1
|
Sihag S, Haas MS, Kim KM, Guerrero JL, Beaudoin J, Alicot EM, Schuerpf F, Gottschall JD, Puro RJ, Madsen JC, Sachs DH, Newman W, Carroll MC, Allan JS. Natural IgM Blockade Limits Infarct Expansion and Left Ventricular Dysfunction in a Swine Myocardial Infarct Model. Circ Cardiovasc Interv 2016; 9:e002547. [PMID: 26671971 PMCID: PMC4687758 DOI: 10.1161/circinterventions.115.002547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 11/16/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Acute coronary syndrome is the leading cause of mortality worldwide. However, treatment of acute coronary occlusion inevitably results in ischemia-reperfusion injury. Circulating natural IgM has been shown to play a significant role in mouse models of ischemia-reperfusion injury. A highly conserved self-antigen, nonmuscle myosin heavy chain II, has been identified as a target of pathogenic IgM. We hypothesized that a monoclonal antibody (m21G6) directed against nonmuscle myosin heavy chain II may inhibit IgM binding and reduce injury in a preclinical model of myocardial infarction. Thus, our objective was to evaluate the efficacy of intravenous m21G6 treatment in limiting infarct expansion, troponin release, and left ventricular dysfunction in a swine myocardial infarction model. METHODS AND RESULTS Massachusetts General Hospital miniature swine underwent occlusion of the midleft anterior descending coronary artery for 60 minutes, followed by 1 hour, 5-day, or 21-day reperfusion. Specificity and localization of m21G6 to injured myocardium were confirmed using fluorescently labeled m21G6. Treatment with m21G6 before reperfusion resulted in a 49% reduction in infarct size (P<0.005) and a 61% reduction in troponin-T levels (P<0.05) in comparison with saline controls at 5-day reperfusion. Furthermore, m21G6-treated animals recovered 85.4% of their baseline left ventricular function as measured by 2-dimensional transthoracic echocardiography in contrast to 67.1% in controls at 21-day reperfusion (P<0.05). CONCLUSIONS Treatment with m21G6 significantly reduced infarct size and troponin-T release, and led to marked preservation of cardiac function in our study. Overall, these findings suggest that pathogenic IgM blockade represents a valid therapeutic strategy in mitigating myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Smita Sihag
- From the Transplantation Biology Research Center, Massachusetts General Hospital, Charlestown (S.S., J.D.G., J.C.M., D.H.S., J.S.A.); Cardiac Surgery Research Laboratory, Massachusetts General Hospital, Boston, (J.L.G., J.B., J.S.A.); DecImmune Therapeutics, Cambridge, MA (M.S.H., E.M.A., F.S., R.J.P., W.N.); Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA (M.C.C.); Department of Pediatrics, Harvard Medical School, Boston, MA (M.C.C.); and Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia (K.M.K.)
| | - Michael S Haas
- From the Transplantation Biology Research Center, Massachusetts General Hospital, Charlestown (S.S., J.D.G., J.C.M., D.H.S., J.S.A.); Cardiac Surgery Research Laboratory, Massachusetts General Hospital, Boston, (J.L.G., J.B., J.S.A.); DecImmune Therapeutics, Cambridge, MA (M.S.H., E.M.A., F.S., R.J.P., W.N.); Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA (M.C.C.); Department of Pediatrics, Harvard Medical School, Boston, MA (M.C.C.); and Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia (K.M.K.)
| | - Karen M Kim
- From the Transplantation Biology Research Center, Massachusetts General Hospital, Charlestown (S.S., J.D.G., J.C.M., D.H.S., J.S.A.); Cardiac Surgery Research Laboratory, Massachusetts General Hospital, Boston, (J.L.G., J.B., J.S.A.); DecImmune Therapeutics, Cambridge, MA (M.S.H., E.M.A., F.S., R.J.P., W.N.); Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA (M.C.C.); Department of Pediatrics, Harvard Medical School, Boston, MA (M.C.C.); and Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia (K.M.K.)
| | - J Luis Guerrero
- From the Transplantation Biology Research Center, Massachusetts General Hospital, Charlestown (S.S., J.D.G., J.C.M., D.H.S., J.S.A.); Cardiac Surgery Research Laboratory, Massachusetts General Hospital, Boston, (J.L.G., J.B., J.S.A.); DecImmune Therapeutics, Cambridge, MA (M.S.H., E.M.A., F.S., R.J.P., W.N.); Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA (M.C.C.); Department of Pediatrics, Harvard Medical School, Boston, MA (M.C.C.); and Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia (K.M.K.)
| | - Jonathan Beaudoin
- From the Transplantation Biology Research Center, Massachusetts General Hospital, Charlestown (S.S., J.D.G., J.C.M., D.H.S., J.S.A.); Cardiac Surgery Research Laboratory, Massachusetts General Hospital, Boston, (J.L.G., J.B., J.S.A.); DecImmune Therapeutics, Cambridge, MA (M.S.H., E.M.A., F.S., R.J.P., W.N.); Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA (M.C.C.); Department of Pediatrics, Harvard Medical School, Boston, MA (M.C.C.); and Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia (K.M.K.)
| | - Elisabeth M Alicot
- From the Transplantation Biology Research Center, Massachusetts General Hospital, Charlestown (S.S., J.D.G., J.C.M., D.H.S., J.S.A.); Cardiac Surgery Research Laboratory, Massachusetts General Hospital, Boston, (J.L.G., J.B., J.S.A.); DecImmune Therapeutics, Cambridge, MA (M.S.H., E.M.A., F.S., R.J.P., W.N.); Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA (M.C.C.); Department of Pediatrics, Harvard Medical School, Boston, MA (M.C.C.); and Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia (K.M.K.)
| | - Franziska Schuerpf
- From the Transplantation Biology Research Center, Massachusetts General Hospital, Charlestown (S.S., J.D.G., J.C.M., D.H.S., J.S.A.); Cardiac Surgery Research Laboratory, Massachusetts General Hospital, Boston, (J.L.G., J.B., J.S.A.); DecImmune Therapeutics, Cambridge, MA (M.S.H., E.M.A., F.S., R.J.P., W.N.); Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA (M.C.C.); Department of Pediatrics, Harvard Medical School, Boston, MA (M.C.C.); and Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia (K.M.K.)
| | - James D Gottschall
- From the Transplantation Biology Research Center, Massachusetts General Hospital, Charlestown (S.S., J.D.G., J.C.M., D.H.S., J.S.A.); Cardiac Surgery Research Laboratory, Massachusetts General Hospital, Boston, (J.L.G., J.B., J.S.A.); DecImmune Therapeutics, Cambridge, MA (M.S.H., E.M.A., F.S., R.J.P., W.N.); Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA (M.C.C.); Department of Pediatrics, Harvard Medical School, Boston, MA (M.C.C.); and Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia (K.M.K.)
| | - Robyn J Puro
- From the Transplantation Biology Research Center, Massachusetts General Hospital, Charlestown (S.S., J.D.G., J.C.M., D.H.S., J.S.A.); Cardiac Surgery Research Laboratory, Massachusetts General Hospital, Boston, (J.L.G., J.B., J.S.A.); DecImmune Therapeutics, Cambridge, MA (M.S.H., E.M.A., F.S., R.J.P., W.N.); Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA (M.C.C.); Department of Pediatrics, Harvard Medical School, Boston, MA (M.C.C.); and Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia (K.M.K.)
| | - Joren C Madsen
- From the Transplantation Biology Research Center, Massachusetts General Hospital, Charlestown (S.S., J.D.G., J.C.M., D.H.S., J.S.A.); Cardiac Surgery Research Laboratory, Massachusetts General Hospital, Boston, (J.L.G., J.B., J.S.A.); DecImmune Therapeutics, Cambridge, MA (M.S.H., E.M.A., F.S., R.J.P., W.N.); Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA (M.C.C.); Department of Pediatrics, Harvard Medical School, Boston, MA (M.C.C.); and Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia (K.M.K.)
| | - David H Sachs
- From the Transplantation Biology Research Center, Massachusetts General Hospital, Charlestown (S.S., J.D.G., J.C.M., D.H.S., J.S.A.); Cardiac Surgery Research Laboratory, Massachusetts General Hospital, Boston, (J.L.G., J.B., J.S.A.); DecImmune Therapeutics, Cambridge, MA (M.S.H., E.M.A., F.S., R.J.P., W.N.); Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA (M.C.C.); Department of Pediatrics, Harvard Medical School, Boston, MA (M.C.C.); and Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia (K.M.K.)
| | - Walter Newman
- From the Transplantation Biology Research Center, Massachusetts General Hospital, Charlestown (S.S., J.D.G., J.C.M., D.H.S., J.S.A.); Cardiac Surgery Research Laboratory, Massachusetts General Hospital, Boston, (J.L.G., J.B., J.S.A.); DecImmune Therapeutics, Cambridge, MA (M.S.H., E.M.A., F.S., R.J.P., W.N.); Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA (M.C.C.); Department of Pediatrics, Harvard Medical School, Boston, MA (M.C.C.); and Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia (K.M.K.)
| | - Michael C Carroll
- From the Transplantation Biology Research Center, Massachusetts General Hospital, Charlestown (S.S., J.D.G., J.C.M., D.H.S., J.S.A.); Cardiac Surgery Research Laboratory, Massachusetts General Hospital, Boston, (J.L.G., J.B., J.S.A.); DecImmune Therapeutics, Cambridge, MA (M.S.H., E.M.A., F.S., R.J.P., W.N.); Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA (M.C.C.); Department of Pediatrics, Harvard Medical School, Boston, MA (M.C.C.); and Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia (K.M.K.)
| | - James S Allan
- From the Transplantation Biology Research Center, Massachusetts General Hospital, Charlestown (S.S., J.D.G., J.C.M., D.H.S., J.S.A.); Cardiac Surgery Research Laboratory, Massachusetts General Hospital, Boston, (J.L.G., J.B., J.S.A.); DecImmune Therapeutics, Cambridge, MA (M.S.H., E.M.A., F.S., R.J.P., W.N.); Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA (M.C.C.); Department of Pediatrics, Harvard Medical School, Boston, MA (M.C.C.); and Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia (K.M.K.)
| |
Collapse
|
2
|
Cunningham AF, Flores-Langarica A, Bobat S, Dominguez Medina CC, Cook CNL, Ross EA, Lopez-Macias C, Henderson IR. B1b cells recognize protective antigens after natural infection and vaccination. Front Immunol 2014; 5:535. [PMID: 25400633 PMCID: PMC4215630 DOI: 10.3389/fimmu.2014.00535] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/10/2014] [Indexed: 12/18/2022] Open
Abstract
There are multiple, distinct B-cell populations in human beings and other animals such as mice. In the latter species, there is a well-characterized subset of B-cells known as B1 cells, which are enriched in peripheral sites such as the peritoneal cavity but are rare in the blood. B1 cells can be further subdivided into B1a and B1b subsets. There may be additional B1 subsets, though it is unclear if these are distinct populations or stages in the developmental process to become mature B1a and B1b cells. A limitation in understanding B1 subsets is the relative paucity of specific surface markers. In contrast to mice, the existence of B1 cells in human beings is controversial and more studies are needed to investigate the nature of these enigmatic cells. Examples of B1b antigens include pneumococcal polysaccharide and the Vi antigen from Salmonella Typhi, both used routinely as vaccines in human beings and experimental antigens such as haptenated-Ficoll. In addition to inducing classical T-dependent responses some proteins are B1b antigens and can induce T-independent (TI) immunity, examples include factor H binding protein from Borrelia hermsii and porins from Salmonella. Therefore, B1b antigens can be proteinaceous or non-proteinaceous, induce TI responses, memory, and immunity, they exist in a diverse range of pathogenic bacteria, and a single species can contain multiple B1b antigens. An unexpected benefit to studying B1b cells is that they appear to have a propensity to recognize protective antigens in bacteria. This suggests that studying B1b cells may be rewarding for vaccine design as immunoprophylactic and immunotherapeutic interventions become more important due to the decreasing efficacy of small molecule antimicrobials.
Collapse
Affiliation(s)
- Adam F Cunningham
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of Birmingham , Birmingham , UK
| | - Adriana Flores-Langarica
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of Birmingham , Birmingham , UK
| | - Saeeda Bobat
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of Birmingham , Birmingham , UK
| | - Carmen C Dominguez Medina
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of Birmingham , Birmingham , UK
| | - Charlotte N L Cook
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of Birmingham , Birmingham , UK
| | - Ewan A Ross
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of Birmingham , Birmingham , UK
| | - Constantino Lopez-Macias
- Medical Research Unit on Immunochemistry, National Medical Centre "Siglo XXI", Specialties Hospital, Mexican Institute for Social Security (IMSS) , Mexico City , Mexico
| | - Ian R Henderson
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of Birmingham , Birmingham , UK
| |
Collapse
|