1
|
Willows S, Alam SB, Sandhu JK, Kulka M. A Canadian perspective on severe acute respiratory syndrome coronavirus 2 infection and treatment: how prevalent underlying inflammatory disease contributes to pathogenesis. Biochem Cell Biol 2020; 99:173-194. [PMID: 33027600 DOI: 10.1139/bcb-2020-0341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), a serious respiratory illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as a global pandemic. Canada reported its first case of COVID-19 on the 25th January 2020. By March 2020, the virus had spread within Canadian communities reaching the most frail and vulnerable elderly population in long-term care facilities. The majority of cases were reported in the provinces of Quebec, Ontario, Alberta, and British Columbia, and the highest mortality was seen among individuals aged 65 years or older. Canada has the highest prevalence and incidence rates of several chronic inflammatory diseases, such as multiple sclerosis, inflammatory bowel disease, and Parkinson's disease. Many elderly Canadians also live with comorbid medical illnesses, such as hypertension, diabetes, cardiovascular disease, and chronic lung disease, and are more likely to suffer from severe COVID-19 with a poor prognosis. It is becoming increasingly evident that underlying inflammatory disease contributes to the pathogenesis of SARS-CoV-2. Here, we review the mechanisms behind SARS-CoV-2 infection, and the host inflammatory responses that lead to resolution or progression to severe COVID-19 disease. Furthermore, we discuss the landscape of COVID-19 therapeutics that are currently in development in Canada.
Collapse
Affiliation(s)
- Steven Willows
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2A3, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Syed Benazir Alam
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2A3, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2A3, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Andualem H, Kiros M, Getu S, Hailemichael W. Immunoglobulin G2 Antibody as a Potential Target for COVID-19 Vaccine. Immunotargets Ther 2020; 9:143-149. [PMID: 33062618 PMCID: PMC7532904 DOI: 10.2147/itt.s274746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022] Open
Abstract
The global threat of COVID-19 is continued with no commercially available vaccine or drug yet. While the application of convalescent therapy is usually beneficial, for critically ill patients, the detrimental effect associated with some antibodies is also reported. The immunoglobulin G (IgG) antibody in response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is described, albeit the lack of defining whether the difference in subclasses has a beneficial or detrimental role. IgG2 has limited ability to activate innate immune cells and complement-mediated inflammation, which have been inversely described in SARS-CoV-2 pathogenesis. The expansion of IgG2 is promoted by interferon γ (IFN-γ); however, there is a low level of IFN-γ in COVID-19 patients. Therefore, this review describes the importance of targeting IgG2, with IFN-γ in minimizing the SARS-CoV-2 associated inflammation, and may provide insight into the design of vaccine or antibody-based therapies to COVID-19 disease.
Collapse
Affiliation(s)
- Henok Andualem
- Immunology and Molecular Biology, Department of Medical Laboratory Science, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Kiros
- Medical Microbiology, Department of Medical Laboratory Science, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Sisay Getu
- Clinical Hematology and Immunohematology, Department of Medical Laboratory Science, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Wasihun Hailemichael
- Immunology and Molecular Biology, Department of Medical Laboratory Science, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
3
|
Morens DM, Fauci AS. Emerging Pandemic Diseases: How We Got to COVID-19. Cell 2020; 182:1077-1092. [PMID: 32846157 PMCID: PMC7428724 DOI: 10.1016/j.cell.2020.08.021] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Infectious diseases prevalent in humans and animals are caused by pathogens that once emerged from other animal hosts. In addition to these established infections, new infectious diseases periodically emerge. In extreme cases they may cause pandemics such as COVID-19; in other cases, dead-end infections or smaller epidemics result. Established diseases may also re-emerge, for example by extending geographically or by becoming more transmissible or more pathogenic. Disease emergence reflects dynamic balances and imbalances, within complex globally distributed ecosystems comprising humans, animals, pathogens, and the environment. Understanding these variables is a necessary step in controlling future devastating disease emergences.
Collapse
Affiliation(s)
- David M Morens
- Office of the Director, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Anthony S Fauci
- Office of the Director, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Sedokani A, Feizollahzadeh S. Plasmapheresis, Anti-ACE2 and Anti-FcγRII Monoclonal Antibodies: A Possible Treatment for Severe Cases of COVID-19. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2607-2611. [PMID: 32753842 PMCID: PMC7351975 DOI: 10.2147/dddt.s262491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
In March 2020, the WHO declared the COVID-19 disease as a pandemic disease. There have been studies on the COVID-19 to find a certain treatment, but yet, there is no certain cure. In this article, we present a possible way to treat severe cases of COVID-19. Based on the previous studies, there are similarities between the spike antigens of SARS-CoV and SARS-CoV-2 viruses. It is expected that these similarities (structural and affinity to the receptor of ACE2) can lead to the same pathophysiological activity of the virus by the use of ACE2 and FcγRII (the antibody-dependent enhancement mechanism). Therefore, we propose a way of washing out (by plasmapheresis) the possible antibodies against the spike protein of the virus out of patients’ plasma to stop the antibody-dependent enhancement (ADE)-mediated infection of the immune system cells at the first phase of the treatment and simultaneous use of the anti-ACE2 with anti-FcγRII monoclonal antibodies at the second phase. We propose these procedures for the patients that have no significant response for typical anti-viral, ARDS and conservative therapies, and the disease persists or progresses despite sufficient therapies.
Collapse
Affiliation(s)
- Amin Sedokani
- Cardiology Department, Medical Faculty, Urmia University of Medical Sciences, Urmia, Iran
| | - Sadegh Feizollahzadeh
- Medical Immunology, Laboratory Sciences, School of Allied Medical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Kiyuka PK, Agoti CN, Munywoki PK, Njeru R, Bett A, Otieno JR, Otieno GP, Kamau E, Clark TG, van der Hoek L, Kellam P, Nokes DJ, Cotten M. Human Coronavirus NL63 Molecular Epidemiology and Evolutionary Patterns in Rural Coastal Kenya. J Infect Dis 2018; 217:1728-1739. [PMID: 29741740 PMCID: PMC6037089 DOI: 10.1093/infdis/jiy098] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Background Human coronavirus NL63 (HCoV-NL63) is a globally endemic pathogen causing mild and severe respiratory tract infections with reinfections occurring repeatedly throughout a lifetime. Methods Nasal samples were collected in coastal Kenya through community-based and hospital-based surveillance. HCoV-NL63 was detected with multiplex real-time reverse transcription PCR, and positive samples were targeted for nucleotide sequencing of the spike (S) protein. Additionally, paired samples from 25 individuals with evidence of repeat HCoV-NL63 infection were selected for whole-genome virus sequencing. Results HCoV-NL63 was detected in 1.3% (75/5573) of child pneumonia admissions. Two HCoV-NL63 genotypes circulated in Kilifi between 2008 and 2014. Full genome sequences formed a monophyletic clade closely related to contemporary HCoV-NL63 from other global locations. An unexpected pattern of repeat infections was observed with some individuals showing higher viral titers during their second infection. Similar patterns for 2 other endemic coronaviruses, HCoV-229E and HCoV-OC43, were observed. Repeat infections by HCoV-NL63 were not accompanied by detectable genotype switching. Conclusions In this coastal Kenya setting, HCoV-NL63 exhibited low prevalence in hospital pediatric pneumonia admissions. Clade persistence with low genetic diversity suggest limited immune selection, and absence of detectable clade switching in reinfections indicates initial exposure was insufficient to elicit a protective immune response.
Collapse
Affiliation(s)
- Patience K Kiyuka
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
| | - Charles N Agoti
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
- School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| | - Patrick K Munywoki
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
| | - Regina Njeru
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
| | - Anne Bett
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
| | - James R Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
| | - Grieven P Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
| | - Everlyn Kamau
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Academic Medical Center of the University of Amsterdam, the Netherlands
| | - Paul Kellam
- Department of Medicine, Division of Infectious Diseases, Imperial College London
- Kymab Ltd., Babraham Research Campus, Cambridge
| | - D James Nokes
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
- School of Life Sciences and Zeeman Institute, University of Warwick, Coventry
| | - Matthew Cotten
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
6
|
Taylor A, Foo SS, Bruzzone R, Dinh LV, King NJC, Mahalingam S. Fc receptors in antibody-dependent enhancement of viral infections. Immunol Rev 2016; 268:340-64. [PMID: 26497532 PMCID: PMC7165974 DOI: 10.1111/imr.12367] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sensitization of the humoral immune response to invading viruses and production of antiviral antibodies forms part of the host antiviral repertoire. Paradoxically, for a number of viral pathogens, under certain conditions, antibodies provide an attractive means of enhanced virus entry and replication in a number of cell types. Known as antibody‐dependent enhancement (ADE) of infection, the phenomenon occurs when virus‐antibody immunocomplexes interact with cells bearing complement or Fc receptors, promoting internalization of the virus and increasing infection. Frequently associated with exacerbation of viral disease, ADE of infection presents a major obstacle to the prevention of viral disease by vaccination and is thought to be partly responsible for the adverse effects of novel antiviral therapeutics such as intravenous immunoglobulins. There is a growing body of work examining the intracellular signaling pathways and epitopes responsible for mediating ADE, with a view to aiding rational design of antiviral strategies. With in vitro studies also confirming ADE as a feature of infection for a growing number of viruses, challenges remain in understanding the multilayered molecular mechanisms of ADE and its effect on viral pathogenesis.
Collapse
Affiliation(s)
- Adam Taylor
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Qld, Australia
| | - Suan-Sin Foo
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Qld, Australia
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, Hong Kong.,Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Luan Vu Dinh
- Discipline of Pathology, Bosch Institute, School of Medical Sciences, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Nicholas J C King
- Discipline of Pathology, Bosch Institute, School of Medical Sciences, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Suresh Mahalingam
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Qld, Australia
| |
Collapse
|
7
|
Abstract
Dengue provides the most abundant example in human medicine and the greatest human illness burden caused by the phenomenon of intrinsic antibody-dependent infection enhancement (iADE). In this immunopathological phenomenon infection of monocytes or macrophages using infectious immune complexes suppresses innate antiviral systems, permitting logarithmic intracellular growth of dengue virus. The four dengue viruses evolved from a common ancestor yet retain similar ecology and pathogenicity, but although infection with one virus provides short-term cross-protection against infection with a different type, millions of secondary dengue infections occur worldwide each year. When individuals are infected in the virtual absence of cross-protective dengue antibodies, the dengue vascular permeability syndrome (DVPS) may ensue. This occurs in around 2 to 4% of second heterotypic dengue infections. A complete understanding of the biologic mechanism of iADE, dengue biology, and the mechanism of host responses to dengue infection should lead to a comprehensive and complete understanding of the pathogenesis of DVPS. A crucial emphasis must be placed on understanding ADE. Clinical and epidemiological observations of DVPS define the research questions and provide research parameters. This article will review knowledge related to dengue ADE and point to areas where there has been little research progress. These observations relate to the two stages of dengue illnesses: afferent phenomena are those that promote the success of the microorganism to infect and survive; efferent phenomena are those mounted by the host to inhibit infection and replication and to eliminate the infectious agent and infected tissues. Data will be discussed as "knowns" and "unknowns."
Collapse
|
8
|
Khamim K, Hattasingh W, Nisalak A, Kaewkungwal J, Fernandez S, Thaisomboonsuk B, Pengsaa K, Thisyakorn U. Neutralizing dengue antibody in pregnant Thai women and cord blood. PLoS Negl Trop Dis 2015; 9:e0003396. [PMID: 25658481 PMCID: PMC4320096 DOI: 10.1371/journal.pntd.0003396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/05/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The WHO 'Global Strategy for Dengue Prevention and Control, 2012-2020' addresses the growing need for the treatment of dengue, and targets a 25% reduction in morbidity and 50% in mortality (using 2010 estimates as baseline). Achieving these goals requires future dengue prevention strategies that will employ both potential vaccines and sustainable vector-control measures. Maternally transferred dengue antibody is an important factor in determining the optimal age for dengue vaccination. OBJECTIVES To estimate the seroprevalence of dengue antibodies among mothers living in an area of high endemicity--Ban Pong, Ratchaburi Province--and to assess maternal dengue antibodies transferred to cord blood. MATERIALS & METHODS A cross-sectional study was conducted with 141 pregnant women who delivered at Ban Pong Hospital, Ratchaburi, Thailand. Maternal-cord paired sera were tested for dengue neutralizing (NT) antibody by PRNT50 assay. A ratio of ≥ 1:10 NT titer to dengue serotype was considered seropositive. RESULTS Most mothers (137/141, 97.2%) had NT antibodies to at least one dengue serotype in their sera. At birth, the proportion of cord sera with NT antibodies to DEN-1, DEN-2, DEN-3, and DEN-4, were high and similar to the sera of their mothers, at 93.6%, 97.2%, 97.9%, and 92.2%, respectively. The dengue geometric mean titers (GMT) in cord blood were significantly higher than the maternal antibodies (p<0.001): highest in DEN-2, followed by DEN-3, and then DEN-1. The GMT of DEN-4 was the lowest among all four serotypes. CONCLUSIONS Dengue infection is highly prevalent among pregnant women in this dengue-endemic area. Most of the cord blood had transferred dengue antibodies, which may have an impact on the disease burden in this population.
Collapse
Affiliation(s)
- Kriangsak Khamim
- Department of Obstetrics and Gynecology, Ban Pong Hospital, Ratchaburi, Thailand
| | - Weerawan Hattasingh
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ananda Nisalak
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Thailand
| | - Jaranit Kaewkungwal
- Centre of Excellence for Biomedical & Public Health Informatics (BIOPHICS), and Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Thailand
| | - Butsaya Thaisomboonsuk
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Thailand
| | - Krisana Pengsaa
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Usa Thisyakorn
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Yip MS, Leung NHL, Cheung CY, Li PH, Lee HHY, Daëron M, Peiris JSM, Bruzzone R, Jaume M. Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virol J 2014; 11:82. [PMID: 24885320 PMCID: PMC4018502 DOI: 10.1186/1743-422x-11-82] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/22/2014] [Indexed: 12/24/2022] Open
Abstract
Background Public health risks associated to infection by human coronaviruses remain considerable and vaccination is a key option for preventing the resurgence of severe acute respiratory syndrome coronavirus (SARS-CoV). We have previously reported that antibodies elicited by a SARS-CoV vaccine candidate based on recombinant, full-length SARS-CoV Spike-protein trimers, trigger infection of immune cell lines. These observations prompted us to investigate the molecular mechanisms and responses to antibody-mediated infection in human macrophages. Methods We have used primary human immune cells to evaluate their susceptibility to infection by SARS-CoV in the presence of anti-Spike antibodies. Fluorescence microscopy and real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) were utilized to assess occurrence and consequences of infection. To gain insight into the underlying molecular mechanism, we performed mutational analysis with a series of truncated and chimeric constructs of fragment crystallizable γ receptors (FcγR), which bind antibody-coated pathogens. Results We show here that anti-Spike immune serum increased infection of human monocyte-derived macrophages by replication-competent SARS-CoV as well as Spike-pseudotyped lentiviral particles (SARS-CoVpp). Macrophages infected with SARS-CoV, however, did not support productive replication of the virus. Purified anti-viral IgGs, but not other soluble factor(s) from heat-inactivated mouse immune serum, were sufficient to enhance infection. Antibody-mediated infection was dependent on signaling-competent members of the human FcγRII family, which were shown to confer susceptibility to otherwise naïve ST486 cells, as binding of immune complexes to cell surface FcγRII was necessary but not sufficient to trigger antibody-dependent enhancement (ADE) of infection. Furthermore, only FcγRII with intact cytoplasmic signaling domains were competent to sustain ADE of SARS-CoVpp infection, thus providing additional information on the role of downstream signaling by FcγRII. Conclusions These results demonstrate that human macrophages can be infected by SARS-CoV as a result of IgG-mediated ADE and indicate that this infection route requires signaling pathways activated downstream of binding to FcγRII receptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roberto Bruzzone
- HKU-Pasteur Research Pole and Center of Influenza Research, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR.
| | | |
Collapse
|
10
|
Sharma A, Charles K, Chadee D, Teelucksingh S. Dengue hemorrhagic fever in Trinidad and Tobago: a case for a conservative approach to platelet transfusion. Am J Trop Med Hyg 2012; 86:531-5. [PMID: 22403331 DOI: 10.4269/ajtmh.2012.10-0209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dengue fever is endemic to Trinidad and Tobago. A retrospective analysis of all adult admissions at a tertiary hospital in Trinidad treated for dengue during January 1-December 31, 2008 was performed. A total of 186 patients were treated during this period: 98.9% (184) of the patients were thrombocytopenic; 45.2% were severely thrombocytopenic; 13 patients showed development of minor hemorrhage and only one case of major hemorrhage; platelet transfusion was given for 7% (13) of the cases; and 6 cases for which platelet transfusion was given did not show evidence of plasma leakage (12 of these cases did not show evidence of hemorrhage). There was a strong association between the lowest platelet value and hemoconcentration (χ(2) = 13.16, P < 0.025). No association was found between giving a platelet transfusion and hemoconcentration or hemorrhage. Thrombocytopenia seen in dengue resolves spontaneously and independent of any transfusion used.
Collapse
Affiliation(s)
- Anu Sharma
- Department of Clinical Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago.
| | | | | | | |
Collapse
|
11
|
Human poly- and cross-reactive anti-viral antibodies and their impact on protection and pathology. Immunol Res 2012; 53:148-61. [DOI: 10.1007/s12026-012-8268-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Primary severe acute respiratory syndrome coronavirus infection limits replication but not lung inflammation upon homologous rechallenge. J Virol 2012; 86:4234-44. [PMID: 22345460 DOI: 10.1128/jvi.06791-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Our knowledge regarding immune-protective and immunopathogenic events in severe acute respiratory syndrome coronavirus (SARS-CoV) infection is limited, and little is known about the dynamics of the immune response at the primary site of disease. Here, an African green monkey (AGM) model was used to elucidate immune mechanisms that facilitate viral clearance but may also contribute to persistent lung inflammation following SARS-CoV infection. During primary infection, SARS-CoV replicated in the AGM lung for up to 10 days. Interestingly, lung inflammation was more prevalent following viral clearance, as leukocyte numbers peaked at 14 days postinfection (dpi) and remained elevated at 28 dpi compared to those of mock-infected controls. Lung macrophages but not dendritic cells were rapidly activated, and both cell types had high activation marker expression at late infection time points. Lung proinflammatory cytokines were induced at 1 to 14 dpi, but most returned to baseline by 28 dpi except interleukin 12 (IL-12) and gamma interferon. In SARS-CoV homologous rechallenge studies, 11 of the 12 animals were free of replicating virus at day 5 after rechallenge. However, incidence and severity of lung inflammation was not reduced despite the limited viral replication upon rechallenge. Evaluating the role of antibodies in immune protection or potentiation revealed a progressive increase in anti-SARS-CoV antibodies in lung and serum that did not correlate temporally or spatially with enhanced viral replication. This study represents one of the first comprehensive analyses of lung immunity, including changes in leukocyte populations, lung-specific cytokines, and antibody responses following SARS-CoV rechallenge in AGMs.
Collapse
|
13
|
Jaume M, Yip MS, Cheung CY, Leung HL, Li PH, Kien F, Dutry I, Callendret B, Escriou N, Altmeyer R, Nal B, Daëron M, Bruzzone R, Peiris JSM. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway. J Virol 2011; 85:10582-97. [PMID: 21775467 PMCID: PMC3187504 DOI: 10.1128/jvi.00671-11] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/05/2011] [Indexed: 11/20/2022] Open
Abstract
Public health measures successfully contained outbreaks of the severe acute respiratory syndrome coronavirus (SARS-CoV) infection. However, the precursor of the SARS-CoV remains in its natural bat reservoir, and reemergence of a human-adapted SARS-like coronavirus remains a plausible public health concern. Vaccination is a major strategy for containing resurgence of SARS in humans, and a number of vaccine candidates have been tested in experimental animal models. We previously reported that antibody elicited by a SARS-CoV vaccine candidate based on recombinant full-length Spike-protein trimers potentiated infection of human B cell lines despite eliciting in vivo a neutralizing and protective immune response in rodents. These observations prompted us to investigate the mechanisms underlying antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro. We demonstrate here that anti-Spike immune serum, while inhibiting viral entry in a permissive cell line, potentiated infection of immune cells by SARS-CoV Spike-pseudotyped lentiviral particles, as well as replication-competent SARS coronavirus. Antibody-mediated infection was dependent on Fcγ receptor II but did not use the endosomal/lysosomal pathway utilized by angiotensin I converting enzyme 2 (ACE2), the accepted receptor for SARS-CoV. This suggests that ADE of SARS-CoV utilizes a novel cell entry mechanism into immune cells. Different SARS vaccine candidates elicit sera that differ in their capacity to induce ADE in immune cells despite their comparable potency to neutralize infection in ACE2-bearing cells. Our results suggest a novel mechanism by which SARS-CoV can enter target cells and illustrate the potential pitfalls associated with immunization against it. These findings should prompt further investigations into SARS pathogenesis.
Collapse
Affiliation(s)
- Martial Jaume
- HKU-Pasteur Research Centre, Dexter H. C. Man Building, 8 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Willey S, Aasa-Chapman MMI, O'Farrell S, Pellegrino P, Williams I, Weiss RA, Neil SJD. Extensive complement-dependent enhancement of HIV-1 by autologous non-neutralising antibodies at early stages of infection. Retrovirology 2011; 8:16. [PMID: 21401915 PMCID: PMC3065417 DOI: 10.1186/1742-4690-8-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 03/14/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Non-neutralising antibodies to the envelope glycoprotein are elicited during acute HIV-1 infection and are abundant throughout the course of disease progression. Although these antibodies appear to have negligible effects on HIV-1 infection when assayed in standard neutralisation assays, they have the potential to exert either inhibitory or enhancing effects through interactions with complement and/or Fc receptors. Here we report that non-neutralising antibodies produced early in response to HIV-1 infection can enhance viral infectivity. RESULTS We investigated this complement-mediated antibody-dependent enhancement (C'-ADE) of early HIV infection by carrying out longitudinal studies with primary viruses and autologous sera derived sequentially from recently infected individuals, using a T cell line naturally expressing the complement receptor 2 (CR2; CD21). The C'-ADE was consistently observed and in some cases achieved infection-enhancing levels of greater than 350-fold, converting a low-level infection to a highly destructive one. C'-ADE activity declined as a neutralising response to the early virus emerged, but later virus isolates that had escaped the neutralising response demonstrated an increased capacity for enhanced infection by autologous antibodies. Moreover, sera with autologous enhancing activity were capable of C'ADE of heterologous viral isolates, suggesting the targeting of conserved epitopes on the envelope glycoprotein. Ectopic expression of CR2 on cell lines expressing HIV-1 receptors was sufficient to render them sensitive to C'ADE. CONCLUSIONS Taken together, these results suggest that non-neutralising antibodies to the HIV-1 envelope that arise during acute infection are not 'passive', but in concert with complement and complement receptors may have consequences for HIV-1 dissemination and pathogenesis.
Collapse
Affiliation(s)
- Suzanne Willey
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
- Department of Infectious Diseases, King's College London, Peter Gorer Department of Immunobiology, Borough Wing, Guy's Hospital, London SE1 9RT, UK
| | - Marlén MI Aasa-Chapman
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | - Stephen O'Farrell
- Centre for Sexual Health and HIV Research, University College London, UK
| | - Pierre Pellegrino
- Centre for Sexual Health and HIV Research, University College London, UK
| | - Ian Williams
- Centre for Sexual Health and HIV Research, University College London, UK
| | - Robin A Weiss
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | - Stuart JD Neil
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
- Department of Infectious Diseases, King's College London, Peter Gorer Department of Immunobiology, Borough Wing, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
15
|
How innate immune mechanisms contribute to antibody-enhanced viral infections. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1829-35. [PMID: 20876821 DOI: 10.1128/cvi.00316-10] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Preexisting antibodies may enhance viral infections. In dengue, nonneutralizing antibodies raised by natural infection with one of four dengue viruses (DENVs) may enhance infection with a different virus by a process we term "intrinsic antibody-dependent enhancement" (iADE). In addition, nonprotective antibodies raised by formalin-inactivated respiratory syncytial virus (RSV) and measles virus vaccines have led to enhanced disease during breakthrough infections. Infections under iADE conditions not only facilitate the process of viral entry into monocytes and macrophages but also modify innate and adaptive intracellular antiviral mechanisms, suppressing type 1 interferon (IFN) production and resulting in enhanced DENV replication. The suppression observed in vitro has been documented in patients with severe (dengue hemorrhagic fever [DHF]) but not in patient with mild (dengue fever [DF]) secondary dengue virus infections. Important veterinary viral infections also may exhibit iADE. It is thought that use of formalin deconforms viral epitopes of RSV, resulting in poor Toll-like receptor (TLR) stimulation; suboptimal maturation of dendritic cells with reduced production of activation factors CD40, CD80, and CD86; decreased germinal center formation in lymph nodes; and the production of nonprotective antibodies. These antibodies fail to neutralize RSV, allowing replication with secondary stimulation of RSV-primed Th2 cells producing more low-avidity antibody, resulting in immune complexes deposited into affected tissue. However, when formalin-inactivated RSV was administered with a TLR agonist to mice, they were protected against wild-type virus challenge. Safe and effective vaccines against RSV/measles virus and dengue virus may benefit from a better understanding of how innate immune responses can promote production of protective antibodies.
Collapse
|
16
|
A derivate of the antibiotic doxorubicin is a selective inhibitor of dengue and yellow fever virus replication in vitro. Antimicrob Agents Chemother 2010; 54:5269-80. [PMID: 20837762 DOI: 10.1128/aac.00686-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A doxorubicin derivate, SA-17, that carries a squaric acid amide ester moiety at the carbohydrate (α-l-daunosaminyl) group was identified as a selective inhibitor of in vitro dengue virus (DENV) serotype 2 replication (50% effective concentration [EC(50)] = 0.34 ± 0.20 μg/ml [0.52 ± 0.31 μM]). SA-17 is markedly less cytostatic than the parent compound, resulting in a selectivity index value of ∼100. SA-17 also inhibits yellow fever virus 17D (YFV-17D) replication (EC(50) = 3.1 ± 1.0 μg/ml [4.8 ± 1.5 μM]), although less efficiently than DENV replication, but proved inactive against a variety of enveloped and nonenveloped viruses. SA-17 inhibits in vitro flavivirus replication in a dose-dependent manner, as was assessed by virus yield reduction assays and quantification of viral RNA by means of real-time quantitative reverse transcriptase PCR (RT-qPCR) (∼2 to 3 log reduction). The anti-DENV activity was confirmed using a Renilla luciferase-expressing dengue reporter virus. Time-of-drug-addition studies revealed that SA-17 acts at the very early stages of the viral replication cycle (i.e., virus attachment and/or virus entry). This observation was corroborated by the observation that SA-17, unlike the nucleoside analogue ribavirin, does not inhibit the replication of DENV subgenomic replicons. Preincubation of high-titer stocks of DENV or YFV-17D with ≥5 μg/ml SA-17 resulted in 100% inhibition of viral infectivity (≥3 log reduction). SA-17, however, did not prove virucidal.
Collapse
|
17
|
Eaton HE, Penny E, Brunetti CR. Antibody dependent enhancement of frog virus 3 infection. Virol J 2010; 7:41. [PMID: 20167100 PMCID: PMC2830962 DOI: 10.1186/1743-422x-7-41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 02/18/2010] [Indexed: 12/02/2022] Open
Abstract
Background Viruses included in the family Iridoviridae are large, icosahedral, dsDNA viruses that are subdivided into 5 genera. Frog virus 3 (FV3) is the type species of the genus Ranavirus and the best studied iridovirus at the molecular level. Typically, antibodies directed against a virus act to neutralize the virus and limit infection. Antibody dependent enhancement occurs when viral antibodies enhance infectivity of the virus rather than neutralize it. Results Here we show that anti-FV3 serum present at the time of FV3 infection enhances infectivity of the virus in two non-immune teleost cell lines. We found that antibody dependent enhancement of FV3 was dependent on the Fc portion of anti-FV3 antibodies but not related to complement. Furthermore, the presence of anti-FV3 serum during an FV3 infection in a non-immune mammalian cell line resulted in neutralization of the virus. Our results suggest that a cell surface receptor specific to teleost cell lines is responsible for the enhancement. Conclusions This report represents the first evidence of antibody dependent enhancement in iridoviruses. The data suggests that anti-FV3 serum can either neutralize or enhance viral infection and that enhancement is related to a novel antibody dependent enhancement pathway found in teleosts that is Fc dependent.
Collapse
Affiliation(s)
- Heather E Eaton
- Department of Biology, Trent University, Peterborough, ON, Canada
| | | | | |
Collapse
|
18
|
Antibody-mediated synergy and interference in the neutralization of SARS-CoV at an epitope cluster on the spike protein. Biochem Biophys Res Commun 2009; 390:1056-60. [PMID: 19861118 PMCID: PMC7092930 DOI: 10.1016/j.bbrc.2009.10.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 10/22/2009] [Indexed: 12/01/2022]
Abstract
Incomplete neutralization of virus, especially when it occurs in the presence of excess neutralizing antibody, represents a biological phenomenon that impacts greatly on antibody-mediated immune prophylaxis of viral infection and on successful vaccine design. To understand the mechanism by which a virus escapes from antibody-mediated neutralization, we have investigated the interactions of non-neutralizing and neutralizing antibodies at an epitope cluster on the spike protein of severe acute respiratory syndrome coronavirus (SARS-CoV). The epitope cluster was mapped at the C-terminus of the spike protein; it consists of structurally intertwined epitopes recognized by two neutralizing monoclonal antibodies (mAbs), 341C and 540C, and a non-neutralizing mAb, 240C. While mAb 341C binds to a mostly linear epitope composed of residues 507PAT509 and V349, mAb 240C binds to an epitope that partially overlaps the former by at least two residues (P507 and A508). The epitope corresponding to mAb 540C is a conformational one, involving residues L504 and N505. In neutralization assays, non-neutralizing 240C disrupted virus neutralization by mAb 341C and/or mAb 540C, whereas a combination of mAbs 341C and 540C blocked virus infectivity synergistically. These findings indicate that the epitope cluster on the spike protein may serve as an evolutionarily conserved platform at which a dynamic interplay between neutralizing and non-neutralizing antibodies occurs, thereby determining the outcome of SARS-CoV infection.
Collapse
|
19
|
Puerta-Guardo H, Mosso C, Medina F, Liprandi F, Ludert JE, del Angel RM. Antibody-dependent enhancement of dengue virus infection in U937 cells requires cholesterol-rich membrane microdomains. J Gen Virol 2009; 91:394-403. [DOI: 10.1099/vir.0.015420-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
20
|
Takano T, Kawakami C, Yamada S, Satoh R, Hohdatsu T. Antibody-dependent enhancement occurs upon re-infection with the identical serotype virus in feline infectious peritonitis virus infection. J Vet Med Sci 2009; 70:1315-21. [PMID: 19122397 DOI: 10.1292/jvms.70.1315] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Feline infectious peritonitis virus (FIPV) is classified into serotype I and serotype II according to the amino acid sequence of its spike(S) protein. Antibody dependent enhancement (ADE) of macrophage infection occurs in the presence of antibodies to FIPV S protein, and a close relationship between ADE and neutralizing epitopes has been reported. The importance of differences in FIPV serotype on the induction of ADE remains unclear. In this study, we investigated whether the same or different serotype of FIPV induces ADE in cats. Specific pathogen-free cats were passively immunized with anti-type I or II FIPV antibodies, and we investigated the induction of ADE following subcutaneous inoculation with type I FIPV. Inoculation using FIPV serotype I enhanced the onset of FIP in cats passively immunized with FIPV serotype I-specific antibodies but not in those passively immunized with antibodies to FIPV serotype II. These data suggest that re-infection with the same serotype induces ADE in cats infected with FIPV.
Collapse
Affiliation(s)
- Tomomi Takano
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | | | | | | | | |
Collapse
|
21
|
Huisman W, Martina BEE, Rimmelzwaan GF, Gruters RA, Osterhaus ADME. Vaccine-induced enhancement of viral infections. Vaccine 2008; 27:505-12. [PMID: 19022319 PMCID: PMC7131326 DOI: 10.1016/j.vaccine.2008.10.087] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/29/2008] [Accepted: 10/29/2008] [Indexed: 12/19/2022]
Abstract
Examples of vaccine-induced enhancement of susceptibility to virus infection or of aberrant viral pathogenesis have been documented for infections by members of different virus families. Several mechanisms, many of which still are poorly understood, are at the basis of this phenomenon. Vaccine development for lentivirus infections in general, and for HIV/AIDS in particular, has been little successful. Certain experimental lentiviral vaccines even proved to be counterproductive: they rendered vaccinated subjects more susceptible to infection rather than protecting them. For vaccine-induced enhanced susceptibility to infection with certain viruses like feline coronavirus, Dengue virus, and feline immunodeficiency virus, it has been shown that antibody-dependent enhancement (ADE) plays an important role. Other mechanisms may, either in the absence of or in combination with ADE, be involved. Consequently, vaccine-induced enhancement has been a major stumble block in the development of certain flavi-, corona-, paramyxo-, and lentivirus vaccines. Also recent failures in the development of a vaccine against HIV may at least in part be attributed to induction of enhanced susceptibility to infection. There may well be a delicate balance between the induction of protective immunity on the one hand and the induction of enhanced susceptibility on the other. The present paper reviews the currently known mechanisms of vaccine-induced enhancement of susceptibility to virus infection or of aberrant viral pathogenesis.
Collapse
Affiliation(s)
- W Huisman
- Erasmus MC, Institute of Virology, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Excretion of human immunodeficiency virus type 1 through polarized epithelium by immunoglobulin A. J Virol 2008; 82:11526-35. [PMID: 18829757 DOI: 10.1128/jvi.01111-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) is transmitted primarily sexually across mucosal surfaces. After infection, HIV propagates initially in the lamina propria below the polarized epithelium and causes extensive destruction of mucosal T cells. Immunoglobulin A (IgA) antibodies, produced in the lamina propria and then transcytosed across the mucosal epithelium into the lumen, can be the first line of immune defense against HIV. Here, we used IgA monoclonal antibodies against HIV envelope proteins to investigate the abilities of polarized primate and human epithelial cells to excrete HIV virions from the basolateral to the apical surface via polymeric Ig receptor (pIgR)-mediated binding and the internalization of HIV-IgA immune complexes. African green monkey kidney cells expressing pIgR demonstrated HIV excretion that was dependent on the IgA concentration and the exposure time. Matched IgG antibodies with the same variable regions as the IgA antibodies and IgA antibodies to non-HIV antigens had no HIV excretory function. A mixture of two IgA anti-bodies against gp120 and gp41 showed a synergistic increase in the level of HIV excreted. The capacity for HIV excretion correlated with the ability of IgA antibodies to bind HIV and of the resulting immune complexes to bind pIgR. Consistent with the epithelial transcytosis of HIV-IgA immune complexes, the colocalization of HIV proteins and HIV-specific IgA was detected intracellularly by confocal microscopy. Our results suggest the potential of IgA antibodies to excrete HIV from mucosal lamina propria, thereby decreasing the viral burden, access to susceptible cells, and the chronic activation of the immune system.
Collapse
|
23
|
Chain BM, Noursadeghi M, Gardener M, Tsang J, Wright E. HIV blocking antibodies following immunisation with chimaeric peptides coding a short N-terminal sequence of the CCR5 receptor. Vaccine 2008; 26:5752-9. [PMID: 18765264 PMCID: PMC2670972 DOI: 10.1016/j.vaccine.2008.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/29/2008] [Accepted: 08/04/2008] [Indexed: 12/29/2022]
Abstract
The chemokine receptor CCR5 is required for cellular entry by many strains of HIV, and provides a potential target for molecules, including antibodies, designed to block HIV transmission. This study investigates a novel approach to stimulate antibodies to CCR5. Rabbits were immunised with chimaeric peptides which encode a short fragment of the N-terminal sequence of CCR5, as well as an unrelated T cell epitope from Tetanus toxoid. Immunisation with these chimaeric peptides generates a strong antibody response which is highly focused on the N-terminal CCR5 sequence. The antibody to the chimaeric peptide containing an N-terminal methionine also recognises the full length CCR5 receptor on the cell surface, albeit at higher concentrations. Further comparison of binding to intact CCR5 with binding to CCR5 peptide suggest that the receptor specific antibody generated represents a very small fragment of the total anti-peptide antibody. These findings are consistent with the hypothesis that the N-terminal peptide in the context of the intact receptor has a different structure to that of the synthetic peptide. Finally, the antibody was able to block HIV infection of macrophages in vitro. Thus results of this study suggest that N-terminal fragments of CCR5 may provide potential immunogens with which to generate blocking antibodies to this receptor, while avoiding the dangers of including T cell auto-epitopes.
Collapse
Affiliation(s)
- Benjamin M Chain
- Division of Infection and Immunity, Windeyer Building, UCL, 46 Cleveland St., London W1T 4JF, UK.
| | | | | | | | | |
Collapse
|
24
|
Tao W, Richards C, Hamer D. Enhancement of HIV infection by cellulose sulfate. AIDS Res Hum Retroviruses 2008; 24:925-9. [PMID: 18627218 DOI: 10.1089/aid.2008.0043] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cellulose sulfate, a polyanionic compound derived from cotton, has been proposed as a topical microbicide to reduce the sexual transmission of HIV. However, a phase III clinical trial of a vaginal gel formulation of cellulose sulfate (Ushercell) had to be prematurely closed after early data indicated microbicide users had a higher rate of HIV infection than women using a placebo. The unexpected results of the cellulose sulfate trail prompted us to reexamine and attempt to replicate the available preclinical data for this compound and other polyanions. We show here that cellulose sulfate has a biphasic effect on HIV infection in vitro: at high concentrations it inhibits infection but at low concentrations it significantly and reproducibly increases HIV infection. This stimulatory effect is evident for the R5-tropic strains of virus responsible for sexual transmission, reflects the rate of infection rather than viral growth, and occurs at clinically relevant concentrations of the compound. An examination of published studies shows that the biphasic effect of cellulose sulfate was evident in previous research by independent laboratories and is also found for other polyanions such as dextrin sulfate and PRO2000. These data help in understanding the failure of the Ushercell clinical trial and indicate that cellulose sulfate is not safe for mucosal application in humans.
Collapse
Affiliation(s)
- Wang Tao
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
25
|
Abstract
Humoral immunity is considered a key component of effective vaccines against HIV-1. Hence, an enormous effort has been put into investigating the neutralizing antibody response to HIV-1 over the past 20 years which generated key information on epitope specificity, potency, breadth and in vivo activity of the neutralizing antibodies. Less clear is still the role of antibody-mediated effector functions (antibody-dependent cellular cytotoxicity, phagocytosis, complement system) and uncertainty prevails whether Fc-mediated mechanisms are largely beneficial or detrimental for the host. The current knowledge on the manifold functions of the humoral immune response in HIV infection, their underlying mechanisms and potential in vaccine-induced immunity will be discussed in this review.
Collapse
Affiliation(s)
- M Huber
- Division of Infectious Diseases, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
26
|
Roberts A, Lamirande EW, Vogel L, Jackson JP, Paddock CD, Guarner J, Zaki SR, Sheahan T, Baric R, Subbarao K. Animal models and vaccines for SARS-CoV infection. Virus Res 2007; 133:20-32. [PMID: 17499378 PMCID: PMC2323511 DOI: 10.1016/j.virusres.2007.03.025] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 03/28/2007] [Accepted: 03/29/2007] [Indexed: 01/04/2023]
Abstract
We summarize findings of SARS-CoV infections in several animal models each of which support viral replication in lungs accompanied by histopathological changes and/or clinical signs of illness to varying degrees. New findings are reported on SARS-CoV replication and associated pathology in two additional strains (C57BL/6 and 129S6) of aged mice. We also provide new comparative data on viral replication and associated pathology following infection of golden Syrian hamsters with various SARS-CoV strains and report the levels of neutralizing antibody titers following these infections and the cross-protective efficacy of infection with these strains in protecting against heterologous challenge. Finally, we summarize findings of a variety of vaccine approaches and discuss the available in vitro and in vivo data addressing the potential for disease enhancement following re-infection in animals previously vaccinated against or infected with SARS-CoV.
Collapse
Affiliation(s)
- Anjeanette Roberts
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, United States
| | | | - Leatrice Vogel
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, United States
| | - Jadon P. Jackson
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, United States
| | - Christopher D. Paddock
- Infectious Disease Pathology Activity, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - Jeannette Guarner
- Infectious Disease Pathology Activity, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - Sherif R. Zaki
- Infectious Disease Pathology Activity, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - Timothy Sheahan
- Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Ralph Baric
- Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, United States
- Corresponding author. Tel.: +1 301 451 3839; fax: +1 301 496 8312.
| |
Collapse
|
27
|
Takano T, Hohdatsu T, Toda A, Tanabe M, Koyama H. TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages. Virology 2007; 364:64-72. [PMID: 17382365 PMCID: PMC7103289 DOI: 10.1016/j.virol.2007.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 01/01/2007] [Accepted: 02/11/2007] [Indexed: 11/17/2022]
Abstract
The pathogenicity of feline infectious peritonitis virus (FIPV) is known to depend on macrophage tropism, and this macrophage infection is enhanced by mediation via anti-S antibody (antibody-dependent enhancement, ADE). In this study, we found that TNF-alpha production was increased with viral replication in macrophages inoculated with a mixture of FIPV and anti-S antibody, and demonstrated that this culture supernatant had feline PBMC apoptosis-inducing activity. We also demonstrated that the expression level of the FIPV virus receptor, feline aminopeptidase N (fAPN), was increased in macrophages of FIP cats. For upregulation of TNF-alpha and fAPN in macrophages, viral replication in macrophages is necessary, and their expressions were increased by ADE of FIPV infection. It was demonstrated that a heat-resistant fAPN-inducing factor was present in the culture supernatant of FIPV-infected macrophages, and this factor was TNF-alpha: fAPN expression was upregulated in recombinant feline TNF-alpha-treated macrophages, and FIPV infectivity was increased in these macrophages. These findings suggested that FIPV replication in macrophages increases TNF-alpha production in macrophages, and the produced TNF-alpha acts and upregulates fAPN expression, increasing FIPV sensitivity.
Collapse
MESH Headings
- Animals
- Apoptosis
- Base Sequence
- CD13 Antigens/metabolism
- Cats
- Cells, Cultured
- Coronavirus, Feline/genetics
- Coronavirus, Feline/pathogenicity
- Coronavirus, Feline/physiology
- Culture Media, Conditioned
- DNA Primers/genetics
- Feline Infectious Peritonitis/genetics
- Feline Infectious Peritonitis/immunology
- Feline Infectious Peritonitis/metabolism
- Feline Infectious Peritonitis/virology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/pathology
- Macrophages/drug effects
- Macrophages/enzymology
- Macrophages/immunology
- Macrophages/virology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Recombinant Proteins/pharmacology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/pharmacology
- Up-Regulation
- Virus Replication/drug effects
Collapse
|
28
|
Roberts A, Wood J, Subbarao K, Ferguson M, Wood D, Cherian T. Animal models and antibody assays for evaluating candidate SARS vaccines: summary of a technical meeting 25-26 August 2005, London, UK. Vaccine 2006; 24:7056-65. [PMID: 16930781 PMCID: PMC7130694 DOI: 10.1016/j.vaccine.2006.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 07/05/2006] [Indexed: 12/28/2022]
Abstract
Severe acute respiratory syndrome (SARS) emerged in the Guangdong province of China in late 2002 and spread to 29 countries. By the end of the outbreak in July 2003, the CDC and WHO reported 8437 cases with a 9.6% case fatality rate. The disease was caused by a previously unrecognized coronavirus, SARS-CoV. Drawing on experience with animal coronavirus vaccines, several vaccine candidates have been developed and evaluated in pre-clinical trials. Available data suggest that vaccines should be based on the the 180kDa viral spike protein, S, the only significant neutralization antigen capable of inducing protective immune responses in animals. In the absence of clinical cases of SARS, candidate vaccines should be evaluated for efficacy in animal models, and although it is uncertain whether the United States Food and Drug Administration's "animal rule" would apply to licensure of a SARS vaccine, it is important to develop standardized animal models and immunological assays in preparation for this eventuality. This report summarizes the recommendations from a WHO Technical Meeting on Animal Models and Antibody Assays for Evaluating Candidate SARS Vaccines held on 25-26 August 2005 in South Mimms, UK, provides guidance on the use of animal models, and outlines the steps to develop standard reagents and assays for immunological evaluation of candidate SARS vaccines.
Collapse
Affiliation(s)
- Anjeanette Roberts
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
29
|
Jesuíno BS, Casimiro C, do Rosário VE, Silveira H. Effect of antibodies on the expression of Plasmodium falciparum circumsporozoite protein gene. Int J Med Sci 2006; 3:7-10. [PMID: 16421624 PMCID: PMC1332198 DOI: 10.7150/ijms.3.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 12/18/2005] [Indexed: 11/16/2022] Open
Abstract
Antibodies are known to play an important role in the control of malaria infection. However, they can modulate parasite development enhancing infection. The effect of anti-Plasmodium antibodies on the expression of circumsporozoite protein gene (csp) was investigated. Plasmodium falciparum 3D7 in vitro cultures were submitted to: i) anti- circumsporozoite protein monoclonal antibody (anti-CSP-mAb) [1microg/ml, 0.1microg/ml, 0.01microg/ml and 0.001microg/ml] and ii) purified IgG Fab fragment from a pool of malaria patients [1mg/ml and 1microg/ml]; and compared to control cultures. After 24h the number of ring infected erythrocytes was determined in order to calculate invasion efficacy. At 48h culture supernatant was collected, and the amount of circumsporozoite protein determined by ELISA, parasitaemia was calculated and cells were processed for RNA preparation. Expression of csp gene was quantified using Real time RT-PCR. There was an increase in parasite growth when treated with lower anti-CSP-mAb concentration, which was associated with lower csp expression, while 1mug/ml anti-CSP-mAb treatment presented a growth inhibitory effect accompanied by high csp expression.
Collapse
Affiliation(s)
- B S Jesuíno
- Centro de Malária e Outras Doenças Tropicais, UEI Malária, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 96, 1349-008 Lisbon, Portugal
| | | | | | | |
Collapse
|
30
|
Mjaaland S, Markussen T, Sindre H, Kjøglum S, Dannevig BH, Larsen S, Grimholt U. Susceptibility and immune responses following experimental infection of MHC compatible Atlantic salmon (Salmo salar L.) with different infectious salmon anaemia virus isolates. Arch Virol 2005; 150:2195-216. [PMID: 16012784 DOI: 10.1007/s00705-005-0588-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
Infectious salmon anaemia virus (ISAV) is an aquatic orthomyxovirus causing a multisystemic disease in farmed Atlantic salmon (Salmo salar) where disease development, clinical signs, and histopathology vary to a large extent. Here, an experimental trial was designed to determine the effect of variation in viral genes on virus-host interactions, as measured by disease susceptibility and immune responses. The fish were infected using cohabitant transmission, representing a natural route of infection. Variation caused by host factors was minimized using MHC compatible A. salmon half-siblings as experimental fish. Virus isolates were selected according to HE genotype, as European ISAV isolates can be genotyped according to deletion patterns in their hemagglutinin-esterase (HE) surface glycoprotein, and the course of disease they typically induce, classified as acute versus protracted. The different ISAV isolates induced large variations in death prevalence, ranging from 0-47% in the test-group and 3-75% in the cohabitant fish. The use of MHC compatible experimental fish made it possible to determine the relative contribution of humoral versus cellular response in protection against ISA. Ability to induce a strong proliferative response correlated with survival and virus clearance, while induction of a humoral response was less protective.
Collapse
Affiliation(s)
- S Mjaaland
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
31
|
Meunier JC, Engle RE, Faulk K, Zhao M, Bartosch B, Alter H, Emerson SU, Cosset FL, Purcell RH, Bukh J. Evidence for cross-genotype neutralization of hepatitis C virus pseudo-particles and enhancement of infectivity by apolipoprotein C1. Proc Natl Acad Sci U S A 2005; 102:4560-5. [PMID: 15767578 PMCID: PMC555507 DOI: 10.1073/pnas.0501275102] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The lack of a cell culture system to support hepatitis C virus (HCV) replication has hampered studies of this frequent cause of chronic liver disease. However, pseudotyped retroviral particles (pp) bearing the HCV envelope glycoproteins have provided a different approach to HCV studies. We used genotype 1a pp to detect neutralizing antibodies (NtAb) in eight chimpanzees and four humans infected with 1a strains, and developed pp of genotypes 2a, 3a, 4a, 5a, and 6a to study crossreactivity. NtAb was detected in one of four chimpanzees and none of three humans with acute resolving infection, suggesting that NtAb is not required for HCV clearance. NtAb were detected at high titer in two of four chimpanzees and, in Patient H, all with persistent infection; responses paralleled humoral responses to envelope 1 and 2 proteins and, in some cases, correlate also with antibodies to the hypervariable region 1, previously thought to be the primary site of neutralization. NtAb raised during 1a infections could neutralize HCVpp of genotypes 4a, 5a, and 6a but had only limited reactivity against 2a and 3a. The detection of high-titer NtAb with cross-genotype reactivity has important implications for the development of active and passive immune-prophylaxis strategies against HCV. Finally, we found that HCVpp infectivity was enhanced by human or chimpanzee sera; apolipoprotein C1 alone or as a component of high-density lipoproteins caused this enhancement. Future studies of the in vivo role of apolipoprotein C1 might provide additional insights into the infection process of HCV.
Collapse
Affiliation(s)
- Jean-Christophe Meunier
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Evidence for cross-genotype neutralization of hepatitis C virus pseudo-particles and enhancement of infectivity by apolipoprotein C1. Proc Natl Acad Sci U S A 2005. [PMID: 15767578 DOI: 10.1073/pnas.0501275102.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lack of a cell culture system to support hepatitis C virus (HCV) replication has hampered studies of this frequent cause of chronic liver disease. However, pseudotyped retroviral particles (pp) bearing the HCV envelope glycoproteins have provided a different approach to HCV studies. We used genotype 1a pp to detect neutralizing antibodies (NtAb) in eight chimpanzees and four humans infected with 1a strains, and developed pp of genotypes 2a, 3a, 4a, 5a, and 6a to study crossreactivity. NtAb was detected in one of four chimpanzees and none of three humans with acute resolving infection, suggesting that NtAb is not required for HCV clearance. NtAb were detected at high titer in two of four chimpanzees and, in Patient H, all with persistent infection; responses paralleled humoral responses to envelope 1 and 2 proteins and, in some cases, correlate also with antibodies to the hypervariable region 1, previously thought to be the primary site of neutralization. NtAb raised during 1a infections could neutralize HCVpp of genotypes 4a, 5a, and 6a but had only limited reactivity against 2a and 3a. The detection of high-titer NtAb with cross-genotype reactivity has important implications for the development of active and passive immune-prophylaxis strategies against HCV. Finally, we found that HCVpp infectivity was enhanced by human or chimpanzee sera; apolipoprotein C1 alone or as a component of high-density lipoproteins caused this enhancement. Future studies of the in vivo role of apolipoprotein C1 might provide additional insights into the infection process of HCV.
Collapse
|
33
|
Neil SJD, McKnight A, Gustafsson K, Weiss RA. HIV-1 incorporates ABO histo-blood group antigens that sensitize virions to complement-mediated inactivation. Blood 2005; 105:4693-9. [PMID: 15728127 DOI: 10.1182/blood-2004-11-4267] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABO histo-blood group antigens have been postulated to modify pathogen spread through the action of natural antibodies and complement. The antigens are generated by a polymorphic glycosyl-transferase encoded by 2 dominant active and a recessive inactive allele. In this study we investigated whether ABO sugars are incorporated into the envelope of HIV-1 virions. HIV vectors derived from cells expressing ABO antigens displayed sensitivity to fresh human serum analogous to ABO incompatibility, and ABO histo-blood group sugars were detected on the viral envelope protein, glycoprotein 120 (gp120). Moreover, lymphocyte-derived virus also displayed serum sensitivity, reflecting the ABO phenotype of the host when cultured in autologous serum due to adsorption of antigens to cell surfaces. Serum sensitivity required both active complement and specific anti-ABO antibodies. Thus, incorporation of ABO antigens by HIV-1 may affect transmission of virus between individuals of discordant blood groups by interaction with host natural antibody and complement.
Collapse
Affiliation(s)
- Stuart J D Neil
- Wohl Virion Centre, Division of Infection and Immunity, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
34
|
Harrington PR, Vinjé J, Moe CL, Baric RS. Norovirus capture with histo-blood group antigens reveals novel virus-ligand interactions. J Virol 2004; 78:3035-45. [PMID: 14990722 PMCID: PMC353760 DOI: 10.1128/jvi.78.6.3035-3045.2004] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Noroviruses are genetically diverse, uncultivable, positive-sense RNA viruses and are the most common cause of epidemic acute gastroenteritis in humans in the United States. Recent studies of norovirus attachment in vitro by using recombinant virus-like particles (VLPs) suggest that various norovirus strains exhibit different patterns of attachment to ABH histo-blood group antigens, which are carbohydrate epitopes present in high concentrations on mucosal cell surfaces of the gut. However, attachment of live norovirus strains to histo-blood group antigens has not been investigated to date. Utilizing a newly designed magnetic bead-virus capture method, we characterized histo-blood group antigen attachment properties of various norovirus strains obtained from clinical stool specimens to compare the attachment properties of wild-type virus and VLPs and to further map norovirus attachment. Consistent with previous reports using VLPs, various strains of noroviruses exhibited different patterns of attachment to histo- blood group antigens. Norwalk virus bound specifically to H type 1, H type 3, and Le(b). Two genogroup II noroviruses, one representing the Toronto genotype and the other from a novel genotype, bound specifically to Le(b). A Desert Shield-like strain did not attach to H types 1, 2, or 3, H type 1 and 3 precursors, Le(a), or Le(b). Surprisingly, wild-type Snow Mountain virus (SMV) attached specifically to H type 3, which contradicted previous findings with SMV VLPs. On further investigation, we found that stool components promote this attachment, providing the first known observation that one or more components of human feces could promote and enhance norovirus attachment to histo-blood group antigens.
Collapse
Affiliation(s)
- Patrick R Harrington
- Department of Microbiology and Immunology, School of Medicine, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
35
|
Takada A, Kawaoka Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol 2004; 13:387-98. [PMID: 14625886 DOI: 10.1002/rmv.405] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Besides the common receptor/coreceptor-dependent mechanism of cellular attachment, some viruses rely on antiviral antibodies for their efficient entry into target cells. This mechanism, known as antibody-dependent enhancement (ADE) of viral infection, depends on the cross-linking of complexes of virus-antibody or virus-activated complement components through interaction with cellular molecules such as Fc receptors or complement receptors, leading to enhanced infection of susceptible cells. Recent studies have suggested that additional mechanisms underlie ADE: involvement of complement component C1q and its receptor (Ebola virus), antibody-mediated modulation of the interaction between viral protein and its coreceptor (human immunodeficiency virus) and suppression of cellular antiviral genes by the replication of viruses entering cells via ADE (Ross River virus). Since ADE is exploited by a variety of viruses and has been associated with disease exacerbation, it may have broad relevance to the pathogenesis of viral infection and antiviral strategies.
Collapse
Affiliation(s)
- Ayato Takada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | | |
Collapse
|
36
|
Affiliation(s)
- Scott B Halstead
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| |
Collapse
|
37
|
Affiliation(s)
- Robert V Gibbons
- Department of Virus Diseases, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA.
| | | |
Collapse
|