1
|
Fu X, Yao T, Chen X, Li H, Wu J. MEF2C gene variations are associated with ADHD in the Chinese Han population: a case-control study. J Neural Transm (Vienna) 2022; 129:431-439. [PMID: 35357565 DOI: 10.1007/s00702-022-02490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/12/2022] [Indexed: 11/30/2022]
Abstract
Myocyte enhancer factor 2C (MEF2C) is associated with hyperactivity and might be a novel risk gene for susceptibility to attention deficit hyperactivity disorder (ADHD). Therefore, this study aimed to explore the association between MEF2C genetic variants and ADHD in the Chinese Han population. A total of 215 patients with ADHD and 233 controls were recruited for this study. The Swanson, Nolan, and Pelham version IV questionnaire was used to evaluate the clinical features of ADHD. In silico analysis was used to annotate the biological functions of the promising single nucleotide polymorphisms. Our findings indicated that MEF2C rs587490 was significantly associated with ADHD in the multiplicative model (OR = 0.640, p = 0.002). Participants with the rs587490 TT allele exhibited less hyperactivity/impulsivity than those with the rs587490 CC allele. Furthermore, the expression quantitative trait loci analysis suggested that rs587490 could regulate the gene expression of MEF2C in the hippocampus, putamen, thalamus, and frontal white matter. Our study concluded that the MEF2C rs587490 T allele is significantly associated with a reduced risk of ADHD in the Chinese Han population, which provides new insight into the genetic etiology of ADHD.
Collapse
Affiliation(s)
- Xihang Fu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ting Yao
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Huiru Li
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Polimanti R, Walters RK, Johnson EC, McClintick JN, Adkins AE, Adkins DE, Bacanu SA, Bierut LJ, Bigdeli TB, Brown S, Bucholz KK, Copeland WE, Costello EJ, Degenhardt L, Farrer LA, Foroud TM, Fox L, Goate AM, Grucza R, Hack LM, Hancock DB, Hartz SM, Heath AC, Hewitt JK, Hopfer CJ, Johnson EO, Kendler KS, Kranzler HR, Krauter K, Lai D, Madden PAF, Martin NG, Maes HH, Nelson EC, Peterson RE, Porjesz B, Riley BP, Saccone N, Stallings M, Wall TL, Webb BT, Wetherill L, Edenberg HJ, Agrawal A, Gelernter J. Leveraging genome-wide data to investigate differences between opioid use vs. opioid dependence in 41,176 individuals from the Psychiatric Genomics Consortium. Mol Psychiatry 2020; 25:1673-1687. [PMID: 32099098 PMCID: PMC7392789 DOI: 10.1038/s41380-020-0677-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 01/17/2023]
Abstract
To provide insights into the biology of opioid dependence (OD) and opioid use (i.e., exposure, OE), we completed a genome-wide analysis comparing 4503 OD cases, 4173 opioid-exposed controls, and 32,500 opioid-unexposed controls, including participants of European and African descent (EUR and AFR, respectively). Among the variants identified, rs9291211 was associated with OE (exposed vs. unexposed controls; EUR z = -5.39, p = 7.2 × 10-8). This variant regulates the transcriptomic profiles of SLC30A9 and BEND4 in multiple brain tissues and was previously associated with depression, alcohol consumption, and neuroticism. A phenome-wide scan of rs9291211 in the UK Biobank (N > 360,000) found association of this variant with propensity to use dietary supplements (p = 1.68 × 10-8). With respect to the same OE phenotype in the gene-based analysis, we identified SDCCAG8 (EUR + AFR z = 4.69, p = 10-6), which was previously associated with educational attainment, risk-taking behaviors, and schizophrenia. In addition, rs201123820 showed a genome-wide significant difference between OD cases and unexposed controls (AFR z = 5.55, p = 2.9 × 10-8) and a significant association with musculoskeletal disorders in the UK Biobank (p = 4.88 × 10-7). A polygenic risk score (PRS) based on a GWAS of risk-tolerance (n = 466,571) was positively associated with OD (OD vs. unexposed controls, p = 8.1 × 10-5; OD cases vs. exposed controls, p = 0.054) and OE (exposed vs. unexposed controls, p = 3.6 × 10-5). A PRS based on a GWAS of neuroticism (n = 390,278) was positively associated with OD (OD vs. unexposed controls, p = 3.2 × 10-5; OD vs. exposed controls, p = 0.002) but not with OE (p = 0.67). Our analyses highlight the difference between dependence and exposure and the importance of considering the definition of controls in studies of addiction.
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Raymond K Walters
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amy E Adkins
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - Daniel E Adkins
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Silviu-Alin Bacanu
- Virginia Commonwealth University Alcohol Research Center, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Tim B Bigdeli
- Department of Psychiatry and Behavioral Sciences, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Sandra Brown
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Kathleen K Bucholz
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - William E Copeland
- Department of Psychiatry, University of Vermont Medical Center, Burlington, VT, USA
| | - E Jane Costello
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Louis Fox
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alison M Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard Grucza
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Laura M Hack
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Dana B Hancock
- Center for Omics Discovery and Epidemiology, RTI International, Research Triangle Park, NC, USA
| | - Sarah M Hartz
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Christian J Hopfer
- Department of Psychiatry, University of Colorado Denver, Aurora, CO, USA
| | - Eric O Johnson
- Center for Omics Discovery and Epidemiology, RTI International, Research Triangle Park, NC, USA
| | - Kenneth S Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry R Kranzler
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, VISN 4 MIRECC, Crescenz VAMC, Philadelphia, PA, USA
| | - Kenneth Krauter
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pamela A F Madden
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Hermine H Maes
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Roseann E Peterson
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Bernice Porjesz
- Department of Psychiatry and Behavioral Sciences, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Brien P Riley
- Virginia Commonwealth University Alcohol Research Center, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Nancy Saccone
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Tamara L Wall
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Bradley T Webb
- Virginia Commonwealth University Alcohol Research Center, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA.
| |
Collapse
|
3
|
Hancock DB, Guo Y, Reginsson GW, Gaddis NC, Lutz SM, Sherva R, Loukola A, Minica CC, Markunas CA, Han Y, Young KA, Gudbjartsson DF, Gu F, McNeil DW, Qaiser B, Glasheen C, Olson S, Landi MT, Madden PAF, Farrer LA, Vink J, Saccone NL, Neale MC, Kranzler HR, McKay J, Hung RJ, Amos CI, Marazita ML, Boomsma DI, Baker TB, Gelernter J, Kaprio J, Caporaso NE, Thorgeirsson TE, Hokanson JE, Bierut LJ, Stefansson K, Johnson EO. Genome-wide association study across European and African American ancestries identifies a SNP in DNMT3B contributing to nicotine dependence. Mol Psychiatry 2018; 23:1911-1919. [PMID: 28972577 PMCID: PMC5882602 DOI: 10.1038/mp.2017.193] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 11/09/2022]
Abstract
Cigarette smoking is a leading cause of preventable mortality worldwide. Nicotine dependence, which reduces the likelihood of quitting smoking, is a heritable trait with firmly established associations with sequence variants in nicotine acetylcholine receptor genes and at other loci. To search for additional loci, we conducted a genome-wide association study (GWAS) meta-analysis of nicotine dependence, totaling 38,602 smokers (28,677 Europeans/European Americans and 9925 African Americans) across 15 studies. In this largest-ever GWAS meta-analysis for nicotine dependence and the largest-ever cross-ancestry GWAS meta-analysis for any smoking phenotype, we reconfirmed the well-known CHRNA5-CHRNA3-CHRNB4 genes and further yielded a novel association in the DNA methyltransferase gene DNMT3B. The intronic DNMT3B rs910083-C allele (frequency=44-77%) was associated with increased risk of nicotine dependence at P=3.7 × 10-8 (odds ratio (OR)=1.06 and 95% confidence interval (CI)=1.04-1.07 for severe vs mild dependence). The association was independently confirmed in the UK Biobank (N=48,931) using heavy vs never smoking as a proxy phenotype (P=3.6 × 10-4, OR=1.05, and 95% CI=1.02-1.08). Rs910083-C is also associated with increased risk of squamous cell lung carcinoma in the International Lung Cancer Consortium (N=60,586, meta-analysis P=0.0095, OR=1.05, and 95% CI=1.01-1.09). Moreover, rs910083-C was implicated as a cis-methylation quantitative trait locus (QTL) variant associated with higher DNMT3B methylation in fetal brain (N=166, P=2.3 × 10-26) and a cis-expression QTL variant associated with higher DNMT3B expression in adult cerebellum from the Genotype-Tissue Expression project (N=103, P=3.0 × 10-6) and the independent Brain eQTL Almanac (N=134, P=0.028). This novel DNMT3B cis-acting QTL variant highlights the importance of genetically influenced regulation in brain on the risks of nicotine dependence, heavy smoking and consequent lung cancer.
Collapse
Affiliation(s)
- D B Hancock
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC, USA.
| | - Y Guo
- Center for Genomics in Public Health and Medicine, RTI International, Research Triangle Park, NC, USA
| | | | - N C Gaddis
- Research Computing Division, RTI International, Research Triangle Park, NC, USA
| | - S M Lutz
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - R Sherva
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - A Loukola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - C C Minica
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - C A Markunas
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC, USA
| | - Y Han
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - K A Young
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - D F Gudbjartsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Department of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - F Gu
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
| | - D W McNeil
- Department of Psychology, West Virginia University, Morgantown, WV, USA
- Department of Dental Practice and Rural Health, West Virginia University, Morgantown, WV, USA
| | - B Qaiser
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - C Glasheen
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC, USA
| | - S Olson
- Public Health Informatics Program, eHealth, Quality and Analytics Division, RTI International, Research Triangle Park, NC, USA
| | - M T Landi
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
| | - P A F Madden
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - L A Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - J Vink
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - N L Saccone
- Department of Genetics, Washington University, St. Louis, MO, USA
| | - M C Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - H R Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Crescenz VA Medical Center, Philadelphia, PA, USA
| | - J McKay
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - R J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, ON, Canada
| | - C I Amos
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - M L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - T B Baker
- Center for Tobacco Research and Intervention, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- VA CT Healthcare Center, Department of Psychiatry, West Haven, CT, USA
| | - J Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - N E Caporaso
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
| | | | - J E Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - L J Bierut
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | | | - E O Johnson
- Fellow Program and Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Kidane D, Carrasco B, Manfredi C, Rothmaier K, Ayora S, Tadesse S, Alonso JC, Graumann PL. Evidence for different pathways during horizontal gene transfer in competent Bacillus subtilis cells. PLoS Genet 2009; 5:e1000630. [PMID: 19730681 PMCID: PMC2727465 DOI: 10.1371/journal.pgen.1000630] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 08/04/2009] [Indexed: 02/03/2023] Open
Abstract
Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways. Many bacteria can actively acquire novel genetic material from their environment, which leads to the rapid spreading of, for example, antibiotic resistance genes. The bacterium Bacillus subtilis can differentiate into the state of competence, in which cells take up ssDNA through a DNA uptake complex that is specifically localized at a single cell pole. DNA can be integrated into the chromosome, via RecA, or can be reconstituted as circular dsDNA, if derived from plasmid or from viral DNA. We show that RecO, RecU, and Ku proteins, but not RecA, are important for plasmid transformation, and differentially accumulate at the polar DNA uptake machinery. Upon addition of any kind of DNA, the assembly of RecU at the competence pole dissipated, while RecA formed filamentous structures that rapidly grew and shrank within a 1 minute time scale. RecO visibly accumulated at the competence machinery only upon addition of plasmid DNA, but not of chromosomal DNA. In vitro, RecO was highly efficient at enhancing the annealing of complementary strands covered by SsbA, without the need for any nucleotide cofactor. The findings show that competent cells possess a dynamic recombination machinery and provide visual evidence for the existence of different pathways for transformation with chromosomal DNA or with plasmid DNA.
Collapse
Affiliation(s)
- Dawit Kidane
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Candela Manfredi
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Katharina Rothmaier
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Serkalem Tadesse
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
| | - Juan C. Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (JCA); (PLG)
| | - Peter L. Graumann
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
- * E-mail: (JCA); (PLG)
| |
Collapse
|
5
|
Marrero R, Yasbin RE. Cloning of the Bacillus subtilis recE+ gene and functional expression of recE+ in B. subtilis. J Bacteriol 1988; 170:335-44. [PMID: 3121588 PMCID: PMC210647 DOI: 10.1128/jb.170.1.335-344.1988] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
By use of the Bacillus subtilis bacteriophage cloning vehicle phi 105J23, B. subtilis chromosomal MboI fragments have been cloned that alleviate the pleiotropic effects of the recE4 mutation. The recombinant bacteriophages phi 105Rec phi 1 (3.85-kilobase insert) and phi 105Rec phi 4 (3.3-kilobase insert) both conferred on the recE4 strain YB1015 resistance to ethylmethane sulfonate, methylmethane sulfonate, mitomycin C, and UV irradiation comparable with the resistance observed in recE+ strains. While strain YB1015 (recE4) and its derivatives lysogenized with bacteriophage phi 105J23 were not transformed to prototrophy by B. subtilis chromosomal DNA, strain YB1015 lysogenized with either phi 105Rec phi 1 or phi 105Rec phi 4 was susceptible to transformation with homologous B. subtilis chromosomal DNA. The heteroimmune prophages phi 105 and SPO2 were essentially uninducible in strain YB1015. Significantly, both recombinant prophages phi 105Rec phi 1 and phi 105Rec phi 4 were fully inducible and allowed the spontaneous and mitomycin C-dependent induction of a coresident SPO2 prophage in a recE4 host. The presence of the recombinant prophages also restored the ability of din genes to be induced in strains carrying the recE4 mutation. Finally, both recombinant bacteriophages elaborated a mitomycin C-inducible, 45-kilodalton protein that was immunoreactive with Escherichia coli recA+ gene product antibodies. Collectively, these data demonstrate that the recE+ gene has been cloned and that this gene elaborates the 45-kilodalton protein that is involved in SOB induction and homologous recombination.
Collapse
Affiliation(s)
- R Marrero
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, New York 14642
| | | |
Collapse
|
6
|
Santos MA, Almeida J, de Lencastre H, Morelli G, Kamke M, Trautner TA. Genomic organization of the related Bacillus subtilis bacteriophages SPP1, 41c, rho 15, and SF6. J Virol 1986; 60:702-7. [PMID: 3022002 PMCID: PMC288944 DOI: 10.1128/jvi.60.2.702-707.1986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The genomes of the related virulent Bacillus subtilis bacteriophages SPP1, 41c, rho 15, and SF6 are partially circularly permuted and terminally redundant. Heteroduplex molecules were produced with various combinations of these DNAs. Their electron-microscopic analyses showed a consistent pattern of homologous and heterologous regions of DNA. Restriction maps of the phage DNAs were established. A comparison of these maps showed a pattern of conserved and variable DNAs compatible with the electron-microscopic analyses. In all phage genomes, regions specifying early and late functions were conserved. In each phage genome, such regions were separated by short segments of heterologous DNA characteristic for each phage.
Collapse
|
7
|
|
8
|
Ronda C, López R, Gómez A, García E. Protease-sensitive transfection of Streptococcus pneumoniae with bacteriophage Cp-1 DNA. J Virol 1983; 48:721-30. [PMID: 6355506 PMCID: PMC255404 DOI: 10.1128/jvi.48.3.721-730.1983] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The transfecting activity of pneumococcal phage Cp-1 DNA was destroyed by treatment with proteolytic enzymes, although these enzymes did not affect transfection with bacteriophage Dp-4 DNA. This transfection was stimulated by calcium ions. Protease-treated Cp-1 DNA competes for binding and uptake with transforming pneumococcal DNA as well as with transfecting Dp-4 DNA to approximately the same extent as does untreated Cp-1 DNA. In addition, [3H]thymidine-labeled Cp-1 DNA, treated with proteases or untreated, was absorbed with the same efficiency. These data suggest that uptake of Cp-1 DNA is not affected by protease treatment. [3H]thymidine-labeled Cp-1 DNA showed remarkable resistance against surface nuclease activity of competent wild-type cells. The monomeric form of the Cp-1 DNA-protein complex showed a linear dose response in transfection.
Collapse
|
9
|
Abstract
DNA from the Bacillus subtilis temperate bacteriophage phi do7 was found to efficiently transfect B. subtilis protoplasts; protoplast transfection was more efficient than competent cell transfection by a magnitude of 10(3). Unlike competent cell transfection, protoplast transfection did not require primary recombination, suggesting that phi do7 DNA enters the protoplast as double-stranded molecules.
Collapse
|
10
|
Sladek TL, Maniloff J. Polyethylene glycol-dependent transfection of Acholeplasma laidlawii with mycoplasma virus L2 DNA. J Bacteriol 1983; 155:734-41. [PMID: 6874642 PMCID: PMC217744 DOI: 10.1128/jb.155.2.734-741.1983] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phenol-extracted DNA from mycoplasma virus L2 was able to transfect Acholeplasma laidlawii in the presence of polyethylene glycol. Transfection was sensitive to DNase and was most efficient with 36% (wt/vol) polyethylene glycol 8000 and cells in logarithmic growth. Virus production by the transfected cells was similar to that of the cells infected by intact virus. L2 DNA transfected A. laidlawii with a single-hit dose-response curve, reaching saturation at high DNA concentrations. Optimum transfection frequencies were about 10(-7) transfectants per L2 DNA molecule and 10(-4) transfectants per CFU. When DNA was present in saturating amounts, the number of transfectants increased linearly with the number of CFU present in the transfection mixture, suggesting that DNA uptake does not occur by a mechanism involving cell fusion. The cleavage of the superhelical mycoplasma virus L2 genome with restriction endonucleases that cleave the DNA molecule once reduced the transfection frequency. Host cell modification and restriction of transfecting L2 DNA were similar to those for infecting L2 virions.
Collapse
|
11
|
Bron S, Luxen E, Venema G. Restriction and modification in Bacillus subtilis: effects on transfection under marker rescue conditions. J Virol 1982; 42:357-64. [PMID: 6283159 PMCID: PMC256860 DOI: 10.1128/jvi.42.2.357-364.1982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The role of homology between donor and recipient DNAs in the protection of transfecting DNA against restriction by competent Bacillus subtilis R cells was studied under marker rescue conditions with modified helper phage. By comparing restriction under conditions of preinfection marker rescue and superinfection marker rescue, the significance of DNA homology during the initial stages of DNA processing by competent cells could be studied. The results showed that both in preinfection and in superinfection, complete protection against restriction of transfectants produced via rescue by the modified homologous helper chromosome occurred. Even up to 90 min after entry, DNA entering the helper-mediated pathway of transfection was not affected by restriction. The significance of these findings is discussed in the general context of the role of DNA homology between donor and recipient on the fate of donor DNA in competent B. subtilis, in particular in relation to the effects on restriction.
Collapse
|
12
|
Behnke D. Plasmid transformation of Streptococcus sanguis (Challis) occurs by circular and linear molecules. MOLECULAR & GENERAL GENETICS : MGG 1981; 182:490-7. [PMID: 6946273 DOI: 10.1007/bf00293940] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transformation of Streptococcus sanguis (Challis) by antibiotic resistance plasmids has shown that (a) competence developed with identical kinetics for chromosomal and plasmid DNA; (b) dependence of transformant yield on plasmid DNA concentration was second order; (c) open circular plasmid DNA transformed Challis, although at reduced frequency, (d) linearization of plasmid DNA by restriction enzymes cutting at unique sites inactivated the transforming capacity; (e) transforming activity was restored when linear plasmid molecules generated by different restriction enzymes were mixed; (f) restoration of transforming activity depended on the distance between the linearizing cuts, i.e. on the presence of sufficiently long overlapping homologous sequences; (g) when linear deletion mutants were mixed with linear parental plasmids the smaller plasmid was restored with significantly higher frequency. Based on these data, a model for plasmid transformation of Challis is proposed according to which circular plasmid is linearized during binding and uptake. One DNA strand enters the cell and restoration of circular plasmids inside the cell occurs by annealing of complementary single strands from two different donor molecules. Implications of this model for recombinant DNA experiments in streptococci are discussed.
Collapse
|
13
|
Stahly DP, Ito J. Transfection of protoplasts of Bacillus subtilis with phi 29 DNA. MOLECULAR & GENERAL GENETICS : MGG 1981; 182:180-2. [PMID: 6790910 DOI: 10.1007/bf00422788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
White TB, Doyle RJ, Streips UN. Transformation of a Bacillus subtilis L-form with bacteriophage deoxyribonucleic acid. J Bacteriol 1981; 145:878-83. [PMID: 6780533 PMCID: PMC217193 DOI: 10.1128/jb.145.2.878-883.1981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A stable L-form, sal-1, of Bacillus subtilis was transformed with deoxyribonucleic acid (DNA) from bacteriophages phi 25 and phi 29 to determine whether exogenous DNA can be introduced into this organism. The viral transformation (transfection) was successful with the use of polyethylene glycol. In the presence of the fusogen, bacteriophage phi 25 DNA initiated a single cycle of infection. When compared with transfection of competent cells of Bacillus subtilis, the appearance of viral particles was delayed and their production occurred over a longer time period. L-form cells were best able to support intracellular replication of phi 25 viral particles when in balanced growth in a rich medium. The addition of polyethylene glycol also induced infection of sal-1 with whole bacteriophage phi 25 particles which could not otherwise infect the L-form and enhanced infection by intact phi 29 particles. Primary recombination was shown to be required for polyethylene glycol-mediated phi 25 transfection, but not phi 29 transfection or for whole bacteriophage phi 25 infection mediated by polyethylene glycol. Successful transfection of sal-1 suggests that the L-form may be amenable to genetic modification with exogenous DNA.
Collapse
|
15
|
Krügel H, Fiedler G, Noack D. Transfection of protoplasts from Streptomyces lividans 66 with actinophage SH10 DNA. MOLECULAR & GENERAL GENETICS : MGG 1980; 177:297-300. [PMID: 6245340 DOI: 10.1007/bf00267442] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The slightly modified procedure for the transformation of protoplasts of S. coelicolor A3 (2) with SCP2 plasmid DNA and polyethylenglycol (PEG) (Bibb et al., 1978) was extended to infection of protoplasts of S. lividans 66 with actinophage SH10 DNA (Klaus et al., 1979). Maximal yield of transfected protoplasts was obtained at 20% PEG, 3 MM sodium-citrate and 150 mM NaCl final concentrations. The efficiency of transfection was determined to be about 2 x 10(-8) to 2 x 10(-7). The average value of competent protoplasts was about 1-2 x 10(-4) of regenerating protoplasts. In comparison with outgrowing spores infected with phage particles the average burst size of transfected protoplasts was reduced from 100 to 10 pfu/infected cell, the latent period prolonged from 45 min to 120 min and the rise period was not affected.
Collapse
|
16
|
Soltyk A, Shugar D, Piechowska M. Heterologous deoxyribonucleic acid uptake and complexing with cellular constituents in competent Bacillus subtilis. J Bacteriol 1975; 124:1429-38. [PMID: 811646 PMCID: PMC236057 DOI: 10.1128/jb.124.3.1429-1438.1975] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
With competent cultures of Bacillus subtilis the uptake of Escherichia coli deoxyribonucleic acid (DNA) is about 50% that for homologous DNA. Uptake of phage T6 DNA, if any, is of the order of 7%, while nonglucosylated phage T6 (T6) DNA is taken up almost as effectively as homologous DNA. Both T6 and T4 DNA interfere only minimally with uptake of homologous DNA; by contrast, T6 DNA competes with homologous DNA as effectively as the latter itself. These results indicate that the glucose residues in the T-even phage DNA, located in the large groove of the DNA helix, reduce affinity for cellular receptors, leading to low binding of T6 DNA. The latter DNA is considerably less degraded by extracellular nucleases than homologous DNA, thus excluding enzymatic hydrolysis as the source of poor uptake. Affinity of DNA for competent cells was also evaluated by the formation, and detection in a CsCl density gradient, of complexes of DNA with cellular constituent(s). Such comlexes, similar to those previously observed with transforming DNA, are formed by E. coli DNA and T6 DNA; in reconstruction experiments the denatured forms of these same DNA samples form complexes when added to the cells before lysis. T6 DNA, on the other hand, does not form such a complex. The possible role of such complexes in transport of DNA to the cell interior is discussed.
Collapse
|
17
|
Fischbach KF, Spatz HC, Klotz G. A quantitative theory of transfection in B. subtilis. MOLECULAR & GENERAL GENETICS : MGG 1975; 141:121-45. [PMID: 813107 DOI: 10.1007/bf00267679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A theory of transfection is developed which describes three different types of experiments in transfection: The concentration dependence of transfection, transfection with marker rescue, and the mapping function in transfection crosses. The theory is applicable to transfection systems exhibiting quadratic or higher order dose response (APP1, AP50, SP82). It pictures the essential process in transfection as follows: transfecting DNA molecules, having suffered inactivating events during uptake or intracellularly, have to recombine prior to replication under elimination of these lesions. The probability for recombination, successful in this sense, is calculated as a function of the number of DNA molecules within the competent cell, the mean number of inactivating events per DNA molecule, and the crossover probability per nucleotide. Under the assumption of random distribution of inactivating events over the population of DNA molecules and homogeneous crossover probabilities the theory explains on a quantitative basis a number of experimental observations in transfection, as for instance the relative efficiencies of different helper phage in transfection with marker rescue, the third order concentration dependence in SP50 transfection, and the high recombination frequencies observed in transfection crosses.
Collapse
|
18
|
|
19
|
Yasbin RE, Wilson GA, Young FE. Effect of lysogeny on transfection and transfection enhancement in Bacillus subtilis. J Bacteriol 1975; 121:305-12. [PMID: 803953 PMCID: PMC285644 DOI: 10.1128/jb.121.1.305-312.1975] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Strains of Bacillus subtilis 168 lysogenic for bacteriophage phi105 transfer with deoxyribonucleic acid (DNA) isolated from bacteriophage SPO2 at a higher efficiency than non-lysogenic strains. This enhancement of transfection was not the result of recombination between bacteriophages SPO2 and phi105. Superinfection marker rescue increased transfection with DNA from bacteriophage phi105 occurred simultaneously with the addition of the transfecting DNA. Again, this enhancement of transfection was not the result of recombination but rather a protection of the transfecting DNA by the superinfecting bacteriophage. The ability of the superinfecting bacteriophage to protect the transfecting DNA from inactivation was maximal when the bacteria were just becoming competent. Bacteriophage phi1 cannot replicate after the transfection of competent bacteria lacking a functional DNA replication system, whereas bacteriophage phi1 was able to replicate after infection of competent bacteria grown under comparable conditions. These observations support the hypothesis that GAPase and an inducible repair system play an important role in the development of competence.
Collapse
|
20
|
Arwert F, Rutberg L. Induction of prophage SPO2 in Bacillus subtilis: prophage excision in the absence of bacterial or bacteriophage DNA synthesis. J Virol 1974; 14:1476-81. [PMID: 4214949 PMCID: PMC355678 DOI: 10.1128/jvi.14.6.1476-1481.1974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacillus subtilis lysogenic for SPO2 wild type was induced under conditions preventing synthesis of both bacterial and phage DNA. The infectivity of phage DNA in transfection is strongly decreased under these conditions, whereas the activity of single phage genes as measured by marker rescue with superinfecting phage is unaffected. DNA from induced cells was sedimented in neutral sucrose gradients. After induction, phage DNA was detected at a position in the gradients, which was different from the bulk of the bacterial DNA, corresponding to linear double-stranded DNA of about 25 x 10(6) daltons. Similar results were obtained with bacteria lysogenic for a SPO2 prophage carrying a DNA-negative mutation. No separation of phage and bacterial DNA activity was detected when chloramphenicol was present during the induction period. These experiments show that prophage SPO2 can excise from the bacterial chromosome without previous replication.
Collapse
|
21
|
Flock JI, Rutberg L. Mature DNA from temperate bacillusphage phi105 requires primary recombination to be infectious in transfection. MOLECULAR & GENERAL GENETICS : MGG 1974; 131:301-11. [PMID: 4215953 DOI: 10.1007/bf00264861] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Schlaeger EJ, Spatz HC. Specific recognition in gene conversion. The extent of repair synthesis in SPP1 transfection of B. subtilis. MOLECULAR & GENERAL GENETICS : MGG 1974; 130:165-75. [PMID: 4209420 DOI: 10.1007/bf00269087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|