1
|
Liu X, Xu J, Zhang M, Wang H, Guo X, Zhao M, Duan M, Guan Z, Guo Y. RABV induces biphasic actin cytoskeletal rearrangement through Rac1 activity modulation. J Virol 2024; 98:e0060624. [PMID: 38809020 PMCID: PMC11264595 DOI: 10.1128/jvi.00606-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Rabies virus (RABV) is highly lethal and triggers severe neurological symptoms. The neuropathogenic mechanism remains poorly understood. Ras-related C3 botulinum toxin substrate 1 (Rac1) is a Rho-GTPase that is involved in actin remodeling and has been reported to be closely associated with neuronal dysfunction. In this study, by means of a combination of pharmacological inhibitors, small interfering RNA, and specific dominant-negatives, we characterize the crucial roles of dynamic actin and the regulatory function of Rac1 in RABV infection, dominantly in the viral entry phase. The data show that the RABV phosphoprotein interacts with Rac1. RABV phosphoprotein suppress Rac1 activity and impedes downstream Pak1-Limk1-Cofilin1 signaling, leading to the disruption of F-actin-based structure formation. In early viral infection, the EGFR-Rac1-signaling pathway undergoes a biphasic change, which is first upregulated and subsequently downregulated, corresponding to the RABV entry-induced remodeling pattern of F-actin. Taken together, our findings demonstrate for the first time the role played by the Rac1 signaling pathway in RABV infection and may provide a clue for an explanation for the etiology of rabies neurological pathogenesis.IMPORTANCEThough neuronal dysfunction is predominant in fatal rabies, the detailed mechanism by which rabies virus (RABV) infection causes neurological symptoms remains in question. The actin cytoskeleton is involved in numerous viruses infection and plays a crucial role in maintaining neurological function. The cytoskeletal disruption is closely associated with abnormal nervous symptoms and induces neurogenic diseases. In this study, we show that RABV infection led to the rearrangement of the cytoskeleton as well as the biphasic kinetics of the Rac1 signal transduction. These results help elucidate the mechanism that causes the aberrant neuronal processes by RABV infection and may shed light on therapeutic development aimed at ameliorating neurological disorders.
Collapse
Affiliation(s)
- Xiaomin Liu
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Jing Xu
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Maolin Zhang
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Hualei Wang
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Xin Guo
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Mingxin Zhao
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Ming Duan
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Zhenhong Guan
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Yidi Guo
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| |
Collapse
|
2
|
Feige L, Zaeck LM, Sehl-Ewert J, Finke S, Bourhy H. Innate Immune Signaling and Role of Glial Cells in Herpes Simplex Virus- and Rabies Virus-Induced Encephalitis. Viruses 2021; 13:2364. [PMID: 34960633 PMCID: PMC8708193 DOI: 10.3390/v13122364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| |
Collapse
|
3
|
Colombi D, Poletto C, Nakouné E, Bourhy H, Colizza V. Long-range movements coupled with heterogeneous incubation period sustain dog rabies at the national scale in Africa. PLoS Negl Trop Dis 2020; 14:e0008317. [PMID: 32453756 PMCID: PMC7274467 DOI: 10.1371/journal.pntd.0008317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 06/05/2020] [Accepted: 04/22/2020] [Indexed: 12/25/2022] Open
Abstract
Dog-transmitted rabies is responsible for more than 98% of human cases worldwide, remaining a persistent problem in developing countries. Mass vaccination targets predominantly major cities, often compromising disease control due to re-introductions. Previous work suggested that areas neighboring cities may behave as the source of these re-introductions. To evaluate this hypothesis, we introduce a spatially explicit metapopulation model for rabies diffusion in Central African Republic. Calibrated on epidemiological data for the capital city, Bangui, the model predicts that long-range movements are essential for continuous re-introductions of rabies-exposed dogs across settlements, eased by the large fluctuations of the incubation period. Bangui's neighborhood, instead, would not be enough to self-sustain the epidemic, contrary to previous expectations. Our findings suggest that restricting long-range travels may be very efficient in limiting rabies persistence in a large and fragmented dog population. Our framework can be applied to other geographical contexts where dog rabies is endemic.
Collapse
Affiliation(s)
- Davide Colombi
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique IPLESP, Paris, France
- Computational Epidemiology Laboratory, Institute for Scientific Interchange (ISI), Turin, Italy
- Physics Department and INFN, University of Turin, Turin, Italy
| | - Chiara Poletto
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique IPLESP, Paris, France
| | | | - Hervé Bourhy
- Institut Pasteur, Unit Lyssavirus Epidemiology and Neuropathology, WHO Collaborating Center for Reference and Research on Rabies, Paris, France
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique IPLESP, Paris, France
| |
Collapse
|
4
|
Li C, Zhang H, Ji L, Wang X, Wen Y, Li G, Fu ZF, Yang Y. Deficient Incorporation of Rabies Virus Glycoprotein into Virions Enhances Virus-Induced Immune Evasion and Viral Pathogenicity. Viruses 2019; 11:v11030218. [PMID: 30836694 PMCID: PMC6466124 DOI: 10.3390/v11030218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
Previous studies have shown that wild-type (wt) rabies virus (RABV) evades the host immune response by restricting expression of glycoprotein (G), which blocks activation of dendritic cells (DCs) and induces production of virus-neutralizing antibodies (VNAs). In the present study, wt RABVs not only restricted G expression but also reduced incorporation of G into mature virions compared with laboratory-adapted viruses. A recombinant RABV expressing triple G was used to further determine whether G expression relates to incorporation. The recombinant virus showed higher expression and incorporation of G and activated more DCs than the virus that expressed a single copy of G. Removal of G from viruses using subtilisin or Dithiothreitol (DTT)/ Nonidet P-40 (NP40) almost completely abolishes DC activation and VNA production. Consequently, these G-depleted viruses cause lethal infection in mice. Thus, wt RABVs can subvert DC-induced antiviral immune response and maintain pathogenicity by decreasing G expression in infected cells and G incorporation into virions.
Collapse
Affiliation(s)
- Chunfu Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Hongliang Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Lina Ji
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Xiao Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Yongjun Wen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Guangpeng Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Zhen F Fu
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yang Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Eze UU, Ngoepe EC, Anene BM, Ezeokonkwo RC, Nwosuh C, Sabeta CT. Detection of lyssavirus antigen and antibody levels among apparently healthy and suspected rabid dogs in South-Eastern Nigeria. BMC Res Notes 2018; 11:920. [PMID: 30577868 PMCID: PMC6303872 DOI: 10.1186/s13104-018-4024-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/17/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Domestic dogs are the main reservoir of rabies virus (RABV) infection in Nigeria, thus surveillance of rabies in dog populations is crucial in order to understand the patterns of spread of infection and ultimately devise an appropriate rabies control strategy. This study determined the presence of lyssavirus antigen in brain tissues and anti-rabies antibodies in sera of apparently healthy and suspected-rabid dogs slaughtered for human consumption at local markets in South-Eastern Nigeria. RESULTS Our findings demonstrated that 8.3% (n = 23) of brain tissues were lyssavirus positive and 2.5% (n = 25) of sera had rabies antibody levels as percentage blocking of 70% and above correlating with a cut-off value ≥ 0.5 IU/mL in the fluorescent antibody neutralization test. There was an inverse correlation between lyssavirus positivity and rabies antibody levels confirming that infected individuals most often do not develop virus neutralizing antibodies to the disease. The low percentage of rabies antibodies in this dog population suggests a susceptible population at high risk to RABV infection. These findings highlight a huge challenge to national rabies programs and subsequent elimination of the disease from Nigeria, considering that majority of dogs are confined to rural communal areas, where parenteral dog vaccination is not routinely undertaken.
Collapse
Affiliation(s)
- Ukamaka U. Eze
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State Nigeria
| | - Ernest. C. Ngoepe
- OIE Rabies Reference Laboratory, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
| | - Boniface M. Anene
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State Nigeria
| | - Romanus C. Ezeokonkwo
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State Nigeria
| | - Chika Nwosuh
- National Veterinary Research Institute, Vom, Plateau State Nigeria
| | - Claude T. Sabeta
- OIE Rabies Reference Laboratory, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, 0110 South Africa
| |
Collapse
|
6
|
Inhibition of MALT1 Decreases Neuroinflammation and Pathogenicity of Virulent Rabies Virus in Mice. J Virol 2018; 92:JVI.00720-18. [PMID: 30158289 DOI: 10.1128/jvi.00720-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/05/2018] [Indexed: 12/15/2022] Open
Abstract
Rabies virus is a neurovirulent RNA virus, which causes about 59,000 human deaths each year. Treatment for rabies does not exist due to incomplete understanding of the pathogenesis. MALT1 mediates activation of several immune cell types and is involved in the proliferation and survival of cancer cells. MALT1 acts as a scaffold protein for NF-κB signaling and a cysteine protease that cleaves substrates, leading to the expression of immunoregulatory genes. Here, we examined the impact of genetic or pharmacological MALT1 inhibition in mice on disease development after infection with the virulent rabies virus strain CVS-11. Morbidity and mortality were significantly delayed in Malt1 -/- compared to Malt1 +/+ mice, and this effect was associated with lower viral load, proinflammatory gene expression, and infiltration and activation of immune cells in the brain. Specific deletion of Malt1 in T cells also delayed disease development, while deletion in myeloid cells, neuronal cells, or NK cells had no effect. Disease development was also delayed in mice treated with the MALT1 protease inhibitor mepazine and in knock-in mice expressing a catalytically inactive MALT1 mutant protein, showing an important role of MALT1 proteolytic activity. The described protective effect of MALT1 inhibition against infection with a virulent rabies virus is the precise opposite of the sensitizing effect of MALT1 inhibition that we previously observed in the case of infection with an attenuated rabies virus strain. Together, these data demonstrate that the role of immunoregulatory responses in rabies pathogenicity is dependent on virus virulence and reveal the potential of MALT1 inhibition for therapeutic intervention.IMPORTANCE Rabies virus is a neurotropic RNA virus that causes encephalitis and still poses an enormous challenge to animal and public health. Efforts to establish reliable therapeutic strategies have been unsuccessful and are hampered by gaps in the understanding of virus pathogenicity. MALT1 is an intracellular protease that mediates the activation of several innate and adaptive immune cells in response to multiple receptors, and therapeutic MALT1 targeting is believed to be a valid approach for autoimmunity and MALT1-addicted cancers. Here, we study the impact of MALT1 deficiency on brain inflammation and disease development in response to infection of mice with the highly virulent CVS-11 rabies virus. We demonstrate that pharmacological or genetic MALT1 inhibition decreases neuroinflammation and extends the survival of CVS-11-infected mice, providing new insights in the biology of MALT1 and rabies virus infection.
Collapse
|
7
|
Chen J, Liu G, Jin T, Zhang R, Ou X, Zhang H, Lin P, Yao D, Chen S, Luo M, Yang F, Huang D, Sun B, Zhang R. Epidemiological and Genetic Characteristics of Rabies Virus Transmitted Through Organ Transplantation. Front Cell Infect Microbiol 2018; 8:86. [PMID: 29637047 PMCID: PMC5880885 DOI: 10.3389/fcimb.2018.00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/02/2018] [Indexed: 11/26/2022] Open
Abstract
In January 2016, two patients died of rabies after receiving kidney transplants from a common organ donor at a hospital in Changsha, Hunan, China. The medical records, epidemiological data of the organ donor, two kidney and a liver recipients were reviewed. Intravitam saliva samples of the two kidney recipients were tested for rabies virus (RABV) using real-time RT-PCR, and the nucleoprotein (N) gene was amplified and sequenced by Sanger sequencing. Whole genome sequences were analyzed using next-generation sequencing. The N genes of the two kidney recipients showed 100% nucleic acid identity. Phylogenetic analysis of the complete genome, N and glycoprotein (G) genes indicated that the RABV was homologous with dog isolates from the Hunan province and belong to the China I lineage, which is widespread in China. The organ donor was a 22-month-old boy who died from unknown acute progressive encephalitis. After undergoing sub-hypothermia hibernation therapy, rabies-associated symptoms were atypical, and rabies was neglected because serum RABV-specific antibodies were negative. An unknown wound on the forehead of the donor was found 2 months before the onset of symptoms. Based on the clinical, epidemiological, and molecular findings, we speculated that the RABV initially originated in the donor from a dog bite, and was then transmitted to the recipients by organ transplantation. An uncertain exposure history and misdiagnosis played important roles in the spread of the RABV. Rabies should be considered in patients with acute progressive encephalitis of unexplained etiology, especially in potential organ donors.
Collapse
Affiliation(s)
- Jingfang Chen
- Changsha Center for Disease Control and Prevention, Changsha, China.,Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Guang Liu
- China National Genebank-Shenzhen, Shenzhen, China.,Infection Omics Research Institute, BGI-Shenzhen, Shenzhen, China
| | - Tao Jin
- China National Genebank-Shenzhen, Shenzhen, China.,Infection Omics Research Institute, BGI-Shenzhen, Shenzhen, China
| | - Rusheng Zhang
- Changsha Center for Disease Control and Prevention, Changsha, China
| | - Xinhua Ou
- Changsha Center for Disease Control and Prevention, Changsha, China
| | - Heng Zhang
- Changsha Center for Disease Control and Prevention, Changsha, China
| | - Peng Lin
- China National Genebank-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Dong Yao
- Changsha Center for Disease Control and Prevention, Changsha, China
| | - Shuilian Chen
- Changsha Center for Disease Control and Prevention, Changsha, China
| | - Meiling Luo
- Changsha Center for Disease Control and Prevention, Changsha, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Dana Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Biancheng Sun
- Changsha Center for Disease Control and Prevention, Changsha, China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
8
|
Mahadevan A, Suja MS, Mani RS, Shankar SK. Perspectives in Diagnosis and Treatment of Rabies Viral Encephalitis: Insights from Pathogenesis. Neurotherapeutics 2016; 13:477-92. [PMID: 27324391 PMCID: PMC4965414 DOI: 10.1007/s13311-016-0452-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rabies viral encephalitis, though one of the oldest recognized infectious disease of humans, remains an incurable, fatal encephalomyelitis, despite advances in understanding of its pathobiology. Advances in science have led us on the trail of the virus in the host, but the sanctuaries in which the virus remains hidden for its survival are unknown. Insights into host-pathogen interactions have facilitated evolving immunologic therapeutic strategies, though we are far from a cure. Most of the present-day knowledge has evolved from in vitro studies using fixed (attenuated) laboratory strains that may not be applicable in the clinical setting. Much remains to be unraveled about this elusive virus. This review attempts to re-examine the current advances in understanding of the pathobiology of the rabies virus that modulate the diagnosis, treatment, and prevention of this fatal disease.
Collapse
Affiliation(s)
- Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bangalore, 560 029, India.
| | - M S Suja
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bangalore, 560 029, India
| | - Reeta S Mani
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, 560 029, India
| | - Susarala K Shankar
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bangalore, 560 029, India
| |
Collapse
|
9
|
Gnanadurai CW, Yang Y, Huang Y, Li Z, Leyson CM, Cooper TL, Platt SR, Harvey SB, Hooper DC, Faber M, Fu ZF. Differential Host Immune Responses after Infection with Wild-Type or Lab-Attenuated Rabies Viruses in Dogs. PLoS Negl Trop Dis 2015; 9:e0004023. [PMID: 26292099 PMCID: PMC4546273 DOI: 10.1371/journal.pntd.0004023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/31/2015] [Indexed: 12/24/2022] Open
Abstract
METHODOLOGY/PRINCIPAL FINDINGS The experimental infection of dogs with TriGAS induced high levels of VNA in the serum, whereas wt RABV infection did not. Dogs infected with TriGAS developed antibodies against the virus including its glycoprotein, whereas dogs infected with DRV-NG11 only developed rabies antibodies that are presumably specific for the nucleoprotein, (N) and not the glycoprotein (G). We show that infection with TriGAS induces early activation of B cells in the draining lymph nodes and persistent activation of DCs and B cells in the blood. On the other hand, infection with DRV-NG11 fails to induce the activation of DCs and B cells and further reduces CD4 T cell production. Further, we show that intrathecal (IT) immunization of TriGAS not only induced high levels of VNA in the serum but also in the CSF while intramuscular (IM) immunization of TriGAS induced VNA only in the serum. In addition, high levels of total protein and WBC were detected in the CSF of IT immunized dogs, indicating the transient enhancement of blood-brain barrier (BBB) permeability, which is relevant to the passage of immune effectors from periphery into the CNS. CONCLUSIONS/SIGNIFICANCE IM infection of dogs with TriGAS induced the production of serum VNA whereas, IT immunization of TriGAS in dogs induces high levels of VNA in the periphery as well as in the CSF and transiently enhances BBB permeability. In contrast, infection with wt DRV-NG11 resulted in the production of RABV-reactive antibodies but VNA and antibodies specific for G were absent. As a consequence, all of the dogs infected with wt DRV-NG11 succumbed to rabies. Thus the failure to activate protective immunity is one of the important features of RABV pathogenesis in dogs.
Collapse
Affiliation(s)
- Clement W. Gnanadurai
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Yang Yang
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- State-key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ying Huang
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Zhenguang Li
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Christina M. Leyson
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Tanya L. Cooper
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Simon R. Platt
- Small Medicine & Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Stephen B. Harvey
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Douglas C. Hooper
- Department of Cancer Biology and Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Milosz Faber
- Department of Cancer Biology and Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Zhen F. Fu
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- State-key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Tinsa F, Borgi A, Jahouat I, Boussetta K. Rabies encephalitis in a child: a failure of rabies post exposure prophylaxis? BMJ Case Rep 2015; 2015:bcr-2014-206191. [PMID: 25589528 DOI: 10.1136/bcr-2014-206191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Rabies remains a serious public health problem in many developing countries. The diagnosis is easy when a non-immunised patient presents with hydrophobia and hypersalivation after a bite by a known rabid animal but more difficult when a patient presents atypical symptoms after having received rabies postexposure prophylaxis. Rabies postexposure prophylaxis failure is rare. We report a case of a 6-year-old boy who presented febrile seizure with agitation and cerebellar signs, without hydrophobia or hypersalivation, 17 days after a dog bite. Despite four doses of rabies vaccine and immunoglobulin, he died. Diagnostic confirmation of rabies encephalitis was made in post mortem on brain biopsies by fluorescent antibody technique.
Collapse
Affiliation(s)
- Faten Tinsa
- Department of Pediatrics B, Children's Hospital Bechir Hamza of Tunis, Tunis, Tunisia
| | - Aida Borgi
- Pediatric Intensive Care Unit, Children's Hospital Bechir Hamza, Tunis, Tunisia
| | - Imen Jahouat
- Department of Pediatrics B, Children's Hospital Bechir Hamza of Tunis, Tunis, Tunisia
| | - Khadija Boussetta
- Department of Pediatrics B, Children's Hospital Bechir Hamza of Tunis, Tunis, Tunisia
| |
Collapse
|
11
|
The inability of wild-type rabies virus to activate dendritic cells is dependent on the glycoprotein and correlates with its low level of the de novo-synthesized leader RNA. J Virol 2014; 89:2157-69. [PMID: 25473057 DOI: 10.1128/jvi.02092-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Dendritic cells (DCs) are the most efficient antigen-presenting cells, playing a key role in the adaptive immune responses to viral infections. Our studies demonstrate that wild-type (wt) rabies virus (RABV) does not activate DCs. Adoptive transfer of DCs primed with wt RABV did not activate DCs, stimulate virus neutralizing antibodies (VNA), or protect recipients against challenge. However, adoptive transfer of DCs primed with laboratory-attenuated RABV resulted in DC activation, production of VNA, and protection against challenge. In vitro studies with recombinant RABV (laboratory-attenuated RABV expressing the glycoprotein or the phosphoprotein from wt RABV) demonstrate that DC activation is dependent on the glycoprotein and involves the IPS-1 pathway. Furthermore, binding to and entry into DCs by wt RABV is severely blocked, and the copy number of de novo-synthesized leader RNA was two logs lower in DCs infected with the wt than in DCs treated with laboratory-attenuated RABV. However, transient transfection of DCs with synthesized leader RNA from either wt or attenuated RABV is capable of activating DCs in a dose-dependent manner. Thus, the inability of wt RABV to activate DCs correlates with its low level of the de novo-synthesized leader RNA. IMPORTANCE Rabies remains a public health threat, with more than 55,000 fatalities each year around the world. Since DCs play a key role in the adaptive immune responses to viral infections, we investigated the ability of rabies virus (RABV) to activate DCs. It was found that the adoptive transfer of DCs primed with wt RABV did not activate DCs, stimulate VNA, or protect mice against lethal challenge. However, laboratory-attenuated RABV mediates the activation of DCs via the IPS-1 pathway and is glycoprotein dependent. We further show that wt RABV evades DC-mediated immune activation by inefficient binding/entry into DCs and as a result of a reduced level of de novo-synthesized leader RNA. These findings may have important implications in the development of efficient rabies vaccines.
Collapse
|
12
|
Huang Y, Jiao S, Tao X, Tang Q, Jiao W, Xiao J, Xu X, Zhang Y, Liang G, Wang H. Met-CCL5 represents an immunotherapy strategy to ameliorate rabies virus infection. J Neuroinflammation 2014; 11:146. [PMID: 25182681 PMCID: PMC4243955 DOI: 10.1186/s12974-014-0146-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/05/2014] [Indexed: 12/25/2022] Open
Abstract
Background Infection of rabies virus (RABV) causes central nervous system (CNS) dysfunction and results in high mortality in human and animals. However, it is still unclear whether and how CNS inflammation and immune response contribute to RABV infection. Methods Suckling mice were intracerebrally infected with attenuated RABV aG and CTN strains, followed by examination of chemokine or cytokine production, inflammatory cell infiltration and neuron apoptosis in the brain. Furthermore, the suckling mice and adult mice that were intracerebrally infected with aG and the adult mice that were intramuscularly infected with street RABV HN10 were treated with CCL5 antagonist (Met-CCL5) daily beginning on day 2 postinfection. The survival rates and inflammation responses in the CNS of these mice were analyzed. Results Excessive CCL5 in the CNS was associated with CNS dysfunction, inflammation, and macrophage or lymphocyte infiltration after attenuated or street RABV infection. Administration of exogenous CCL5 induced excessive infiltration of immune cells into the CNS and enhanced inflammatory chemokine and cytokine production. Met-CCL5 treatment significantly prolonged survival time of the suckling mice inoculated with aG and adult mice infected with aG and HN10. Conclusions These results suggest that CCL5 in the CNS is a key regulator involved in inducing rabies encephalomyelitis. Furthermore, treatment with the CCL5 antagonist Met-CCL5 prolongs survival time of the mice infected with attenuated or street RABVs, which might represent a novel therapeutic strategy to ameliorate RABV infection.
Collapse
|
13
|
Huang CT, Li Z, Huang Y, Zhang G, Zhou M, Chai Q, Wu H, Fu ZF. Enhancement of blood-brain barrier permeability is required for intravenously administered virus neutralizing antibodies to clear an established rabies virus infection from the brain and prevent the development of rabies in mice. Antiviral Res 2014; 110:132-41. [PMID: 25108172 PMCID: PMC4171353 DOI: 10.1016/j.antiviral.2014.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 02/06/2023]
Abstract
Rabies virus (RABV) is a neurotropic virus that causes fatal disease in humans and animals. Currently there is no cure for rabies once clinical signs appear. It is believed that once RABV enters the central nervous system (CNS), virus neutralizing antibodies (VNAs) in the periphery cannot pass through the blood-brain barrier (BBB) and into the CNS. Furthermore, it has been hypothesized that VNAs produced in the CNS by invading B cells, rather than those produced in the periphery and then transported into the CNS, are important in clearing RABV from the CNS. In the present study, mouse serum containing VNA was administered intravenously into mice after infection with wild-type RABV. Our studies demonstrate that exogenous administration of VNAs is crucial in the clearance of RABV from the brain and prevent the development of rabies in both immunocompetent and immunocompromised mice as long as the BBB permeability remains enhanced. This present study therefore provides a foundation for the possibility of developing VNA therapy for clinical rabies in humans.
Collapse
Affiliation(s)
- Chien-Tsun Huang
- Department of Pathology, University of Georgia, Athens, GA 30602, USA
| | - Zhenguang Li
- Department of Pathology, University of Georgia, Athens, GA 30602, USA; State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130122, China
| | - Ying Huang
- Department of Pathology, University of Georgia, Athens, GA 30602, USA
| | - Guoqing Zhang
- Department of Pathology, University of Georgia, Athens, GA 30602, USA
| | - Ming Zhou
- Department of Pathology, University of Georgia, Athens, GA 30602, USA
| | - Qingqing Chai
- Department of Pathology, University of Georgia, Athens, GA 30602, USA
| | - Hua Wu
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130122, China
| | - Zhen F Fu
- Department of Pathology, University of Georgia, Athens, GA 30602, USA; State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Schutsky K, Portocarrero C, Hooper DC, Dietzschold B, Faber M. Limited brain metabolism changes differentiate between the progression and clearance of rabies virus. PLoS One 2014; 9:e87180. [PMID: 24763072 PMCID: PMC3998930 DOI: 10.1371/journal.pone.0087180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/19/2013] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) metabolic profiles were examined from rabies virus (RABV)-infected mice that were either mock-treated or received post-exposure treatment (PET) with a single dose of the live recombinant RABV vaccine TriGAS. CNS tissue harvested from mock-treated mice at middle and late stage infection revealed numerous changes in energy metabolites, neurotransmitters and stress hormones that correlated with replication levels of viral RNA. Although the large majority of these metabolic changes were completely absent in the brains of TriGAS-treated mice most likely due to the strong reduction in virus spread, TriGAS treatment resulted in the up-regulation of the expression of carnitine and several acylcarnitines, suggesting that these compounds are neuroprotective. The most striking change seen in mock-treated RABV-infected mice was a dramatic increase in brain and serum corticosterone levels, with the later becoming elevated before clinical signs or loss of body weight occurred. We speculate that the rise in corticosterone is part of a strategy of RABV to block the induction of immune responses that would otherwise interfere with its spread. In support of this concept, we show that pharmacological intervention to inhibit corticosterone biosynthesis, in the absence of vaccine treatment, significantly reduces the pathogenicity of RABV. Our results suggest that widespread metabolic changes, including hypothalamic-pituitary-adrenal axis activation, contribute to the pathogenesis of RABV and that preventing these alterations early in infection with PET or pharmacological blockade helps protect brain homeostasis, thereby reducing disease mortality.
Collapse
Affiliation(s)
- Keith Schutsky
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Carla Portocarrero
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - D. Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Bernhard Dietzschold
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Milosz Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
|
16
|
Susilawathi NM, Darwinata AE, Dwija IBNP, Budayanti NS, Wirasandhi GAK, Subrata K, Susilarini NK, Sudewi RAA, Wignall FS, Mahardika GNK. Epidemiological and clinical features of human rabies cases in Bali 2008-2010. BMC Infect Dis 2012; 12:81. [PMID: 22471410 PMCID: PMC3353247 DOI: 10.1186/1471-2334-12-81] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 04/02/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Previously thought to be rabies free, Bali experienced an outbreak of animal and human rabies cases in November 2008. We describe the epidemiological and clinical data of human rabies cases occurring in the first two years of the outbreak. METHODS We analysed the patient records of all rabies cases from the Sanglah General Hospital in Denpasar, and district hospitals in Buleleng and Tabanan. A conventional reverse transcriptase polymerase chain reaction was developed to detect the rabies virus genome in saliva, corneal swabs, and ante- and post-mortem cerebrospinal fluid (CSF). RESULTS There were 104 human rabies cases in Bali during November 2008-November 2010. Patients' mean age was 36.6 years (range 3-84 years; SD 20.7), most were male (56.7%), and originated from rural districts. Almost all (92%) cases had a history of dog bite. Only 5.8% had their wounds treated and received an anti-rabies vaccine (ARV) after the bite incident. No patients received rabies immunoglobulin (RIG). The estimated time from dog bite to the onset of signs and symptoms was 110.4 days (range 12-720 days; SD 118.2). The mean length of medical care until death was 21.8 hours (range 1-220 hours; SD 32.6). Less than 50% of patients had prodromal symptoms. The most frequent prodromal symptom was pain or paraesthesia at the bite site (37.6%). The two most common central nervous system infection signs were agitation (89.2%) and confusion (83.3%). Signs of autonomic nervous system dysfunction included hydrophobia (93.1%), hypersalivation (88.2%), and dyspnea (74.4%). On admission, 22 of 102 patients (21.6%) showed paralytic manifestations, while the rest (78.4%) showed furious rabies manifestations. The case-fatality rate was 100%. The rabies virus genome was detected in 50 of 101 patients (49.5%) with the highest detection rate from post-mortem CSF samples. CONCLUSIONS Rabies is a major public health problem in Bali. Human fatalities occur because of a lack of knowledge regarding rabies risk, the poor management of dog bites, and the limited availability of RIG. Increasing public awareness of dog bite management, increasing the availability of ARV and RIG, and implementing an island-wide dog vaccination campaign will help prevent human rabies cases.
Collapse
Affiliation(s)
- Ni M Susilawathi
- Neurology Department, Faculty of Medicine Udayana University, Bali, Indonesia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Suja MS, Mahadevan A, Madhusudana SN, Shankar SK. Role of apoptosis in rabies viral encephalitis: a comparative study in mice, canine, and human brain with a review of literature. PATHOLOGY RESEARCH INTERNATIONAL 2011; 2011:374286. [PMID: 21876844 PMCID: PMC3163028 DOI: 10.4061/2011/374286] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 06/09/2011] [Indexed: 11/20/2022]
Abstract
To evaluate the role of apoptosis in rabies encephalitis in humans and canines infected with wild-type street virus, in comparison with rodent model infected with street and laboratory passaged CVS strain, we studied postmortem brain tissue from nine humans, six canines infected with street rabies virus, and Swiss albino mice inoculated intramuscularly (IM) and intracerebrally (IC) with street and CVS strains. Encephalitis and high rabies antigen load were prominent in canine and human brains compared to rodents inoculated with street virus. Neuronal apoptosis was detectable only in sucking mice inoculated with CVS strain and minimal in street virus inoculated mice. In a time point study in suckling mice, DNA laddering was noted only terminally (7 days p.i.) following IC inoculation with CVS strain but not with street virus. In weanling and adult mice, apoptosis was restricted to inflammatory cells and absent in neurons similar to human and canine rabies-infected brains. Absence of neuronal apoptosis in wild-type rabies may facilitate intraneuronal survival and replication while apoptosis in inflammatory cells prevents elimination of the virus by abrogation of host inflammatory response.
Collapse
Affiliation(s)
- M. S. Suja
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| | - S. N. Madhusudana
- Department Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| | - S. K. Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| |
Collapse
|
18
|
Rabies virus (RV) glycoprotein expression levels are not critical for pathogenicity of RV. J Virol 2010; 85:697-704. [PMID: 21068252 DOI: 10.1128/jvi.01309-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previous comparisons of different rabies virus (RV) strains suggested an inverse relationship between pathogenicity and the amount of glycoprotein produced in infected cells. In order to provide more insight into this relationship, we pursued an experimental approach that allowed us to alter the glycoprotein expression level without altering the glycoprotein sequence, thereby eliminating the contribution of amino acid changes to differences in viral virulence. To this end, we constructed an infectious clone of the highly pathogenic rabies virus strain CVS-N2c and replaced its cognate glycoprotein gene with synthetic versions in which silent mutations were introduced to replace wild-type codons with the most or least frequently used synonymous codons. A recombinant N2c variant containing the fully codon-optimized G gene and three variants carrying a partially codon-deoptimized G gene were recovered on mouse neuroblastoma cells and shown to express 2- to 3-fold more and less glycoprotein, respectively, than wild-type N2c. Pathogenicity studies in mice revealed the WT-N2c virus to be the most pathogenic strain. Variants containing partially codon-deoptimized glycoprotein genes or the codon-optimized gene were less pathogenic than WT-N2c but still caused significant mortality. We conclude that the expression level of the glycoprotein gene does have an impact on pathogenicity but is not a dominant factor that determines pathogenicity. Thus, strategies such as changes in codon usage that aim solely at altering the expression level of the glycoprotein gene do not suffice to render a pathogenic rabies virus apathogenic and are not a viable and safe approach for attenuation of a pathogenic strain.
Collapse
|
19
|
|
20
|
Laothamatas J, Wacharapluesadee S, Lumlertdacha B, Ampawong S, Tepsumethanon V, Shuangshoti S, Phumesin P, Asavaphatiboon S, Worapruekjaru L, Avihingsanon Y, Israsena N, Lafon M, Wilde H, Hemachudha T. Furious and paralytic rabies of canine origin: neuroimaging with virological and cytokine studies. J Neurovirol 2008; 14:119-29. [PMID: 18444083 DOI: 10.1080/13550280701883857] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Furious and paralytic rabies differ in clinical manifestations and survival periods. The authors studied magnetic resonance imaging (MRI) and cytokine and virus distribution in rabies-infected dogs of both clinical types. MRI examination of the brain and upper spinal cord was performed in two furious and two paralytic dogs during the early clinical stage. Rabies viral nucleoprotein RNA and 18 cytokine mRNAs at 12 different brain regions were studied. Rabies viral RNA was examined in four furious and four paralytic dogs during the early stage, and in one each during the late stage. Cytokine mRNAs were examined in two furious and two paralytic dogs during the early stage and in one each during the late stage. Larger quantities of rabies viral RNA were found in the brains of furious than in paralytic dogs. Interleukin-1beta and interferon-gamma mRNAs were found exclusively in the brains of paralytic dogs during the early stage. Abnormal hypersignal T2 changes were found at hippocampus, hypothalamus, brainstem, and spinal cord of paralytic dogs. More widespread changes of less intensity were seen in furious dog brains. During the late stage of infection, brains from furious and paralytic rabid dogs were similarly infected and there were less detectable cytokine mRNAs. These results suggest that the early stage of furious dog rabies is characterized by a moderate inflammation (as indicated by MRI lesions and brain cytokine detection) and a severe virus neuroinvasiveness. Paralytic rabies is characterized by delayed viral neuroinvasion and a more intense inflammation than furious rabies. Dogs may be a good model for study of the host inflammatory responses that may modulate rabies virus neuroinvasiveness.
Collapse
Affiliation(s)
- Jiraporn Laothamatas
- Department of Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dhingra V, Li X, Liu Y, Fu ZF. Proteomic profiling reveals that rabies virus infection results in differential expression of host proteins involved in ion homeostasis and synaptic physiology in the central nervous system. J Neurovirol 2007; 13:107-17. [PMID: 17505979 DOI: 10.1080/13550280601178226] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To understand how rabies virus (RV) infection results in neuronal dysfunction, the authors employed proteomics technology to profile host responses to RV infection. In mice infected with wild-type (wt) RV, the expression of proteins involved in ion homeostasis was altered. H(+) ATPase and Na(+)/K(+) ATPase were up-regulated whereas Ca(2+) ATPase was down-regulated, which resulted in reduction of the intracellular Na(+) and Ca(2+) concentrations. Furthermore, infection with wt RV resulted in down-regulation of soluble NSF attachment receptor proteins (SNAREs) such as alpha-synaptosome-associated protein (SNAP), tripartite motif-containing 9 (TRIM9), syntaxin, and pallidin, all of which are involved in docking and fusion of synaptic vesicles to and with presynaptic membrane. As a consequence, accumulation of synaptic vesicles was observed in the presynapses of mice infected with wt RV. These data demonstrate that infection with wt RV results in alteration of host protein expression, particularly those involved in ion homeostasis and docking and fusion of synaptic vesicles to presynaptic membrane, which may lead to neuronal dysfunction. On the other hand, attenuated RV up-regulated the expression of proteins involved in the induction of apoptosis, explaining why apoptosis is observed only in cells or animals infected with attenuated RV in previous studies.
Collapse
Affiliation(s)
- Vikas Dhingra
- Department of Pathology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
22
|
Juntrakul S, Ruangvejvorachai P, Shuangshoti S, Wacharapluesadee S, Hemachudha T. Mechanisms of escape phenomenon of spinal cord and brainstem in human rabies. BMC Infect Dis 2005; 5:104. [PMID: 16288653 PMCID: PMC1310615 DOI: 10.1186/1471-2334-5-104] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 11/16/2005] [Indexed: 02/08/2023] Open
Abstract
Background Rabies virus preferentially involves brainstem, thalamus and spinal cord in human furious and paralytic rabies beginning in the early stage of illness. Nevertheless, rabies patient remains alert until the pre-terminal phase. Weakness of extremities develops only when furious rabies patient becomes comatose; whereas peripheral nerve dysfunction is responsible for weakness in paralytic rabies. Methods Evidence of apoptosis and mitochondrial outer membrane permeabilization in brain and spinal cord of 10 rabies patients was examined and these findings were correlated with the presence of rabies virus antigen. Results Although apoptosis was evident in most of the regions, cytochrome c leakage was relatively absent in spinal cord of nearly all patients despite the abundant presence of rabies virus antigen. Such finding was also noted in brainstem of 5 patients. Conclusion Cell death in human rabies may be delayed in spinal cord and the reticular activating system, such as brainstem, thus explaining absence of weakness due to spinal cord dysfunction and preservation of consciousness.
Collapse
Affiliation(s)
- Sasiwimol Juntrakul
- Molecular Biology Laboratory for Neurological Diseases, Department of Medicine, Chulalongkorn University Hospital, Rama 4 Road, Bangkok, Thailand
| | | | - Shanop Shuangshoti
- Department of Pathology, Chulalongkorn University Hosital, Rama 4 Road, Bangkok, Thailand
| | - Supaporn Wacharapluesadee
- Molecular Biology Laboratory for Neurological Diseases, Department of Medicine, Chulalongkorn University Hospital, Rama 4 Road, Bangkok, Thailand
| | - Thiravat Hemachudha
- Molecular Biology Laboratory for Neurological Diseases, Department of Medicine, Chulalongkorn University Hospital, Rama 4 Road, Bangkok, Thailand
| |
Collapse
|
23
|
Li XQ, Sarmento L, Fu ZF. Degeneration of neuronal processes after infection with pathogenic, but not attenuated, rabies viruses. J Virol 2005; 79:10063-8. [PMID: 16014967 PMCID: PMC1181611 DOI: 10.1128/jvi.79.15.10063-10068.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The structural alterations of neuronal processes in mice were investigated after the mice were infected with rabies virus (RV). Silver staining of infected brain sections showed severe destruction and disorganization of neuronal processes in mice infected with pathogenic RV but not with attenuated RV. However, neuronal bodies showed very little pathological changes. Electron microscopy revealed the disappearance of intracellular organelles, as well as the disappearance of synaptic structures and vesicles. Infection of primary neurons with pathogenic, but not attenuated, RV resulted in the destruction of neuronal processes and disappearance of microtubule-associated protein 2 and neurofilament immunoreactivity, which suggests that pathogenic RV causes degeneration of neuronal processes possibly by interrupting cytoskeletal integrity.
Collapse
Affiliation(s)
- Xia-Qing Li
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, 30602, USA
| | | | | |
Collapse
|
24
|
Hemachudha T, Wacharapluesadee S, Mitrabhakdi E, Wilde H, Morimoto K, Lewis RA. Pathophysiology of human paralytic rabies. J Neurovirol 2005; 11:93-100. [PMID: 15804967 DOI: 10.1080/13550280590900409] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Furious rabies is a well-recognized clinical disorder in humans but the paralytic form is not as easily identified. The mechanisms responsible for the weakness and longer survival periods are not clear. Several hypotheses have been proposed, including rabies virus variants associated with a particular vector, location of wounds, incubation period, influence of prior rabies vaccination, and virus localization in the central nervous system (CNS). However, none of these have been substantiated. Regarding molecular analyses of rabies viruses isolated from both furious and paralytic rabies patients, only minor genetic variations with no specific patterns in glyco- (G), phospho- (P), and nucleoprotein (N) sequences have been identified and arginine 333 in G protein was present in all samples. Regional distribution of rabies virus antigenin rabies patients whose survival periods were 7 days or less and magnetic resonance imaging (MRI) of the CNS indicated brainstem and spinal cord as predilection sites regardless of clinical presentations. There are clinical, electrophysiological, and pathological indications that peripheral nerve dysfunction is responsible for weakness in paralytic rabies whereas in furious rabies, even in the absence of clinical weakness, abundant denervation potentials with normal sensory nerve conduction studies and proximal motor latencies suggest anterior horn cell dysfunction. The lack of cellular immunity to rabies virus antigen accompanied by an absence of cerebrospinal fluid (CSF) rabies neutralizing antibody in most paralytic rabies patients may argue against role of an immune response against rabies virus-positive axons. Aberrant immune responses to peripheral nerve antigen, in particular those mediated by one or more cellular-dependent mechanisms, may be involved as is supported by the absence of putative anti-ganglioside antibodies commonly found in immune-mediated peripheral nerve diseases. Longer survival period in paralytic rabies may possibly be related to currently unidentified mechanism(s) on neuronal gene expression, required for virus transcription/replication and for maintaining neuronal survival.
Collapse
Affiliation(s)
- Thiravat Hemachudha
- Department of Medicine and the Molecular Biology Laboratory for Neurological Diseases, Chulalongkorn University Hospital, Bangkok 10330, Thailand.
| | | | | | | | | | | |
Collapse
|
25
|
Chang HGH, Eidson M, Noonan-Toly C, Trimarchi CV, Rudd R, Wallace BJ, Smith PF, Morse DL. Public health impact of reemergence of rabies, New York. Emerg Infect Dis 2002; 8:909-13. [PMID: 12194765 PMCID: PMC2732541 DOI: 10.3201/eid0809.010524] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This report summarizes the spread of a raccoon rabies epizootic into New York in the 1990s, the species of animals affected, and human postexposure treatments (PET). A total of 57,008 specimens were submitted to the state laboratory from 1993 to 1998; 8,858 (16%) animals were confirmed rabid, with raccoons the most common species (75%). After exposure to 11,769 animals, 18,238 (45%) persons received PET, mostly because of contact with saliva or nervous tissue. We analyzed expenditure reports to estimate the cost of rabies prevention activities. An estimated $13.9 million was spent in New York State to prevent rabies from 1993 to 1998. Traditional prevention methods such as vaccinating pets, avoiding wildlife, and verifying an animal's rabies status must be continued to reduce costly PET. To reduce rabid animals, exposures, and costs, oral vaccination of wildlife should also be considered.
Collapse
Affiliation(s)
- Hwa-Gan H Chang
- New York State Department of Health, Albany, New York 12237, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yan X, Prosniak M, Curtis MT, Weiss ML, Faber M, Dietzschold B, Fu ZF. Silver-haired bat rabies virus variant does not induce apoptosis in the brain of experimentally infected mice. J Neurovirol 2001; 7:518-27. [PMID: 11704884 DOI: 10.1080/135502801753248105] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To examine whether induction of apoptosis plays a role in the pathogenesis of street rabies, we compared the distribution of viral antigens, histopathology, and the induction of apoptosis in the brain of mice infected with a street rabies virus (silver-haired bat rabies virus, SHBRV) and with a mouse-adapted laboratory rabies virus strain (challenge virus standard, CVS-24). Inflammation was identified in the meninges, but not in the parenchyma of the brain of mice infected with either CVS-24 or SHBRV. Necrosis was present in numerous cortical, hippocampal, and Purkinje neurons in CVS-24-infected mice, but only minimal necrosis was identified in mice infected with SHBRV. Likewise, extensive terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling (TUNEL) staining was observed in the brain of mice infected with CVS-24 but little or none in the brain of mice infected with SHBRV. Rabies virus antigens were distributed similarly in the CNS infected with either virus. However, the expression of the glycoprotein (G) is more widespread and the staining of G is generally stronger in CVS- than SHBRV-infected mice, whereas the expression of rabies virus nucleoprotein (N) is similar in mice infected with either CVS or SHBRV. The positive TUNEL staining thus correlates with the high level of G expression in CVS-infected mouse brain. Northern blot hybridization revealed that the ratio between the N and G transcripts is similar in brains infected with either virus, indicating that the reduced expression of G protein is not caused by reduced transcription in SHBRV-infected animals. Taken together, these observations suggest that apoptosis is not an essential pathogenic mechanism for the outcome of a street rabies virus infection and that other pathologic processes may contribute to the profound neuronal dysfunction characteristic of street rabies.
Collapse
Affiliation(s)
- X Yan
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, D.W. Brooks Drive, Athens, GA 30602-7388, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Crepin P, Audry L, Rotivel Y, Gacoin A, Caroff C, Bourhy H. Intravitam diagnosis of human rabies by PCR using saliva and cerebrospinal fluid. J Clin Microbiol 1998; 36:1117-21. [PMID: 9542950 PMCID: PMC104702 DOI: 10.1128/jcm.36.4.1117-1121.1998] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1997] [Accepted: 01/15/1998] [Indexed: 02/07/2023] Open
Abstract
An optimized reverse transcription (RT)-PCR protocol for the intravitam detection of rabies virus genomic RNA was tested with clinical samples obtained from 28 patients suspected of having rabies, 9 of whom were confirmed to have had rabies by postmortem examination. RT-PCR using saliva combined with an immunofluorescence assay performed with skin biopsy samples allowed detection of rabies in the nine patients.
Collapse
Affiliation(s)
- P Crepin
- Rabies Unit, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
28
|
Smith JS. New aspects of rabies with emphasis on epidemiology, diagnosis, and prevention of the disease in the United States. Clin Microbiol Rev 1996; 9:166-76. [PMID: 8964034 PMCID: PMC172889 DOI: 10.1128/cmr.9.2.166] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- J S Smith
- Viral and Rickettsial Zoonoses Branch, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| |
Collapse
|