1
|
Stenger PL, Tribollet A, Guilhaumon F, Cuet P, Pennober G, Jourand P. A Multimarker Approach to Identify Microbial Bioindicators for Coral Reef Health Monitoring-Case Study in La Réunion Island. MICROBIAL ECOLOGY 2025; 87:179. [PMID: 39870904 PMCID: PMC11772467 DOI: 10.1007/s00248-025-02495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/11/2025] [Indexed: 01/29/2025]
Abstract
The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion. The watersheds of the fringing reefs are small, steeply sloped, and are impacted by human activities with significant land use changes and hydrological modifications along the coast and up to mid-altitudes. Sediment, seawater, and coral rubble were sampled in austral summer and winter at each site. For each compartment, bacterial, fungal, microalgal, and protist communities were characterized by high throughput DNA sequencing methodology. Results show that the reef microbiome composition varied greatly with seasons and reef compartments, but variations were different among targeted markers. No significant variation among sites was observed. Relevant bioindicators were highlighted per taxonomic groups such as the Firmicutes:Bacteroidota ratio (8.4%:7.0%), the genera Vibrio (25.2%) and Photobacterium (12.5%) dominating bacteria; the Ascomycota:Basidiomycota ratio (63.1%:36.1%), the genera Aspergillus (40.9%) and Cladosporium (16.2%) dominating fungi; the genus Ostreobium (81.5%) in Chlorophyta taxon for microalgae; and the groups of Dinoflagellata (63.3%) and Diatomea (22.6%) within the protista comprising two dominant genera: Symbiodinium (41.7%) and Pelagodinium (27.8%). This study highlights that the identified bioindicators, mainly in seawater and sediment reef compartments, could be targeted by reef conservation stakeholders to better monitor La Réunion Island's reef state of health and to improve management plans.
Collapse
Affiliation(s)
- Pierre-Louis Stenger
- IRD, CS 41095 - 2 Rue Joseph Wetzell, Parc Technologique Universitaire, 97495 Sainte Clotilde Cedex, La Réunion, France
- Omicsphere Analytics, 19 Rue Philippe Maupas, 37250, Montbazon, France
| | - Aline Tribollet
- IRD, UMR LOCEAN-IPSL (Sorbonne Université-IRD-CNRS-MNHN), Parc Technologique Universitaire, CS 41095 - 2 Rue Joseph Wetzell, 97495 Sainte Clotilde Cedex, La Réunion, France
| | - François Guilhaumon
- IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France
| | - Pascale Cuet
- Université de La Réunion, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France
| | - Gwenaelle Pennober
- Université de La Réunion, UMR ESPACE-DEV, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France
| | - Philippe Jourand
- IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France.
| |
Collapse
|
2
|
Nogueira OMN, Bernal SPF, Peres CK, Boroski M, Passarini MRZ. Isolation of marine-derived filamentous fungi and their potential application for bioremediation process. Braz J Microbiol 2024; 55:3403-3412. [PMID: 39476206 PMCID: PMC11711869 DOI: 10.1007/s42770-024-01536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 01/11/2025] Open
Abstract
We evaluated the bioremediation potential of petroleum-derived compounds using fungal strains isolated from marine samples collected on the coast of the states of Paraná, Brazil. About 75 isolated filamentous fungi were subjected to assays including decolorization of the synthetic dye Remazol Brilliant Blue R (RBBR), tolerance to diesel oil, production of bioemulsifying and degradation of pyrene. Nine isolates could decolorize RBBR between 3.4% and 88.16%. Ten were able to tolerate diesel oil and/or pyrene. One isolate was able to produce compounds with emulsifying properties. Three strains, Trichoderma sp. FM14 (Penicillium spp. FM02 and FM16, and FM14) were able to degrade pyrene between 33.0 and 42.4%, after 8 days. The results of the present work encourage future studies to optimize enzymatic conditions using isolates with biotechnological potential in bioremediation studies of marine environments contaminated with industrial pollutants including hydrocarbons derived from petroleum such as diesel oil and PAHs and synthetic dyes.
Collapse
Affiliation(s)
- Osvaldo Manuel Núñez Nogueira
- Post Graduation Program of Biosciences of University of Latin American Integration (UNILA), Environmental Biotechnology Laboratory, Tarquínio Joslin dos Santos Av., 1000 Jd Universitário, Foz do Iguaçu, PR, Brazil
| | - Suzan Prado Fernandes Bernal
- Post Graduation Program of Energy & Sustainability of University of Latin American Integration (UNILA), 6731 Tancredo Neves Av, Foz do Iguaçu, PR, Brazil
| | - Cleto Kaveski Peres
- University of Latin American Integration (UNILA), Tarquínio Joslin dos Santos Av., 1000- Jd Universitário, Foz do Iguaçu, PR, Brazil
| | - Marcela Boroski
- Post Graduation Program of Energy & Sustainability of University of Latin American Integration (UNILA), 6731 Tancredo Neves Av, Foz do Iguaçu, PR, Brazil
| | - Michel Rodrigo Zambrano Passarini
- Post Graduation Program of Biosciences of University of Latin American Integration (UNILA), Environmental Biotechnology Laboratory, Tarquínio Joslin dos Santos Av., 1000 Jd Universitário, Foz do Iguaçu, PR, Brazil.
- Post Graduation Program of Energy & Sustainability of University of Latin American Integration (UNILA), 6731 Tancredo Neves Av, Foz do Iguaçu, PR, Brazil.
- University of Latin American Integration (UNILA), Tarquínio Joslin dos Santos Av., 1000- Jd Universitário, Foz do Iguaçu, PR, Brazil.
| |
Collapse
|
3
|
Changsut IV, Borbee EM, Womack HR, Shickle A, Sharp KH, Fuess LE. Photosymbiont Density Is Correlated with Constitutive and Induced Immunity in the Facultatively Symbiotic Coral, Astrangia poculata. Integr Comp Biol 2024; 64:1278-1290. [PMID: 38782716 DOI: 10.1093/icb/icae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Scleractinian corals, essential ecosystem engineers that form the base of coral reef ecosystems, have faced unprecedented mortality in recent decades due to climate change-related stressors, including disease outbreaks. Despite this emergent threat to corals, many questions still remain regarding mechanisms underlying observed variation in disease susceptibility. Recent data suggest at least some degree of variation in disease response may be linked to variability in the relationship between host corals and their algal photosymbionts (Family Symbiodiniaceae). Still, the nuances of connections between symbiosis and immunity in cnidarians, including scleractinian corals, remain poorly understood. Here, we leveraged an emergent model species, the facultatively symbiotic, temperate, scleractinian coral Astrangia poculata, to investigate associations between symbiont density and both constitutive and induced immunity. We used a combination of controlled immune challenges with heat-inactivated pathogens and transcriptomic analyses. Our results demonstrate that A. poculata mounts a robust initial response to pathogenic stimuli that is highly similar to responses documented in tropical corals. We document positive associations between symbiont density and both constitutive and induced immune responses, in agreement with recent preliminary studies in A. poculata. A suite of immune genes, including those coding for antioxidant peroxiredoxin biosynthesis, are positively associated with symbiont density in A. poculata under constitutive conditions. Furthermore, variation in symbiont density is associated with distinct patterns of immune response; low symbiont density corals induce preventative immune mechanisms, whereas high symbiont density corals mobilize energetic resources to fuel humoral immune responses. In summary, our study reveals the need for more nuanced study of symbiosis-immune interplay across diverse scleractinian corals, preferably including quantitative energy budget analysis for full disentanglement of these complex associations and their effects on host pathogen susceptibility.
Collapse
Affiliation(s)
| | - Erin M Borbee
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Haley R Womack
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Alicia Shickle
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, RI 02809, USA
| | - Koty H Sharp
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, RI 02809, USA
| | - Lauren E Fuess
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
4
|
Martin-Cuadrado AB, Rubio-Portillo E, Rosselló F, Antón J. The coral Oculina patagonica holobiont and its response to confinement, temperature, and Vibrio infections. MICROBIOME 2024; 12:222. [PMID: 39472959 PMCID: PMC11520598 DOI: 10.1186/s40168-024-01921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/28/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Extensive research on the diversity and functional roles of the microorganisms associated with reef-building corals has been promoted as a consequence of the rapid global decline of coral reefs attributed to climate change. Several studies have highlighted the importance of coral-associated algae (Symbiodinium) and bacteria and their potential roles in promoting coral host fitness and survival. However, the complex coral holobiont extends beyond these components to encompass other entities such as protists, fungi, and viruses. While each constituent has been individually investigated in corals, a comprehensive understanding of their collective roles is imperative for a holistic comprehension of coral health and resilience. RESULTS The metagenomic analysis of the microbiome of the coral Oculina patagonica has revealed that fungi of the genera Aspergillus, Fusarium, and Rhizofagus together with the prokaryotic genera Streptomyces, Pseudomonas, and Bacillus were abundant members of the coral holobiont. This study also assessed changes in microeukaryotic, prokaryotic, and viral communities under three stress conditions: aquaria confinement, heat stress, and Vibrio infections. In general, stress conditions led to an increase in Rhodobacteraceae, Flavobacteraceae, and Vibrionaceae families, accompanied by a decrease in Streptomycetaceae. Concurrently, there was a significant decline in both the abundance and richness of microeukaryotic species and a reduction in genes associated with antimicrobial compound production by the coral itself, as well as by Symbiodinium and fungi. CONCLUSION Our findings suggest that the interplay between microeukaryotic and prokaryotic components of the coral holobiont may be disrupted by stress conditions, such as confinement, increase of seawater temperature, or Vibrio infection, leading to a dysbiosis in the global microbial community that may increase coral susceptibility to diseases. Further, microeukaryotic community seems to exert influence on the prokaryotic community dynamics, possibly through predation or the production of secondary metabolites with anti-bacterial activity. Video Abstract.
Collapse
Affiliation(s)
| | - Esther Rubio-Portillo
- Dpt. Fisiología, Genética y Microbiología, University of Alicante, San Vicente del Raspeig, Spain.
| | - Francesc Rosselló
- Mathematics and Computer Science Dept, University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Josefa Antón
- Dpt. Fisiología, Genética y Microbiología, University of Alicante, San Vicente del Raspeig, Spain
| |
Collapse
|
5
|
Pasqualetti M, Braconcini M, Barghini P, Gorrasi S, Schillaci D, Ferraro D, Della Sala G, De Marino S, Fenice M. From marine neglected substrata new fungal taxa of potential biotechnological interest: the case of Pelagia noctiluca. Front Microbiol 2024; 15:1473269. [PMID: 39464400 PMCID: PMC11502404 DOI: 10.3389/fmicb.2024.1473269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction The marine environment is extremely complex and exerts strong evolutionary pressure often leading to the appearance of microbial strains with new metabolic competencies. Microorganisms in marine ecosystems are still largely unknown and should be explored and conserved for biodiversity preservation, possible ecosystem restoring, and other applications. Biodiversity conservation should become a basic ecological strategy of particular significance in relation to global change. In this context, the present research aimed at exploring the culturable mycobiota associated with the jellyfish Pelagia noctiluca, never studied before. In addition, the isolated strains were tested for potential application (antimicrobial activity and presence of genes related to the production of secondary metabolites). Methods Five jellyfishes were collected in the coastal area of Giglio Island and processed to isolate epizoic fungi. The strains were identified using a polyphasic approach (morphological, physiological, and molecular) and their salt preference was also investigated. The antifungal and antibacterial activity were tested for each strain with agar plug diffusion test. The presence of some key genes related to the main pathways for the production of secondary metabolites in fungi, polyketide synthases (PKSs), and non-ribosomal peptide synthase (NRPSs), was also assessed. Results A total of 164 isolates were obtained; after the dereplication, 40 morphotypes, and 23 species were identified. The phylogenetic analyses suggested the presence of new taxa belonging to Pleosporales: two new genera and species, and a new species of Tamaricicola. The detected mycobiota showed a relatively high diversity, if compared to other epizoic fungal communities. All isolated strains were marine fungi as confirmed by their salt preference and marked euryhalinism. The genes related to the two main pathways for the production of secondary metabolites in fungi, PKSs and NRPSs, were identified in four and nine strains, respectively. The antimicrobial activity was revealed in 70% of the strains, including the new taxa. The abundance of bioactive strains may be related to the potential involvement of epizoic fungi in host defense strategies. Moreover, these strains could show a high potential for further biotechnological applications particularly in the case of new taxa. All strains are maintained in culture collections.
Collapse
Affiliation(s)
- Marcella Pasqualetti
- Department of Biological and Ecological Sciences, University of Tuscia, Viterbo, Italy
- Laboratory of Ecology of Marine Fungi (CoNISMa), University of Tuscia, Viterbo, Italy
| | - Martina Braconcini
- Department of Biological and Ecological Sciences, University of Tuscia, Viterbo, Italy
| | - Paolo Barghini
- Department of Biological and Ecological Sciences, University of Tuscia, Viterbo, Italy
| | - Susanna Gorrasi
- Department of Biological and Ecological Sciences, University of Tuscia, Viterbo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Donatella Ferraro
- Microbiology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Gerardo Della Sala
- Department of Eco-Sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Simona De Marino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Massimiliano Fenice
- Department of Biological and Ecological Sciences, University of Tuscia, Viterbo, Italy
- Laboratory of Applied Marine Microbiology (CoNISMa), University of Tuscia, Viterbo, Italy
| |
Collapse
|
6
|
Dong W, Chen J, Liao X, Chen X, Huang L, Huang J, Huang R, Zhong S, Zhang X. Biodiversity, Distribution and Functional Differences of Fungi in Four Species of Corals from the South China Sea, Elucidated by High-Throughput Sequencing Technology. J Fungi (Basel) 2024; 10:452. [PMID: 39057337 PMCID: PMC11278478 DOI: 10.3390/jof10070452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recent studies have predominantly spotlighted bacterial diversity within coral microbiomes, leaving coral-associated fungi in the shadows of scientific inquiry. This study endeavors to fill this knowledge gap by delving into the biodiversity, distribution and functional differences of fungi associated with soft corals Cladiella krempfi and Sarcophyton tortuosum, gorgonian coral Dichotella gemmacea and stony coral Favia speciosa from the South China Sea. Leveraging high-throughput sequencing of fungal internal transcribed spacer-1 (ITS1) region of the rRNA gene, a total of 431 fungal amplicon sequence variants (ASVs) were identified in this study, which indicated that a large number of fungal communities were harbored in the South China Sea corals. Noteworthy among our findings is that 10 fungal genera are reported for the first time in corals, with Candolleomyces, Exophiala, Fomitopsis, Inaequalispora, Kneiffiella, Paraphaeosphaeria, and Yamadazyma belonging to the Ascomycota, and Cystobasidium, Psathyrella, and Solicoccozyma to the Basidiomycota. Moreover, significant differences (p < 0.05) of fungal communities were observed among the various coral species. In particular, the gorgonian coral D. gemmacea emerged as a veritable haven for fungal diversity, boasting 307 unique ASVs. Contrastingly, soft corals S. tortuosum and C. krempfi exhibited modest fungal diversity, with 36 and 21 unique ASVs, respectively, while the stony coral F. speciosa hosted a comparatively sparse fungal community, with merely 10 unique ASVs in total. These findings not only provide basic data on fungal diversity and function in the South China Sea corals, but also underscore the imperative of nuanced conservation and management strategies for coral reef ecosystems worldwide.
Collapse
Affiliation(s)
- Wenyu Dong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiatao Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Xinye Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Liyu Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Jiayu Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| |
Collapse
|
7
|
Reich HG, Camp EF, Roger LM, Putnam HM. The trace metal economy of the coral holobiont: supplies, demands and exchanges. Biol Rev Camb Philos Soc 2023; 98:623-642. [PMID: 36897260 DOI: 10.1111/brv.12922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef-building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross-kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross-scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function.
Collapse
Affiliation(s)
- Hannah G Reich
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Liza M Roger
- Chemical & Life Science Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| |
Collapse
|
8
|
Schultz J, Modolon F, Rosado AS, Voolstra CR, Sweet M, Peixoto RS. Methods and Strategies to Uncover Coral-Associated Microbial Dark Matter. mSystems 2022; 7:e0036722. [PMID: 35862824 PMCID: PMC9426423 DOI: 10.1128/msystems.00367-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The vast majority of environmental microbes have not yet been cultured, and most of the knowledge on coral-associated microbes (CAMs) has been generated from amplicon sequencing and metagenomes. However, exploring cultured CAMs is key for a detailed and comprehensive characterization of the roles of these microbes in shaping coral health and, ultimately, for their biotechnological use as, for example, coral probiotics and other natural products. Here, the strategies and technologies that have been used to access cultured CAMs are presented, while advantages and disadvantages associated with each of these strategies are discussed. We highlight the existing gaps and potential improvements in culture-dependent methodologies, indicating several possible alternatives (including culturomics and in situ diffusion devices) that could be applied to retrieve the CAM "dark matter" (i.e., the currently undescribed CAMs). This study provides the most comprehensive synthesis of the methodologies used to recover the cultured coral microbiome to date and draws suggestions for the development of the next generation of CAM culturomics.
Collapse
Affiliation(s)
- Júnia Schultz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Flúvio Modolon
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre S. Rosado
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Raquel S. Peixoto
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
9
|
Liu Y, Li Y, Chen M, Liu Y, Liang J, Zhang Y, Qian ZJ. Mechanism of two alkaloids isolated from coral endophytic fungus for suppressing angiogenesis in atherosclerotic plaque in HUVEC. Int Immunopharmacol 2022; 109:108931. [PMID: 35704971 DOI: 10.1016/j.intimp.2022.108931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 11/05/2022]
Abstract
Atherosclerosis is a significant cause of many cardiovascular diseases. Oxidized low-density lipoproteins (ox-LDL) are crucial in developing atherosclerosis. In this study, we researched the effects of two alkaloids epi-aszonalenin A (EAA) and aszonalenin (AZN) of an endophytic fungus Aspergillus terreus C23-3 from coral Pavona, on ox-LDL-induced inflammation, apoptosis and angiogenesis in HUVEC, and evaluated related factors and mechanism. The results reveal that EAA and AZN inhibit HUVEC migration, invasion, angiogenesis and reactive oxygen species (ROS) accumulation on a non-cytotoxic basis. Then, EAA and AZN suppressed the ox-LDL-induced of LOX-1, VEGF protein expression, MAPK and PI3K/AKT pathways phosphorylation. Furthermore, AZN suppressed the ox-LDL-induced inflammatory factors (IL-6, IL-1β, and TNF-α), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and VEGF receptor VEGFR-2 and platelet-derived growth factor PDGF. In addition, it inhibited ox-LDL-induced atherosclerosis by blocking inflammation and apoptosis through nuclear factor κB (NF-κB), cleaved-caspase-3 and Bax/Bcl-2 pathways. Molecular docking results confirm that the effect of AZN on atherosclerosis inhibitory activity may be attributed to hydrogen bonds formed into LOX-1 and VEGFR-2. These data indicate that EAA and AZN can effectively prevent ox-LDL-induced HUVEC damage and angiogenesis by inhibiting inflammation and apoptosis. Therefore, EAA and AZN may have potential beneficial effects in regulating atherosclerosis and plaque angiogenesis.
Collapse
Affiliation(s)
- Yi Liu
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Yanmei Li
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Minqi Chen
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Yayue Liu
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Jinyue Liang
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Yi Zhang
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China.
| | - Zhong-Ji Qian
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China.
| |
Collapse
|
10
|
Senanayake IC, Pem D, Rathnayaka AR, Wijesinghe SN, Tibpromma S, Wanasinghe DN, Phookamsak R, Kularathnage ND, Gomdola D, Harishchandra D, Dissanayake LS, Xiang MM, Ekanayaka AH, McKenzie EHC, Hyde KD, Zhang HX, Xie N. Predicting global numbers of teleomorphic ascomycetes. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00498-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractSexual reproduction is the basic way to form high genetic diversity and it is beneficial in evolution and speciation of fungi. The global diversity of teleomorphic species in Ascomycota has not been estimated. This paper estimates the species number for sexual ascomycetes based on five different estimation approaches, viz. by numbers of described fungi, by fungus:substrate ratio, by ecological distribution, by meta-DNA barcoding or culture-independent studies and by previous estimates of species in Ascomycota. The assumptions were made with the currently most accepted, “2.2–3.8 million” species estimate and results of previous studies concluding that 90% of the described ascomycetes reproduce sexually. The Catalogue of Life, Species Fungorum and published research were used for data procurement. The average value of teleomorphic species in Ascomycota from all methods is 1.86 million, ranging from 1.37 to 2.56 million. However, only around 83,000 teleomorphic species have been described in Ascomycota and deposited in data repositories. The ratio between described teleomorphic ascomycetes to predicted teleomorphic ascomycetes is 1:22. Therefore, where are the undiscovered teleomorphic ascomycetes? The undescribed species are no doubt to be found in biodiversity hot spots, poorly-studied areas and species complexes. Other poorly studied niches include extremophiles, lichenicolous fungi, human pathogens, marine fungi, and fungicolous fungi. Undescribed species are present in unexamined collections in specimen repositories or incompletely described earlier species. Nomenclatural issues, such as the use of separate names for teleomorph and anamorphs, synonyms, conspecific names, illegitimate and invalid names also affect the number of described species. Interspecies introgression results in new species, while species numbers are reduced by extinctions.
Collapse
|
11
|
Monti M, Giorgi A, Easson CG, Gochfeld DJ, Olson JB. Transmission studies and the composition of prokaryotic communities associated with healthy and diseased Aplysina cauliformis sponges suggest that Aplysina Red Band Syndrome is a prokaryotic polymicrobial disease. FEMS Microbiol Ecol 2021; 97:6472236. [PMID: 34931677 DOI: 10.1093/femsec/fiab164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/17/2021] [Indexed: 11/15/2022] Open
Abstract
Aplysina cauliformis, the Caribbean purple rope sponge, is commonly affected by Aplysina Red Band Syndrome. This transmissible disease manifests as circular lesions with red margins and results in bare spongin fibers. Leptolyngbya spp. appear to be responsible for the characteristic red coloration but transmission studies with a sponge-derived isolate failed to establish disease, leaving the etiology of ARBS unknown. To investigate the cause of ARBS, contact transmission experiments were performed between healthy and diseased sponges separated by filters with varying pore sizes. Transmission occurred when sponges were separated by filters with pore sizes ≥2.5 μm, suggesting a prokaryotic pathogen(s) but not completely eliminating eukaryotic pathogen(s). Using 16S rRNA gene sequencing methods, thirty-eight prokaryotic taxa were significantly enriched in diseased sponges, including Leptolyngbya, whereas seven taxa were only found in some, but not all, of the ARBS-affected sponges. These results do not implicate a single taxon, but rather a suite of taxa that changed in relative abundance with disease, suggesting a polymicrobial etiology as well as dysbiosis. As a better understanding of dysbiosis is gained, changes in the composition of associated prokaryotic communities may have increasing importance for evaluating and maintaining the health of individuals and imperiled coral reef ecosystems.
Collapse
Affiliation(s)
- Matteo Monti
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Aurora Giorgi
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Cole G Easson
- Biology Department, Middle Tennessee State University, P.O. Box 60, Murfreesboro, TN 37132, USA
| | - Deborah J Gochfeld
- National Center for Natural Products Research, University of Mississippi, P.O. Box 1848, University, MS 38677, USA
- Department of BioMolecular Sciences, University of Mississippi, P.O. Box 1848, University, MS 38677, USA
| | - Julie B Olson
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| |
Collapse
|
12
|
Vicente TFL, Gonçalves MFM, Brandão C, Fidalgo C, Alves A. Diversity of fungi associated with macroalgae from an estuarine environment and description of Cladosporium rubrum sp. nov. and Hypoxylon aveirense sp. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 33416464 DOI: 10.1099/ijsem.0.004630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fungal communities associated with macroalgae remain largely unexplored. To characterize algicolous fungal communities using culture dependent methods, macroalgae were collected from different sampling sites in the Ria de Aveiro estuary, Portugal. From a collection of 486 isolates that were obtained, 213 representative isolates were selected through microsatellite-primed PCR (MSP-PCR) fingerprinting analysis. The collection yielded 33 different genera, which were identified using the ITS region of the rDNA. The results revealed that the most abundant taxa in all collections were Acremonium-like species: Alternaria, Cladosporium, Leptobacillium and Penicillium. The fungal community composition varied with macroalgae species. Through multilocus phylogenetic analyses based on ITS, tub2, tef1-α and actA sequences, in addition to detailed morphological data, we propose Cladosporium rubrum sp. nov. (type strain=CMG 28=MUM 19.39) and Hypoxylon aveirense sp. nov. (type strain=CMG 29=MUM 19.40) as novel species.
Collapse
Affiliation(s)
- Tânia F L Vicente
- Departamento de Biologia, CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Micael F M Gonçalves
- Departamento de Biologia, CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudio Brandão
- Departamento de Biologia, CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia Fidalgo
- Departamento de Biologia, CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Artur Alves
- Departamento de Biologia, CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Charon J, Marcelino VR, Wetherbee R, Verbruggen H, Holmes EC. Metatranscriptomic Identification of Diverse and Divergent RNA Viruses in Green and Chlorarachniophyte Algae Cultures. Viruses 2020; 12:v12101180. [PMID: 33086653 PMCID: PMC7594059 DOI: 10.3390/v12101180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Our knowledge of the diversity and evolution of the virosphere will likely increase dramatically with the study of microbial eukaryotes, including the microalgae within which few RNA viruses have been documented. By combining total RNA sequencing with sequence and structural-based homology detection, we identified 18 novel RNA viruses in cultured samples from two major groups of microbial algae: the chlorophytes and the chlorarachniophytes. Most of the RNA viruses identified in the green algae class Ulvophyceae were related to the Tombusviridae and Amalgaviridae viral families commonly associated with land plants. This suggests that the evolutionary history of these viruses extends to divergence events between algae and land plants. Seven Ostreobium sp-associated viruses exhibited sequence similarity to the mitoviruses most commonly found in fungi, compatible with horizontal virus transfer between algae and fungi. We also document, for the first time, RNA viruses associated with chlorarachniophytes, including the first negative-sense (bunya-like) RNA virus in microalgae, as well as a distant homolog of the plant virus Virgaviridae, potentially signifying viral inheritance from the secondary chloroplast endosymbiosis that marked the origin of the chlorarachniophytes. More broadly, these data suggest that the scarcity of RNA viruses in algae results from limited investigation rather than their absence.
Collapse
Affiliation(s)
- Justine Charon
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (V.R.M.)
| | - Vanessa Rossetto Marcelino
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (V.R.M.)
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Richard Wetherbee
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; (R.W.); (H.V.)
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; (R.W.); (H.V.)
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (V.R.M.)
- Correspondence: ; Tel.: +61-2-9351-5591
| |
Collapse
|
14
|
Charon J, Marcelino VR, Wetherbee R, Verbruggen H, Holmes EC. Metatranscriptomic Identification of Diverse and Divergent RNA Viruses in Green and Chlorarachniophyte Algae Cultures. Viruses 2020; 12:v12101180. [PMID: 33086653 DOI: 10.1101/2020.06.08.141184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/26/2023] Open
Abstract
Our knowledge of the diversity and evolution of the virosphere will likely increase dramatically with the study of microbial eukaryotes, including the microalgae within which few RNA viruses have been documented. By combining total RNA sequencing with sequence and structural-based homology detection, we identified 18 novel RNA viruses in cultured samples from two major groups of microbial algae: the chlorophytes and the chlorarachniophytes. Most of the RNA viruses identified in the green algae class Ulvophyceae were related to the Tombusviridae and Amalgaviridae viral families commonly associated with land plants. This suggests that the evolutionary history of these viruses extends to divergence events between algae and land plants. Seven Ostreobium sp-associated viruses exhibited sequence similarity to the mitoviruses most commonly found in fungi, compatible with horizontal virus transfer between algae and fungi. We also document, for the first time, RNA viruses associated with chlorarachniophytes, including the first negative-sense (bunya-like) RNA virus in microalgae, as well as a distant homolog of the plant virus Virgaviridae, potentially signifying viral inheritance from the secondary chloroplast endosymbiosis that marked the origin of the chlorarachniophytes. More broadly, these data suggest that the scarcity of RNA viruses in algae results from limited investigation rather than their absence.
Collapse
Affiliation(s)
- Justine Charon
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Vanessa Rossetto Marcelino
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Richard Wetherbee
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Lifshitz N, Hazanov L, Fine M, Yarden O. Seasonal Variations in the Culturable Mycobiome of Acropora loripes along a Depth Gradient. Microorganisms 2020; 8:E1139. [PMID: 32731457 PMCID: PMC7464153 DOI: 10.3390/microorganisms8081139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Coral associated fungi are widespread, highly diverse and are part and parcel of the coral holobiont. To study how environmental conditions prevailing near the coral-host may affect fungal diversity, the culturable (isolated on potato dextrose agar) mycobiome associated with Acropora loripes colonies was seasonally sampled along a depth gradient in the Gulf of Aqaba. Fragments were sampled from both apparently healthy coral colonies as well as those exhibiting observable lesions. Based on phylogenetic analysis of 197 fungal sequences, Ascomycota were the most prevalent (91.9%). The abundance of fungi increased with increasing water depth, where corals sampled at 25 m yielded up to 70% more fungal colony forming units (CFUs) than those isolated at 6 m. Fungal diversity at 25 m was also markedly higher, with over 2-fold more fungal families represented. Diversity was also higher in lesioned coral samples, when compared to apparently healthy colonies. In winter, concurrent with water column mixing and increased levels of available nutrients, at the shallow depths, Saccharomytacea and Sporidiobolacea were more prevalent, while in spring and fall Trichocomacea (overall, the most prevalent family isolated throughout this study) were the most abundant taxa isolated at these depths as well as at deeper sampling sites. Our results highlight the dynamic nature of the culturable coral mycobiome and its sensitivity to environmental conditions and coral health.
Collapse
Affiliation(s)
- Nofar Lifshitz
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
- The Interuniversity Institute for Marine Science, P.O.B. 469, Eilat 88103, Israel; (L.H.); (M.F.)
| | - Lena Hazanov
- The Interuniversity Institute for Marine Science, P.O.B. 469, Eilat 88103, Israel; (L.H.); (M.F.)
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Maoz Fine
- The Interuniversity Institute for Marine Science, P.O.B. 469, Eilat 88103, Israel; (L.H.); (M.F.)
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
- The Interuniversity Institute for Marine Science, P.O.B. 469, Eilat 88103, Israel; (L.H.); (M.F.)
| |
Collapse
|
16
|
Sun F, Yang H, Wang G, Shi Q. Combination Analysis of Metatranscriptome and Metagenome Reveal the Composition and Functional Response of Coral Symbionts to Bleaching During an El Niño Event. Front Microbiol 2020; 11:448. [PMID: 32265879 PMCID: PMC7104784 DOI: 10.3389/fmicb.2020.00448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/02/2020] [Indexed: 01/12/2023] Open
Abstract
With the abnormal rise in ocean temperatures globally in recent years, coral bleaching is becoming common and serious. However, the response mechanisms and processes of coral symbionts to bleaching are not well understood. In this study, metagenomics and metatranscriptomics were used to explore the composition of coral symbionts and their functions in response to coral bleaching. All four bleaching coral species displayed a significant reduction of the abundance and function of Dinophyceae-like eukaryotes at the DNA and RNA levels. However, different species of bleaching coral have their own characteristic symbiotic components. Bleaching Acropora tenuis and Goniastrea minuta corals exhibited a very high abundance of prokaryotes and associated gene functions, especially for opportunistic bacteria. In contrast, algae and fungi were identified as the main microbial associate components and had relatively high RNA abundance in bleaching Pocillopora verrucosa and Pocillopora meandrina. Different coral species, whether unbleached or bleaching, have the same symbiotic taxa that perform the same biological functions in vivo. Different stages of bleaching, or transitional states, were identified by different genome content and functional gene abundance among bleaching corals. These stages should be considered in future coral bleaching studies to accurately determine symbiont structure and function. An implicit hypothesis is that there is a causal relationship between the stability of eukaryotic communities and coral bleaching.
Collapse
Affiliation(s)
- Fulin Sun
- South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Hongqiang Yang
- South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Guan Wang
- South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Qi Shi
- South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
17
|
Bovio E, Sfecci E, Poli A, Gnavi G, Prigione V, Lacour T, Mehiri M, Varese GC. The culturable mycobiota associated with the Mediterranean sponges Aplysina cavernicola, Crambe crambe and Phorbas tenacior. FEMS Microbiol Lett 2019; 366:5710934. [PMID: 31960895 DOI: 10.1093/femsle/fnaa014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/20/2020] [Indexed: 01/15/2023] Open
Abstract
Marine fungi are part of the huge and understudied biodiversity hosted in the sea. To broaden the knowledge on fungi inhabiting the Mediterranean Sea and their role in sponge holobiont, three sponges namely Aplysina cavernicola, Crambe crambe and Phorbas tenacior were collected in Villefranche sur Mer, (France) at about 25 m depth. The fungal communities associated with the sponges were isolated using different techniques to increase the numbers of fungi isolated. All fungi were identified to species level giving rise to 19, 13 and 3 species for P. tenacior, A. cavernicola and C. crambe, respectively. Of note, 35.7% and 50.0% of the species detected were either reported for the first time in the marine environment or in association with sponges. The mini-satellite analysis confirmed the uniqueness of the mycobiota of each sponge, leading to think that the sponge, with its metabolome, may shape the microbial community.
Collapse
Affiliation(s)
- Elena Bovio
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy.,University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, Nice 60103, France
| | - Estelle Sfecci
- University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, Nice 60103, France
| | - Anna Poli
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Giorgio Gnavi
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Valeria Prigione
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | | | - Mohamed Mehiri
- University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, Nice 60103, France
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| |
Collapse
|
18
|
Bovio E, Garzoli L, Poli A, Luganini A, Villa P, Musumeci R, McCormack GP, Cocuzza CE, Gribaudo G, Mehiri M, Varese GC. Marine Fungi from the Sponge Grantia compressa: Biodiversity, Chemodiversity, and Biotechnological Potential. Mar Drugs 2019; 17:E220. [PMID: 30978942 PMCID: PMC6520677 DOI: 10.3390/md17040220] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 11/21/2022] Open
Abstract
The emergence of antibiotic resistance and viruses with high epidemic potential made unexplored marine environments an appealing target source for new metabolites. Marine fungi represent one of the most suitable sources for the discovery of new compounds. Thus, the aim of this work was (i) to isolate and identify fungi associated with the Atlantic sponge Grantia compressa; (ii) to study the fungal metabolites by applying the OSMAC approach (one strain; many compounds); (iii) to test fungal compounds for their antimicrobial activities. Twenty-one fungal strains (17 taxa) were isolated from G. compressa. The OSMAC approach revealed an astonishing metabolic diversity in the marine fungus Eurotium chevalieri MUT 2316, from which 10 compounds were extracted, isolated, and characterized. All metabolites were tested against viruses and bacteria (reference and multidrug-resistant strains). Dihydroauroglaucin completely inhibited the replication of influenza A virus; as for herpes simplex virus 1, total inhibition of replication was observed for both physcion and neoechinulin D. Six out of 10 compounds were active against Gram-positive bacteria with isodihydroauroglaucin being the most promising compound (minimal inhibitory concentration (MIC) 4-64 µg/mL) with bactericidal activity. Overall, G. compressa proved to be an outstanding source of fungal diversity. Marine fungi were capable of producing different metabolites; in particular, the compounds isolated from E. chevalieri showed promising bioactivity against well-known and emerging pathogens.
Collapse
Affiliation(s)
- Elena Bovio
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy.
- University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, 60103 Nice, France.
| | - Laura Garzoli
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy.
| | - Anna Poli
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy.
| | - Anna Luganini
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy.
| | - Pietro Villa
- Laboratory of Clinical Microbiology and Virology, Department of Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| | - Rosario Musumeci
- Laboratory of Clinical Microbiology and Virology, Department of Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| | - Grace P McCormack
- Zoology, Ryan Institute, School of Natural Sciences, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland.
| | - Clementina E Cocuzza
- Laboratory of Clinical Microbiology and Virology, Department of Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| | - Giorgio Gribaudo
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy.
| | - Mohamed Mehiri
- University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, 60103 Nice, France.
| | - Giovanna C Varese
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy.
| |
Collapse
|
19
|
Zhang XY, Hao HL, Lau SCK, Wang HY, Han Y, Dong LM, Huang RM. Biodiversity and antifouling activity of fungi associated with two soft corals from the South China Sea. Arch Microbiol 2019; 201:757-767. [PMID: 30840101 DOI: 10.1007/s00203-019-01639-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 11/28/2022]
Abstract
Bacteria in corals have been studied in detail in the past decades. However, the biodiversity and bioactivity of fungi in corals are still poorly understood. This study investigated the biodiversity and antifouling activity of fungi in soft corals Cladiella krempfi and Sarcophyton tortuosum from the South China Sea. A high diverse and abundant fungal community was found in the two soft corals. Furthermore, five isolates shared 83-95% similarity with their closest relatives, indicating that they might be novel species in genera Phaeoshaeria and Mucor. In addition, approximately 50% of the representative isolates exhibited distinct antifouling activity. In particular, isolates Fungal sp. SCAU132 and Fungal sp. SCAU133 displayed very strong antifouling activity against Bugula neritina, suggesting they can provide a potential resource for further investigation on isolation of novel antifouling metabolites. To our knowledge, this study is the first report to investigate the biodiversity and antifouling activity of fungi in C. krempfi and S. tortuosum.
Collapse
Affiliation(s)
- Xiao-Yong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bior-esource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Hui-Li Hao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642, Guangzhou, China
| | - Stanley Chun Kwan Lau
- Department of Ocean Science, Hong Kong University of Science and Technology, Clearwater Bay, 999077, Kowloon, Hong Kong, China
| | - Huai-You Wang
- Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Clearwater Bay, 999077, Kowloon, Hong Kong, China
| | - Yu Han
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642, Guangzhou, China
| | - Li-Mei Dong
- College of Forestry and Landscape Architecture, South China Agricultural University, 510642, Guangzhou, China.
| | - Ri-Ming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
20
|
Amend A, Burgaud G, Cunliffe M, Edgcomb VP, Ettinger CL, Gutiérrez MH, Heitman J, Hom EFY, Ianiri G, Jones AC, Kagami M, Picard KT, Quandt CA, Raghukumar S, Riquelme M, Stajich J, Vargas-Muñiz J, Walker AK, Yarden O, Gladfelter AS. Fungi in the Marine Environment: Open Questions and Unsolved Problems. mBio 2019; 10:e01189-18. [PMID: 30837337 PMCID: PMC6401481 DOI: 10.1128/mbio.01189-18] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Terrestrial fungi play critical roles in nutrient cycling and food webs and can shape macroorganism communities as parasites and mutualists. Although estimates for the number of fungal species on the planet range from 1.5 to over 5 million, likely fewer than 10% of fungi have been identified so far. To date, a relatively small percentage of described species are associated with marine environments, with ∼1,100 species retrieved exclusively from the marine environment. Nevertheless, fungi have been found in nearly every marine habitat explored, from the surface of the ocean to kilometers below ocean sediments. Fungi are hypothesized to contribute to phytoplankton population cycles and the biological carbon pump and are active in the chemistry of marine sediments. Many fungi have been identified as commensals or pathogens of marine animals (e.g., corals and sponges), plants, and algae. Despite their varied roles, remarkably little is known about the diversity of this major branch of eukaryotic life in marine ecosystems or their ecological functions. This perspective emerges from a Marine Fungi Workshop held in May 2018 at the Marine Biological Laboratory in Woods Hole, MA. We present the state of knowledge as well as the multitude of open questions regarding the diversity and function of fungi in the marine biosphere and geochemical cycles.
Collapse
Affiliation(s)
- Anthony Amend
- Department of Botany, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Gaetan Burgaud
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Michael Cunliffe
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, United Kingdom
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | | - M H Gutiérrez
- Departamento de Oceanografía, Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Erik F Y Hom
- Department of Biology, University of Mississippi, Oxford, Mississippi, USA
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Adam C Jones
- Gordon and Betty Moore Foundation, Palo Alto, California, USA
| | - Maiko Kagami
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Kathryn T Picard
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - C Alisha Quandt
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, Colorado, USA
| | | | - Mertixell Riquelme
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Jason Stajich
- Department of Microbiology & Plant Pathology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - José Vargas-Muñiz
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Allison K Walker
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
21
|
Bovio E, Garzoli L, Poli A, Prigione V, Firsova D, McCormack G, Varese G. The culturable mycobiota associated with three Atlantic sponges, including two new species: Thelebolus balaustiformis and T. spongiae. Fungal Syst Evol 2018; 1:141-167. [PMID: 32490365 PMCID: PMC7259239 DOI: 10.3114/fuse.2018.01.07] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Covering 70 % of Earth, oceans are at the same time the most common and the environment least studied by microbiologists. Considering the large gaps in our knowledge on the presence of marine fungi in the oceans, the aim of this research was to isolate and identify the culturable fungal community within three species of sponges, namely Dysidea fragilis, Pachymatisma johnstonia and Sycon ciliatum, collected in the Atlantic Ocean and never studied for their associated mycobiota. Applying different isolation methods, incubation temperatures and media, and attempting to mimic the marine and sponge environments, were fundamental to increase the number of cultivable taxa. Fungi were identified using a polyphasic approach, by means of morpho-physiological, molecular and phylogenetic techniques. The sponges revealed an astonishing fungal diversity represented by 87 fungal taxa. Each sponge hosted a specific fungal community with more than half of the associated fungi being exclusive of each invertebrate. Several species isolated and identified in this work, already known in terrestrial environment, were first reported in marine ecosystems (21 species) and in association with sponges (49 species), including the two new species Thelebolus balaustiformis and Thelebolus spongiae, demonstrating that oceans are an untapped source of biodiversity.
Collapse
Affiliation(s)
- E. Bovio
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
- Marine Natural Products Team, CNRS, Institute of Chemistry (UMR 7272), University Nice Côte d’Azur, Nice, 06100, France
| | - L. Garzoli
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| | - A. Poli
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| | - V. Prigione
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| | - D. Firsova
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| | - G.P. McCormack
- Zoology, Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - G.C. Varese
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| |
Collapse
|
22
|
Cuartas JH, Alzate JF, Moreno-Herrera CX, Marquez EJ. Metagenomic analysis of orange colored protrusions from the muscle of Queen Conch Lobatus gigas (Linnaeus, 1758). PeerJ 2018; 6:e4307. [PMID: 29472996 PMCID: PMC5816965 DOI: 10.7717/peerj.4307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/10/2018] [Indexed: 11/25/2022] Open
Abstract
The endangered marine gastropod, Lobatus gigas, is an important fishery resource in the Caribbean region. Microbiological and parasitological research of this species have been poorly addressed despite its role in ecological fitness, conservation status and prevention of potential pathogenic infections. This study identified taxonomic groups associated with orange colored protrusions in the muscle of queen conchs using histological analysis, 454 pyrosequencing, and a combination of PCR amplification and automated Sanger sequencing. The molecular approaches indicate that the etiological agent of the muscle protrusions is a parasite belonging to the subclass Digenea. Additionally, the scope of the molecular technique allowed the detection of bacterial and fungi clades in the assignment analysis. This is the first evidence of a digenean infection in the muscle of this valuable Caribbean resource.
Collapse
Affiliation(s)
- Jaison H. Cuartas
- Facultad de Ciencias, Laboratorio de Biología Molecular y Celular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Juan F. Alzate
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Claudia X. Moreno-Herrera
- Facultad de Ciencias, Laboratorio de Biología Molecular y Celular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Edna J. Marquez
- Facultad de Ciencias, Laboratorio de Biología Molecular y Celular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| |
Collapse
|
23
|
Gleason FH, Gadd GM, Pitt JI, Larkum AWD. The roles of endolithic fungi in bioerosion and disease in marine ecosystems. II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals and molluscs. Mycology 2017; 8:216-227. [PMID: 30123642 PMCID: PMC6059078 DOI: 10.1080/21501203.2017.1371802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/22/2017] [Indexed: 10/29/2022] Open
Abstract
Anamorphic ascomycetes have been implicated as causative agents of diseases in tissues and skeletons of hard corals, in tissues of soft corals (sea fans) and in tissues and shells of molluscs. Opportunist marine fungal pathogens, such as Aspergillus sydowii, are important components of marine mycoplankton and are ubiquitous in the open oceans, intertidal zones and marine sediments. These fungi can cause infection in or at least can be associated with animals which live in these ecosystems. A. sydowii can produce toxins which inhibit photosynthesis in and the growth of coral zooxanthellae. The prevalence of many documented infections has increased in frequency and severity in recent decades with the changing impacts of physical and chemical factors, such as temperature, acidity and eutrophication. Changes in these factors are thought to cause significant loss of biodiversity in marine ecosystems on a global scale in general, and especially in coral reefs and shallow bays.
Collapse
Affiliation(s)
- Frank H. Gleason
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Geoffrey M. Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, UK
| | - John I. Pitt
- Food, Safety and Quality, CSIRO, Ryde, Australia
| | - Anthony W. D. Larkum
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
24
|
Gleason FH, Gadd GM, Pitt JI, Larkum AWD. The roles of endolithic fungi in bioerosion and disease in marine ecosystems. I. General concepts. Mycology 2017; 8:205-215. [PMID: 30123641 PMCID: PMC6059151 DOI: 10.1080/21501203.2017.1352049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/03/2017] [Indexed: 01/30/2023] Open
Abstract
Endolithic true fungi and fungus-like microorganisms penetrate calcareous substrates formed by living organisms, cause significant bioerosion and are involved in diseases of many host animals in marine ecosystems. A theoretical interactive model for the ecology of reef-building corals is proposed in this review. This model includes five principle partners that exist in a dynamic equilibrium: polyps of a colonial coelenterate, endosymbiotic zooxanthellae, endolithic algae (that penetrate coral skeletons), endolithic fungi (that attack the endolithic algae, the zooxanthellae and the polyps) and prokaryotic and eukaryotic microorganisms (which live in the coral mucus). Endolithic fungi and fungus-like boring microorganisms are important components of the marine calcium carbonate cycle because they actively contribute to the biodegradation of shells of animals composed of calcium carbonate and calcareous geological substrates.
Collapse
Affiliation(s)
- Frank H. Gleason
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland
| | - John I Pitt
- Food, Safety and Quality, CSIRO, Ryde, NSW, Australia
| | - Anthony W. D Larkum
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Miettinen H, Kietäväinen R, Sohlberg E, Numminen M, Ahonen L, Itävaara M. Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhäsalmi mine Finland. Front Microbiol 2015; 6:1203. [PMID: 26579109 PMCID: PMC4626562 DOI: 10.3389/fmicb.2015.01203] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/15/2015] [Indexed: 02/01/2023] Open
Abstract
Pyhäsalmi mine in central Finland provides an excellent opportunity to study microbial and geochemical processes in a deep subsurface crystalline rock environment through near-vertical drill holes that reach to a depth of more than two kilometers below the surface. However, microbial sampling was challenging in this high-pressure environment. Nucleic acid yields obtained were extremely low when compared to the cell counts detected (1.4 × 10(4) cells mL(-1)) in water. The water for nucleic acid analysis went through high decompression (60-130 bar) during sampling, whereas water samples for detection of cell counts by microscopy could be collected with slow decompression. No clear cells could be identified in water that went through high decompression. The high-pressure decompression may have damaged part of the cells and the nucleic acids escaped through the filter. The microbial diversity was analyzed from two drill holes by pyrosequencing amplicons of the bacterial and archaeal 16S rRNA genes and from the fungal ITS regions from both DNA and RNA fractions. The identified prokaryotic diversity was low, dominated by Firmicute, Beta- and Gammaproteobacteria species that are common in deep subsurface environments. The archaeal diversity consisted mainly of Methanobacteriales. Ascomycota dominated the fungal diversity and fungi were discovered to be active and to produce ribosomes in the deep oligotrophic biosphere. The deep fluids from the Pyhäsalmi mine shared several features with other deep Precambrian continental subsurface environments including saline, Ca-dominated water and stable isotope compositions positioning left from the meteoric water line. The dissolved gas phase was dominated by nitrogen but the gas composition clearly differed from that of atmospheric air. Despite carbon-poor conditions indicated by the lack of carbon-rich fracture fillings and only minor amounts of dissolved carbon detected in formation waters, some methane was found in the drill holes. No dramatic differences in gas compositions were observed between different gas sampling methods tested. For simple characterization of gas composition the most convenient way to collect samples is from free flowing fluid. However, compared to a pressurized method a relative decrease in the least soluble gases may appear.
Collapse
Affiliation(s)
- Hanna Miettinen
- Valtion Teknillinen Tutkimuskeskus Technical Research Centre of Finland Ltd.Espoo, Finland
| | | | - Elina Sohlberg
- Valtion Teknillinen Tutkimuskeskus Technical Research Centre of Finland Ltd.Espoo, Finland
| | - Mikko Numminen
- Pyhäsalmi Mine Oy, First Quantum Minerals Ltd.Pyhäsalmi, Finland
| | | | - Merja Itävaara
- Valtion Teknillinen Tutkimuskeskus Technical Research Centre of Finland Ltd.Espoo, Finland
| |
Collapse
|
26
|
|
27
|
Yarden O. Fungal association with sessile marine invertebrates. Front Microbiol 2014; 5:228. [PMID: 24860565 PMCID: PMC4030187 DOI: 10.3389/fmicb.2014.00228] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/29/2014] [Indexed: 12/20/2022] Open
Abstract
The presence and association of fungi with sessile marine animals such as coral and sponges has been well established, yet information on the extent of diversity of the associated fungi is still in its infancy. Culture - as well as metagenomic - and transcriptomic-based analyses have shown that fungal presence in association with these animals can be dynamic and can include "core" residents as well as shifts in fungal communities. Evidence for detrimental and beneficial interactions between fungi and their marine hosts is accumulating and current challenges include the elucidation of the chemical and cellular crosstalk between fungi and their associates within the holobionts. The ecological function of fungi in association with sessile marine animals is complex and is founded on a combination of factors such as fungal origin, host health, environmental conditions and the presence of other resident or invasive microorganisms in the host. Based on evidence from the much more studied terrestrial systems, the evaluation of marine animal-fungal symbioses under varying environmental conditions may well prove to be critical in predicting ecosystem response to global change, including effects on the health of sessile marine animals.
Collapse
Affiliation(s)
- Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| |
Collapse
|
28
|
Manohar CS, Raghukumar C. Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiol Lett 2013; 341:69-78. [PMID: 23363246 DOI: 10.1111/1574-6968.12087] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/28/2022] Open
Abstract
Studies on the molecular diversity of the micro-eukaryotic community have shown that fungi occupy a central position in a large number of marine habitats. Environmental surveys using molecular tools have shown the presence of fungi from a large number of marine habitats such as deep-sea habitats, pelagic waters, coastal regions, hydrothermal vent ecosystem, anoxic habitats, and ice-cold regions. This is of interest to a variety of research disciplines like ecology, evolution, biogeochemistry, and biotechnology. In this review, we have summarized how molecular tools have helped to broaden our understanding of the fungal diversity in various marine habitats. Majority of the environmental phylotypes could be grouped as novel clades within Ascomycota, Basidiomycota, and Chytridiomycota or as basal fungal lineages. Deep-branching novel environmental clusters could be grouped within Ascomycota as the Pezizomycotina clone group, deep-sea fungal group-I, and soil clone group-I, within Basidiomycota as the hydrothermal and/or anaerobic fungal group, and within Chytridiomycota as Cryptomycota or the Rozella clade. However, a basal true marine environmental cluster is still to be identified as most of the clusters include representatives from terrestrial regions. The challenge for future research is to explore the true marine fungi using molecular techniques.
Collapse
Affiliation(s)
- Cathrine Sumathi Manohar
- Biological Oceanography Division, National Institute of Oceanography - Council of Scientific and Industrial Research, Dona Paula, Goa, India.
| | | |
Collapse
|