOW) 2005; 70:955-71. [PMID: 16266265 DOI: 10.1007/s10541-005-0210-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
For a quarter of a century the gene p53 has attracted close attention of scientists who deal with problems of carcinogenesis and maintenance of genetic stability. Multicellular organisms on our planet owe their rich evolution in many respects to the ability of this gene to protect cells from oncogenic transformation and harmful changes in DNA. A relatively recent discovery of structural p53 homologs, the genes p63 and p73, which seem to have more ancient roots, has roused keen interest in their function. Do they carry out oncosuppressor functions in partnership with p53 or do they possess their own specific functions? This review analyzes data on p53, p63, and p73 functional activity at the levels of the molecule, cell, and whole organism with the accent on examination of specific p63/p73 targets indicating a unique role of these genes in control of developmental processes.
Collapse
Affiliation(s)
- A A Morgunkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
33
|
Abstract
The prevalence of both type 1 and type 2 diabetes mellitus is increasing throughout the world along with the ensuant morbidity and early mortality because of premature microvascular and macrovascular disease. Current insulin and drug therapies control diabetes, but do not cure it. Cell-based therapies offer the possibilities of a permanent cure for diabetes. Recently, success in the transplantation of pancreatic islets in the livers of type 1 diabetics has afforded the opportunity for a potential cure. However, the severe shortage of donor islets for transplantation limits the usefulness of this therapy. One approach is to exploit the use of stem cells, either embryo-derived or adult tissue-derived, as substrates to create islet tissue suitable for transplantation. Cells isolated from embryo blastocysts and from adult pancreas, liver, and bone marrow can be expanded extensively in vitro and differentiated into islet-like clusters that produce insulin, and, in some instances, can achieve glycemic control when transplanted into streptozotocin-induced diabetic mice. It is, now, also possible to envision the direct systemic administration of stem cells that would home in on and regenerate injured islets, or to administer stem cell stimulators that would enhance endogenous pancreatic stem cells to expand and differentiate into functional, insulin-producing beta-cells. This perspective discusses the potential applications of cellular medicines, in the new discipline of regenerative medicine, to achieve a cure for diabetes.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, 55 Fruit Street - WEL 320, Boston, MA 02114, USA.
| |
Collapse
|
34
|
Wolfe AD, Crimmins G, Cameron JA, Henry JJ. Early regeneration genes: Building a molecular profile for shared expression in cornea-lens transdifferentiation and hindlimb regeneration in Xenopus laevis. Dev Dyn 2005; 230:615-29. [PMID: 15254896 DOI: 10.1002/dvdy.20089] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent studies in Xenopus laevis have begun to compare gene expression during regeneration with that of the original development of specific structures (e.g., the hindlimb and lens), while other studies have sought differences in gene expression between regeneration-competent and regeneration-incompetent stages. To determine whether there are any similarities between the regeneration of different structures, we have used a differential screen to seek shared early gene expression between hindlimb regeneration and cornea-lens transdifferentiation in the Xenopus tadpole. We have isolated 13 clones representing genes whose expression is up-regulated within the first few days of both regenerating processes and which are not demonstrably up-regulated in the context of basic wound healing. Furthermore, all of these genes also show prominent late embryonic expression. The expression patterns and putative identities of all 13 genes are presented, and a model is considered that allows us to characterize and profile important changes in gene expression, which might be shared among various regenerating and developmental systems.
Collapse
Affiliation(s)
- Adam D Wolfe
- Department of Cell and Structural Biology and College of Medicine, University of Illinois, Urbana, 61801, USA
| | | | | | | |
Collapse
|