1
|
Barbosa-Moyano H, Sobral G, de Oliveira CA. Glucocorticoid metabolites in an ex situ nocturnal bird, the tropical screech owl Megascops choliba: effects of sex, activity period and inter-individual variation. CONSERVATION PHYSIOLOGY 2023; 11:coad016. [PMID: 37101705 PMCID: PMC10123863 DOI: 10.1093/conphys/coad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/02/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Glucocorticoids mediate physiological processes to obtain energy, presenting daily variation in basal levels that may be related to behavioural activity pattern. Identification of plasticity in the secretion of these hormones is essential to understand their effects on physiology and behaviour of wild birds and, therefore, their success in their natural or artificial environment. Serial endocrine evaluations are facilitated by implementing non-invasive methodologies that minimize possible effects of manipulation on the animal's physiological variables. However, non-invasive endocrine-behavioural studies in nocturnal birds, such as owls, are immature. The present work aimed to validate an enzyme immunoassay (EIA) to quantify glucocorticoid metabolites (MGC) in Megascops choliba as well as to evaluate differences in their production at the individual, sexual or daily level. We recorded the behaviour of nine owls during three continuous days to establish activity budget under captive conditions and aiming to correlate with daily MGC variation. The EIA proved to be effective in analytical assays and in pharmacological testing with synthetic ACTH, validating this immunoassay for the species. Additionally, individual differences in MGC production were confirmed in relation to the time of day, especially at 1700 and 2100, but not in relation to sex. During night hours, the owls showed greater behavioural activity, positively related to MGC values. Higher MGC concentrations were significantly related to greater expressions of active behaviours, such as maintenance, while lower MGC concentrations were recorded during moments of higher alertness and resting. The results presented show daily MGC variation to be inversed in this nocturnal species. Our findings can aid future theoretical studies of daily rhythm and evaluations of challenging and/or disturbing situations that result in changes in behaviour or hormonal cascades of these changes in ex situ populations of owls.
Collapse
Affiliation(s)
- Heriberto Barbosa-Moyano
- Corresponding author: Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, CEP: 05508270, São Paulo (SP), Brazil. Tel: +55 11 94856-3251;
| | - Gisela Sobral
- Instituto de Biodiversidade e Sustentabilidade NUPEM/UFRJ, Av. São José do Barreto, 764–São José do Barreto, Macaé – Rio de Janeiro (RJ), 27965-045, Brazil
| | - Claudio Alvarenga de Oliveira
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, CEP: 05508270, São Paulo (SP), Brazil
| |
Collapse
|
2
|
Claudio A, Andrea F. Circadian neuromarkers of mood disorders. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
3
|
Otsuka T, Le HT, Thein ZL, Ihara H, Sato F, Nakao T, Kohsaka A. Deficiency of the circadian clock gene Rev-erbα induces mood disorder-like behaviours and dysregulation of the serotonergic system in mice. Physiol Behav 2022; 256:113960. [PMID: 36115382 DOI: 10.1016/j.physbeh.2022.113960] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 10/31/2022]
Abstract
Mood disorders such as depression, anxiety, and bipolar disorder are highly associated with disrupted daily rhythms of activity, which are often observed in shift work and sleep disturbance in humans. Recent studies have proposed the REV-ERBα protein as a key circadian nuclear receptor that links behavioural rhythms to mood regulation. However, how the Rev-erbα gene participates in the regulation of mood remains poorly understood. Here, we show that the regulation of the serotonergic (5-HTergic) system, which plays a central role in stress-induced mood behaviours, is markedly disrupted in Rev-erbα-/- mice. Rev-erbα-/- mice exhibit both negative and positive behavioural phenotypes, including anxiety-like and mania-like behaviours, when subjected to a stressful environment. Importantly, Rev-erbα-/- mice show a significant decrease in the expression of a gene that encodes the rate-limiting enzyme of serotonin (5-HT) synthesis in the raphe nuclei (RN). In addition, 5-HT levels in Rev-erbα-/- mice are significantly reduced in the prefrontal cortex, which receives strong inputs from the RN and controls stress-related behaviours. Our findings indicate that Rev-erbα plays an important role in controlling the 5-HTergic system and thus regulates mood and behaviour.
Collapse
Affiliation(s)
- Tsuyoshi Otsuka
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan; The Second Department of Physiology, Wakayama Medical University, Wakayama 641-8509, Japan.
| | - Hue Thi Le
- The Second Department of Physiology, Wakayama Medical University, Wakayama 641-8509, Japan; Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Zaw Lin Thein
- The Second Department of Physiology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Hayato Ihara
- The Department of Radioisotope Laboratory Center, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Fuyuki Sato
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Suntogun, Shizuoka 411-8777, Japan; The Departments of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Tomomi Nakao
- The Second Department of Physiology, Wakayama Medical University, Wakayama 641-8509, Japan; The First Department of Internal Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Akira Kohsaka
- The Second Department of Physiology, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
4
|
Singla R, Mishra A, Cao R. The trilateral interactions between mammalian target of rapamycin (mTOR) signaling, the circadian clock, and psychiatric disorders: an emerging model. Transl Psychiatry 2022; 12:355. [PMID: 36045116 PMCID: PMC9433414 DOI: 10.1038/s41398-022-02120-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Circadian (~24 h) rhythms in physiology and behavior are evolutionarily conserved and found in almost all living organisms. The rhythms are endogenously driven by daily oscillatory activities of so-called "clock genes/proteins", which are widely distributed throughout the mammalian brain. Mammalian (mechanistic) target of rapamycin (mTOR) signaling is a fundamental intracellular signal transduction cascade that controls important neuronal processes including neurodevelopment, synaptic plasticity, metabolism, and aging. Dysregulation of the mTOR pathway is associated with psychiatric disorders including autism spectrum disorders (ASD) and mood disorders (MD), in which patients often exhibit disrupted daily physiological rhythms and abnormal circadian gene expression in the brain. Recent work has found that the activities of mTOR signaling are temporally controlled by the circadian clock and exhibit robust circadian oscillations in multiple systems. In the meantime, mTOR signaling regulates fundamental properties of the central and peripheral circadian clocks, including period length, entrainment, and synchronization. Whereas the underlying mechanisms remain to be fully elucidated, increasing clinical and preclinical evidence support significant crosstalk between mTOR signaling, the circadian clock, and psychiatric disorders. Here, we review recent progress in understanding the trilateral interactions and propose an "interaction triangle" model between mTOR signaling, the circadian clock, and psychiatric disorders (focusing on ASD and MD).
Collapse
Affiliation(s)
- Rubal Singla
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Abhishek Mishra
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA. .,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Pandi-Perumal SR, Cardinali DP, Zaki NFW, Karthikeyan R, Spence DW, Reiter RJ, Brown GM. Timing is everything: Circadian rhythms and their role in the control of sleep. Front Neuroendocrinol 2022; 66:100978. [PMID: 35033557 DOI: 10.1016/j.yfrne.2022.100978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2021] [Accepted: 01/08/2022] [Indexed: 01/16/2023]
Abstract
Sleep and the circadian clock are intertwined and have persisted throughout history. The suprachiasmatic nucleus (SCN) orchestrates sleep by controlling circadian (Process C) and homeostatic (Process S) activities. As a "hand" on the endogenous circadian clock, melatonin is critical for sleep regulation. Light serves as a cue for sleep/wake control by activating retino-recipient cells in the SCN and subsequently suppressing melatonin. Clock genes are the molecular timekeepers that keep the 24 h cycle in place. Two main sleep and behavioural disorder diagnostic manuals have now officially recognised the importance of these processes for human health and well-being. The body's ability to respond to daily demands with the least amount of effort is maximised by carefully timing and integrating all components of sleep and waking. In the brain, the organization of timing is essential for optimal brain physiology.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Somnogen Canada Inc, College Street, Toronto, ON, Canada; Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, 1107 Buenos Aires, Argentina
| | - Nevin F W Zaki
- Department of Psychiatry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Molecular Brain Sciences, University of Toronto, 250 College St. Toronto, ON, Canada
| |
Collapse
|
6
|
Zhang D, Li X, Li B. Glymphatic System Dysfunction in Central Nervous System Diseases and Mood Disorders. Front Aging Neurosci 2022; 14:873697. [PMID: 35547631 PMCID: PMC9082304 DOI: 10.3389/fnagi.2022.873697] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
The glymphatic system, a recently discovered macroscopic waste removal system in the brain, has many unknown aspects, especially its driving forces and relationship with sleep, and thus further explorations of the relationship between the glymphatic system and a variety of possible related diseases are urgently needed. Here, we focus on the progress in current research on the role of the glymphatic system in several common central nervous system diseases and mood disorders, discuss the structural and functional abnormalities of the glymphatic system which may occur before or during the pathophysiological progress and the possible underlying mechanisms. We emphasize the relationship between sleep and the glymphatic system under pathological conditions and summarize the common imaging techniques for the glymphatic system currently available. The perfection of the glymphatic system hypothesis and the exploration of the effects of aging and endocrine factors on the central and peripheral regulatory pathways through the glymphatic system still require exploration in the future.
Collapse
Affiliation(s)
- Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xinyu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Kim J, Park I, Jang S, Choi M, Kim D, Sun W, Choe Y, Choi JW, Moon C, Park SH, Choe HK, Kim K. Pharmacological Rescue with SR8278, a Circadian Nuclear Receptor REV-ERBα Antagonist as a Therapy for Mood Disorders in Parkinson's Disease. Neurotherapeutics 2022; 19:592-607. [PMID: 35322351 PMCID: PMC9226214 DOI: 10.1007/s13311-022-01215-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disease characterized by progressive dopaminergic neuronal loss. Motor deficits experienced by patients with Parkinson's disease are well documented, but non-motor symptoms, including mood disorders associated with circadian disturbances, are also frequent features. One common phenomenon is "sundowning syndrome," which is characterized by the occurrence of neuropsychiatric symptoms at a specific time (dusk), causing severe quality of life challenges. This study aimed to elucidate the underlying mechanisms of sundowning syndrome in Parkinson's disease and their molecular links with the circadian clock. We demonstrated that 6-hydroxydopamine (6-OHDA)-lesioned mice, as Parkinson's disease mouse model, exhibit increased depression- and anxiety-like behaviors only at dawn (the equivalent of dusk in human). Administration of REV-ERBα antagonist, SR8278, exerted antidepressant and anxiolytic effects in a circadian time-dependent manner in 6-OHDA-lesioned mice and restored the circadian rhythm of mood-related behaviors. 6-OHDA-lesion altered DAergic-specific Rev-erbα and Nurr1 transcription, and atypical binding activities of REV-ERBα and NURR1, which are upstream nuclear receptors for the discrete tyrosine hydroxylase promoter region. SR8278 treatment restored the binding activities of REV-ERBα and NURR1 to the tyrosine hydroxylase promoter and the induction of enrichment of the R/N motif, recognized by REV-ERBα and NURR1, as revealed by ATAC-sequencing; therefore, tyrosine hydroxylase expression was elevated in the ventral tegmental area of 6-OHDA-injected mice, especially at dawn. These results indicate that REV-ERBα is a potential therapeutic target, and its antagonist, SR8278, is a potential drug for mood disorders related to circadian disturbances, namely sundowning syndrome, in Parkinson's disease.
Collapse
Affiliation(s)
- Jeongah Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Inah Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Sangwon Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Mijung Choi
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Doyeon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Woong Sun
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | | | - Ji-Woong Choi
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, Korea
| | - Cheil Moon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, Korea
| | - Sung Ho Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Han Kyoung Choe
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Kyungjin Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea.
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, Korea.
| |
Collapse
|
8
|
Abstract
An increase in artificial night lighting has blurred the boundaries of day and night and transformed the natural day-night environment with alteration in the temporal niche of the animals. Male zebra finches were exposed to a dim light at night (dLAN) protocol (Light: dLAN, 12L = 200 lux: 12dLAN = 5 lux) with controls on darkness at night (Light: dark, 12L = 200 lux: 12D = 0 lux) for six weeks. We assayed sleep-wake, daily behaviors, mood, and cognition, as well as changes in physiological parameters. Dim light at night increased sleep frequency, delayed sleep onset, advanced awakening latency, and caused a reduction in total sleep duration. dLAN birds did not associate (physical association) with novel object and birds spent significantly lesser time on perch with novel object as compared to LD. In colour learning task, night illuminated birds took more time to learn and made more error, compared to LD. dLAN significantly altered the 24-h daily behavioral rhythm (amplitude and acrophase) of feeding, drinking, preening, and perch-hopping behavior. In particular, birds extended their feeding hours in the nighttime under dLAN, with no difference in total food intake. Birds under dLAN increased fattening and hence significantly increased body mass. Our results show that dim light at night altered feeding rhythm, caused decrease in sleep behavior, and negatively affected learning and memory performance in male zebra finches.
Collapse
|
9
|
Faltraco F, Palm D, Coogan A, Simon F, Tucha O, Thome J. Molecular Link between Circadian Rhythmicity and Mood Disorders. Curr Med Chem 2021; 29:5692-5709. [PMID: 34620057 DOI: 10.2174/0929867328666211007113725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The internal clock is driven by circadian genes [e.g., Clock, Bmal1, Per1-3, Cry1-2], hormones [e.g., melatonin, cortisol], as well as zeitgeber ['synchronisers']. Chronic disturbances in the circadian rhythm in patients diagnosed with mood disorders have been recognised for more than 50 years. OBJECTIVES The aim of this review is to summarise the current knowledge and literature regarding circadian rhythms in the context of mood disorders, focussing on the role of circadian genes, hormones, and neurotransmitters. METHOD The review presents the current knowledge and literature regarding circadian rhythms in mood disorders using the Pubmed database. Articles with a focus on circadian rhythms and mood disorders [n=123], particularly from 1973 to 2020, were included. RESULTS The article suggests a molecular link between disruptions in the circadian rhythm and mood disorders. Circadian disturbances, caused by the dysregulation of circadian genes, hormones, and neurotransmitters, often result in a clinical picture resembling depression. CONCLUSION Circadian rhythms are intrinsically linked to affective disorders, such as unipolar depression and bipolar disorder.
Collapse
Affiliation(s)
- Frank Faltraco
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock. Germany
| | - Denise Palm
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock. Germany
| | - Andrew Coogan
- Department of Psychology, Maynooth University, National University of Ireland, Maynooth. Ireland
| | - Frederick Simon
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock. Germany
| | - Oliver Tucha
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock. Germany
| | - Johannes Thome
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock. Germany
| |
Collapse
|
10
|
Rojas M, Chávez-Castillo M, Pírela D, Ortega Á, Salazar J, Cano C, Chacín M, Riaño M, Batista MJ, Díaz EA, Rojas-Quintero J, Bermúdez V. Chronobiology and Chronotherapy in Depression: Current Knowledge and Chronotherapeutic Promises. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2021. [DOI: 10.2174/2666082216999201124152432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Depression is a heavily prevalent mental disorder. Symptoms of depression
extend beyond mood, cognition, and behavior to include a spectrum of somatic manifestations in all
organic systems. Changes in sleep and neuroendocrine rhythms are especially prominent, and disruptions
of circadian rhythms have been closely related to the neurobiology of depression. With the
advent of increased research in chronobiology, various pathophysiologic mechanisms have been
proposed, including anomalies of sleep architecture, the effects of clock gene polymorphisms in
monoamine metabolism, and the deleterious impact of social zeitgebers. The identification of these
chronodisruptions has propelled the emergence of several chronotherapeutic strategies, both pharmacological
and non-pharmacological, with varying degrees of clinical evidence.
Methods:
The fundamental objective of this review is to integrate current knowledge about the role
of chronobiology and depression and to summarize the interventions developed to resynchronize
biorhythms both within an individual and with geophysical time.
Results:
We have found that among the non-pharmacological alternatives, triple chronotherapywhich
encompasses bright light therapy, sleep deprivation therapy, and consecutive sleep phase
advance therapy-has garnered the most considerable scientific interest. On the other hand,
agomelatine appears to be the most promising pharmacological option, given its unique melatonergic
pharmacodynamics.
Conclusions:
Research in chronotherapy as a treatment for depression is currently booming. Novel
interventions could play a significant role in adopting new options for the treatment of depression,
with Tripe Cronotherapy standing out as the most promising treatment.
Collapse
Affiliation(s)
- Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Daniela Pírela
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Riaño
- Universidad Simon Bolívar, Facultad de Ciencias Juridicas y Sociales, Cucuta, Colombia
| | - María Judith Batista
- Universidad Simon Bolívar, Facultad de Ciencias Juridicas y Sociales, Cucuta, Colombia
| | - Edgar Alexis Díaz
- Universidad Simon Bolívar, Facultad de Ciencias Juridicas y Sociales, Cucuta, Colombia
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Valmore Bermúdez
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
11
|
Doho H, Nobukawa S, Nishimura H, Wagatsuma N, Takahashi T. Transition of Neural Activity From the Chaotic Bipolar-Disorder State to the Periodic Healthy State Using External Feedback Signals. Front Comput Neurosci 2020; 14:76. [PMID: 32982709 PMCID: PMC7484049 DOI: 10.3389/fncom.2020.00076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Chronotherapy is a treatment for mood disorders, including major depressive disorder, mania, and bipolar disorder (BD). Neurotransmitters associated with the pathology of mood disorders exhibit circadian rhythms. A functional deficit in the neural circuits related to mood disorders disturbs the circadian rhythm; chronotherapy is an intervention that helps resynchronize the patient's biological clock with the periodic daily cycle, leading to amelioration of symptoms. In previous reports, Hadaeghi et al. proposed a non-linear dynamic model composed of the frontal and sensory cortical neural networks and the hypothalamus to explain the relationship between deficits in neural function in the frontal cortex and the disturbed circadian rhythm/mood transitions in BD (hereinafter referred to as the Hadaeghi model). In this model, neural activity in the frontal and sensory lobes exhibits periodic behavior in the healthy state; while in BD, this neural activity is in a state of chaos-chaos intermittency; this temporal departure from the healthy periodic state disturbs the circadian pacemaker in the hypothalamus. In this study, we propose an intervention based on a feedback method called the "reduced region of orbit" (RRO) method to facilitate the transition of the disturbed frontal cortical neural activity underlying BD to healthy periodic activity. Our simulation was based on the Hadaeghi model. We used an RRO feedback signal based on the return-map structure of the simulated frontal and sensory lobes to induce synchronization with a relatively weak periodic signal corresponding to the healthy condition by applying feedback of appropriate strength. The RRO feedback signal induces chaotic resonance, which facilitates the transition to healthy, periodic frontal neural activity, although this synchronization is restricted to a relatively low frequency of the periodic input signal. Additionally, applying an appropriate strength of the RRO feedback signal lowered the amplitude of the periodic input signal required to induce a synchronous state compared with the periodic signal applied alone. In conclusion, through a chaotic-resonance effect induced by the RRO feedback method, the state of the disturbed frontal neural activity characteristic of BD was transformed into a state close to healthy periodic activity by relatively weak periodic perturbations. Thus, RRO feedback-modulated chronotherapy might be an innovative new type of minimally invasive chronotherapy.
Collapse
Affiliation(s)
- Hirotaka Doho
- Faculty of Education, Teacher Training Division, Kochi University, Kochi, Japan
- Graduate School of Applied Informatics, University of Hyogo, Kobe, Japan
| | - Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, Narashino, Japan
| | - Haruhiko Nishimura
- Graduate School of Applied Informatics, University of Hyogo, Kobe, Japan
| | - Nobuhiko Wagatsuma
- Department of Information Science, Faculty of Science, Toho University, Funabashi, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, University of Fukui, Yoshida, Japan
| |
Collapse
|
12
|
Chen X, Hu Q, Zhang K, Teng H, Li M, Li D, Wang J, Du Q, Zhao M. The clock-controlled chemokine contributes to neuroinflammation-induced depression. FASEB J 2020; 34:8357-8366. [PMID: 32329129 DOI: 10.1096/fj.201900581rrr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022]
Abstract
The circadian rhythm plays a central role in immune function, and its disruption has been closely linked to the etiology of depression. However, the mechanisms underlying the association between depression and circadian rhythm remain unclear. We found that mice deficient of Per2, a central clock component of circadian output, were resilient to neuroinflammation-induced depressive behavior. After repeated central lipopolysaccharide (LPS) injections, MCP-1, MIP-1β, and RANTES increased in wild type (WT) but not in Per2-deficient mice. In addition, intracerebroventricular injection of RANTES resulted in depression-like behavior, and Met-RANTES, a CCR5 antagonist, could reverse depression-like behavior induced by LPS treatments. These results indicated that the Per2 gene contributes to depression via chemokines, especially RANTES. Furthermore, BMAL1 expression decreased in LPS-treated Per2-deficient mice and BMAL1 could bind to the promoter of Rantes, indicating clock gene can act as a regulator for neuroinflammation. In conclusion, Rantes, a clock-controlled gene (CCG), is involved in clock-immunological mechanisms underlying the effects of Per2 on neuroinflammation-induced depression-like behavior.
Collapse
Affiliation(s)
- Xiaojuan Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qianying Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ke Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Mingzhen Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Dan Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiesi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Quansheng Du
- Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| | - Mei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The alteration of circadian rhythms in the postoperative period has been demonstrated to influence the outcomes. With this narrative review we would revise how anesthesia, surgery and intensive care can interfere with the circadian clock, how this could impact on the postsurgical period and how to limit the disruption of the internal clock. RECENT FINDINGS Anesthesia affects the clock in relation to the day-time administration and the type of anesthetics, N-methyl-D-aspartate receptor antagonists or gamma-aminobutyric acid receptors agonists. Surgery causes stress and trauma with consequent alteration in the circadian release of cortisol, cytokines and melatonin. ICU represents a further challenge for the patient internal clock because of sedation, immobility, mechanical ventilation and alarms noise. SUMMARY The synergic effect of anesthesia, surgery and postoperative intensive care on circadian rhythms require a careful approach to the patient considering a role for therapies and interventions aimed to re-establish the normal circadian rhythms. Over time, approach like the Awakening and Breathing Coordination, Delirium Monitoring and Management, Early Mobility and Family engagement and empowerment bundle can implement the clinical practice.
Collapse
|
14
|
Bartman CM, Eckle T. Circadian-Hypoxia Link and its Potential for Treatment of Cardiovascular Disease. Curr Pharm Des 2020; 25:1075-1090. [PMID: 31096895 DOI: 10.2174/1381612825666190516081612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022]
Abstract
Throughout the evolutionary time, all organisms and species on Earth evolved with an adaptation to consistent oscillations of sunlight and darkness, now recognized as 'circadian rhythm.' Single-cellular to multisystem organisms use circadian biology to synchronize to the external environment and provide predictive adaptation to changes in cellular homeostasis. Dysregulation of circadian biology has been implicated in numerous prevalent human diseases, and subsequently targeting the circadian machinery may provide innovative preventative or treatment strategies. Discovery of 'peripheral circadian clocks' unleashed widespread investigations into the potential roles of clock biology in cellular, tissue, and organ function in healthy and diseased states. Particularly, oxygen-sensing pathways (e.g. hypoxia inducible factor, HIF1), are critical for adaptation to changes in oxygen availability in diseases such as myocardial ischemia. Recent investigations have identified a connection between the circadian rhythm protein Period 2 (PER2) and HIF1A that may elucidate an evolutionarily conserved cellular network that can be targeted to manipulate metabolic function in stressed conditions like hypoxia or ischemia. Understanding the link between circadian and hypoxia pathways may provide insights and subsequent innovative therapeutic strategies for patients with myocardial ischemia. This review addresses our current understanding of the connection between light-sensing pathways (PER2), and oxygen-sensing pathways (HIF1A), in the context of myocardial ischemia and lays the groundwork for future studies to take advantage of these two evolutionarily conserved pathways in the treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Colleen Marie Bartman
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, Graduate Training Program in Cell Biology, Stem Cells, and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, Graduate Training Program in Cell Biology, Stem Cells, and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
15
|
Genetics of Circadian and Sleep Measures in Adults: Implications for Sleep Medicine. CURRENT SLEEP MEDICINE REPORTS 2020. [DOI: 10.1007/s40675-020-00165-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Pilorz V, Astiz M, Heinen KO, Rawashdeh O, Oster H. The Concept of Coupling in the Mammalian Circadian Clock Network. J Mol Biol 2020; 432:3618-3638. [PMID: 31926953 DOI: 10.1016/j.jmb.2019.12.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
The circadian clock network regulates daily rhythms in mammalian physiology and behavior to optimally adapt the organism to the 24-h day/night cycle. A central pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), coordinates subordinate cellular oscillators in the brain, as well as in peripheral organs to align with each other and external time. Stability and coordination of this vast network of cellular oscillators is achieved through different levels of coupling. Although coupling at the molecular level and across the SCN is well established and believed to define its function as pacemaker structure, the notion of coupling in other tissues and across the whole system is less well understood. In this review, we describe the different levels of coupling in the mammalian circadian clock system - from molecules to the whole organism. We highlight recent advances in gaining knowledge of the complex organization and function of circadian network regulation and its significance for the generation of stable but plastic intrinsic 24-h rhythms.
Collapse
Affiliation(s)
- Violetta Pilorz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Mariana Astiz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Keno Ole Heinen
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Oliver Rawashdeh
- The University of Queensland, School of Biomedical Sciences, Faculty of Medicine, St Lucia Qld, 4071, Australia
| | - Henrik Oster
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany.
| |
Collapse
|
17
|
Tafoya SA, Aldrete-Cortez V, Fossion R, Jaimes AL, Fouilloux C. Indicators of vulnerability associated with less healthy circadian rhythms in undergraduate medical interns. Chronobiol Int 2019; 36:1782-1788. [PMID: 31571499 DOI: 10.1080/07420528.2019.1668403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To evaluate the association between circadian health parameters and psychological and biological vulnerability, a cross-sectional study was conducted with 15 undergraduate medical interns using the Brief Resilience Scale, the Mini International Neuropsychiatric Interview, and an ambulatory circadian monitoring device. Circadian Health construct was confirmed by factor analysis. Vulnerability factors (history of depression and low resilience) were associated to lower circadian health of motor activity and temperature rhythms. The findings suggest that not only being depressed but also having had depressive episodes in the past, as well as having low resilience, are associated with chronodisruption, and may increase the risk for developing new episodes of depression.
Collapse
Affiliation(s)
- Silvia Aracely Tafoya
- Department of Psychiatry and Mental Health, Faculty of Medicine, Universidad Nacional Autonóma de México, Mexico City, Mexico
| | - Vania Aldrete-Cortez
- Neuroscience and Cognitive Developmental Laboratory, School of Psychology, Universidad Panamericana, Mexico City, Mexico
| | - Rubén Fossion
- Institute of Nuclear Sciences, Universidad Nacional Autonóma de México, Mexico City, Mexico
| | - Aurora Leonila Jaimes
- Department of Psychiatry and Mental Health, Faculty of Medicine, Universidad Nacional Autonóma de México, Mexico City, Mexico
| | - Claudia Fouilloux
- Department of Psychiatry and Mental Health, Faculty of Medicine, Universidad Nacional Autonóma de México, Mexico City, Mexico
| |
Collapse
|
18
|
Diaz E, Diaz I, Del Busto C, Escudero D, Pérez S. Clock Genes Disruption in the Intensive Care Unit. J Intensive Care Med 2019; 35:1497-1504. [PMID: 31510864 DOI: 10.1177/0885066619876572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Intensive care unit (ICU) environment disrupts the circadian rhythms due to environmental and other nonphotic synchronizers. The main purpose of this article is to establish whether critically patients have desynchronization at the molecular level after 1 week of stay in the ICU. METHODS The rhythm of Clock, Bmal1, Cry1, and Per2 genes in neuro-ICU patients (n = 11) on the first day after admission in the unit (1 day) and 1 week later (1 week) was studied, 4 time points throughout the day, at 6, 12, 18, and 24 hours. Human whole blood samples were obtained from neuro-ICU patients. The total RNA was isolated and each sample was reverse transcribed to complementary DNA and quantitative polymerase chain reaction (PCRq) was performed. The possible rhythm was studied using Fourier Series. RESULTS After 1 week, the clock gene rhythmicity completely disappeared. Messenger RNA (mRNA) expression for the 4 clock genes was shown rhythmicity at the first day after admission in the ICU. Circadian rhythmicity for none of them was observed but rather, ultradian rhythmicity was found. The expression of Clock, Bmal1, and Per2 mRNA after 1 week was similar in the 4-time point studies without significant fluctuation among the 4 time points analyzed. DISCUSSION Rhythmic mRNA expression is present at the first day after admission in the ICU. However, ICU stay during 1 week affects the molecular machinery of the biological clock generating chronodisruption. Circadian disruption is associated with the risk of several pathologies, thus, it seems to be clear that ICU stay in constant conditions could adversely affect patient evolution and probably, circadian resynchronization restoring clock gene expression could lead to a better clinical evolution of the patient. CONCLUSIONS Clock genes disruption is observed in neuro-ICU patients. Light therapy as well as melatonin treatment could reduce the impact of ICU stay period in biological clock, thereby improving patients' recovery.
Collapse
Affiliation(s)
- Elena Diaz
- Area of Physiology, Department of Functional Biology, 90195University of Oviedo, Oviedo, Spain
| | - Irene Diaz
- Area of Computation Science and Artificial Intelligence, Department of Computer Science, 16763University of Oviedo, Oviedo, Spain
| | - Cecilia Del Busto
- Cardiological Intensive Care Unit. 16474Heart Area-Central University Hospital of AsturiasHeart Area-Central University Hospital of Asturias. Network Biomedical Research Center (CIBERES), Madrid, Spain
| | - Dolores Escudero
- Intensive Care Unit, 16474Central University Hospital of Asturias, Oviedo, Spain
| | - Silvia Pérez
- Unit of Cell Therapy and Regenerative Medicine, 16474Central University Hospital of Asturias, Oviedo, Spain
| |
Collapse
|
19
|
Sundaram S, Hughes RL, Peterson E, Müller-Oehring EM, Brontë-Stewart HM, Poston KL, Faerman A, Bhowmick C, Schulte T. Establishing a framework for neuropathological correlates and glymphatic system functioning in Parkinson's disease. Neurosci Biobehav Rev 2019; 103:305-315. [PMID: 31132378 PMCID: PMC6692229 DOI: 10.1016/j.neubiorev.2019.05.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022]
Abstract
Recent evidence has advanced our understanding of the function of sleep to include removal of neurotoxic protein aggregates via the glymphatic system. However, most research on the glymphatic system utilizes animal models, and the function of waste clearance processes in humans remains unclear. Understanding glymphatic function offers new insight into the development of neurodegenerative diseases that result from toxic protein inclusions, particularly those characterized by neuropathological sleep dysfunction, like Parkinson's disease (PD). In PD, we propose that glymphatic flow may be compromised due to the combined neurotoxic effects of alpha-synuclein protein aggregates and deteriorated dopaminergic neurons that are linked to altered REM sleep, circadian rhythms, and clock gene dysfunction. This review highlights the importance of understanding the functional role of glymphatic system disturbance in neurodegenerative disorders and the subsequent clinical and neuropathological effects on disease progression. Future research initiatives utilizing noninvasive brain imaging methods in human subjects with PD are warranted, as in vivo identification of functional biomarkers in glymphatic system functioning may improve clinical diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Saranya Sundaram
- Department of Psychology, Palo Alto University, 1791 Arastradero Rd, Palo Alto, CA, 94304, USA; Neuroscience Program, Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA.
| | - Rachel L Hughes
- Department of Psychology, Palo Alto University, 1791 Arastradero Rd, Palo Alto, CA, 94304, USA.
| | - Eric Peterson
- Neuroscience Program, Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA.
| | - Eva M Müller-Oehring
- Neuroscience Program, Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA.
| | - Helen M Brontë-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA.
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA.
| | - Afik Faerman
- Department of Psychology, Palo Alto University, 1791 Arastradero Rd, Palo Alto, CA, 94304, USA.
| | - Chloe Bhowmick
- Department of Psychology, Palo Alto University, 1791 Arastradero Rd, Palo Alto, CA, 94304, USA.
| | - Tilman Schulte
- Department of Psychology, Palo Alto University, 1791 Arastradero Rd, Palo Alto, CA, 94304, USA; Neuroscience Program, Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA.
| |
Collapse
|
20
|
Light-exposure at night impairs mouse ovary development via cell apoptosis and DNA damage. Biosci Rep 2019; 39:BSR20181464. [PMID: 30962269 PMCID: PMC6499499 DOI: 10.1042/bsr20181464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/31/2019] [Accepted: 04/06/2019] [Indexed: 11/17/2022] Open
Abstract
The alternation of light and dark rhythm causes a series of physiological, biochemical and metabolic changes in animals, which also alters the growth and development of animals, and feeding, migration, reproduction and other behavioral activities. In recent years, many studies have reported the effects of long-term (more than 6 weeks) illumination on ovarian growth and development. In the present study, we observed the damage, repair and apoptosis of ovarian DNA in a short period of illumination. The results showed that, in short time (less than 2 weeks) illumination conditions, the 24-h light treatment caused the reduction of total ovarian follicle number and down-regulation of circadian clock related genes. Furthermore, the changed levels of serum sex hormones were also detected after 24-h light exposure, of which the concentrations of LH (luteinizing hormone), FSH (follicle-stimulating hormone) and E2 (estradiol) were increased, but the concentration of PROG (progesterone) was decreased. Moreover, 24-h light exposure increased the expression of DNA damage and repair related genes, the number of TUNEL and RAD51 positive cells. These results indicated that 24-h light exposure for 4, 8 and 12 days increased DNA damage and cell apoptosis, thereby affecting the development of ovary.
Collapse
|
21
|
Agorastos A, Nicolaides NC, Bozikas VP, Chrousos GP, Pervanidou P. Multilevel Interactions of Stress and Circadian System: Implications for Traumatic Stress. Front Psychiatry 2019; 10:1003. [PMID: 32047446 PMCID: PMC6997541 DOI: 10.3389/fpsyt.2019.01003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The dramatic fluctuations in energy demands by the rhythmic succession of night and day on our planet has prompted a geophysical evolutionary need for biological temporal organization across phylogeny. The intrinsic circadian timing system (CS) represents a highly conserved and sophisticated internal "clock," adjusted to the 24-h rotation period of the earth, enabling a nyctohemeral coordination of numerous physiologic processes, from gene expression to behavior. The human CS is tightly and bidirectionally interconnected to the stress system (SS). Both systems are fundamental for survival and regulate each other's activity in order to prepare the organism for the anticipated cyclic challenges. Thereby, the understanding of the temporal relationship between stressors and stress responses is critical for the comprehension of the molecular basis of physiology and pathogenesis of disease. A critical loss of the harmonious timed order at different organizational levels may affect the fundamental properties of neuroendocrine, immune, and autonomic systems, leading to a breakdown of biobehavioral adaptative mechanisms with increased stress sensitivity and vulnerability. In this review, following an overview of the functional components of the SS and CS, we present their multilevel interactions and discuss how traumatic stress can alter the interplay between the two systems. Circadian dysregulation after traumatic stress exposure may represent a core feature of trauma-related disorders mediating enduring neurobiological correlates of trauma through maladaptive stress regulation. Understanding the mechanisms susceptible to circadian dysregulation and their role in stress-related disorders could provide new insights into disease mechanisms, advancing psychochronobiological treatment possibilities and preventive strategies in stress-exposed populations.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, United States
| | - Nicolas C Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasilios P Bozikas
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George P Chrousos
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Panagiota Pervanidou
- Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
22
|
Biological Rhythms Advance in Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1180:117-133. [DOI: 10.1007/978-981-32-9271-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Tafoya SA, Aldrete–Cortez V, Ortiz S, Fouilloux C, Flores F, Monterrosas AM. Resilience, sleep quality and morningness as mediators of vulnerability to depression in medical students with sleep pattern alterations. Chronobiol Int 2018; 36:381-391. [DOI: 10.1080/07420528.2018.1552290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Silvia A. Tafoya
- Department of Psychiatry and Mental Health, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- School of Psychology, Universidad Panamericana, Mexico City, Mexico
| | - Vania Aldrete–Cortez
- Neuroscience and Cognitive Developmental Laboratory, School of Psychology, Universidad Panamericana, Mexico City, Mexico
| | - Silvia Ortiz
- Department of Psychiatry and Mental Health, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia Fouilloux
- Department of Psychiatry and Mental Health, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Felipe Flores
- Department of Medical Internship, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana M. Monterrosas
- Department of Medical Internship, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
24
|
Pereira-Morales AJ, Casiraghi LP, Adan A, Camargo A. Mood rhythmicity is associated with depressive symptoms and caffeinated drinks consumption in South American young adults. Chronobiol Int 2018; 36:225-236. [PMID: 30395732 DOI: 10.1080/07420528.2018.1530257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Among the factors that contribute to the onset and maintenance of depressive disorders, rhythmicity of symptoms and consumption of caffeine have recently gained attention. The current study aimed to examine the differential rhythmicity of relevant variables in a sample of young participants, considering the presence of depressive symptomatology and the frequency of caffeinated drinks consumption. A significant 24-hour differential rhythmicity of mood, cognitive and physiological variables was found indicating an evening peak pattern in the participants with depressive symptoms. Interestingly, caffeinated drinks consumption was differentially associated with self-perceived peaks, according to the presence of depressive symptomatology. Our findings are among the first reports about the potential association of the 24-hours rhythmicity of relevant mood-related variables, depressive symptoms, and caffeine intake. These results support the view that the identification of risk factors for depression, and the application of novel measurements and analysis methods in the development of new preventive strategies should be a public health priority.
Collapse
Affiliation(s)
- Angela J Pereira-Morales
- a PhD Program in Public Health, School of Medicine , Universidad Nacional de Colombia , Bogotá , Colombia
| | | | - Ana Adan
- c Department of Clinical Psychology and Psychobiology, School of Psychology , University of Barcelona , Barcelona , Spain.,e Institute of Neurosciences , University of Barcelona , Barcelona , Spain
| | - Andrés Camargo
- d School of Medicine , Universidad de Ciencias Aplicadas y Ambientales. U.D.C.A , Bogotá , Colombia
| |
Collapse
|
25
|
Ode KL, Ueda HR. Design Principles of Phosphorylation-Dependent Timekeeping in Eukaryotic Circadian Clocks. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028357. [PMID: 29038116 DOI: 10.1101/cshperspect.a028357] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The circadian clock in cyanobacteria employs a posttranslational oscillator composed of a sequential phosphorylation-dephosphorylation cycle of KaiC protein, in which the dynamics of protein structural changes driven by temperature-compensated KaiC's ATPase activity are critical for determining the period. On the other hand, circadian clocks in eukaryotes employ transcriptional feedback loops as a core mechanism. In this system, the dynamics of protein accumulation and degradation affect the circadian period. However, recent studies of eukaryotic circadian clocks reveal that the mechanism controlling the circadian period can be independent of the regulation of protein abundance. Instead, the circadian substrate is often phosphorylated at multiple sites at flexible protein regions to induce structural changes. The phosphorylation is catalyzed by kinases that induce sequential multisite phosphorylation such as casein kinase 1 (CK1) with temperature-compensated activity. We propose that the design principles of phosphorylation-dependent circadian-period determination in eukaryotes may share characteristics with the posttranslational oscillator in cyanobacteria.
Collapse
Affiliation(s)
- Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Horne CM, Norbury R. Altered resting-state connectivity within default mode network associated with late chronotype. J Psychiatr Res 2018; 102:223-229. [PMID: 29702432 DOI: 10.1016/j.jpsychires.2018.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/30/2022]
Abstract
Current evidence suggests late chronotype individuals have an increased risk of developing depression. However, the underlying neural mechanisms of this association are not fully understood. Forty-six healthy, right-handed individuals free of current or previous diagnosis of depression, family history of depression or sleep disorder underwent resting-state functional Magnetic Resonance Imaging (rsFMRI). Using an Independent Component Analysis (ICA) approach, the Default Mode Network (DMN) was identified based on a well validated template. Linear effects of chronotype on DMN connectivity were tested for significance using non-parametric permutation tests (applying 5000 permutations). Sleep quality, age, gender, measures of mood and anxiety, time of scan and cortical grey matter volume were included as covariates in the regression model. A significant positive correlation between chronotype and functional connectivity within nodes of the DMN was observed, including; bilateral PCC and precuneus, such that later chronotype (participants with lower rMEQ scores) was associated with decreased connectivity within these regions. The current results appear consistent with altered DMN connectivity in depressed patients and weighted evidence towards reduced DMN connectivity in other at-risk populations which may, in part, explain the increased vulnerability for depression in late chronotype individuals. The effect may be driven by self-critical thoughts associated with late chronotype although future studies are needed to directly investigate this.
Collapse
Affiliation(s)
| | - Ray Norbury
- Department of Psychology, University of Roehampton, UK
| |
Collapse
|
27
|
Zaki NFW, Spence DW, BaHammam AS, Pandi-Perumal SR, Cardinali DP, Brown GM. Chronobiological theories of mood disorder. Eur Arch Psychiatry Clin Neurosci 2018; 268:107-118. [PMID: 28894915 DOI: 10.1007/s00406-017-0835-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
Major depressive disorder (MDD) remains the most prevalent mental disorder and a leading cause of disability, affecting approximately 100 million adults worldwide. The disorder is characterized by a constellation of symptoms affecting mood, anxiety, neurochemical balance, sleep patterns, and circadian and/or seasonal rhythm entrainment. However, the mechanisms underlying the association between chronobiological parameters and depression remain unknown. A PubMed search was conducted to review articles from 1979 to the present, using the following search terms: "chronobiology," "mood," "sleep," and "circadian rhythms." We aimed to synthesize the literature investigating chronobiological theories of mood disorders. Current treatments primarily include tricyclic antidepressants and selective serotonin reuptake inhibitors, which are known to increase extracellular concentrations of monoamine neurotransmitters. However, these antidepressants do not treat the sleep disturbances or circadian and/or seasonal rhythm dysfunctions associated with depressive disorders. Several theories associating sleep and circadian rhythm disturbances with depression have been proposed. Current evidence supports the existence of associations between these, but the direction of causality remains elusive. Given the existence of chronobiological disturbances in depression and evidence regarding their treatment in improving depression, a chronobiological approach, including timely use of light and melatonin agonists, could complement the treatment of MDD.
Collapse
Affiliation(s)
- Nevin F W Zaki
- Department of Psychiatry, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Ahmed S BaHammam
- University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Daniel P Cardinali
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Gregory M Brown
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, M5T 1R8, Canada
| |
Collapse
|
28
|
Lindberg D, Andres-Beck L, Jia YF, Kang S, Choi DS. Purinergic Signaling in Neuron-Astrocyte Interactions, Circadian Rhythms, and Alcohol Use Disorder. Front Physiol 2018; 9:9. [PMID: 29467662 PMCID: PMC5808134 DOI: 10.3389/fphys.2018.00009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/05/2018] [Indexed: 12/17/2022] Open
Abstract
Alcohol use disorder (AUD) is a debilitating condition marked by cyclic patterns of craving, use, and withdrawal. These pathological behaviors are mediated by multiple neurotransmitter systems utilizing glutamate, GABA, dopamine, ATP, and adenosine. In particular, purines such as ATP and adenosine have been demonstrated to alter the phase and function of the circadian clock and are reciprocally regulated by the clock itself. Importantly, chronic ethanol intake has been demonstrated to disrupt the molecular circadian clock and is associated with altered circadian patterns of activity and sleep. Moreover, ethanol has been demonstrated to disrupt purinergic signaling, while dysfunction of the purinergic system has been implicated in conditions of drug abuse such as AUD. In this review, we summarize our current knowledge regarding circadian disruption by ethanol, focusing on the reciprocal relationship that exists between oscillatory neurotransmission and the molecular circadian clock. In particular, we offer detailed explanations and hypotheses regarding the concerted regulation of purinergic signaling and circadian oscillations by neurons and astrocytes, and review the diverse mechanisms by which purinergic dysfuction may contribute to circadian disruption or alcohol abuse. Finally, we describe the mechanisms by which ethanol may disrupt or hijack endogenous circadian rhythms to induce the maladaptive behavioral patterns associated with AUD.
Collapse
Affiliation(s)
- Daniel Lindberg
- Neurobiology of Disease, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Lindsey Andres-Beck
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Yun-Fang Jia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Seungwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Doo-Sup Choi
- Neurobiology of Disease, Mayo Clinic College of Medicine, Rochester, MN, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, United States.,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, United States
| |
Collapse
|
29
|
Role and Possible Mechanisms of Sirt1 in Depression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8596903. [PMID: 29643977 PMCID: PMC5831942 DOI: 10.1155/2018/8596903] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 12/28/2022]
Abstract
Depression is a common, devastating illness. Due to complicated causes and limited treatments, depression is still a major problem that plagues the world. Silent information regulator 1 (Sirt1) is a deacetylase at the consumption of NAD+ and is involved in gene silencing, cell cycle, fat and glucose metabolism, cellular oxidative stress, and senescence. Sirt1 has now become a critical therapeutic target for a number of diseases. Recently, a genetic study has received considerable attention for depression and found that Sirt1 is a potential gene target. In this short review article, we attempt to present an up-to-date knowledge of depression and Sirt1 of the sirtuin family, describe the different effects of Sirt1 on depression, and further discuss possible mechanisms of Sirt1 including glial activation, neurogenesis, circadian control, and potential signaling molecules. Thus, it will open a new avenue for clinical treatment of depression.
Collapse
|
30
|
Brown GM, McIntyre RS, Rosenblat J, Hardeland R. Depressive disorders: Processes leading to neurogeneration and potential novel treatments. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:189-204. [PMID: 28433459 DOI: 10.1016/j.pnpbp.2017.04.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/01/2017] [Indexed: 12/18/2022]
Abstract
Mood disorders are wide spread with estimates that one in seven of the population are affected at some time in their life (Kessler et al., 2012). Many of those affected with severe depressive disorders have cognitive deficits which may progress to frank neurodegeneration. There are several peripheral markers shown by patients who have cognitive deficits that could represent causative factors and could potentially serve as guides to the prevention or even treatment of neurodegeneration. Circadian rhythm misalignment, immune dysfunction and oxidative stress are key pathologic processes implicated in neurodegeneration and cognitive dysfunction in depressive disorders. Novel treatments targeting these pathways may therefore potentially improve patient outcomes whereby the primary mechanism of action is outside of the monoaminergic system. Moreover, targeting immune dysfunction, oxidative stress and circadian rhythm misalignment (rather than primarily the monoaminergic system) may hold promise for truly disease modifying treatments that may prevent neurodegeneration rather than simply alleviating symptoms with no curative intent. Further research is required to more comprehensively understand the contributions of these pathways to the pathophysiology of depressive disorders to allow for disease modifying treatments to be discovered.
Collapse
Affiliation(s)
- Gregory M Brown
- Department of Psychiatry, University of Toronto, Centre for Addiction and Mental Health, 250 College St. Toronto, ON M5T 1R8, Canada.
| | - Roger S McIntyre
- Psychiatry and Pharmacology, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada.
| | - Joshua Rosenblat
- Resident of Psychiatry, Clinician Scientist Stream, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, Buergerstrasse 50, D-37073 Göttingen, Germany.
| |
Collapse
|
31
|
Sullivan K, Pantazopoulos H, Liebson E, Woo TUW, Baldessarini RJ, Hedreen J, Berretta S. What can we learn about brain donors? Use of clinical information in human postmortem brain research. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:181-196. [PMID: 29496141 DOI: 10.1016/b978-0-444-63639-3.00014-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Postmortem studies on the human brain reside at the core of investigations on neurologic and psychiatric disorders. Ground-breaking advances continue to be made on the pathologic basis of many of these disorders, at molecular, cellular, and neural connectivity levels. In parallel, there is increasing emphasis on improving methods to extract relevant demographic and clinical information about brain donors and, importantly, translate it into measures that can reliably and effectively be incorporated in the design and data analysis of postmortem human investigations. Here, we review the main source of information typically available to brain banks and provide examples on how this information can be processed. In particular, we discuss approaches to establish primary and secondary diagnoses, estimate exposure to therapeutic treatment and substance abuse, assess agonal status, and use time of death as a proxy in investigations on circadian rhythms. Although far from exhaustive, these considerations are intended as a contribution to ongoing efforts from tissue banks and investigators aimed at establishing robust, well-validated methods for collecting and standardizing information about brain donors, further strengthening the scientific rigor of human postmortem studies.
Collapse
Affiliation(s)
- Kathleen Sullivan
- Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, MA, United States
| | - Harry Pantazopoulos
- Traslational Neuroscience Laboratory, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Elizabeth Liebson
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - T-U W Woo
- Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Ross J Baldessarini
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; International Consortium for Psychotic and Bipolar Disorders Research, McLean Hospital, Belmont, MA, United States
| | - John Hedreen
- Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, MA, United States
| | - Sabina Berretta
- Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, MA, United States; Traslational Neuroscience Laboratory, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Program in Neuroscience, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
32
|
Çalıyurt O. Role of Chronobiology as a Transdisciplinary Field of Research: Its Applications in Treating Mood Disorders. Balkan Med J 2017; 34:514-521. [PMID: 29072179 PMCID: PMC5785655 DOI: 10.4274/balkanmedj.2017.1280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022] Open
Abstract
Chronobiology is a field that studies the effects of time on biological systems. Periodicity is of particular interest. The master biological clock in the suprachiasmatic nucleus controls daily rhythms of core body temperature, rest-activity cycle, physiological and behavioral functions, psychomotor functions and mood in humans. The clock genes are involved in the generation of the circadian rhythms and the biological clock is synchronized to solar day by direct photic inputs. Various circadian rhythm abnormalities have been demonstrated in mood disorders such as unipolar depression, bipolar depression and seasonal affective disorder. Hypotheses involving circadian rhythm abnormalities related to the etiology of mood disorders have been raised. The resulting circadian rhythm changes can be measured and evaluated that these techniques can be used to identify subtypes of mood disorders associated with circadian rhythm changes. The data obtained from chronobiological studies reveal methods that manipulate circadian rhythms. The effects of light and melatonin on circadian rhythms are determined by these studies. Chronobiological research has been applied to the psychiatric clinic and light therapy has been used as a chronotherapeutic in the treatment of mood disorders. On the other hand, chronotherapeutic approaches with effects on circadian rhythms such as sleep deprivation therapy have been used in the treatment of mood disorders too. As a good example of translational psychiatry, chronobiological studies have been projected in the psychiatry clinic. It may be possible, the data obtained from the basic sciences are used in the diagnosis of mood disorders and in the treatment of psychiatric disorders as chronotherapeutic techniques. Developments in the field of chronobiology and data obtained from chronotherapeutics may enable the development of evidence-based diagnosis and treatment in psychiatry.
Collapse
Affiliation(s)
- Okan Çalıyurt
- Department of Psychiatry, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
33
|
Preußner M, Goldammer G, Neumann A, Haltenhof T, Rautenstrauch P, Müller-McNicoll M, Heyd F. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals. Mol Cell 2017; 67:433-446.e4. [DOI: 10.1016/j.molcel.2017.06.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/27/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022]
|
34
|
Kim J, Jang S, Choe HK, Chung S, Son GH, Kim K. Implications of Circadian Rhythm in Dopamine and Mood Regulation. Mol Cells 2017; 40:450-456. [PMID: 28780783 PMCID: PMC5547214 DOI: 10.14348/molcells.2017.0065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 11/30/2022] Open
Abstract
Mammalian physiology and behavior are regulated by an internal time-keeping system, referred to as circadian rhythm. The circadian timing system has a hierarchical organization composed of the master clock in the suprachiasmatic nucleus (SCN) and local clocks in extra-SCN brain regions and peripheral organs. The circadian clock molecular mechanism involves a network of transcription-translation feedback loops. In addition to the clinical association between circadian rhythm disruption and mood disorders, recent studies have suggested a molecular link between mood regulation and circadian rhythm. Specifically, genetic deletion of the circadian nuclear receptor Rev-erbα induces mania-like behavior caused by increased midbrain dopaminergic (DAergic) tone at dusk. The association between circadian rhythm and emotion-related behaviors can be applied to pathological conditions, including neurodegenerative diseases. In Parkinson's disease (PD), DAergic neurons in the substantia nigra pars compacta progressively degenerate leading to motor dysfunction. Patients with PD also exhibit non-motor symptoms, including sleep disorder and neuropsychiatric disorders. Thus, it is important to understand the mechanisms that link the molecular circadian clock and brain machinery in the regulation of emotional behaviors and related midbrain DAergic neuronal circuits in healthy and pathological states. This review summarizes the current literature regarding the association between circadian rhythm and mood regulation from a chronobiological perspective, and may provide insight into therapeutic approaches to target psychiatric symptoms in neurodegenerative diseases involving circadian rhythm dysfunction.
Collapse
Affiliation(s)
- Jeongah Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988,
Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826,
Korea
| | - Sangwon Jang
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988,
Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988,
Korea
| | - Sooyoung Chung
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760,
Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02473,
Korea
| | - Kyungjin Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988,
Korea
- Korea Brain Research Institute (KBRI), Daegu 41068,
Korea
| |
Collapse
|
35
|
Mendoza J. Circadian neurons in the lateral habenula: Clocking motivated behaviors. Pharmacol Biochem Behav 2017; 162:55-61. [PMID: 28666896 DOI: 10.1016/j.pbb.2017.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/30/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
The main circadian clock in mammals is located in the hypothalamic suprachiasmatic nucleus (SCN), however, central timing mechanisms are also present in other brain structures beyond the SCN. The lateral habenula (LHb), known for its important role in the regulation of the monoaminergic system, contains such a circadian clock whose molecular and cellular mechanisms as well as functional role are not well known. However, since monoaminergic systems show circadian activity, it is possible that the LHb-clock's role is to modulate the rhythmic activity of the dopamine, serotonin and norephinephrine systems, and associated behaviors. Moreover, the LHb is involved in different pathological states such as depression, addiction and schizophrenia, states in which sleep and circadian alterations have been reported. Thus, perturbations of circadian activity in the LHb might, in part, be a cause of these rhythmic alterations in psychiatric ailments. In this review the current state of the LHb clock and its possible implications in the control of monoaminergic systems rhythms, motivated behaviors (e.g., feeding, drug intake) and depression (with circadian disruptions and altered motivation) will be discussed.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neuroscience, CNRS-UPR 3212 Strasbourg France, 5 rue Blaise Pascal, 67084 cedex Strasbourg, France.
| |
Collapse
|
36
|
Krishnaiah SY, Wu G, Altman BJ, Growe J, Rhoades SD, Coldren F, Venkataraman A, Olarerin-George AO, Francey LJ, Mukherjee S, Girish S, Selby CP, Cal S, Er U, Sianati B, Sengupta A, Anafi RC, Kavakli IH, Sancar A, Baur JA, Dang CV, Hogenesch JB, Weljie AM. Clock Regulation of Metabolites Reveals Coupling between Transcription and Metabolism. Cell Metab 2017; 25:961-974.e4. [PMID: 28380384 PMCID: PMC5479132 DOI: 10.1016/j.cmet.2017.03.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 01/12/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023]
Abstract
The intricate connection between the circadian clock and metabolism remains poorly understood. We used high temporal resolution metabolite profiling to explore clock regulation of mouse liver and cell-autonomous metabolism. In liver, ∼50% of metabolites were circadian, with enrichment of nucleotide, amino acid, and methylation pathways. In U2 OS cells, 28% were circadian, including amino acids and NAD biosynthesis metabolites. Eighteen metabolites oscillated in both systems and a subset of these in primary hepatocytes. These 18 metabolites were enriched in methylation and amino acid pathways. To assess clock dependence of these rhythms, we used genetic perturbation. BMAL1 knockdown diminished metabolite rhythms, while CRY1 or CRY2 perturbation generally shortened or lengthened rhythms, respectively. Surprisingly, CRY1 knockdown induced 8 hr rhythms in amino acid, methylation, and vitamin metabolites, decoupling metabolite from transcriptional rhythms, with potential impact on nutrient sensing in vivo. These results provide the first comprehensive views of circadian liver and cell-autonomous metabolism.
Collapse
Affiliation(s)
- Saikumari Y Krishnaiah
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gang Wu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Brian J Altman
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacqueline Growe
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth D Rhoades
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Faith Coldren
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anand Venkataraman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anthony O Olarerin-George
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren J Francey
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarmistha Mukherjee
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Saiveda Girish
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sibel Cal
- Chemical and Biological Engineering and Molecular Biology and Genetics, Koc University, Rumeli Feneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Ubeydullah Er
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bahareh Sianati
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ron C Anafi
- Department of Medicine and Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - I Halil Kavakli
- Chemical and Biological Engineering and Molecular Biology and Genetics, Koc University, Rumeli Feneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chi V Dang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John B Hogenesch
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Nicolaides NC, Charmandari E, Kino T, Chrousos GP. Stress-Related and Circadian Secretion and Target Tissue Actions of Glucocorticoids: Impact on Health. Front Endocrinol (Lausanne) 2017; 8:70. [PMID: 28503165 PMCID: PMC5408025 DOI: 10.3389/fendo.2017.00070] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/24/2017] [Indexed: 12/13/2022] Open
Abstract
Living organisms are highly complex systems that must maintain a dynamic equilibrium or homeostasis that requires energy to be sustained. Stress is a state in which several extrinsic or intrinsic disturbing stimuli, the stressors, threaten, or are perceived as threatening, homeostasis. To achieve homeostasis against the stressors, organisms have developed a highly sophisticated system, the stress system, which provides neuroendocrine adaptive responses, to restore homeostasis. These responses must be appropriate in terms of size and/or duration; otherwise, they may sustain life but be associated with detrimental effects on numerous physiologic functions of the organism, leading to a state of disease-causing disturbed homeostasis or cacostasis. In addition to facing a broad spectrum of external and/or internal stressors, organisms are subject to recurring environmental changes associated with the rotation of the planet around itself and its revolution around the sun. To adjust their homeostasis and to synchronize their activities to day/night cycles, organisms have developed an evolutionarily conserved biologic system, the "clock" system, which influences several physiologic functions in a circadian fashion. Accumulating evidence suggests that the stress system is intimately related to the circadian clock system, with dysfunction of the former resulting in dysregulation of the latter and vice versa. In this review, we describe the functional components of the two systems, we discuss their multilevel interactions, and we present how excessive or prolonged activity of the stress system affects the circadian rhythm of glucocorticoid secretion and target tissue effects.
Collapse
Affiliation(s)
- Nicolas C. Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ’Aghia Sophia’ Children’s Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- *Correspondence: Nicolas C. Nicolaides,
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ’Aghia Sophia’ Children’s Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Tomoshige Kino
- Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar
| | - George P. Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ’Aghia Sophia’ Children’s Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
38
|
Hu K, Riemersma - van der Lek RF, Patxot M, Li P, Shea SA, Scheer FAJL, Van Someren EJW. Progression of Dementia Assessed by Temporal Correlations of Physical Activity: Results From a 3.5-Year, Longitudinal Randomized Controlled Trial. Sci Rep 2016; 6:27742. [PMID: 27292543 PMCID: PMC4904193 DOI: 10.1038/srep27742] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/19/2016] [Indexed: 01/04/2023] Open
Abstract
Cross-sectional studies show that activity fluctuations in healthy young adults possess robust temporal correlations that become altered with aging, and in dementia and depression. This study was designed to test whether or not within-subject changes of activity correlations (i) track the clinical progression of dementia, (ii) reflect the alterations of depression symptoms in patients with dementia, and (iii) can be manipulated by clinical interventions aimed at stabilizing circadian rhythmicity and improving sleep in dementia, namely timed bright light therapy and melatonin supplementation. We examined 144 patients with dementia (70-96 years old) who were assigned to daily treatment with bright light, bedtime melatonin, both or placebos only in a 3.5-year double-blinded randomized clinical trial. We found that activity correlations at temporal scales <~2 hours significantly decreased over time and that light treatment attenuated the decrease by ~73%. Moreover, the decrease of temporal activity correlations positively correlated with the degrees of cognitive decline and worsening of mood though the associations were relatively weak. These results suggest a mechanistic link between multiscale activity regulation and circadian/sleep function in dementia patients. Whether temporal activity patterns allow unobtrusive, long-term monitoring of dementia progression and mood changes is worth further investigation.
Collapse
Affiliation(s)
- Kun Hu
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Rixt F. Riemersma - van der Lek
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - Melissa Patxot
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Peng Li
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Steven A. Shea
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Frank A. J. L. Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Eus J. W. Van Someren
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Depts. of Integrative Neurophysiology and Psychiatry GGZ inGeest, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University and Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Post-transcriptional control of the mammalian circadian clock: implications for health and disease. Pflugers Arch 2016; 468:983-91. [PMID: 27108448 PMCID: PMC4893061 DOI: 10.1007/s00424-016-1820-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Many aspects of human physiology and behavior display rhythmicity with a period of approximately 24 h. Rhythmic changes are controlled by an endogenous time keeper, the circadian clock, and include sleep-wake cycles, physical and mental performance capability, blood pressure, and body temperature. Consequently, many diseases, such as metabolic, sleep, autoimmune and mental disorders and cancer, are connected to the circadian rhythm. The development of therapies that take circadian biology into account is thus a promising strategy to improve treatments of diverse disorders, ranging from allergic syndromes to cancer. Circadian alteration of body functions and behavior are, at the molecular level, controlled and mediated by widespread changes in gene expression that happen in anticipation of predictably changing requirements during the day. At the core of the molecular clockwork is a well-studied transcription-translation negative feedback loop. However, evidence is emerging that additional post-transcriptional, RNA-based mechanisms are required to maintain proper clock function. Here, we will discuss recent work implicating regulated mRNA stability, translation and alternative splicing in the control of the mammalian circadian clock, and its role in health and disease.
Collapse
|
40
|
Tracking search engine queries for suicide in the United Kingdom, 2004-2013. Public Health 2016; 137:147-53. [PMID: 26976489 DOI: 10.1016/j.puhe.2015.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/20/2015] [Accepted: 10/29/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVES First, to determine if a cyclical trend is observed for search activity of suicide and three common suicide risk factors in the United Kingdom: depression, unemployment, and marital strain. Second, to test the validity of suicide search data as a potential marker of suicide risk by evaluating whether web searches for suicide associate with suicide rates among those of different ages and genders in the United Kingdom. STUDY DESIGN Cross-sectional. METHODS Search engine data was obtained from Google Trends, a publicly available repository of information of trends and patterns of user searches on Google. The following phrases were entered into Google Trends to analyse relative search volume for suicide, depression, job loss, and divorce, respectively: 'suicide'; 'depression + depressed + hopeless'; 'unemployed + lost job'; 'divorce'. Spearman's rank correlation coefficient was employed to test bivariate associations between suicide search activity and official suicide rates from the Office of National Statistics (ONS). RESULTS Cyclical trends were observed in search activity for suicide and depression-related search activity, with peaks in autumn and winter months, and a trough in summer months. A positive, non-significant association was found between suicide-related search activity and suicide rates in the general working-age population (15-64 years) (ρ = 0.164; P = 0.652). This association is stronger in younger age groups, particularly for those 25-34 years of age (ρ = 0.848; P = 0.002). CONCLUSIONS We give credence to a link between search activity for suicide and suicide rates in the United Kingdom from 2004 to 2013 for high risk sub-populations (i.e. male youth and young professionals). There remains a need for further research on how Google Trends can be used in other areas of disease surveillance and for work to provide greater geographical precision, as well as research on ways of mitigating the risk of internet use leading to suicide ideation in youth.
Collapse
|
41
|
Mang GM, La Spada F, Emmenegger Y, Chappuis S, Ripperger JA, Albrecht U, Franken P. Altered Sleep Homeostasis in Rev-erbα Knockout Mice. Sleep 2016; 39:589-601. [PMID: 26564124 PMCID: PMC4763348 DOI: 10.5665/sleep.5534] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/26/2015] [Indexed: 02/06/2023] Open
Abstract
STUDY OBJECTIVES The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. METHODS EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. RESULTS Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1-4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. CONCLUSIONS Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context.
Collapse
Affiliation(s)
- Géraldine M. Mang
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Francesco La Spada
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sylvie Chappuis
- Faculty of Science, Department of Biology, Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Jürgen A. Ripperger
- Faculty of Science, Department of Biology, Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Faculty of Science, Department of Biology, Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
42
|
Bechtel W. Circadian Rhythms and Mood Disorders: Are the Phenomena and Mechanisms Causally Related? Front Psychiatry 2015; 6:118. [PMID: 26379559 PMCID: PMC4547005 DOI: 10.3389/fpsyt.2015.00118] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/07/2015] [Indexed: 12/13/2022] Open
Abstract
This paper reviews some of the compelling evidence of disrupted circadian rhythms in individuals with mood disorders (major depressive disorder, seasonal affective disorder, and bipolar disorder) and that treatments such as bright light, designed to alter circadian rhythms, are effective in treating these disorders. Neurotransmitters in brain regions implicated in mood regulation exhibit circadian rhythms. A mouse model originally employed to identify a circadian gene has proven a potent model for mania. While this evidence is suggestive of an etiological role for altered circadian rhythms in mood disorders, it is compatible with other explanations, including that disrupted circadian rhythms and mood disorders are effects of a common cause and that genes and proteins implicated in both simply have pleiotropic effects. In light of this, the paper advances a proposal as to what evidence would be needed to establish a direct causal link between disruption of circadian rhythms and mood disorders.
Collapse
Affiliation(s)
- William Bechtel
- Department of Philosophy and Center for Circadian Biology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
43
|
Hypothalamic dopaminergic neurons in an animal model of seasonal affective disorder. Neurosci Lett 2015; 602:17-21. [PMID: 26116821 DOI: 10.1016/j.neulet.2015.06.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/26/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022]
Abstract
Light has profound effects on mood regulation as exemplified in seasonal affective disorder (SAD) and the therapeutic benefits of light therapy. However, the underlying neural pathways through which light regulates mood are not well understood. Our previous work has developed the diurnal grass rat, Arvicanthis niloticus, as an animal model of SAD. Following housing conditions of either 12:12 h dim light:dark (DLD) or 8:16 h short photoperiod (SP), which mimic the lower light intensity or short day-length of winter, respectively, grass rats exhibit an increase in depression-like behavior compared to those housed in a 12:12 h bright light:dark (BLD) condition. Furthermore, we have shown that the orexinergic system is involved in mediating the effects of light on mood and anxiety. To explore other potential neural substrates involved in the depressive phenotype, the present study examined hypothalamic dopaminergic (DA) and somatostatin (SST) neurons in the brains of grass rats housed in DLD, SP and BLD. Using immunostaining for tyrosine hydroxylase (TH) and SST, we found that the number of TH- and SST-ir cells in the hypothalamus was significantly lower in the DLD and SP groups compared to the BLD group. We also found that treating BLD animals with a selective orexin receptor 1 (OX1R) antagonist SB-334867 significantly reduced the number of hypothalamic TH-ir cells. The present study suggests that the hypothalamic DA neurons are sensitive to daytime light deficiency and are regulated by an orexinergic pathway. The results support the hypothesis that the orexinergic pathways mediate the effects of light on other neuronal systems that collectively contribute to light-dependent changes in the affective state.
Collapse
|
44
|
Tahara Y, Shiraishi T, Kikuchi Y, Haraguchi A, Kuriki D, Sasaki H, Motohashi H, Sakai T, Shibata S. Entrainment of the mouse circadian clock by sub-acute physical and psychological stress. Sci Rep 2015; 5:11417. [PMID: 26073568 PMCID: PMC4466793 DOI: 10.1038/srep11417] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
The effects of acute stress on the peripheral circadian system are not well understood in vivo. Here, we show that sub-acute stress caused by restraint or social defeat potently altered clock gene expression in the peripheral tissues of mice. In these peripheral tissues, as well as the hippocampus and cortex, stressful stimuli induced time-of-day-dependent phase-advances or -delays in rhythmic clock gene expression patterns; however, such changes were not observed in the suprachiasmatic nucleus, i.e. the central circadian clock. Moreover, several days of stress exposure at the beginning of the light period abolished circadian oscillations and caused internal desynchronisation of peripheral clocks. Stress-induced changes in circadian rhythmicity showed habituation and disappeared with long-term exposure to repeated stress. These findings suggest that sub-acute physical/psychological stress potently entrains peripheral clocks and causes transient dysregulation of circadian clocks in vivo.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Adaptation, Physiological/genetics
- Animals
- Cerebral Cortex/metabolism
- Circadian Clocks/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Gene Expression Regulation
- Genes, Reporter
- Hippocampus/metabolism
- Immobilization
- Luciferases/genetics
- Luciferases/metabolism
- Male
- Mice
- Mice, Transgenic
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Period Circadian Proteins/genetics
- Period Circadian Proteins/metabolism
- Photoperiod
- Signal Transduction
- Social Alienation/psychology
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Suprachiasmatic Nucleus/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takuya Shiraishi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yosuke Kikuchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Daisuke Kuriki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroaki Motohashi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Tomoko Sakai
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
45
|
Hennings JM, Uhr M, Klengel T, Weber P, Pütz B, Touma C, Czamara D, Ising M, Holsboer F, Lucae S. RNA expression profiling in depressed patients suggests retinoid-related orphan receptor alpha as a biomarker for antidepressant response. Transl Psychiatry 2015; 5:e538. [PMID: 25826113 PMCID: PMC4429173 DOI: 10.1038/tp.2015.9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022] Open
Abstract
Response to antidepressant treatment is highly variable with some patients responding within a few weeks, whereas others have to wait for months until the onset of clinical effects. Gene expression profiling may be a tool to identify markers of antidepressant treatment response and new potential drug targets. In a first step, we selected 12 male, age- and severity-matched pairs of remitters and nonresponders, and analyzed expression profiles in peripheral blood at admission and after 2 and 5 weeks of treatment using Illumina expression arrays. We identified 127 transcripts significantly associated with treatment response with a minimal P-value of 9.41 × 10(-)(4) (false discovery rate-corrected). Analysis of selected transcripts in an independent replication sample of 142 depressed inpatients confirmed that lower expression of retinoid-related orphan receptor alpha (RORa, P=6.23 × 10(-4)), germinal center expressed transcript 2 (GCET2, P=2.08 × 10(-2)) and chitinase 3-like protein 2 (CHI3L2, P=4.45 × 10(-2)) on admission were associated with beneficial treatment response. In addition, leukocyte-specific protein 1 (LSP1) significantly decreased after 5 weeks of treatment in responders (P=2.91 × 10(-2)). Additional genetic, in vivo stress responsitivity data and murine gene expression findings corroborate our finding of RORa as a transcriptional marker of antidepressant response. In summary, using a genome-wide transcriptomics approach and subsequent validation studies, we identified several transcripts including the circadian gene transcript RORa that may serve as biomarkers indicating antidepressant treatment response.
Collapse
Affiliation(s)
- J M Hennings
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany,Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany. E-mail:
| | - M Uhr
- Core Unit Biobanking and Molecular Biology, Max Planck Institute of Psychiatry, Munich, Germany
| | - T Klengel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - P Weber
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - B Pütz
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - C Touma
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - D Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - M Ising
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - F Holsboer
- Emeritus scientific member, Max Planck Institute of Psychiatry, Munich, Germany
| | - S Lucae
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
46
|
Kolbe I, Dumbell R, Oster H. Circadian Clocks and the Interaction between Stress Axis and Adipose Function. Int J Endocrinol 2015; 2015:693204. [PMID: 26000016 PMCID: PMC4426660 DOI: 10.1155/2015/693204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 01/21/2023] Open
Abstract
Many physiological processes and most endocrine functions show fluctuations over the course of the day. These so-called circadian rhythms are governed by an endogenous network of cellular clocks and serve as an adaptation to daily and, thus, predictable changes in the organism's environment. Circadian clocks have been described in several tissues of the stress axis and in adipose cells where they regulate the rhythmic and stimulated release of stress hormones, such as glucocorticoids, and various adipokine factors. Recent work suggests that both adipose and stress axis clock systems reciprocally influence each other and adrenal-adipose rhythms may be key players in the development and therapy of metabolic disorders. In this review, we summarize our current understanding of adrenal and adipose tissue rhythms and clocks and how they might interact to regulate energy homoeostasis and stress responses under physiological conditions. Potential chronotherapeutic strategies for the treatment of metabolic and stress disorders are discussed.
Collapse
Affiliation(s)
- Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, 23538 Lübeck, Germany
| | - Rebecca Dumbell
- Chronophysiology Group, Medical Department I, University of Lübeck, 23538 Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, 23538 Lübeck, Germany
- *Henrik Oster:
| |
Collapse
|
47
|
Leliavski A, Dumbell R, Ott V, Oster H. Adrenal Clocks and the Role of Adrenal Hormones in the Regulation of Circadian Physiology. J Biol Rhythms 2014; 30:20-34. [DOI: 10.1177/0748730414553971] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) and subordinate clocks that disseminate time information to various central and peripheral tissues. While the function of the SCN in circadian rhythm regulation has been extensively studied, we still have limited understanding of how peripheral tissue clock function contributes to the regulation of physiological processes. The adrenal gland plays a special role in this context as adrenal hormones show strong circadian secretion rhythms affecting downstream physiological processes. At the same time, they have been shown to affect clock gene expression in various other tissues, thus mediating systemic entrainment to external zeitgebers and promoting internal circadian alignment. In this review, we discuss the function of circadian clocks in the adrenal gland, how they are reset by the SCN and may further relay time-of-day information to other tissues. Focusing on glucocorticoids, we conclude by outlining the impact of adrenal rhythm disruption on neuropsychiatric, metabolic, immune, and malignant disorders.
Collapse
Affiliation(s)
- Alexei Leliavski
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| | - Rebecca Dumbell
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| | - Volker Ott
- Institute of Neuroendocrinology, University of Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| |
Collapse
|
48
|
Brainard J, Gobel M, Bartels K, Scott B, Koeppen M, Eckle T. Circadian rhythms in anesthesia and critical care medicine: potential importance of circadian disruptions. Semin Cardiothorac Vasc Anesth 2014; 19:49-60. [PMID: 25294583 DOI: 10.1177/1089253214553066] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rotation of the earth and associated alternating cycles of light and dark--the basis of our circadian rhythms--are fundamental to human biology and culture. However, it was not until 1971 that researchers first began to describe the molecular mechanisms for the circadian system. During the past few years, groundbreaking research has revealed a multitude of circadian genes affecting a variety of clinical diseases, including diabetes, obesity, sepsis, cardiac ischemia, and sudden cardiac death. Anesthesiologists, in the operating room and intensive care units, manage these diseases on a daily basis as they significantly affect patient outcomes. Intriguingly, sedatives, anesthetics, and the intensive care unit environment have all been shown to disrupt the circadian system in patients. In the current review, we will discuss how newly acquired knowledge of circadian rhythms could lead to changes in clinical practice and new therapeutic concepts.
Collapse
Affiliation(s)
| | - Merit Gobel
- University of Colorado Denver, Aurora, CO, USA
| | | | | | - Michael Koeppen
- University of Colorado Denver, Aurora, CO, USA Ludwig-Maximilians-University, Munich, Germany
| | | |
Collapse
|
49
|
Sakhi K, Wegner S, Belle MDC, Howarth M, Delagrange P, Brown TM, Piggins HD. Intrinsic and extrinsic cues regulate the daily profile of mouse lateral habenula neuronal activity. J Physiol 2014; 592:5025-45. [PMID: 25194046 DOI: 10.1113/jphysiol.2014.280065] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The epithalamic lateral habenula (LHb) is implicated as part of the mammalian brain's circadian system. Anatomical evidence suggests that the LHb receives extrinsic circadian timing cues from retinal ganglion cells and the master clock in the suprachiasmatic nuclei (SCN). Intriguingly, some LHb neurones contain the molecular circadian clock, but it is unclear if and how intrinsic and extrinsic circadian processes influence neuronal activity in the mouse LHb. Here, using an in vitro brain slice preparation isolating the LHb from the SCN, we show through whole-cell patch-clamp recordings that LHb neurones exhibit heterogeneity in their resting state, but the majority spontaneously fire action potentials (APs). Discharge rate of APs varied from low firing in the early day to higher firing later in the day and was absent in LHb brain slices prepared from Cry1(-/-)Cry2(-/-) mice that lack a functional molecular clock. Low amplitude circadian oscillations in the molecular circadian clock were also monitored in LHb brain slices, but were absent in Cry1(-/-)Cry2(-/-) LHb brain tissue. A putative neurochemical output signal of the SCN, prokineticin 2 (PK2), inhibited some LHb neurones by elevating the frequency of GABA release in the LHb. Using multi-electrode recordings in vivo, we found that LHb neurones sluggishly respond to retinal illumination, suggesting that they receive such information through polysynaptic processes. In summary, our results show for the first time that intrinsic circadian signals are important for regulating LHb neuronal state, while the SCN-derived signal PK2 is less influential. Moreover, we demonstrate that mouse LHb neurones have access to and can respond to visual input, but such signals are unlikely to be directly communicated to the LHb. Broadly, these findings raise the possibility that intrinsic circadian signals are likely to be influential in shaping LHb contributions to cognition and emotionality.
Collapse
Affiliation(s)
- Kanwal Sakhi
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Sven Wegner
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Mino D C Belle
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Michael Howarth
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Philippe Delagrange
- Unité de Recherches et Découvertes en Neurosciences, Institut de Recherches Servier, 78290, Croissy-sur-Seine, France
| | - Timothy M Brown
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
50
|
Smolensky MH, Portaluppi F, Manfredini R, Hermida RC, Tiseo R, Sackett-Lundeen LL, Haus EL. Diurnal and twenty-four hour patterning of human diseases: acute and chronic common and uncommon medical conditions. Sleep Med Rev 2014; 21:12-22. [PMID: 25129839 DOI: 10.1016/j.smrv.2014.06.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 01/30/2023]
Abstract
The symptom intensity and mortality of human diseases, conditions, and syndromes exhibit diurnal or 24 h patterning, e.g., skin: atopic dermatitis, urticaria, psoriasis, and palmar hyperhidrosis; gastrointestinal: esophageal reflux, peptic ulcer (including perforation and hemorrhage), cyclic vomiting syndrome, biliary colic, hepatic variceal hemorrhage, and proctalgia fugax; infection: susceptibility, fever, and mortality; neural: frontal, parietal, temporal, and occipital lobe seizures, Parkinson's and Alzheimer's disease, hereditary progressive dystonia, and pain (cancer, post-surgical, diabetic neuropathic and foot ulcer, tooth caries, burning mouth and temporomandibular syndromes, fibromyalgia, sciatica, intervertebral vacuum phenomenon, multiple sclerosis muscle spasm, and migraine, tension, cluster, hypnic, and paroxysmal hemicranial headache); renal: colic and nocturnal enuresis and polyuria; ocular: bulbar conjunctival redness, keratoconjunctivitis sicca, intraocular pressure and anterior ischemic optic neuropathy, and recurrent corneal erosion syndrome; psychiatric/behavioral: major and seasonal affective depressive disorders, bipolar disorder, parasuicide and suicide, dementia-associated agitation, and addictive alcohol, tobacco, and heroin cravings and withdrawal phenomena; plus autoimmune and musculoskeletal: rheumatoid arthritis, osteoarthritis, axial spondylarthritis, gout, Sjögren's syndrome, and systemic lupus erythematosus. Knowledge of these and other 24 h patterns of human pathophysiology informs research of their underlying circadian and other endogenous mechanisms, external temporal triggers, and more effective patient care entailing clinical chronopreventive and chronotherapeutic strategies.
Collapse
Affiliation(s)
- Michael H Smolensky
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Francesco Portaluppi
- Hospital S. Anna and Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Manfredini
- Hospital S. Anna and Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Ramon C Hermida
- Bioengineering & Chronobiology Laboratories, University of Vigo, Campus Universitario, Vigo, Spain
| | - Ruana Tiseo
- Hospital S. Anna and Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Linda L Sackett-Lundeen
- Department of Laboratory Medicine & Pathology, University of Minnesota, HealthPartners Institute for Education and Research and the Department of Pathology, Regions Hospital, St. Paul, MN, USA
| | - Erhard L Haus
- Department of Laboratory Medicine & Pathology, University of Minnesota, HealthPartners Institute for Education and Research and the Department of Pathology, Regions Hospital, St. Paul, MN, USA
| |
Collapse
|