1
|
Sweet MJ, Ramnath D, Singhal A, Kapetanovic R. Inducible antibacterial responses in macrophages. Nat Rev Immunol 2025; 25:92-107. [PMID: 39294278 DOI: 10.1038/s41577-024-01080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/20/2024]
Abstract
Macrophages destroy bacteria and other microorganisms through phagocytosis-coupled antimicrobial responses, such as the generation of reactive oxygen species and the delivery of hydrolytic enzymes from lysosomes to the phagosome. However, many intracellular bacteria subvert these responses, escaping to other cellular compartments to survive and/or replicate. Such bacterial subversion strategies are countered by a range of additional direct antibacterial responses that are switched on by pattern-recognition receptors and/or host-derived cytokines and other factors, often through inducible gene expression and/or metabolic reprogramming. Our understanding of these inducible antibacterial defence strategies in macrophages is rapidly evolving. In this Review, we provide an overview of the broad repertoire of antibacterial responses that can be engaged in macrophages, including LC3-associated phagocytosis, metabolic reprogramming and antimicrobial metabolites, lipid droplets, guanylate-binding proteins, antimicrobial peptides, metal ion toxicity, nutrient depletion, autophagy and nitric oxide production. We also highlight key inducers, signalling pathways and transcription factors involved in driving these different antibacterial responses. Finally, we discuss how a detailed understanding of the molecular mechanisms of antibacterial responses in macrophages might be exploited for developing host-directed therapies to combat antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Divya Ramnath
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ronan Kapetanovic
- INRAE, Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly, France
| |
Collapse
|
2
|
Russell DG, Simwela NV, Mattila JT, Flynn J, Mwandumba HC, Pisu D. How macrophage heterogeneity affects tuberculosis disease and therapy. Nat Rev Immunol 2025:10.1038/s41577-024-01124-3. [PMID: 39774813 DOI: 10.1038/s41577-024-01124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Macrophages are the primary host cell type for infection by Mycobacterium tuberculosis in vivo. Macrophages are also key immune effector cells that mediate the control of bacterial growth. However, the specific macrophage phenotypes that are required for optimal immune control of M. tuberculosis infection in vivo remain poorly defined. There are two distinct macrophage lineages in the lung, comprising embryonically derived, tissue-resident alveolar macrophages and recruited, blood monocyte-derived interstitial macrophages. Recent studies have shown that these lineages respond divergently to similar immune environments within the tuberculosis granuloma. Here, we discuss how the differing responses of macrophage lineages might affect the control or progression of tuberculosis disease. We suggest that the ability to reprogramme macrophage responses appropriately, through immunological or chemotherapeutic routes, could help to optimize vaccines and drug regimens for tuberculosis.
Collapse
Affiliation(s)
- David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Nelson V Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - JoAnne Flynn
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Davide Pisu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| |
Collapse
|
3
|
Helaine S, Conlon BP, Davis KM, Russell DG. Host stress drives tolerance and persistence: The bane of anti-microbial therapeutics. Cell Host Microbe 2024; 32:852-862. [PMID: 38870901 PMCID: PMC11446042 DOI: 10.1016/j.chom.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
Antibiotic resistance, typically associated with genetic changes within a bacterial population, is a frequent contributor to antibiotic treatment failures. Antibiotic persistence and tolerance, which we collectively term recalcitrance, represent transient phenotypic changes in the bacterial population that prolong survival in the presence of typically lethal concentrations of antibiotics. Antibiotic recalcitrance is challenging to detect and investigate-traditionally studied under in vitro conditions, our understanding during infection and its contribution to antibiotic failure is limited. Recently, significant progress has been made in the study of antibiotic-recalcitrant populations in pathogenic species, including Mycobacterium tuberculosis, Staphylococcus aureus, Salmonella enterica, and Yersiniae, in the context of the host environment. Despite the diversity of these pathogens and infection models, shared signals and responses promote recalcitrance, and common features and vulnerabilities of persisters and tolerant bacteria have emerged. These will be discussed here, along with progress toward developing therapeutic interventions to better treat recalcitrant pathogens.
Collapse
Affiliation(s)
- Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Brian P Conlon
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - Kimberly M Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Kunkle DE, Skaar EP. Moving metals: How microbes deliver metal cofactors to metalloproteins. Mol Microbiol 2023; 120:547-554. [PMID: 37408317 PMCID: PMC10592388 DOI: 10.1111/mmi.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
First row d-block metal ions serve as vital cofactors for numerous essential enzymes and are therefore required nutrients for all forms of life. Despite this requirement, excess free transition metals are toxic. Free metal ions participate in the production of noxious reactive oxygen species and mis-metalate metalloproteins, rendering enzymes catalytically inactive. Thus, bacteria require systems to ensure metalloproteins are properly loaded with cognate metal ions to maintain protein function, while avoiding metal-mediated cellular toxicity. In this perspective we summarize the current mechanistic understanding of bacterial metallocenter maturation with specific emphasis on metallochaperones; a group of specialized proteins that both shield metal ions from inadvertent reactions and distribute them to cognate target metalloproteins. We highlight several recent advances in the field that have implicated new classes of proteins in the distribution of metal ions within bacterial proteins, while speculating on the future of the field of bacterial metallobiology.
Collapse
Affiliation(s)
- Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Djoko KY. Control of nutrient metal availability during host-microbe interactions: beyond nutritional immunity. J Biol Inorg Chem 2023:10.1007/s00775-023-02007-z. [PMID: 37464157 PMCID: PMC10368554 DOI: 10.1007/s00775-023-02007-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
The control of nutrient availability is an essential ecological function of the host organism in host-microbe systems. Although often overshadowed by macronutrients such as carbohydrates, micronutrient metals are known as key drivers of host-microbe interactions. The ways in which host organisms control nutrient metal availability are dictated by principles in bioinorganic chemistry. Here I ponder about the actions of metal-binding molecules from the host organism in controlling nutrient metal availability to the host microbiota. I hope that these musings will encourage new explorations into the fundamental roles of metals in the ecology of diverse host-microbe systems.
Collapse
Affiliation(s)
- Karrera Y Djoko
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
6
|
Krishnamoorthy Y, Ezhumalai K, Murali S, Rajaa S, Majella MG, Sarkar S, Lakshminarayanan S, Joseph NM, Soundappan G, Prakash Babu S, Horsburgh C, Hochberg N, Johnson WE, Knudsen S, Pentakota SR, Salgame P, Roy G, Ellner J. Development of prognostic scoring system for predicting 1-year mortality among pulmonary tuberculosis patients in South India. J Public Health (Oxf) 2023; 45:e184-e195. [PMID: 36038507 PMCID: PMC10273380 DOI: 10.1093/pubmed/fdac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/13/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Development of a prediction model using baseline characteristics of tuberculosis (TB) patients at the time of diagnosis will aid us in early identification of the high-risk groups and devise pertinent strategies accordingly. Hence, we did this study to develop a prognostic-scoring model for predicting the death among newly diagnosed drug sensitive pulmonary TB patients in South India. METHODS We undertook a longitudinal analysis of cohort data under the Regional Prospective Observational Research for Tuberculosis India consortium. Multivariable cox regression using the stepwise backward elimination procedure was used to select variables for the model building and the nomogram-scoring system was developed with the final selected model. RESULTS In total, 54 (4.6%) out of the 1181 patients had died during the 1-year follow-up period. The TB mortality rate was 0.20 per 1000 person-days. Eight variables (age, gender, functional limitation, anemia, leukopenia, thrombocytopenia, diabetes, neutrophil-lymphocyte ratio) were selected and a nomogram was built using these variables. The discriminatory power was 0.81 (95% confidence interval: 0.75-0.86) and this model was well-calibrated. Decision curve analysis showed that the model is beneficial at a threshold probability ~15-65%. CONCLUSIONS This scoring system could help the clinicians and policy makers to devise targeted interventions and in turn reduce the TB mortality in India.
Collapse
Affiliation(s)
| | - Komala Ezhumalai
- Department of Preventive & Social Medicine, JIPMER, Puducherry 605 006, India
| | - Sharan Murali
- Department of Preventive & Social Medicine, JIPMER, Puducherry 605 006, India
| | - Sathish Rajaa
- Department of Preventive & Social Medicine, JIPMER, Puducherry 605 006, India
| | | | - Sonali Sarkar
- Department of Preventive & Social Medicine, JIPMER, Puducherry 605 006, India
| | | | | | | | | | - Charles Horsburgh
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Natasha Hochberg
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118, USA
| | - W Evan Johnson
- Department of Medicine and Biostatistics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Selby Knudsen
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sri Ram Pentakota
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Padmini Salgame
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Gautam Roy
- Department of Preventive & Social Medicine, JIPMER, Puducherry 605 006, India
| | - Jerrold Ellner
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| |
Collapse
|
7
|
Sheldon JR, Himmel LE, Kunkle DE, Monteith AJ, Maloney KN, Skaar EP. Lipocalin-2 is an essential component of the innate immune response to Acinetobacter baumannii infection. PLoS Pathog 2022; 18:e1010809. [PMID: 36054235 PMCID: PMC9477428 DOI: 10.1371/journal.ppat.1010809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/15/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen and an emerging global health threat. Within healthcare settings, major presentations of A. baumannii include bloodstream infections and ventilator-associated pneumonia. The increased prevalence of ventilated patients during the COVID-19 pandemic has led to a rise in secondary bacterial pneumonia caused by multidrug resistant (MDR) A. baumannii. Additionally, due to its MDR status and the lack of antimicrobial drugs in the development pipeline, the World Health Organization has designated carbapenem-resistant A. baumannii to be its priority critical pathogen for the development of novel therapeutics. To better inform the design of new treatment options, a comprehensive understanding of how the host contains A. baumannii infection is required. Here, we investigate the innate immune response to A. baumannii by assessing the impact of infection on host gene expression using NanoString technology. The transcriptional profile observed in the A. baumannii infected host is characteristic of Gram-negative bacteremia and reveals expression patterns consistent with the induction of nutritional immunity, a process by which the host exploits the availability of essential nutrient metals to curtail bacterial proliferation. The gene encoding for lipocalin-2 (Lcn2), a siderophore sequestering protein, was the most highly upregulated during A. baumannii bacteremia, of the targets assessed, and corresponds to robust LCN2 expression in tissues. Lcn2-/- mice exhibited distinct organ-specific gene expression changes including increased transcription of genes involved in metal sequestration, such as S100A8 and S100A9, suggesting a potential compensatory mechanism to perturbed metal homeostasis. In vitro, LCN2 inhibits the iron-dependent growth of A. baumannii and induces iron-regulated gene expression. To elucidate the role of LCN2 in infection, WT and Lcn2-/- mice were infected with A. baumannii using both bacteremia and pneumonia models. LCN2 was not required to control bacterial growth during bacteremia but was protective against mortality. In contrast, during pneumonia Lcn2-/- mice had increased bacterial burdens in all organs evaluated, suggesting that LCN2 plays an important role in inhibiting the survival and dissemination of A. baumannii. The control of A. baumannii infection by LCN2 is likely multifactorial, and our results suggest that impairment of iron acquisition by the pathogen is a contributing factor. Modulation of LCN2 expression or modifying the structure of LCN2 to expand upon its ability to sequester siderophores may thus represent feasible avenues for therapeutic development against this pathogen. A lack of therapeutic options has prompted the World Health Organization to designate multidrug-resistant Acinetobacter baumannii as its priority critical pathogen for research into new treatment strategies. The mechanisms employed by A. baumannii to cause disease and the host tactics exercised to constrain infection are not fully understood. Here, we further characterize the innate immune response to A. baumannii infection. We identify nutritional immunity, a process where the availability of nutrient metals is exploited to restrain bacterial growth, as being induced during infection. The gene encoding for lipocalin-2 (Lcn2), a protein that can impede iron uptake by bacteria, is highly upregulated in infected mice, and corresponds to robust LCN2 detection in the tissues. We find that LCN2 is crucial to reducing mortality from A. baumannii bacteremia and inhibits dissemination of the pathogen during pneumonia. In wild-type and Lcn2-deficient mice, broader transcriptional profiling reveals expression patterns consistent with the known response to Gram-negative bacteremia. Although the role of LCN2 in infection is likely multifactorial, we find its antimicrobial effects are at least partly exerted by impairing iron acquisition by A. baumannii. Facets of nutritional immunity, such as LCN2, may be exploited as novel therapeutics in combating A. baumannii infection.
Collapse
Affiliation(s)
- Jessica R. Sheldon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lauren E. Himmel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrew J. Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - K. Nichole Maloney
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
8
|
Mycobacterial resistance to zinc poisoning requires assembly of P-ATPase-containing membrane metal efflux platforms. Nat Commun 2022; 13:4731. [PMID: 35961955 PMCID: PMC9374683 DOI: 10.1038/s41467-022-32085-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis requires a P1B-ATPase metal exporter, CtpC (Rv3270), for resistance to zinc poisoning. Here, we show that zinc resistance also depends on a chaperone-like protein, PacL1 (Rv3269). PacL1 contains a transmembrane domain, a cytoplasmic region with glutamine/alanine repeats and a C-terminal metal-binding motif (MBM). PacL1 binds Zn2+, but the MBM is required only at high zinc concentrations. PacL1 co-localizes with CtpC in dynamic foci in the mycobacterial plasma membrane, and the two proteins form high molecular weight complexes. Foci formation does not require flotillin nor the PacL1 MBM. However, deletion of the PacL1 Glu/Ala repeats leads to loss of CtpC and sensitivity to zinc. Genes pacL1 and ctpC appear to be in the same operon, and homologous gene pairs are found in the genomes of other bacteria. Furthermore, PacL1 colocalizes and functions redundantly with other PacL orthologs in M. tuberculosis. Overall, our results indicate that PacL proteins may act as scaffolds that assemble P-ATPase-containing metal efflux platforms mediating bacterial resistance to metal poisoning. The human pathogen Mycobacterium tuberculosis requires a metal exporter, CtpC, for resistance to zinc poisoning. Here, the authors show that zinc resistance also depends on a chaperone-like protein that binds zinc ions, forms high-molecular-weight complexes with CtpC in the cytoplasmic membrane, and is required for CtpC function.
Collapse
|
9
|
Theriault ME, Pisu D, Wilburn KM, Lê-Bury G, MacNamara CW, Michael Petrassi H, Love M, Rock JM, VanderVen BC, Russell DG. Iron limitation in M. tuberculosis has broad impact on central carbon metabolism. Commun Biol 2022; 5:685. [PMID: 35810253 PMCID: PMC9271047 DOI: 10.1038/s42003-022-03650-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the cause of the human pulmonary disease tuberculosis (TB), contributes to approximately 1.5 million deaths every year. Prior work has established that lipids are actively catabolized by Mtb in vivo and fulfill major roles in Mtb physiology and pathogenesis. We conducted a high-throughput screen to identify inhibitors of Mtb survival in its host macrophage. One of the hit compounds identified in this screen, sAEL057, demonstrates highest activity on Mtb growth in conditions where cholesterol was the primary carbon source. Transcriptional and functional data indicate that sAEL057 limits Mtb’s access to iron by acting as an iron chelator. Furthermore, pharmacological and genetic inhibition of iron acquisition results in dysregulation of cholesterol catabolism, revealing a previously unappreciated linkage between these pathways. Characterization of sAEL057’s mode of action argues that Mtb’s metabolic regulation reveals vulnerabilities in those pathways that impact central carbon metabolism. An inhibitor of Mycobacterium tuberculosis (Mtb) survival acts as an iron chelator, demonstrating that iron deprivation alters Mtb cholesterol and central carbon metabolism.
Collapse
Affiliation(s)
- Monique E Theriault
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Davide Pisu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kaley M Wilburn
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gabrielle Lê-Bury
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Case W MacNamara
- California Institute for Biomedical Research (Calibr), La Jolla, CA, USA
| | - H Michael Petrassi
- California Institute for Biomedical Research (Calibr), La Jolla, CA, USA
| | - Melissa Love
- California Institute for Biomedical Research (Calibr), La Jolla, CA, USA
| | - Jeremy M Rock
- Department of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
Tripathi A, Anand K, Das M, O'Niel RA, P S S, Thakur C, R L RR, Rajmani RS, Chandra N, Laxman S, Singh A. Mycobacterium tuberculosis requires SufT for Fe-S cluster maturation, metabolism, and survival in vivo. PLoS Pathog 2022; 18:e1010475. [PMID: 35427399 PMCID: PMC9045647 DOI: 10.1371/journal.ppat.1010475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/27/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Iron-sulfur (Fe-S) cluster proteins carry out essential cellular functions in diverse organisms, including the human pathogen Mycobacterium tuberculosis (Mtb). The mechanisms underlying Fe-S cluster biogenesis are poorly defined in Mtb. Here, we show that Mtb SufT (Rv1466), a DUF59 domain-containing essential protein, is required for the Fe-S cluster maturation. Mtb SufT homodimerizes and interacts with Fe-S cluster biogenesis proteins; SufS and SufU. SufT also interacts with the 4Fe-4S cluster containing proteins; aconitase and SufR. Importantly, a hyperactive cysteine in the DUF59 domain mediates interaction of SufT with SufS, SufU, aconitase, and SufR. We efficiently repressed the expression of SufT to generate a SufT knock-down strain in Mtb (SufT-KD) using CRISPR interference. Depleting SufT reduces aconitase's enzymatic activity under standard growth conditions and in response to oxidative stress and iron limitation. The SufT-KD strain exhibited defective growth and an altered pool of tricarboxylic acid cycle intermediates, amino acids, and sulfur metabolites. Using Seahorse Extracellular Flux analyzer, we demonstrated that SufT depletion diminishes glycolytic rate and oxidative phosphorylation in Mtb. The SufT-KD strain showed defective survival upon exposure to oxidative stress and nitric oxide. Lastly, SufT depletion reduced the survival of Mtb in macrophages and attenuated the ability of Mtb to persist in mice. Altogether, SufT assists in Fe-S cluster maturation and couples this process to bioenergetics of Mtb for survival under low and high demand for Fe-S clusters.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Kushi Anand
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Mayashree Das
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Ruchika Annie O'Niel
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Sabarinath P S
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Raghunatha Reddy R L
- Regional Horticultural Research and Extension Centre (RHREK), GKVK, Bengaluru, India
| | - Raju S Rajmani
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Amit Singh
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| |
Collapse
|
11
|
Iron uptake and transport by the carboxymycobactin-mycobactin siderophore machinery of Mycobacterium tuberculosis is dependent on the iron-regulated protein HupB. Biometals 2021; 34:511-528. [PMID: 33609202 DOI: 10.1007/s10534-021-00292-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/07/2021] [Indexed: 12/27/2022]
Abstract
Iron-starved Mycobacterium tuberculosis utilises the carboxymycobactin-mycobactin siderophore machinery to acquire iron. These two siderophores have high affinity for ferric iron and can withdraw the metal ion from insoluble iron hydroxides and iron-binding proteins. We first reported HupB, a multi-functional mycobacterial protein to be associated with iron acquisition in M. tuberculosis. This 28 kDa cell wall protein, up regulated upon iron limitation functions as a transcriptional activator of mycobactin biosynthesis and is essential for the pathogen to survive inside macrophages. The focus of this study is to understand the role of HupB in iron uptake and transport by the carboxmycobactin-mycobactin siderophore machinery in M. tuberculosis. Experimental approaches included radiolabelled iron uptake studies by viable organisms and protein-ligand binding studies using the purified HupB and the two siderophores. Uptake of 55Fe-carboxymycobactin by wild type M. tuberculosis (WT M.tb.H37Rv) and not by the hupB KO mutant (M.tb.ΔhupB) showed that HupB is necessary for the uptake of ferri-carboxymycobactin. Additionally, the radiolabel recovery was high in HupB-incorporated liposomes upon addition of the labelled siderophore. Bioinformatic and experimental studies using spectrofluorimetry, CD analysis and surface plasmon resonance not only confirmed the binding of HupB with ferri-carboxymycobactin and ferri-mycobactin but also with free iron. In conclusion, HupB is established as a ferri- carboxymycobactin receptor and by virtue of its property to bind ferric iron, functions as a transporter of the ferric iron from the extracellular siderophore to mycobactin within the cell envelope.
Collapse
|
12
|
Pisu D, Huang L, Grenier JK, Russell DG. Dual RNA-Seq of Mtb-Infected Macrophages In Vivo Reveals Ontologically Distinct Host-Pathogen Interactions. Cell Rep 2021; 30:335-350.e4. [PMID: 31940480 PMCID: PMC7032562 DOI: 10.1016/j.celrep.2019.12.033] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/31/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Dissecting the in vivo host-pathogen interplay is crucial to understanding the molecular mechanisms governing control or progression of intracellular infections. In this work, we explore the in vivo molecular dynamics of Mtb infection by performing dual RNA-seq on Mycobacterium tuberculosis-infected, ontogenetically distinct macrophage lineages isolated directly from murine lungs. We first define an in vivo signature of 180 genes specifically upregulated by Mtb in mouse lung macrophages, then we uncover a divergent transcriptional response of the bacteria between alveolar macrophages that appear to sustain Mtb growth through increased access to iron and fatty acids and interstitial macrophages that restrict Mtb growth through iron sequestration and higher levels of nitric oxide. We use an enrichment protocol for bacterial transcripts, which enables us to probe Mtb physiology at the host cell level in an in vivo environment, with broader application in understanding the infection dynamics of intracellular pathogens in general. In this study Pisu et al. performed dual RNA-seq on Mycobacterium tuberculosis-infected, ontogenetically distinct macrophage lineages isolated directly from infected murine lungs. The transcriptional response of host and bacteria diverged between alveolar macrophages that sustain Mtb growth and interstitial macrophages that restrict Mtb growth.
Collapse
Affiliation(s)
- Davide Pisu
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lu Huang
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer K Grenier
- RNA Sequencing Core, Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - David G Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Shin M, Jin Y, Park J, Mun D, Kim SR, Payne SM, Kim KH, Kim Y. Characterization of an Antibacterial Agent Targeting Ferrous Iron Transport Protein FeoB against Staphylococcus aureus and Gram-Positive Bacteria. ACS Chem Biol 2021; 16:136-149. [PMID: 33378170 DOI: 10.1021/acschembio.0c00842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The emergence of multidrug-resistant Staphylococcus aureus strains has become a serious clinical problem. Iron is absolutely required for the bacterial growth, virulence associated with colonization, and survival from the host immune system. The FeoB protein is a major iron permease in bacterial ferrous iron transport systems (Feo) that has been shown to play a crucial role in virulence of some pathogenic bacteria. However, FeoB is still uncharacterized in Gram-positive pathogens, and its effects on S. aureus pathogenesis are unknown. In this study, we identified a novel inhibitor, GW3965·HCl, that targets FeoB in S. aureus. The molecule effectively inhibited FeoB in vitro enzyme activity, bacterial growth, and virulence factor expression. Genome-editing and metabolomic analyses revealed that GW3965·HCl inhibited FeoB function and affected the associated mechanisms with reduced iron availability in S. aureus. Gentamicin resistance and Caenorhabditis elegans infection assays further demonstrated the power of GW3965·HCl as a safe and efficient antibacterial agent. In addition to S. aureus, GW3965·HCl also presented its effectiveness on inhibition of the FeoB activity and growth of Gram-positive bacteria. This novel inhibitor will provide new insight for developing a next-generation antibacterial therapy.
Collapse
Affiliation(s)
- Minhye Shin
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yerin Jin
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Jinsub Park
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Daye Mun
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Shelley M. Payne
- Department of Molecular Biosciences, College of Natural Science, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
14
|
Lee CC, Lee MTG, Hsu WT, Park JY, Porta L, Liu MA, Chen SC, Chang SC. Use of Calcium Channel Blockers and Risk of Active Tuberculosis Disease: A Population-Based Analysis. Hypertension 2020; 77:328-337. [PMID: 33307850 DOI: 10.1161/hypertensionaha.120.15534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calcium channel blockers (CCBs) are known to reduce the availability of iron-an important mineral for intracellular pathogens. Nonetheless, whether the use of CCBs modifies the risk of active tuberculosis in the clinical setting remains unclear. To determine whether CCBs may modify the risk of active tuberculosis disease, we conducted a nested case-control study using the National Health Insurance Research Database of Taiwan between January 1999 and December 2011. Conditional logistic regression and disease risk score adjustment were used to calculate the risk of active tuberculosis disease associated with CCB use. Subgroup analyses investigated the effect of different types of CCBs and potential effect modification in different subpopulations. A total of 8164 new active tuberculosis cases and 816 400 controls were examined. Use of CCBs was associated with a 32% decrease in the risk of active tuberculosis (relative risk [RR], 0.68 [95% CI, 0.58-0.78]) after adjustment with disease risk score. Compared with nonuse of CCBs, the use of dihydropyridine CCBs was associated with a lower risk of tuberculosis (RR, 0.63 [95% CI, 0.53-0.79]) than nondihydropyridine CCBs (RR, 0.73 [95% CI, 0.57-0.94]). In contrast, use of β-blockers (RR, 0.99 [95% CI, 0.83-1.12]) or loop diuretics (RR, 0.88 [95% CI, 0.62-1.26]) was not associated with lower risk of tuberculosis. In subgroup analyses, the risk of tuberculosis associated with the use of CCBs was similar among patients with heart failure or cerebrovascular diseases. Our study confirms that use of dihydropyridine CCBs decreases the risk of active tuberculosis.
Collapse
Affiliation(s)
- Chien-Chang Lee
- Department of Emergency Medicine (C.-C.L., M.-t.G.L., S.-C. Chen), National Taiwan University Hospital, Taipei.,Center of Intelligent Healthcare, National Taiwan University Hospital, Taipei (C.-C.L.)
| | - Meng-Tse Gabriel Lee
- Department of Emergency Medicine (C.-C.L., M.-t.G.L., S.-C. Chen), National Taiwan University Hospital, Taipei
| | - Wan-Ting Hsu
- Department of Epidemiology (W.-T.H.), Harvard TH Chan School of Public Health, Boston, MA
| | - James Yeongjun Park
- Department of Biostatistics (J.Y.P.), Harvard TH Chan School of Public Health, Boston, MA
| | - Lorenzo Porta
- Department of Emergency Medicine, School of Medicine and Surgery, Università degli studi di Milano Bicocca, Italy (L.P.)
| | - Michael A Liu
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI (M.A.L.)
| | - Shyr-Chyr Chen
- Department of Emergency Medicine (C.-C.L., M.-t.G.L., S.-C. Chen), National Taiwan University Hospital, Taipei
| | - Shan-Chwen Chang
- Division of Infection, Department of Internal Medicine (S.-C. Chang), National Taiwan University Hospital, Taipei
| |
Collapse
|
15
|
Sheldon JR, Skaar EP. Acinetobacter baumannii can use multiple siderophores for iron acquisition, but only acinetobactin is required for virulence. PLoS Pathog 2020; 16:e1008995. [PMID: 33075115 PMCID: PMC7595644 DOI: 10.1371/journal.ppat.1008995] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/29/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii is an emerging pathogen that poses a global health threat due to a lack of therapeutic options for treating drug-resistant strains. In addition to acquiring resistance to last-resort antibiotics, the success of A. baumannii is partially due to its ability to effectively compete with the host for essential metals. Iron is fundamental in shaping host-pathogen interactions, where the host restricts availability of this nutrient in an effort to curtail bacterial proliferation. To circumvent restriction, pathogens possess numerous mechanisms to obtain iron, including through the use of iron-scavenging siderophores. A. baumannii elaborates up to ten distinct siderophores, encoded from three different loci: acinetobactin and pre-acinetobactin (collectively, acinetobactin), baumannoferrins A and B, and fimsbactins A-F. The expression of multiple siderophores is common amongst bacterial pathogens and often linked to virulence, yet the collective contribution of these siderophores to A. baumannii survival and pathogenesis has not been investigated. Here we begin dissecting functional redundancy in the siderophore-based iron acquisition pathways of A. baumannii. Excess iron inhibits overall siderophore production by the bacterium, and the siderophore-associated loci are uniformly upregulated during iron restriction in vitro and in vivo. Further, disrupting all of the siderophore biosynthetic pathways is necessary to drastically reduce total siderophore production by A. baumannii, together suggesting a high degree of functional redundancy between the metabolites. By contrast, inactivation of acinetobactin biosynthesis alone impairs growth on human serum, transferrin, and lactoferrin, and severely attenuates survival of A. baumannii in a murine bacteremia model. These results suggest that whilst A. baumannii synthesizes multiple iron chelators, acinetobactin is critical to supporting growth of the pathogen on host iron sources. Given the acinetobactin locus is highly conserved and required for virulence of A. baumannii, designing therapeutics targeting the biosynthesis and/or transport of this siderophore may represent an effective means of combating this pathogen.
Collapse
Affiliation(s)
- Jessica R. Sheldon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
16
|
Nienaber A, Baumgartner J, Dolman RC, Ozturk M, Zandberg L, Hayford FEA, Brombacher F, Blaauw R, Parihar SP, Smuts CM, Malan L. Omega-3 Fatty Acid and Iron Supplementation Alone, but Not in Combination, Lower Inflammation and Anemia of Infection in Mycobacterium tuberculosis-Infected Mice. Nutrients 2020; 12:E2897. [PMID: 32971969 PMCID: PMC7551947 DOI: 10.3390/nu12092897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Progressive inflammation and anemia are common in tuberculosis (TB) and linked to poor clinical outcomes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have inflammation-resolving properties, whereas iron supplementation in TB may have limited efficacy and enhance bacterial growth. We investigated effects of iron and EPA/DHA supplementation, alone and in combination, on inflammation, anemia, iron status markers and clinical outcomes in Mycobacterium tuberculosis-infected C3HeB/FeJ mice. One week post-infection, mice received the AIN-93 diet without (control) or with supplemental iron (Fe), EPA/DHA, or Fe+EPA/DHA for 3 weeks. Mice supplemented with Fe or EPA/DHA had lower soluble transferrin receptor, ferritin and hepcidin than controls, but these effects were attenuated in Fe+EPA/DHA mice. EPA/DHA increased inflammation-resolving lipid mediators and lowered lung IL-1α, IFN-γ, plasma IL-1β, and TNF-α. Fe lowered lung IL-1α, IL-1β, plasma IL-1β, TNF-α, and IL-6. However, the cytokine-lowering effects in the lungs were attenuated with Fe+EPA/DHA. Mice supplemented with EPA/DHA had lower lung bacterial loads than controls, but this effect was attenuated in Fe+EPA/DHA mice. Thus, individually, post-infection EPA/DHA and iron supplementation lowered systemic and lung inflammation and mitigated anemia of infection in TB, but not when combined. EPA/DHA also enhanced bactericidal effects and could support inflammation resolution and management of anemia.
Collapse
Affiliation(s)
- Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom 2531, South Africa; (J.B.); (R.C.D.); (L.Z.); (F.E.A.H.); (C.M.S.); (L.M.)
| | - Jeannine Baumgartner
- Centre of Excellence for Nutrition, North-West University, Potchefstroom 2531, South Africa; (J.B.); (R.C.D.); (L.Z.); (F.E.A.H.); (C.M.S.); (L.M.)
- Laboratory of Human Nutrition, ETH, 8092 Zurich, Switzerland
| | - Robin C. Dolman
- Centre of Excellence for Nutrition, North-West University, Potchefstroom 2531, South Africa; (J.B.); (R.C.D.); (L.Z.); (F.E.A.H.); (C.M.S.); (L.M.)
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town 7925, South Africa; (M.O.); (F.B.); (S.P.P.)
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town 7925, South Africa
| | - Lizelle Zandberg
- Centre of Excellence for Nutrition, North-West University, Potchefstroom 2531, South Africa; (J.B.); (R.C.D.); (L.Z.); (F.E.A.H.); (C.M.S.); (L.M.)
| | - Frank E. A. Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom 2531, South Africa; (J.B.); (R.C.D.); (L.Z.); (F.E.A.H.); (C.M.S.); (L.M.)
- Department of Nutrition and Dietetics, School of biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra Box KB143, Ghana
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town 7925, South Africa; (M.O.); (F.B.); (S.P.P.)
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa
| | - Renee Blaauw
- Division of Human Nutrition, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa;
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town 7925, South Africa; (M.O.); (F.B.); (S.P.P.)
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Cornelius M. Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom 2531, South Africa; (J.B.); (R.C.D.); (L.Z.); (F.E.A.H.); (C.M.S.); (L.M.)
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom 2531, South Africa; (J.B.); (R.C.D.); (L.Z.); (F.E.A.H.); (C.M.S.); (L.M.)
| |
Collapse
|
17
|
Perry WJ, Weiss A, Van de Plas R, Spraggins JM, Caprioli RM, Skaar EP. Integrated molecular imaging technologies for investigation of metals in biological systems: A brief review. Curr Opin Chem Biol 2020; 55:127-135. [PMID: 32087551 PMCID: PMC7237308 DOI: 10.1016/j.cbpa.2020.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/25/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
Metals play an essential role in biological systems and are required as structural or catalytic co-factors in many proteins. Disruption of the homeostatic control and/or spatial distributions of metals can lead to disease. Imaging technologies have been developed to visualize elemental distributions across a biological sample. Measurement of elemental distributions by imaging mass spectrometry and imaging X-ray fluorescence are increasingly employed with technologies that can assess histological features and molecular compositions. Data from several modalities can be interrogated as multimodal images to correlate morphological, elemental, and molecular properties. Elemental and molecular distributions have also been axially resolved to achieve three-dimensional volumes, dramatically increasing the biological information. In this review, we provide an overview of recent developments in the field of metal imaging with an emphasis on multimodal studies in two and three dimensions. We specifically highlight studies that present technological advancements and biological applications of how metal homeostasis affects human health.
Collapse
Affiliation(s)
- William J Perry
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andy Weiss
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Department of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eric P Skaar
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
18
|
Abstract
Neisseria gonorrhoeae employs high-affinity metal acquisition systems to obtain necessary nutrients, such as iron (Fe) and zinc (Zn) from the environment. Because growth and replication depend upon successful metal acquisition, these high-affinity uptake systems are important virulence factors. Expression of metal acquisition systems is tightly controlled and preferentially expressed under low-metal conditions. Therefore, in order to optimally produce these transport proteins and study them in vitro, growth media must be deployed that mimic low-metal conditions. This chapter describes the chelators, media, and culturing conditions that can generate low-metal in vitro growth conditions.
Collapse
|
19
|
Yadav R, Noinaj N, Ostan N, Moraes T, Stoudenmire J, Maurakis S, Cornelissen CN. Structural Basis for Evasion of Nutritional Immunity by the Pathogenic Neisseriae. Front Microbiol 2020; 10:2981. [PMID: 31998268 PMCID: PMC6965322 DOI: 10.3389/fmicb.2019.02981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
The pathogenic Neisseria species are human-adapted pathogens that cause quite distinct diseases. Neisseria gonorrhoeae causes the common sexually transmitted infection gonorrhea, while Neisseria meningitidis causes a potentially lethal form of bacterial meningitis. During infection, both pathogens deploy a number of virulence factors in order to thrive in the host. The focus of this review is on the outer membrane transport systems that enable the Neisseriae to utilize host-specific nutrients, including metal-binding proteins such as transferrin and calprotectin. Because acquisition of these critical metals is essential for growth and survival, understanding the structures of receptor-ligand complexes may be an important step in developing preventative or therapeutic strategies focused on thwarting these pathogens. Much can also be learned by comparing structures with antigenic diversity among the transporter sequences, as conserved functional domains in these essential transporters could represent the pathogens' "Achilles heel." Toward this goal, we present known or modeled structures for the transport systems produced by the pathogenic Neisseria species, overlapped with sequence diversity derived by comparing hundreds of neisserial protein sequences. Given the concerning increase in N. gonorrhoeae incidence and antibiotic resistance, these outer membrane transport systems appear to be excellent targets for new therapies and preventative vaccines.
Collapse
Affiliation(s)
- Ravi Yadav
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| | - Nicholas Ostan
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Trevor Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Julie Stoudenmire
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Stavros Maurakis
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | | |
Collapse
|
20
|
Tonziello G, Caraffa E, Pinchera B, Granata G, Petrosillo N. Present and future of siderophore-based therapeutic and diagnostic approaches in infectious diseases. Infect Dis Rep 2019; 11:8208. [PMID: 31649808 PMCID: PMC6778818 DOI: 10.4081/idr.2019.8208] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/04/2019] [Indexed: 12/30/2022] Open
Abstract
Iron is an essential micronutrient required for the growth of almost all aerobic organisms; the iron uptake pathway in bacteria therefore represents a possible target for novel antimicrobials, including hybrids between antimicrobials and siderophores. Siderophores are low molecular weight iron chelators that bind to iron and are actively transported inside the cell through specific binding protein complexes. These binding protein complexes are present both in Gram negative bacteria, in their outer and inner membrane, and in Gram positive bacteria in their cytoplasmic membrane. Most bacteria have the ability to produce siderophores in order to survive in environments with limited concentrations of free iron, however some bacteria synthetize natural siderophore-antibiotic conjugates that exploit the siderophore-iron uptake pathway to deliver antibiotics into competing bacterial cells and gain a competitive advantage. This approach has been referred to as a Trojan Horse Strategy. To overcome the increasing global problem of antibiotic resistance in Gram negative bacteria, which often have reduced outer membrane permeability, siderophore-antibiotic hybrid conjugates have been synthetized in vitro. Cefiderocol is the first siderophore-antibiotic conjugate that progressed to late stage clinical development so far. In studies on murine models the iron-siderophore uptake pathway has been also exploited for diagnostic imaging of infectious diseases, in which labelled siderophores have been used as specific probes. The aim of this review is to describe the research progress in the field of siderophore-based therapeutic and diagnostic approaches in infectious diseases.
Collapse
Affiliation(s)
- Gilda Tonziello
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome
| | - Emanuela Caraffa
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome
| | | | - Guido Granata
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome
| | - Nicola Petrosillo
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome
| |
Collapse
|
21
|
What Is Next in This "Age" of Heme-Driven Pathology and Protection by Hemopexin? An Update and Links with Iron. Pharmaceuticals (Basel) 2019; 12:ph12040144. [PMID: 31554244 PMCID: PMC6958331 DOI: 10.3390/ph12040144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
This review provides a synopsis of the published literature over the past two years on the heme-binding protein hemopexin (HPX), with some background information on the biochemistry of the HPX system. One focus is on the mechanisms of heme-driven pathology in the context of heme and iron homeostasis in human health and disease. The heme-binding protein hemopexin is a multi-functional protectant against hemoglobin (Hb)-derived heme toxicity as well as mitigating heme-mediated effects on immune cells, endothelial cells, and stem cells that collectively contribute to driving inflammation, perturbing vascular hemostasis and blood–brain barrier function. Heme toxicity, which may lead to iron toxicity, is recognized increasingly in a wide range of conditions involving hemolysis and immune system activation and, in this review, we highlight some newly identified actions of heme and hemopexin especially in situations where normal processes fail to maintain heme and iron homeostasis. Finally, we present preliminary data showing that the cytokine IL-6 cross talks with activation of the c-Jun N-terminal kinase pathway in response to heme-hemopexin in models of hepatocytes. This indicates another level of complexity in the cell responses to elevated heme via the HPX system when the immune system is activated and/or in the presence of inflammation.
Collapse
|
22
|
Kolloli A, Singh P, Rodriguez GM, Subbian S. Effect of Iron Supplementation on the Outcome of Non-Progressive Pulmonary Mycobacterium tuberculosis Infection. J Clin Med 2019; 8:jcm8081155. [PMID: 31382404 PMCID: PMC6722820 DOI: 10.3390/jcm8081155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
The human response to Mycobacterium tuberculosis (Mtb) infection is affected by the availability of iron (Fe), which is necessary for proper immune cell function and is essential for the growth and virulence of bacteria. Increase in host Fe levels promotes Mtb growth and tuberculosis (TB) pathogenesis, while Fe-supplementation to latently infected, asymptomatic individuals is a significant risk factor for disease reactivation. However, the effect of Fe-supplementation on the host immunity during latent Mtb infection remains unclear, due partly to the paucity in availability of animal models that recapitulate key pathophysiological features seen in humans. We have demonstrated that rabbits can develop non-progressive latency similar to infected humans. In this study, using this model we have evaluated the effect of Fe-supplementation on the bacterial growth, disease pathology, and immune response. Systemic and lung Fe parameters, gene expression profile, lung bacterial burden, and disease pathology were determined in the Mtb-infected/Fe- or placebo-supplemented rabbits. Results show that Fe-supplementation to Mtb-infected rabbits did not significantly change the hematocrit and Hb levels, although it elevated total Fe in the lungs. Expression of selected host iron- and immune-response genes in the blood and lungs was perturbed in Mtb-infected/Fe-supplemented rabbits. Iron-supplementation during acute or chronic stages of Mtb infection did not significantly affect the bacterial burden or disease pathology in the lungs. Data presented in this study is of significant relevance for current public health policies on Fe-supplementation therapy given to anemic patients with latent Mtb infection.
Collapse
Affiliation(s)
- Afsal Kolloli
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Pooja Singh
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - G Marcela Rodriguez
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Selvakumar Subbian
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| |
Collapse
|
23
|
Russell DG. Cellular Microbiology: The metabolic interface between host cell and pathogen. Cell Microbiol 2019; 21:e13075. [PMID: 31231972 DOI: 10.1111/cmi.13075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 11/27/2022]
Abstract
Cellular Microbiology has benefited greatly from the use of immortalized cell lines as host cells for tissue culture models of infection. However, these cells lack many important characteristics of the different cell lineages that are found in vivo. This deficiency is particularly true of macrophages that we now know derive from several distinct ontogenic lineages. This perspective discusses these challenges and possible approaches to overcome them.
Collapse
Affiliation(s)
- David G Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
24
|
Abstract
It is generally regarded that the progression of an infection within host macrophages is the consequence of a failed immune response. However, recent appreciation of macrophage heterogeneity, with respect to both development and metabolism, indicates that the reality is more complex. Different lineages of tissue-resident macrophages respond divergently to microbial, environmental and immunological stimuli. The emerging picture that the developmental origin of macrophages determines their responses to immune stimulation and to infection stresses the importance of in vivo infection models. Recent investigations into the metabolism of infecting microorganisms and host macrophages indicate that their metabolic interface can be a major determinant of pathogen growth or containment. This Review focuses on the integration of data from existing studies, the identification of challenges in generating and interpreting data from ongoing studies and a discussion of the technologies and tools that are required to best address future questions in the field.
Collapse
Affiliation(s)
- David G Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Lu Huang
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Brian C VanderVen
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
25
|
The Sec1/Munc18 (SM) protein Vps45 is involved in iron uptake, mitochondrial function and virulence in the pathogenic fungus Cryptococcus neoformans. PLoS Pathog 2018; 14:e1007220. [PMID: 30071112 PMCID: PMC6091972 DOI: 10.1371/journal.ppat.1007220] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/14/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
The battle for iron between invading microorganisms and mammalian hosts is a pivotal determinant of the outcome of infection. The pathogenic fungus, Cryptococcus neoformans, employs multiple mechanisms to compete for iron during cryptococcosis, a disease primarily of immunocompromised hosts. In this study, we examined the role of endocytic trafficking in iron uptake by characterizing a mutant defective in the Sec1/Munc18 (SM) protein Vps45. This protein is known to regulate the machinery for vesicle trafficking and fusion via interactions with SNARE proteins. As expected, a vps45 deletion mutant was impaired in endocytosis and showed sensitivity to trafficking inhibitors. The mutant also showed poor growth on iron-limited media and a defect in transporting the Cfo1 ferroxidase of the high-affinity iron uptake system from the plasma membrane to the vacuole. Remarkably, we made the novel observation that Vps45 also contributes to mitochondrial function in that a Vps45-Gfp fusion protein associated with mitotracker, and a vps45 mutant showed enhanced sensitivity to inhibitors of electron transport complexes as well as changes in mitochondrial membrane potential. Consistent with mitochondrial function, the vps45 mutant was impaired in calcium homeostasis. To assess the relevance of these defects for virulence, we examined cell surface properties of the vps45 mutant and found increased sensitivity to agents that challenge cell wall integrity and to antifungal drugs. A change in cell wall properties was consistent with our observation of altered capsule polysaccharide attachment, and with attenuated virulence in a mouse model of cryptococcosis. Overall, our studies reveal a novel role for Vps45-mediated trafficking for iron uptake, mitochondrial function and virulence. Cryptococcus neoformans is a causative agent of cryptococcal meningitis, a disease that is estimated to cause ~ 15% of AIDS-related deaths. In this context, cryptococosis is one of the most common causes of mortality in people with HIV/AIDS, closely behind tuberculosis. Unfortunately, very few antifungal drugs are available to treat this disease. However, understanding mechanisms involved in the pathogenesis of C. neoformans can lead to new therapeutic avenues. In this study, we discovered a new role for a regulatory protein involved in vesicle transport. Specifically, we found that the Vps45 protein, which regulates vesicle fusion, participates in the trafficking of iron into fungal cells, supports mitochondria function, mediates antifungal resistance and is required for virulence. These discoveries shed light on the molecular mechanisms underlying the uptake and use of iron as an essential nutrient for the virulence of C. neoformans. Further investigations could lead to the development of drugs that target Vps45-mediated processes.
Collapse
|
26
|
Dos Santos PT, Menendez-Gil P, Sabharwal D, Christensen JH, Brunhede MZ, Lillebæk EMS, Kallipolitis BH. The Small Regulatory RNAs LhrC1-5 Contribute to the Response of Listeria monocytogenes to Heme Toxicity. Front Microbiol 2018; 9:599. [PMID: 29636750 PMCID: PMC5880928 DOI: 10.3389/fmicb.2018.00599] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/15/2018] [Indexed: 11/29/2022] Open
Abstract
The LhrC family of small regulatory RNAs (sRNAs) is known to be induced when the foodborne pathogen Listeria monocytogenes is exposed to infection-relevant conditions, such as human blood. Here we demonstrate that excess heme, the core component of hemoglobin in blood, leads to a strong induction of the LhrC family members LhrC1–5. The heme-dependent activation of lhrC1–5 relies on the response regulator LisR, which is known to play a role in virulence and stress tolerance. Importantly, our studies revealed that LhrC1–5 and LisR contribute to the adaptation of L. monocytogenes to excess heme. Regarding the regulatory function of the sRNAs, we demonstrate that LhrC1–5 act to down-regulate the expression of known LhrC target genes under heme-rich conditions: oppA, tcsA, and lapB, encoding surface exposed proteins with virulence functions. These genes were originally identified as targets for LhrC-mediated control under cell envelope stress conditions, suggesting a link between the response to heme toxicity and cell envelope stress in L. monocytogenes. We also investigated the role of LhrC1–5 in controlling the expression of genes involved in heme uptake and utilization: lmo2186 and lmo2185, encoding the heme-binding proteins Hbp1 and Hbp2, respectively, and lmo0484, encoding a heme oxygenase-like protein. Using in vitro binding assays, we demonstrated that the LhrC family member LhrC4 interacts with mRNAs encoded from lmo2186, lmo2185, and lmo0484. For lmo0484, we furthermore show that LhrC4 uses a CU-rich loop for basepairing to the AG-rich Shine–Dalgarno region of the mRNA. The presence of a link between the response to heme toxicity and cell envelope stress was further underlined by the observation that LhrC1–5 down-regulate the expression of lmo0484 in response to the cell wall-acting antibiotic cefuroxime. Collectively, this study suggests a role for the LisR-regulated sRNAs LhrC1–5 in a coordinated response to excess heme and cell envelope stress in L. monocytogenes.
Collapse
Affiliation(s)
- Patrícia T Dos Santos
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pilar Menendez-Gil
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Dharmesh Sabharwal
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jens-Henrik Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Maja Z Brunhede
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Eva M S Lillebæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
27
|
Huang L, Nazarova EV, Tan S, Liu Y, Russell DG. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med 2018; 215:1135-1152. [PMID: 29500179 PMCID: PMC5881470 DOI: 10.1084/jem.20172020] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/18/2018] [Accepted: 02/16/2018] [Indexed: 12/24/2022] Open
Abstract
This study by Huang et al. demonstrates that lung macrophages of differing ontogeny respond divergently to Mycobacterium tuberculosis infection in vivo. Alveolar macrophages and interstitial macrophages adopt different metabolic states that promote or control M. tuberculosis growth, respectively. To understand how infection by Mycobacterium tuberculosis (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth during early infection, focusing on the ontologically distinct alveolar macrophage (AM) and interstitial macrophage (IM) lineages. Using fluorescent Mtb reporter strains, we found that bacilli in AM exhibited lower stress and higher bacterial replication than those in IM. Interestingly, depletion of AM reduced bacterial burden, whereas depletion of IM increased bacterial burden. Transcriptomic analysis revealed that IMs were glycolytically active, whereas AMs were committed to fatty acid oxidation. Intoxication of infected mice with the glycolytic inhibitor, 2-deoxyglucose, decreased the number of IMs yet increased the bacterial burden in the lung. Furthermore, in in vitro macrophage infections, 2-deoxyglucose treatment increased bacterial growth, whereas the fatty acid oxidation inhibitor etomoxir constrained bacterial growth. We hypothesize that different macrophage lineages respond divergently to Mtb infection, with IMs exhibiting nutritional restriction and controlling bacterial growth and AMs representing a more nutritionally permissive environment.
Collapse
Affiliation(s)
- Lu Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Evgeniya V Nazarova
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Yancheng Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
28
|
Dorsey AF, Thompson AL, Kleinman RE, Duggan CP, Penny ME. Iron and infection: An investigation of the optimal iron hypothesis in Lima, Peru. Am J Hum Biol 2018; 30:e23114. [PMID: 29457307 DOI: 10.1002/ajhb.23114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/18/2017] [Accepted: 01/27/2018] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES This article explores the optimal iron hypothesis through secondary data analysis of the association between hemoglobin levels and morbidity among children living in Canto Grande, a peri-urban community located on the outskirts of Lima, Peru. METHODS Risk ratios were used to test whether lower iron status, assessed using the HemoCue B-Hemoglobin System, was associated with an increased relative risk of morbidity symptoms compared to iron replete status, controlling for infant age, sex, weight for height z-score, maternal education, and repeated measures in 515 infants aged 6-12 months. RESULTS Infants with fewer current respiratory and diarrheal morbidity symptoms had a lower risk of low iron deficiency compared to participants who were iron replete (P < .10). Infants with fewer current respiratory infection symptoms had a statistically significant (P < .05) reduction in risk of moderate iron deficiency compared to infants who were iron replete. CONCLUSION In this study, morbidity status was not predictive of iron deficient status over a six-month interval period, but nonreplete iron status was shown to be associated with current morbidity symptoms. These results support investigating iron status as an allostatic system that responds to infection adaptively, rather than expecting an optimal preinfection value.
Collapse
Affiliation(s)
- Achsah F Dorsey
- Department of Anthropology, University of North Carolina, Chapel Hill
| | - Amanda L Thompson
- Department of Anthropology, University of North Carolina, Chapel Hill
| | | | | | - Mary E Penny
- Instituto de Investigación Nutricional, Lima, Peru
| |
Collapse
|
29
|
Cornelissen CN. Subversion of nutritional immunity by the pathogenic Neisseriae. Pathog Dis 2018; 76:4553517. [PMID: 29045638 PMCID: PMC6251569 DOI: 10.1093/femspd/ftx112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022] Open
Abstract
The pathogenic Neisseria species, including Neisseria meningitidis and Neisseria gonorrhoeae, are obligate human pathogens that cause significant morbidity and mortality. The success of these pathogens, with regard to causing disease in humans, is inextricably linked to their ability to acquire necessary nutrients in the hostile environment of the host. Humans deploy a significant arsenal of weaponry to defend against bacterial pathogens, not least of which are the metal-sequestering proteins that entrap and withhold transition metals, including iron, zinc and manganese, from invaders. This review will discuss the general strategies that bacteria employ to overcome these metal-sequestering attempts by the host, and then will focus on the relatively uncommon 'metal piracy' approaches utilized by the pathogenic Neisseria for this purpose. Because acquiring metals from the environment is critical to microbial survival, interfering with this process could impede growth and therefore disease initiation or progression. This review will also discuss how interfering with metal uptake by the pathogenic Neisseriae could be deployed in the development of novel or improved preventative or therapeutic measures against these important pathogens.
Collapse
Affiliation(s)
- Cynthia Nau Cornelissen
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Box 980678, Richmond, VA 23298-0678, USA
| |
Collapse
|
30
|
Dix B, Grant-McDonald L, Catanzariti A, Saltrick K. Preoperative Anemia in Hindfoot and Ankle Arthrodesis. Foot Ankle Spec 2017; 10:109-115. [PMID: 27613815 DOI: 10.1177/1938640016666921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED This is a retrospective study (n = 39) evaluating the postoperative outcomes of patients with mild to moderate preoperative anemia who underwent a hindfoot and/or ankle arthrodesis. In the study, 32 patients did not have preoperative anemia, and 7 had preoperative anemia. Mortality, length of hospital stay, blood transfusions, deep-vein thrombosis, infection, time to union, malunion, delayed union, nonunion, and ulceration were of particular interest. Comparative analyses between patients with preoperative anemia and those without were performed utilizing the independent samples t-test or by the nonparametric Mann-Whitney U-test. The Fisher exact test was used to analyze categorical data. The Shapiro-Wilk test was utilized to check normality. Statistical significance was defined at a 2-sided level of P <.05. Delayed union, nonunion, and malunion were all significantly increased in patients with preoperative anemia (P = .032, P = .004, and P = .028, respectively). Accordingly, the median total number of noninfectious complications (delayed union + nonunion + malunion) in patients with preoperative anemia (0.86 ± 0.38) was significantly higher than in patients without preoperative anemia (0.063 ± 0.25; P < .001). Patients with preoperative anemia had a significantly longer length of hospital stay in days (4.14 ± 2.61). Total infection was also significantly associated with preoperative anemia (P = .001). This study clearly demonstrated that infectious complications, noninfectious complications, and length of hospital stay in hindfoot and/or ankle arthrodesis was significantly affected by preoperative anemia. Thus, consideration should be given to addressing preoperative anemia prior to hindfoot and/or ankle arthrodesis. LEVELS OF EVIDENCE Level II Study.
Collapse
Affiliation(s)
- Brian Dix
- Division of Foot and Ankle Surgery, West Penn Hospital, Pittsburgh, Pennsylvania
| | - Lisa Grant-McDonald
- Division of Foot and Ankle Surgery, West Penn Hospital, Pittsburgh, Pennsylvania
| | - Alan Catanzariti
- Division of Foot and Ankle Surgery, West Penn Hospital, Pittsburgh, Pennsylvania
| | - Karl Saltrick
- Division of Foot and Ankle Surgery, West Penn Hospital, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Abstract
The review highlights the intrinsic problems in the acquisition of ferric iron (FeIII) by pathogenic microorganisms, and bacteria in particular, during their infection of animals. Acquisition of iron from host sources, such as ferritin, transferrin, and heme compounds, is discussed. Acquisition can be by direct contact, via a surface receptor protein of the bacterium, with one of the iron-containing compounds, but more frequently iron is acquired by the production of a siderophore. Over 500 different siderophores are now known; they work by having a superior binding power to that of the host iron-containing materials. They literally strip the iron out of these molecules. They are low-molecular-weight (< 1,000 Da) compounds that are produced in response to iron deprivation, which is a primary host defense mechanism against infections. The iron–siderophore complex is small enough to be taken up into the bacterial cells, usually via an active transport process; the iron is removed from the siderophore, normally by a reductive process, and is then incorporated into the various apoproteins of the bacterial cell or is stored within the bacteria in the form of bacterioferritin. To combat the effectiveness of the siderophores, animals may synthesize specific proteins to bind and nullify their action. The role of one such protein, siderocalin (= lipocalin 2), is discussed. However, these countermeasures have, in turn, been thwarted by at least one bacterium, Salmonella, glycosylating its siderophore (enterobactin/enterochelin) so that binding of the modified siderophore (now termed salmochelin) with lipocalin can no longer occur.
Collapse
|
32
|
Abstract
Malaria increases the burden of anemia in low-income countries, where, according to 2012 data from the World Health Organization, 40% of children are anemic. Moreover, iron is a cofactor for Plasmodium falciparum development, raising fears that iron supplementation might be harmful in patients with P. falciparum infection. The primary objective of this narrative review is to describe current knowledge on the iron-malaria association, including recent findings and substantive qualitative results. Between 2012 and 2016 the MEDLINE database was searched for literature published about malaria and iron levels. Observational studies reported some protection of iron supplementation against malaria among iron-deficient children, while older clinical trials reported increased susceptibility to malaria among iron-supplemented children. However, iron supplements were not significantly associated with increased malaria risk in recent clinical trials or in a 2016 Cochrane review. Evidence of an iron-malaria association is limited by the following factors: the protective effect of control interventions, the limited follow-up of children, and the lack of homogenous iron indicators. The effects of previous health status and possible thresholds in iron levels should be investigated using a gold-standard combination of iron markers. Moreover, the benefits of iron supplementation require further evaluation.
Collapse
Affiliation(s)
- Violeta Moya-Alvarez
- V. Moya-Alvarez is with the Institut de Recherche pour le Développement, Mère et enfant face aux infections tropicales, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France; the Université Pierre et Marie Curie, Paris, France; and the Ecole des Hautes Etudes en Santé Publique, Rennes, France. F. Bodeau-Livinec is with the Département Épidémiologie et Biostatistiques, Ecole des Hautes Etudes en Santé Publique, Rennes, France; and the Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOPé), Center for Epidemiology and Statistics Sorbonne Paris Cité, DHU Risks in Pregnancy, Université Paris Descartes, Paris, France. M. Cot is with the Institut de Recherche pour le Développement, Mère et enfant face aux infections tropicales, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France; the Centre Biomédical des Cordeliers, Université Pierre et Marie Curie, Paris, France; and PRES Paris Sorbonne Cité, Université Paris Descartes, Paris, France.
| | - Florence Bodeau-Livinec
- V. Moya-Alvarez is with the Institut de Recherche pour le Développement, Mère et enfant face aux infections tropicales, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France; the Université Pierre et Marie Curie, Paris, France; and the Ecole des Hautes Etudes en Santé Publique, Rennes, France. F. Bodeau-Livinec is with the Département Épidémiologie et Biostatistiques, Ecole des Hautes Etudes en Santé Publique, Rennes, France; and the Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOPé), Center for Epidemiology and Statistics Sorbonne Paris Cité, DHU Risks in Pregnancy, Université Paris Descartes, Paris, France. M. Cot is with the Institut de Recherche pour le Développement, Mère et enfant face aux infections tropicales, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France; the Centre Biomédical des Cordeliers, Université Pierre et Marie Curie, Paris, France; and PRES Paris Sorbonne Cité, Université Paris Descartes, Paris, France
| | - Michel Cot
- V. Moya-Alvarez is with the Institut de Recherche pour le Développement, Mère et enfant face aux infections tropicales, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France; the Université Pierre et Marie Curie, Paris, France; and the Ecole des Hautes Etudes en Santé Publique, Rennes, France. F. Bodeau-Livinec is with the Département Épidémiologie et Biostatistiques, Ecole des Hautes Etudes en Santé Publique, Rennes, France; and the Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOPé), Center for Epidemiology and Statistics Sorbonne Paris Cité, DHU Risks in Pregnancy, Université Paris Descartes, Paris, France. M. Cot is with the Institut de Recherche pour le Développement, Mère et enfant face aux infections tropicales, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France; the Centre Biomédical des Cordeliers, Université Pierre et Marie Curie, Paris, France; and PRES Paris Sorbonne Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
33
|
Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake. J Bacteriol 2016; 198:2399-409. [PMID: 27402628 DOI: 10.1128/jb.00359-16] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis requires iron for normal growth but faces a limitation of the metal ion due to its low solubility at biological pH and the withholding of iron by the mammalian host. The pathogen expresses the Fe(3+)-specific siderophores mycobactin and carboxymycobactin to chelate the metal ion from insoluble iron and the host proteins transferrin, lactoferrin, and ferritin. Siderophore-mediated iron uptake is essential for the survival of M. tuberculosis, as knockout mutants, which were defective in siderophore synthesis or uptake, failed to survive in low-iron medium and inside macrophages. But as excess iron is toxic due to its catalytic role in the generation of free radicals, regulation of iron uptake is necessary to maintain optimal levels of intracellular iron. The focus of this review is to present a comprehensive overview of iron homeostasis in M. tuberculosis that is discussed in the context of mycobactin biosynthesis, transport of iron across the mycobacterial cell envelope, and storage of excess iron. The clinical significance of the serum iron status and the expression of the iron-regulated protein HupB in tuberculosis (TB) patients is presented here, highlighting the potential of HupB as a marker, notably in extrapulmonary TB cases.
Collapse
|
34
|
Dayan GH, Mohamed N, Scully IL, Cooper D, Begier E, Eiden J, Jansen KU, Gurtman A, Anderson AS. Staphylococcus aureus: the current state of disease, pathophysiology and strategies for prevention. Expert Rev Vaccines 2016; 15:1373-1392. [PMID: 27118628 DOI: 10.1080/14760584.2016.1179583] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus is both a commensal organism and also an important opportunistic human pathogen, causing a variety of community and hospital-associated pathologies, such as bacteremia-sepsis, endocarditis, pneumonia, osteomyelitis, arthritis and skin diseases. The resurgence of S. aureus during the last decade in many settings has been facilitated not only by bacterial antibiotic resistance mechanisms but also by the emergence of new S. aureus clonal types with increased expression of virulence factors and the capacity to neutralize the host immune response. Prevention of the spread of S. aureus infection relies on the use of contact precautions and adequate procedures for infection control that so far have not been fully effective. Prevention using a prophylactic vaccine would complement these processes, having the potential to bring additional, significant progress toward decreasing invasive disease due to S. aureus.
Collapse
Affiliation(s)
- Gustavo H Dayan
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Naglaa Mohamed
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Ingrid L Scully
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - David Cooper
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Elizabeth Begier
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Joseph Eiden
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Kathrin U Jansen
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | | | | |
Collapse
|
35
|
Abstract
BACKGROUND Iron-deficiency anaemia is common during childhood. Iron administration has been claimed to increase the risk of malaria. OBJECTIVES To evaluate the effects and safety of iron supplementation, with or without folic acid, in children living in areas with hyperendemic or holoendemic malaria transmission. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library, MEDLINE (up to August 2015) and LILACS (up to February 2015). We also checked the metaRegister of Controlled Trials (mRCT) and World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) up to February 2015. We contacted the primary investigators of all included trials, ongoing trials, and those awaiting assessment to ask for unpublished data and further trials. We scanned references of included trials, pertinent reviews, and previous meta-analyses for additional references. SELECTION CRITERIA We included individually randomized controlled trials (RCTs) and cluster RCTs conducted in hyperendemic and holoendemic malaria regions or that reported on any malaria-related outcomes that included children younger than 18 years of age. We included trials that compared orally administered iron, iron with folic acid, and iron with antimalarial treatment versus placebo or no treatment. We included trials of iron supplementation or fortification interventions if they provided at least 80% of the Recommended Dietary Allowance (RDA) for prevention of anaemia by age. Antihelminthics could be administered to either group, and micronutrients had to be administered equally to both groups. DATA COLLECTION AND ANALYSIS The primary outcomes were clinical malaria, severe malaria, and death from any cause. We assessed the risk of bias in included trials with domain-based evaluation and assessed the quality of the evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. We performed a fixed-effect meta-analysis for all outcomes and random-effects meta-analysis for hematological outcomes, and adjusted analyses for cluster RCTs. We based the subgroup analyses for anaemia at baseline, age, and malaria prevention or management services on trial-level data. MAIN RESULTS Thirty-five trials (31,955 children) met the inclusion criteria. Overall, iron does not cause an excess of clinical malaria (risk ratio (RR) 0.93, 95% confidence intervals (CI) 0.87 to 1.00; 14 trials, 7168 children, high quality evidence). Iron probably does not cause an excess of clinical malaria in both populations where anaemia is common and those in which anaemia is uncommon. In areas where there are prevention and management services for malaria, iron (with or without folic acid) may reduce clinical malaria (RR 0.91, 95% CI 0.84 to 0.97; seven trials, 5586 participants, low quality evidence), while in areas where such services are unavailable, iron (with or without folic acid) may increase the incidence of malaria, although the lower CIs indicate no difference (RR 1.16, 95% CI 1.02 to 1.31; nine trials, 19,086 participants, low quality evidence). Iron supplementation does not cause an excess of severe malaria (RR 0.90, 95% CI 0.81 to 0.98; 6 trials, 3421 children, high quality evidence). We did not observe any differences for deaths (control event rate 1%, low quality evidence). Iron and antimalarial treatment reduced clinical malaria (RR 0.54, 95% CI 0.43 to 0.67; three trials, 728 children, high quality evidence). Overall, iron resulted in fewer anaemic children at follow up, and the end average change in haemoglobin from base line was higher with iron. AUTHORS' CONCLUSIONS Iron treatment does not increase the risk of clinical malaria when regular malaria prevention or management services are provided. Where resources are limited, iron can be administered without screening for anaemia or for iron deficiency, as long as malaria prevention or management services are provided efficiently.
Collapse
Affiliation(s)
- Ami Neuberger
- Rambam Health Care Campus and The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyDivision of Infectious DiseasesTel AvivIsrael
| | - Joseph Okebe
- Medical Research Council UnitP.O. Box 273BanjulGambia
| | - Dafna Yahav
- Beilinson Hospital, Rabin Medical CenterDepartment of Medicine E39 Jabotinski StreetPetah TikvaIsrael49100
| | - Mical Paul
- Rambam Health Care CampusDivision of Infectious DiseasesHa‐aliya 8 StHaifaIsrael33705
| | | |
Collapse
|
36
|
Differential Natural Selection of Human Zinc Transporter Genes between African and Non-African Populations. Sci Rep 2015; 5:9658. [PMID: 25927708 PMCID: PMC5386188 DOI: 10.1038/srep09658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/13/2015] [Indexed: 12/22/2022] Open
Abstract
Zinc transporters play important roles in all eukaryotes by maintaining the rational zinc concentration in cells. However, the diversity of zinc transporter genes (ZTGs) remains poorly studied. Here, we investigated the genetic diversity of 24 human ZTGs based on the 1000 Genomes data. Some ZTGs show small population differences, such as SLC30A6 with a weighted-average FST (WA-FST = 0.015), while other ZTGs exhibit considerably large population differences, such as SLC30A9 (WA-FST = 0.284). Overall, ZTGs harbor many more highly population-differentiated variants compared with random genes. Intriguingly, we found that SLC30A9 was underlying natural selection in both East Asians (EAS) and Africans (AFR) but in different directions. Notably, a non-synonymous variant (rs1047626) in SLC30A9 is almost fixed with 96.4% A in EAS and 92% G in AFR, respectively. Consequently, there are two different functional haplotypes exhibiting dominant abundance in AFR and EAS, respectively. Furthermore, a strong correlation was observed between the haplotype frequencies of SLC30A9 and distributions of zinc contents in soils or crops. We speculate that the genetic differentiation of ZTGs could directly contribute to population heterogeneity in zinc transporting capabilities and local adaptations of human populations in regard to the local zinc state or diets, which have both evolutionary and medical implications.
Collapse
|
37
|
Investigating the non-specific effects of BCG vaccination on the innate immune system in Ugandan neonates: study protocol for a randomised controlled trial. Trials 2015; 16:149. [PMID: 25872925 PMCID: PMC4413988 DOI: 10.1186/s13063-015-0682-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/26/2015] [Indexed: 11/15/2022] Open
Abstract
Background The potential for Bacillus Calmette-Guérin (BCG) vaccination to protect infants against non-mycobacterial disease has been suggested by a randomised controlled trial conducted in low birth-weight infants in West Africa. Trials to confirm these findings in healthy term infants, and in a non-West African setting, have not yet been carried out. In addition, a biological mechanism to explain such heterologous effects of BCG in the neonatal period has not been confirmed. This trial aims to address these issues by evaluating whether BCG non-specifically enhances the innate immune system in term Ugandan neonates, leading to increased protection from a variety of infectious diseases. Methods This trial will be an investigator-blinded, randomised controlled trial of 560 Ugandan neonates, comparing those receiving BCG at birth with those receiving BCG at 6 weeks of age. This design allows comparison of outcomes between BCG-vaccinated and -naïve infants until 6 weeks of age, and between early and delayed BCG-vaccinated infants from 6 weeks of age onwards. The primary outcomes of the study will be a panel of innate immune parameters. Secondary outcomes will include clinical illness measures. Discussion Investigation of the possible broadly protective effects of neonatal BCG immunisation, and the optimal vaccination timing to produce these effects, could have profound implications for public healthcare policy. Evidence of protection against heterologous pathogens would underscore the importance of prioritising BCG administration in a timely manner for all infants, provide advocacy against the termination of BCG’s use and support novel anti-tuberculous vaccine strategies that would safeguard such beneficial effects. Trial registration ISRCTN59683017: registration date: 15 January 2014 Electronic supplementary material The online version of this article (doi:10.1186/s13063-015-0682-5) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592-630. [DOI: 10.1093/femsre/fuv009] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
39
|
The utility of iron chelators in the management of inflammatory disorders. Mediators Inflamm 2015; 2015:516740. [PMID: 25878400 PMCID: PMC4386698 DOI: 10.1155/2015/516740] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/01/2014] [Accepted: 09/01/2014] [Indexed: 01/19/2023] Open
Abstract
Since iron can contribute to detrimental radical generating processes through the Fenton and Haber-Weiss reactions, it seems to be a reasonable approach to modulate iron-related pathways in inflammation. In the human organism a counterregulatory reduction in iron availability is observed during inflammatory diseases. Under pathological conditions with reduced or increased baseline iron levels different consequences regarding protection or susceptibility to inflammation have to be considered. Given the role of iron in development of inflammatory diseases, pharmaceutical agents targeting this pathway promise to improve the clinical outcome. The objective of this review is to highlight the mechanisms of iron regulation and iron chelation, and to demonstrate the potential impact of this strategy in the management of several acute and chronic inflammatory diseases, including cancer.
Collapse
|
40
|
|
41
|
Iron-regulated protein HupB of Mycobacterium tuberculosis positively regulates siderophore biosynthesis and is essential for growth in macrophages. J Bacteriol 2014; 196:1853-65. [PMID: 24610707 DOI: 10.1128/jb.01483-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis expresses the 28-kDa protein HupB (Rv2986c) and the Fe(3+)-specific high-affinity siderophores mycobactin and carboxymycobactin upon iron limitation. The objective of this study was to understand the functional role of HupB in iron acquisition. A hupB mutant strain of M. tuberculosis, subjected to growth in low-iron medium (0.02 μg Fe ml(-1)), showed a marked reduction of both siderophores with low transcript levels of the mbt genes encoding the MB biosynthetic machinery. Complementation of the mutant strain with hupB restored siderophore production to levels comparable to that of the wild type. We demonstrated the binding of HupB to the mbtB promoter by both electrophoretic mobility shift assays and DNA footprinting. The latter revealed the HupB binding site to be a 10-bp AT-rich region. While negative regulation of the mbt machinery by IdeR is known, this is the first report of positive regulation of the mbt operon by HupB. Interestingly, the mutant strain failed to survive inside macrophages, suggesting that HupB plays an important role in vivo.
Collapse
|
42
|
Engelken J, Carnero-Montoro E, Pybus M, Andrews GK, Lalueza-Fox C, Comas D, Sekler I, de la Rasilla M, Rosas A, Stoneking M, Valverde MA, Vicente R, Bosch E. Extreme population differences in the human zinc transporter ZIP4 (SLC39A4) are explained by positive selection in Sub-Saharan Africa. PLoS Genet 2014; 10:e1004128. [PMID: 24586184 PMCID: PMC3930504 DOI: 10.1371/journal.pgen.1004128] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/05/2013] [Indexed: 12/17/2022] Open
Abstract
Extreme differences in allele frequency between West Africans and Eurasians were observed for a leucine-to-valine substitution (Leu372Val) in the human intestinal zinc uptake transporter, ZIP4, yet no further evidence was found for a selective sweep around the ZIP4 gene (SLC39A4). By interrogating allele frequencies in more than 100 diverse human populations and resequencing Neanderthal DNA, we confirmed the ancestral state of this locus and found a strong geographical gradient for the derived allele (Val372), with near fixation in West Africa. In extensive coalescent simulations, we show that the extreme differences in allele frequency, yet absence of a classical sweep signature, can be explained by the effect of a local recombination hotspot, together with directional selection favoring the Val372 allele in Sub-Saharan Africans. The possible functional effect of the Leu372Val substitution, together with two pathological mutations at the same codon (Leu372Pro and Leu372Arg) that cause acrodermatitis enteropathica (a disease phenotype characterized by extreme zinc deficiency), was investigated by transient overexpression of human ZIP4 protein in HeLa cells. Both acrodermatitis mutations cause absence of the ZIP4 transporter cell surface expression and nearly absent zinc uptake, while the Val372 variant displayed significantly reduced surface protein expression, reduced basal levels of intracellular zinc, and reduced zinc uptake in comparison with the Leu372 variant. We speculate that reduced zinc uptake by the ZIP4-derived Val372 isoform may act by starving certain pathogens of zinc, and hence may have been advantageous in Sub-Saharan Africa. Moreover, these functional results may indicate differences in zinc homeostasis among modern human populations with possible relevance for disease risk.
Collapse
Affiliation(s)
- Johannes Engelken
- Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain ; Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elena Carnero-Montoro
- Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marc Pybus
- Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Glen K Andrews
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Comas
- Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Israel Sekler
- Department of Physiology, Ben-Gurion University, Beer-Sheva, Israel
| | - Marco de la Rasilla
- Área de Prehistoria, Departamento de Historia, Universidad de Oviedo, Oviedo, Spain
| | - Antonio Rosas
- Group of Paleoanthropology MNCN-CSIC, Department of Paleobiology, National Museum of Natural Sciences, CSIC, Madrid, Spain
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Miguel A Valverde
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rubén Vicente
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Bosch
- Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
43
|
Caza M, Kronstad JW. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol 2013; 3:80. [PMID: 24312900 PMCID: PMC3832793 DOI: 10.3389/fcimb.2013.00080] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/30/2013] [Indexed: 12/12/2022] Open
Abstract
Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense.
Collapse
Affiliation(s)
| | - James W. Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
44
|
Kent S, Weinberg ED, Stuart-Macadam P. Dietary and prophylactic iron supplements : Helpful or harmful? HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2013; 1:53-79. [PMID: 24222023 DOI: 10.1007/bf02692146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/1989] [Accepted: 05/30/1989] [Indexed: 12/19/2022]
Abstract
Mild hypoferremia represents an aspect of the ability of the body to withhold iron from pathogenic bacteria, fungi, and protozoa, and from neoplastic cells. However, our iron-withholding defense system can be thwarted by practices that enhance iron overload such as indiscriminate iron fortification of foods, medically prescribed iron supplements, alcohol ingestion, and cigarette smoking. Elevated standards for normal levels of iron can be misleading and even dangerous for individuals faced with medical insults such as chronic infection, neoplasia, cardiomyopathy, and arthritis. We are becoming increasingly aware that the wide-spread hypoferremia in human populations is a physiological response to insult rather than a pathological cause of insult, and that attempts to correct the condition by simply raising iron levels may not only be misguided but may actually impair host defense.
Collapse
Affiliation(s)
- S Kent
- Anthropology Program, Old Dominion University, 23529, Norfolk, VA
| | | | | |
Collapse
|
45
|
Sivakolundu S, Mannela UD, Jain S, Srikantam A, Peri S, Pandey SD, Sritharan M. Serum iron profile and ELISA-based detection of antibodies against the iron-regulated protein HupB of Mycobacterium tuberculosis in TB patients and household contacts in Hyderabad (Andhra Pradesh), India. Trans R Soc Trop Med Hyg 2012; 107:43-50. [PMID: 23222944 DOI: 10.1093/trstmh/trs005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND HupB is a 28 kDa cell-wall-associated protein co-expressed with the siderophores mycobactin and carboxymycobactin in iron-limited Mycobacterium tuberculosis. HupB is expressed in vivo and anti-HupB antibodies are present in the serum of TB patients. METHODS The aims of this study were to evaluate the serodiagnostic potential of HupB and to correlate levels of anti-HupB antibodies with the serum iron status in TB patients, household contacts and normal healthy controls. RESULTS TB patients from Hyderabad (India) showed high levels of anti-HupB antibodies compared with household contacts and normal healthy controls. Interestingly, the levels were maximal in extrapulmonary TB patients, with a two-fold higher titre than pulmonary TB patients. Serum iron levels, total iron-binding capacity (TIBC) and percent saturation of serum transferrin were low in subjects with active TB, whilst serum ferritin was notably high in pulmonary TB patients compared with normal controls. CONCLUSIONS There is a strong negative correlation between serum iron levels and TIBC with the titre of anti-HupB antibodies in subjects with active TB. This study reflects the usefulness of screening for anti-HupB antibodies for diagnosis of pulmonary and extrapulmonary TB in this endemic region.
Collapse
Affiliation(s)
- Subha Sivakolundu
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500 046, India
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Parenteral iron is toxic to many species but, because the uptake of iron from the diet is regulated in the intestine, acute intoxication is not seen under natural conditions. Chronic ingestion of large amounts of absorbable iron in the diet can lead to the storage of iron in the liver in many species, including humans. The excess iron is stored within hepatocytes as haemosiderin and can be quantitatively assessed by liver biopsy or at necropsy using special stains such as Perls iron stain and/or biochemical tests. Iron may also be found within the Kupffer cells in the liver and the macrophage cells of the spleen especially where concurrent diseases are present such as haemolytic anaemia, septicaemia, neoplasia and starvation. Iron accumulation in the liver, also known as haemosiderosis, may not always be associated with clinical disease although in severe cases hepatic damage may occur. It is probable that concurrent disease conditions are largely responsible for the degree and nature of the pathological changes described in most cases of haemosiderosis. In some human individuals there may be a genetic predisposition to iron storage disease, haemochromatosis, associated with poor regulation of iron uptake across the intestine. In severe cases iron pigment will be found in the liver, spleen, gut wall, kidney and heart with subsequent development of ascites, heart failure and multisystem pathology. Clinical disease associated with accumulation of iron in the liver, and other tissues, has been reported in many species of bird although it is most commonly reported in Indian hill mynas ( Gracula religiosa ) and toucans ( Ramphastos sp ). It is likely that the tolerance to the build up of tissue iron varies in individual species of bird and that the predominant predisposing factors may differ, even within closely related taxonomic groups.
Collapse
|
47
|
Onabanjo OO, Jerling JC, Covic N, Van Graan A, Taljaard C, Mamabolo RL. Association between iron status and white blood cell counts in African schoolchildren of the North-West Province, South Africa. J Epidemiol Glob Health 2012; 2:103-10. [PMID: 23856449 PMCID: PMC7320329 DOI: 10.1016/j.jegh.2012.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/02/2012] [Accepted: 07/26/2012] [Indexed: 01/26/2023] Open
Abstract
Iron deficiency with or without anemia is associated with increased susceptibility to infection owing to impaired immune function; this study aimed to examine the associations between markers of iron status and white blood cell counts in African schoolchildren. This cross-sectional study is part of the larger BeForMi study done in the North-West province of South Africa. A total of 556 African schoolchildren (aged 7-10 years) were recruited from the three schools participating in the BeForMi multiple micronutrient intervention study. Demographic information of the children was obtained from their parents/caregivers/guardians in the language of choice using validated questionnaires. Anthropometric indices (weight and height), iron status parameters, hematological parameters (hemoglobin (Hb), red blood cell count (RBC), total and differential white blood cell counts) were measured using standard procedures. No significant gender differences were observed in most of the iron markers and hematological parameters except in C-reactive protein (CRP) (p=0.004) and eosinophils (p=0.042) which were higher in boys while RBC (p=0.018) and Hb (p=0.023) levels were higher in girls. No relationships were observed between the different iron markers and differential white blood cell counts. A positive correlation was observed between serum ferritin (SF) and CRP in girls only (r=0.336, p<0.01), and a positive correlation between SF and mean cell volume (MCV) in boys only (r=0.197, p<0.01). In both genders, no correlations were observed between the different iron markers and the differential white blood cell counts. The study revealed no associations between iron status and differential white blood cell counts in children that participated in the BeForMi study calling for more studies to be done in the area of the significance of iron supplementation in healthy children.
Collapse
Affiliation(s)
- Oluseye O Onabanjo
- Centre of Excellence for Nutrition, North-West University, Potchefstroom 2520, South Africa.
| | | | | | | | | | | |
Collapse
|
48
|
Iron status predicts treatment failure and mortality in tuberculosis patients: a prospective cohort study from Dar es Salaam, Tanzania. PLoS One 2012; 7:e37350. [PMID: 22606361 PMCID: PMC3350480 DOI: 10.1371/journal.pone.0037350] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/20/2012] [Indexed: 11/23/2022] Open
Abstract
Background Experimental data suggest a role for iron in the course of tuberculosis (TB) infection, but there is limited evidence on the potential effects of iron deficiency or iron overload on the progression of TB disease in humans. The aim of the present analysis was to examine the association of iron status with the risk of TB progression and death. Methodology/Principal Findings We analyzed plasma samples and data collected as part a randomized micronutrient supplementation trial (not including iron) among HIV-infected and HIV-uninfected TB patients in Dar es Salaam, Tanzania. We prospectively related baseline plasma ferritin concentrations from 705 subjects (362 HIV-infected and 343 HIV-uninfected) to the risk of treatment failure at one month after initiation, TB recurrence and death using binomial and Cox regression analyses. Overall, low (plasma ferritin<30 µg/L) and high (plasma ferritin>150 µg/L for women and>200 µg/L for men) iron status were seen in 9% and 48% of patients, respectively. Compared with normal levels, low plasma ferritin predicted an independent increased risk of treatment failure overall (adjusted RR = 1.95, 95% CI: 1.07 to 3.52) and of TB recurrence among HIV-infected patients (adjusted RR = 4.21, 95% CI: 1.22 to 14.55). High plasma ferritin, independent of C-reactive protein concentrations, was associated with an increased risk of overall mortality (adjusted RR = 3.02, 95% CI: 1.95 to 4.67). Conclusions/Significance Both iron deficiency and overload exist in TB patients and may contribute to disease progression and poor clinical outcomes. Strategies to maintain normal iron status in TB patients could be helpful to reduce TB morbidity and mortality.
Collapse
|
49
|
Cassat JE, Skaar EP. Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity. Semin Immunopathol 2012; 34:215-35. [PMID: 22048835 PMCID: PMC3796439 DOI: 10.1007/s00281-011-0294-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/14/2011] [Indexed: 12/19/2022]
Abstract
Transition metals are essential nutrients to virtually all forms of life, including bacterial pathogens. In Staphylococcus aureus, metal ions participate in diverse biochemical processes such as metabolism, DNA synthesis, regulation of virulence factors, and defense against oxidative stress. As an innate immune response to bacterial infection, vertebrate hosts sequester transition metals in a process that has been termed "nutritional immunity." To successfully infect vertebrates, S. aureus must overcome host sequestration of these critical nutrients. The objective of this review is to outline the current knowledge of staphylococcal metal ion acquisition systems, as well as to define the host mechanisms of nutritional immunity during staphylococcal infection.
Collapse
Affiliation(s)
- James E. Cassat
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Ave South, A-5102 MCN, Nashville, TN 37232-2363, USA
| |
Collapse
|
50
|
Affiliation(s)
- Nancy W. Awah
- Department of Immunology, Wenner-Gren Institute, Stockholm University
| | - Akira Kaneko
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Parasitology, Osaka City University Graduate School of Medicine
- Institute of Tropical Medicine, Nagasaki University, Japan
| |
Collapse
|