1
|
Bhaskaran S, Piekarz KM, Brown J, Yang B, Ocañas SR, Wren JD, Georgescu C, Bottoms C, Murphy A, Thomason J, Saunders D, Smith N, Towner R, Van Remmen H. The nitrone compound OKN-007 delays motor neuron loss and disease progression in the G93A mouse model of amyotrophic lateral sclerosis. Front Neurosci 2024; 18:1505369. [PMID: 39633896 PMCID: PMC11614777 DOI: 10.3389/fnins.2024.1505369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Our study investigated the therapeutic potential of OKN-007 in the SOD1 G93A mouse model of amyotrophic lateral sclerosis (ALS). The impact of OKN-007, known for its antioxidant, anti-inflammatory, and neuroprotective properties, was tested at two doses (150 mg/kg and 300 mg/kg) at onset and late-stage disease. Results demonstrated a significant delay in disease progression at both doses, with treated mice showing a slower advance to early disease stages compared to untreated controls. Motor neuron counts in the lumbar spinal cord were notably higher in OKN-007 treated mice at the time of disease onset, suggesting neuroprotection. Additionally, OKN-007 reduced microglial activation and preserved reduced neuromuscular junction fragmentation, although it did not significantly alter the increase in astrocyte number or the decline in hindlimb muscle mass. MR spectroscopy (MRS) revealed improved spinal cord perfusion and normalized myo-inositol levels in treated mice, supporting reduced neuroinflammation. While the expression of several proteins associated with inflammation is increased in spinal cord extracts from G93A mice, OKN-007 dampened the expression of IL-1β, IL-1ra and IL-1α. Despite its promising effects on early-stage disease progression, in general, the beneficial effects of OKN-007 diminished over longer treatment durations. Further, we found no improvement in muscle atrophy or weakness phenotypes in OKN-007 treated G93A mice, and no effect on mitochondrial function or lifespan. Overall, our findings suggest that OKN-007 holds potential as a disease-modifying treatment for ALS, although further research is needed to optimize dosing regimens and understand its long-term effects.
Collapse
Affiliation(s)
- Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Katarzyna M. Piekarz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jacob Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Brian Yang
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Sarah R. Ocañas
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jonathan D. Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Constantin Georgescu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Christopher Bottoms
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Ashley Murphy
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jessica Thomason
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Rheal Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island, Charlottetown, PE, Canada
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Oklahoma City VA Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
2
|
Xu H, Piekarz KM, Brown JL, Bhaskaran S, Smith N, Towner RA, Van Remmen H. Neuroprotective treatment with the nitrone compound OKN-007 mitigates age-related muscle weakness in aging mice. GeroScience 2024; 46:4263-4273. [PMID: 38512579 PMCID: PMC11336152 DOI: 10.1007/s11357-024-01134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Despite the universal impact of sarcopenia on compromised health and quality of life in the elderly, promising pharmaceutical approaches that can effectively mitigate loss of muscle and function during aging have been limited. Our group and others have reported impairments in peripheral motor neurons and loss of muscle innervation as initiating factors in sarcopenia, contributing to mitochondrial dysfunction and elevated oxidative stress in muscle. We recently reported a reduction in α motor neuron loss in aging mice in response to the compound OKN-007, a proposed antioxidant and anti-inflammatory agent. In the current study, we asked whether OKN-007 treatment in wildtype male mice for 8-9 months beginning at 16 months of age can also protect muscle mass and function. At 25 months of age, we observed a reduction in the loss of whole-body lean mass, a reduced loss of innervation at the neuromuscular junction and well-preserved neuromuscular junction morphology in OKN-007 treated mice versus age matched wildtype untreated mice. The loss in muscle force generation in aging mice (~ 25%) is significantly improved with OKN-007 treatment. In contrast, OKN-007 treatment provided no protection in loss of muscle mass in aging mice. Mitochondrial function was improved by OKN-007 treatment, consistent with its potential antioxidative properties. Together, these exciting findings are the first to demonstrate that interventions through neuroprotection can be an effective therapy to counter aging-related muscle dysfunction.
Collapse
Affiliation(s)
- Hongyang Xu
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Katarzyna M Piekarz
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jacob L Brown
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Shylesh Bhaskaran
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Romero A, Ramos E, Patiño P, Oset-Gasque MJ, López-Muñoz F, Marco-Contelles J, Ayuso MI, Alcázar A. Melatonin and Nitrones As Potential Therapeutic Agents for Stroke. Front Aging Neurosci 2016; 8:281. [PMID: 27932976 PMCID: PMC5120103 DOI: 10.3389/fnagi.2016.00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/10/2016] [Indexed: 01/20/2023] Open
Abstract
Stroke is a disease of aging affecting millions of people worldwide, and recombinant tissue-type plasminogen activator (r-tPA) is the only treatment approved. However, r-tPA has a low therapeutic window and secondary effects which limit its beneficial outcome, urging thus the search for new more efficient therapies. Among them, neuroprotection based on melatonin or nitrones, as free radical traps, have arisen as drug candidates due to their strong antioxidant power. In this Perspective article, an update on the specific results of the melatonin and several new nitrones are presented.
Collapse
Affiliation(s)
- Alejandro Romero
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid Madrid, Spain
| | - Eva Ramos
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital Madrid, Spain
| | - Maria J Oset-Gasque
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University of Madrid, Ciudad Universitaria Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela UniversityMadrid, Spain; Neuropsychopharmacology Unit, "Hospital 12 de Octubre" Research InstituteMadrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC) Madrid, Spain
| | - María I Ayuso
- Neurovascular Research Group, Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, Sevilla, Spain
| | - Alberto Alcázar
- Department of Investigation, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
4
|
Floyd RA, Castro Faria Neto HC, Zimmerman GA, Hensley K, Towner RA. Nitrone-based therapeutics for neurodegenerative diseases: their use alone or in combination with lanthionines. Free Radic Biol Med 2013; 62:145-156. [PMID: 23419732 PMCID: PMC3715559 DOI: 10.1016/j.freeradbiomed.2013.01.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/25/2013] [Accepted: 01/29/2013] [Indexed: 01/12/2023]
Abstract
The possibility of free radical reactions occurring in biological processes led to the development and employment of novel methods and techniques focused on determining their existence and importance in normal and pathological conditions. For this reason the use of nitrones for spin trapping free radicals became widespread in the 1970s and 1980s, when surprisingly the first evidence of their potent biological properties was noted. Since then widespread exploration and demonstration of the potent biological properties of phenyl-tert-butylnitrone (PBN) and its derivatives took place in preclinical models of septic shock and then in experimental stroke. The most extensive commercial effort made to capitalize on the potent properties of the PBN-nitrones was for acute ischemic stroke. This occurred during 1993-2006, when the 2,4-disulfonylphenyl PBN derivative, called NXY-059 in the stroke studies, was shown to be safe in humans and was taken all the way through clinical phase 3 trials and then was deemed to be ineffective. As summarized in this review, because of its excellent human safety profile, 2,4-disulfonylphenyl PBN, now called OKN-007 in the cancer studies, was tested as an anti-cancer agent in several preclinical glioma models and shown to be very effective. Based on these studies this compound is now scheduled to enter into early clinical trials for astrocytoma/glioblastoma multiforme this year. The potential use of OKN-007 in combination with neurotropic compounds such as the lanthionine ketamine esters is discussed for glioblastoma multiforme as well as for various other indications leading to dementia, such as aging, septic shock, and malaria infections. There is much more research and development activity ongoing for various indications with the nitrones, alone or in combination with other active compounds, as briefly noted in this review.
Collapse
Affiliation(s)
- Robert A Floyd
- Experimental Therapeutics, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | | - Guy A Zimmerman
- Laboratorio de Immunofarmacologia, Instituto Oswaldo Cruz, IOC, Fiocruz, Rio de Janeiro, Brazil; Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Kenneth Hensley
- Department of Pathology and Department of Neurosciences, University of Toledo Medical Center, Toledo, OH
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Trippier PC, Labby KJ, Hawker DD, Mataka JJ, Silverman RB. Target- and mechanism-based therapeutics for neurodegenerative diseases: strength in numbers. J Med Chem 2013; 56:3121-47. [PMID: 23458846 PMCID: PMC3637880 DOI: 10.1021/jm3015926] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of new therapeutics for the treatment of neurodegenerative pathophysiologies currently stands at a crossroads. This presents an opportunity to transition future drug discovery efforts to target disease modification, an area in which much still remains unknown. In this Perspective we examine recent progress in the areas of neurodegenerative drug discovery, focusing on some of the most common targets and mechanisms: N-methyl-d-aspartic acid (NMDA) receptors, voltage gated calcium channels (VGCCs), neuronal nitric oxide synthase (nNOS), oxidative stress from reactive oxygen species, and protein aggregation. These represent the key players identified in neurodegeneration and are part of a complex, intertwined signaling cascade. The synergistic delivery of two or more compounds directed against these targets, along with the design of small molecules with multiple modes of action, should be explored in pursuit of more effective clinical treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Paul C. Trippier
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Kristin Jansen Labby
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Dustin D. Hawker
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Jan J. Mataka
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Richard B. Silverman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, USA
| |
Collapse
|
6
|
Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med Chem 2012; 4:1171-207. [PMID: 22709256 DOI: 10.4155/fmc.12.74] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nitrone therapeutics has been employed in the treatment of oxidative stress-related diseases such as neurodegeneration, cardiovascular disease and cancer. The nitrone-based compound NXY-059, which is the first drug to reach clinical trials for the treatment of acute ischemic stroke, has provided promise for the development of more robust pharmacological agents. However, the specific mechanism of nitrone bioactivity remains unclear. In this review, we present a variety of nitrone chemistry and biological activity that could be implicated for the nitrone's pharmacological activity. The chemistries of spin trapping and spin adduct reveal insights on the possible roles of nitrones for altering cellular redox status through radical scavenging or nitric oxide donation, and their biological effects are presented. An interdisciplinary approach towards the development of novel synthetic antioxidants with improved pharmacological properties encompassing theoretical, synthetic, biochemical and in vitro/in vivo studies is covered.
Collapse
|
7
|
Inhibition of β-amyloid peptide-induced neurotoxicity by kaempferol 3-O-(6″-acetyl)-β-glucopyranoside from butterbur (Petasites japonicus) leaves in B103 cells. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0109-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
8
|
Das A, Gopalakrishnan B, Voss OH, Doseff AI, Villamena FA. Inhibition of ROS-induced apoptosis in endothelial cells by nitrone spin traps via induction of phase II enzymes and suppression of mitochondria-dependent pro-apoptotic signaling. Biochem Pharmacol 2012; 84:486-97. [PMID: 22580046 DOI: 10.1016/j.bcp.2012.04.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 12/30/2022]
Abstract
Oxidative stress is the main etiological factor behind the pathogenesis of various diseases including inflammation, cancer, cardiovascular and neurodegenerative disorders. Due to the spin trapping abilities and various pharmacological properties of nitrones, their application as therapeutic agent has been gaining attention. Though the antioxidant properties of the nitrones are well known, the mechanism by which they modulate the cellular defense machinery against oxidative stress is not well investigated and requires further elucidation. Here, we have investigated the mechanisms of cytoprotection of the nitrone spin traps against oxidative stress in bovine aortic endothelial cells (BAEC). Cytoprotective properties of both the cyclic nitrone 5,5-dimethyl-pyrroline N-oxide (DMPO) and linear nitrone α-phenyl N-tert-butyl nitrone (PBN) against H₂O₂-induced cytotoxicity were investigated. Preincubation of BAEC with PBN or DMPO resulted in the inhibition of H₂O₂-mediated cytotoxicity and apoptosis. Nitrone-treatment resulted in the induction and restoration of phase II antioxidant enzymes via nuclear translocation of NF-E2-related factor 2 (Nrf-2) in oxidatively-challenged cells. Furthermore, the nitrones were found to inhibit the mitochondrial depolarization and subsequent activation of caspase-3 induced by H₂O₂. Significant down-regulation of the pro-apoptotic proteins p53 and Bax, and up-regulation of the anti-apoptotic proteins Bcl-2 and p-Bad were observed when the cells were preincubated with the nitrones prior to H₂O₂-treatment. It was also observed that Nrf-2 silencing completely abolished the protective effects of nitrones. Hence, these findings suggest that nitrones confer protection to the endothelial cells against oxidative stress by modulating phase II antioxidant enzymes and subsequently inhibiting mitochondria-dependent apoptotic cascade.
Collapse
Affiliation(s)
- Amlan Das
- Department of Pharmacology, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
9
|
Floyd RA, Towner RA, He T, Hensley K, Maples KR. Translational research involving oxidative stress and diseases of aging. Free Radic Biol Med 2011; 51:931-41. [PMID: 21549833 PMCID: PMC3156308 DOI: 10.1016/j.freeradbiomed.2011.04.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/28/2011] [Accepted: 04/07/2011] [Indexed: 01/01/2023]
Abstract
There is ample mounting evidence that reactive oxidant species are exacerbated in inflammatory processes, many pathological conditions, and underlying processes of chronic age-related diseases. Therefore there is increased expectation that therapeutics can be developed that act in some fashion to suppress reactive oxidant species and ameliorate the condition. This has turned out to be more difficult than at first expected. Developing therapeutics for indications in which reactive oxidant species are an important consideration presents some unique challenges. We discuss important questions including whether reactive oxidant species should be a therapeutic target, the need to recognize the fact that an antioxidant in a defined chemical system may be a poor antioxidant operationally in a biological system, and the importance of considering that reactive oxidant species may accompany the disease or pathological system rather than being a causative factor. We also discuss the value of having preclinical models to determine if the processes that are important in causing the disease under study are critically dependent on reactive oxidant species events and if the therapeutic under consideration quells these processes. In addition we discuss measures of success that must be met in commercial research and development and in preclinical and clinical trials and discuss as examples our translational research effort in developing nitrones for the treatment of acute ischemic stroke and as anti-cancer agents.
Collapse
Affiliation(s)
- Robert A Floyd
- Experimental Therapeutics, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
10
|
Liraz-Zaltsman S, Alexandrovich AG, Trembovler V, Fishbein I, Yaka R, Shohami E, Biegon A. Regional sensitivity to neuroinflammation: in vivo and in vitro studies. Synapse 2011; 65:634-42. [PMID: 21108236 DOI: 10.1002/syn.20889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 11/04/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neuroinflammation is involved in several acute-onset neuropathologies such as meningitis, encephalitis, stroke, and traumatic brain injury as well as in neurodegenerative diseases. All of these patholologies are associated with cognitive deficits. Using a model of pure neuroinflammation (intracisternal injection of endotoxin in mice), we tested the hypothesis that brain regions involved in cognition are the most vulnerable to inflammatory insults, and this vulnerability is an inherent property of neocortical neurons. METHODS Mice (n = 10/group) injected with endotoxin (LPS) or saline in the cisterna magna underwent neurobehavioral and cognitive testing followed by quantitative autoradiographic assessment of regional neuroinflammation with [3H]PK11195, an established marker of microgliosis. In parallel, cocultures of cortical and striatal neurons taken from embryonic day 19 rat embryos or postnatal day 1 mice expressing green fluorescent protein were exposed for 24 h to the proinflammatory cytokine TNFalpha, glutamate, or a combination of the two agents. RESULTS LPS-treated mice exhibited significant deficits in memory and significant increases in specific PK11195 binding in cortical and hippocampal regions, but not in striatum. Cultured neurons of cortical origin showed significantly lower survival rate relative to striatal neurons in response to TNFalpha, glutamate, or a combination of the two agents. Furthermore, TNFalpha exerted neuroprotective rather than neurotoxic effects in the striatal but not in the cortical neurons. CONCLUSIONS These results suggest that the cortex is inherently more sensitive than the striatum to the deleterious effects of neuroinflammation, and may offer an explanation for the preponderance of cognitive deficits in neuropathologies with a neuroinflammatory component.
Collapse
Affiliation(s)
- Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel; Department of Pharmacology, School of Pharmacy, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
11
|
FAN LW, TIEN LT, ZHENG B, PANG Y, RHODES P, CAI Z. Interleukin-1beta-induced brain injury and neurobehavioral dysfunctions in juvenile rats can be attenuated by alpha-phenyl-n-tert-butyl-nitrone. Neuroscience 2010; 168:240-52. [PMID: 20346393 PMCID: PMC2873102 DOI: 10.1016/j.neuroscience.2010.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/23/2010] [Accepted: 03/12/2010] [Indexed: 02/02/2023]
Abstract
Our previous study showed that perinatal exposure to interleukin-1beta (IL-1beta), an inflammatory cytokine, induces acute injury to developing white matter in the neonatal rat brain, and alpha-phenyl-n-tert-butyl-nitrone (PBN), a free radical scavenger and antioxidant, protects against IL-1beta-induced acute brain injury. The objective of the present study was to further examine whether perinatal exposure to IL-1beta resulted in persistent brain damage and neurological disabilities, and whether PBN offers lasting protection. Intracerebral injection of IL-1beta (1 microg/kg) was performed in postnatal day 5 (P5) Sprague-Dawley rat pups and PBN (100 mg/kg) or saline was administered intraperitoneally 5 min after IL-1beta injection. Perinatal IL-1beta exposure significantly affected neurobehavioral functions in juvenile rats. Although some neurobehavioral deficits such as performance in negative geotaxis, cliff avoidance, beam walking, and locomotion were spontaneously reversible, sustained deficits such as poor performance in the vibrissa-elicited forelimb-placing test, the pole test, the passive avoidance task, and the elevated plus-maze task were still observable at P21. Perinatal IL-1beta exposure resulted in persistent brain damage including enlargement of ventricles, loss of mature oligodendrocytes, impaired myelination as indicated by the decrease in myelin basic protein immunostaining, axonal and dendritic injury, and loss of hippocampal CA1 neurons and tyrosine hydroxylase positive neurons in the substantia nigra and ventral tegmental areas of the rat brain. Treatments with PBN provided lasting protection against the IL-1beta-induced brain injury and improved the associated neurological dysfunctions in juvenile rats, suggesting that prompt treatments for brain injury induced by perinatal infection/inflammation might have important long-term consequences.
Collapse
Affiliation(s)
- L.-W. FAN
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - L.-T. TIEN
- School of Medicine, Fu-Jen Catholic University, Hsin-Chuang, Taipei County, Taiwan
| | - B. ZHENG
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Y. PANG
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - P.G. RHODES
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Z. CAI
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
12
|
Fan LW, Mitchell HJ, Tien LT, Rhodes PG, Cai Z. Interleukin-1beta-induced brain injury in the neonatal rat can be ameliorated by alpha-phenyl-n-tert-butyl-nitrone. Exp Neurol 2009; 220:143-53. [PMID: 19682987 PMCID: PMC2761495 DOI: 10.1016/j.expneurol.2009.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/24/2009] [Accepted: 08/06/2009] [Indexed: 11/19/2022]
Abstract
To examine the possible role of inflammatory cytokines in mediating perinatal brain injury, we investigated effects of intracerebral injection of interleukin-1beta (IL-1beta) on brain injury in the neonatal rat and the mechanisms involved. Intracerebral administration of IL-1beta (1 microg/kg) resulted in acute brain injury, as indicated by enlargement of ventricles bilaterally, apoptotic death of oligodendrocytes (OLs) and loss of OL immunoreactivity in the neonatal rat brain. IL-1beta also induced axonal and neuronal injury in the cerebral cortex as indicated by elevated expression of beta-amyloid precursor protein, short beaded axons and dendrites, and loss of tyrosine hydroxylase-positive neurons in the substantia nigra and the ventral tegmental areas. Administration of alpha-phenyl-n-tert-butyl-nitrone (PBN, 100 mg/kg i.p.) immediately after the IL-1beta injection protected the brain from IL-1beta-induced injury. Protection of PBN was linked with the attenuated oxidative stress induced by IL-1beta, as indicated by decreased elevation of 8-isoprostane content and by the reduced number of 4-hydroxynonenal or malondialdehyde or nitrotyrosine-positive cells following IL-1beta exposure. PBN also attenuated IL-1beta-stimulated inflammatory responses as indicated by the reduced activation of microglia. The finding that IL-1beta induced perinatal brain injury was very similar to that induced by lipopolysaccharide (LPS), as we previously reported and that PBN was capable to attenuate the injury induced by either LPS or IL-1beta suggests that IL-1beta may play a critical role in mediating brain injury associated with perinatal infection/inflammation.
Collapse
Affiliation(s)
- Lir-Wan Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Helen J. Mitchell
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lu-Tai Tien
- School of Medicine, Fu-Jen Catholic University, Hsin-Chuang, Taipei County, Taiwan
| | - Philip G. Rhodes
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Zhengwei Cai
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
13
|
Garcia-Alloza M, Borrelli LA, Hyman BT, Bacskai BJ. Antioxidants have a rapid and long-lasting effect on neuritic abnormalities in APP:PS1 mice. Neurobiol Aging 2009; 31:2058-68. [PMID: 19124175 DOI: 10.1016/j.neurobiolaging.2008.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 09/23/2008] [Accepted: 11/08/2008] [Indexed: 01/10/2023]
Abstract
Senile plaques are a major pathological hallmark of Alzheimer's disease (AD). Compelling evidence suggests that senile plaques lead to structural alterations of neuronal processes and that local toxicity may be mediated by increased oxidative stress. Anti-oxidant therapy can alleviate the neuronal abnormalities in APP mice, but the time-course of this beneficial effect is unknown. We used multiphoton microscopy to assess in vivo the characteristics of antioxidant treatment on senile plaques and neurites in AD model mice (APPswe/PS1dE9). We observed that α-phenyl-N-tert-butyl nitrone (PBN), Ginkgo biloba extract (EGb 761) and Trolox had no effect on the size of existing senile plaques. However, all anti-oxidants had a straightening effect on curved neurites. This effect was detected as soon as 4 days after commencing the treatment, and was maintained after 1 month of daily treatment, with no further increase in the effect. The straightening of neurites persisted 15 days after stopping the treatment. These data indicate that neuronal plasticity is fast and still active in adult animals, and suggest that amelioration of the neuritic distortions associated with senile plaques with antioxidants is both rapid and long lasting.
Collapse
Affiliation(s)
- Monica Garcia-Alloza
- Massachusetts General Hospital, Department of Neurology/Alzheimer's Disease Research Laboratory, 114 16th Street, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
14
|
Fan LW, Chen RF, Mitchell HJ, Lin RCS, Simpson KL, Rhodes PG, Cai Z. alpha-Phenyl-n-tert-butyl-nitrone attenuates lipopolysaccharide-induced brain injury and improves neurological reflexes and early sensorimotor behavioral performance in juvenile rats. J Neurosci Res 2008; 86:3536-47. [PMID: 18683243 PMCID: PMC2921906 DOI: 10.1002/jnr.21812] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Our previous study showed that treatment with alpha-phenyl-n-tert-butyl-nitrone (PBN) after exposure to lipopolysaccharide (LPS) reduced LPS-induced white matter injury in the neonatal rat brain. The object of the current study was to further examine whether PBN has long-lasting protective effects and ameliorates LPS-induced neurological dysfunction. Intracerebral (i.c.) injection of LPS (1 mg/kg) was performed in postnatal day (P) 5 Sprague Dawley rat pups and PBN (100 mg/kg) or saline was administered intraperitoneally 5 min after LPS injection. The control rats were injected (i.c.) with sterile saline. Neurobehavioral tests were carried out from P3 to P21, and brain injury was examined after these tests. LPS exposure resulted in severe brain damage, including enlargement of ventricles bilaterally, loss of mature oligodendrocytes, impaired myelination as indicated by the decrease in myelin basic protein immunostaining, and alterations in dendritic processes in the cortical gray matter of the parietal cortex. Electron microscopic examination showed that LPS exposure caused impaired myelination as indicated by the disintegrated myelin sheaths in the juvenile rat brain. LPS administration also significantly affected neurobehavioral functions such as performance in righting reflex, wire hanging maneuver, cliff avoidance, negative geotaxis, vibrissa-elicited forelimb-placing test, beam walking, and gait test. Treatment with PBN, a free radical scavenger and antioxidant, provided protection against LPS-induced brain injury and associated neurological dysfunction in juvenile rats, suggesting that antioxidation might be an effective approach for therapeutic treatment of neonatal brain injury induced by infection/inflammation.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain/drug effects
- Brain/pathology
- Brain/physiopathology
- Brain Damage, Chronic/chemically induced
- Brain Damage, Chronic/drug therapy
- Brain Damage, Chronic/microbiology
- Central Nervous System Bacterial Infections/microbiology
- Central Nervous System Bacterial Infections/physiopathology
- Central Nervous System Bacterial Infections/transmission
- Cyclic N-Oxides/therapeutic use
- Disease Models, Animal
- Female
- Gait Disorders, Neurologic/chemically induced
- Gait Disorders, Neurologic/drug therapy
- Gait Disorders, Neurologic/microbiology
- Humans
- Infant, Newborn
- Infectious Disease Transmission, Vertical
- Leukomalacia, Periventricular/drug therapy
- Leukomalacia, Periventricular/microbiology
- Lipopolysaccharides/toxicity
- Male
- Movement Disorders/drug therapy
- Movement Disorders/microbiology
- Movement Disorders/physiopathology
- Myelin Basic Protein/drug effects
- Myelin Basic Protein/metabolism
- Nerve Fibers, Myelinated/drug effects
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/pathology
- Neuroprotective Agents/therapeutic use
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Oligodendroglia/pathology
- Pregnancy
- Rats
- Rats, Sprague-Dawley
- Recovery of Function/drug effects
- Recovery of Function/physiology
- Reflex/drug effects
- Reflex/physiology
Collapse
Affiliation(s)
- Lir-Wan Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ruei-Feng Chen
- Department of Life Science and Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Helen J. Mitchell
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Rick C. S. Lin
- Departments of Anatomy, Psychiatry, and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kimberly L. Simpson
- Departments of Anatomy, Psychiatry, and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Philip G. Rhodes
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Zhengwei Cai
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
15
|
Floyd RA, Kopke RD, Choi CH, Foster SB, Doblas S, Towner RA. Nitrones as therapeutics. Free Radic Biol Med 2008; 45:1361-74. [PMID: 18793715 PMCID: PMC2796547 DOI: 10.1016/j.freeradbiomed.2008.08.017] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/08/2008] [Accepted: 08/08/2008] [Indexed: 01/20/2023]
Abstract
Nitrones have the general chemical formula X-CH=NO-Y. They were first used to trap free radicals in chemical systems and then subsequently in biochemical systems. More recently several nitrones, including alpha-phenyl-tert-butylnitrone (PBN), have been shown to have potent biological activity in many experimental animal models. Many diseases of aging, including stroke, cancer development, Parkinson disease, and Alzheimer disease, are known to have enhanced levels of free radicals and oxidative stress. Some derivatives of PBN are significantly more potent than PBN and have undergone extensive commercial development for stroke. Recent research has shown that PBN-related nitrones also have anti-cancer activity in several experimental cancer models and have potential as therapeutics in some cancers. Also, in recent observations nitrones have been shown to act synergistically in combination with antioxidants in the prevention of acute acoustic-noise-induced hearing loss. The mechanistic basis of the potent biological activity of PBN-related nitrones is not known. Even though PBN-related nitrones do decrease oxidative stress and oxidative damage, their potent biological anti-inflammatory activity and their ability to alter cellular signaling processes cannot readily be explained by conventional notions of free radical trapping biochemistry. This review is focused on our studies and others in which the use of selected nitrones as novel therapeutics has been evaluated in experimental models in the context of free radical biochemical and cellular processes considered important in pathologic conditions and age-related diseases.
Collapse
Affiliation(s)
- Robert A Floyd
- Experimental Therapeutics Research Program, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Choi SH, Hur JM, Yang EJ, Jun M, Park HJ, Lee KB, Moon E, Song KS. Beta-secretase (BACE1) inhibitors from Perilla frutescens var. acuta. Arch Pharm Res 2008; 31:183-7. [PMID: 18365688 DOI: 10.1007/s12272-001-1139-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the course of screening for anti-dementia agents from natural products, two beta-secretase (BACE1) inhibitors were isolated from the methanolic extract of Perilla frutescens var. acuta and identified as luteolin (1) and rosmarinic acid (2) with IC50 values of 5.0 x 10(-7) M and 2.1 x 10(-5) M, respectively. They inhibited BACE1 in a non-competitive manner with a substrate in Dixon plots, suggesting that they might bind to either beta-secretase subsite or to another regulatory site. Kivalues of 1 and 2 were 6.2 x 10(-5) M and 3.9 x 10(-5) M, respectively. They were less inhibitory against other enzymes such as alpha-secretase (TACE), acetylcholine esterase (AchE), chymotrypsin, and elastase, indicating that they were relatively specific inhibitors of BACE1.
Collapse
Affiliation(s)
- Sun-Ha Choi
- Division of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Fan LW, Mitchell HJ, Rhodes PG, Cai Z. Alpha-Phenyl-n-tert-butyl-nitrone attenuates lipopolysaccharide-induced neuronal injury in the neonatal rat brain. Neuroscience 2007; 151:737-44. [PMID: 18191905 DOI: 10.1016/j.neuroscience.2007.09.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/13/2007] [Accepted: 11/20/2007] [Indexed: 11/16/2022]
Abstract
Although white matter damage is a fundamental neuropathological feature of periventricular leukomalacia (PVL), the motor and cognitive deficits observed later in infants with PVL indicate the possible involvement of cerebral neuronal dysfunction. Using a previously developed rat model of white matter injury induced by cerebral lipopolysaccharide (LPS) injection, we investigated whether LPS exposure also results in neuronal injury in the neonatal brain and whether alpha-phenyl-n-tert-butyl-nitrone (PBN), an antioxidant, offers protection against LPS-induced neuronal injury. A stereotactic intracerebral injection of LPS (1 mg/kg) was performed in Sprague-Dawley rats (postnatal day 5) and control rats were injected with sterile saline. LPS exposure resulted in axonal and neuronal injury in the cerebral cortex as indicated by elevated expression of beta-amyloid precursor protein, altered axonal length and width, and increased size of cortical neuronal nuclei. LPS exposure also caused loss of tyrosine hydroxylase positive neurons in the substantia nigra and the ventral tegmental areas of the rat brain. Treatments with PBN (100 mg/kg) significantly reduced LPS-induced neuronal and axonal damage. The protection of PBN was associated with an attenuation of oxidative stress induced by LPS as indicated by the reduced number of 4-hydroxynonenal, malondialdehyde or nitrotyrosine positive cells in the cortical area following LPS exposure, and with the reduction in microglial activation stimulated by LPS. The finding that an inflammatory environment may cause both white matter and neuronal injury in the neonatal brain supports the possible anatomical correlate for the intellectual deficits and the other cortical and deep gray neuronal dysfunctions associated with PVL. The protection of PBN may indicate the potential usefulness of antioxidants for treatment of these neuronal dysfunctions.
Collapse
Affiliation(s)
- L-W Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | | | | | | |
Collapse
|