1
|
Baltacı NG, Toraman E, Akyüz M, Kalın ŞN, Budak H. Tip60/Kat5 may be a novel candidate histone acetyltransferase for the regulation of liver iron localization via acetylation. Biometals 2022; 35:1187-1197. [PMID: 35986817 DOI: 10.1007/s10534-022-00435-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022]
Abstract
Hepcidin (HAMP), an iron regulatory hormone synthesized by liver hepatocytes, works together with ferritin (FTH) and ferroportin (FPN) in regulating the storage, transport, and utilization of iron in the cell. Epigenetic mechanisms, especially acetylation, also play an important role in the regulation of iron metabolism. However, a target protein has not been mentioned yet. With this preliminary study, we investigated the effect of histone acetyltransferase TIP60 on the expression of HAMP, FTH, and FPN. In addition, how the depletion of Tip60, which regulates the circadian system, affects the daily expression of Hamp was examined at six Zeitgeber time (ZT) points. For this purpose, liver-specific Tip60 knockout mice (mutant) were produced with tamoxifen-inducible Cre/lox recombination and an iron overload model in mice was generated. While HAMP and FTH expressions decreased, FPN expression increased in the mutant group. Interestingly, there was no change in the iron content. A significant increase was observed in the expressions of HAMP, FTH, and FPN and total liver iron content in the liver tissue of the iron overload group. Since intracellular iron concentration is involved in regulating the circadian clock, temporal expression of Hamp was investigated in control and mutant groups at six ZT points. In the control group, Hamp accumulated in a circadian manner with maximal and minimal levels reaching around ZT16 and ZT8, respectively. In the mutant group, there was a significant reduction in Hamp expression in the light phase ZT0 and ZT4 and in the dark phase ZT16. These data are the first findings demonstrating a possible relationship between Tip60 and iron metabolism.
Collapse
Affiliation(s)
- Nurdan Gönül Baltacı
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Türkiye
| | - Emine Toraman
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Türkiye
| | - Mesut Akyüz
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Türkiye
- Department of Molecular Biology and Genetics, Science Faculty, Erzurum Technical University, Erzurum, Türkiye
| | - Şeyda Nur Kalın
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Türkiye
| | - Harun Budak
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
2
|
Thapa K, Khan H, Kanojia N, Singh TG, Kaur A, Kaur G. Therapeutic Insights on Ferroptosis in Parkinson's disease. Eur J Pharmacol 2022; 930:175133. [DOI: 10.1016/j.ejphar.2022.175133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022]
|
3
|
Riederer P, Monoranu C, Strobel S, Iordache T, Sian-Hülsmann J. Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease. J Neural Transm (Vienna) 2021; 128:1577-1598. [PMID: 34636961 PMCID: PMC8507512 DOI: 10.1007/s00702-021-02414-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
About 60 years ago, the discovery of a deficiency of dopamine in the nigro-striatal system led to a variety of symptomatic therapeutic strategies to supplement dopamine and to substantially improve the quality of life of patients with Parkinson's disease (PD). Since these seminal developments, neuropathological, neurochemical, molecular biological and genetic discoveries contributed to elucidate the pathology of PD. Oxidative stress, the consequences of reactive oxidative species, reduced antioxidative capacity including loss of glutathione, excitotoxicity, mitochondrial dysfunction, proteasomal dysfunction, apoptosis, lysosomal dysfunction, autophagy, suggested to be causal for ɑ-synuclein fibril formation and aggregation and contributing to neuroinflammation and neural cell death underlying this devastating disorder. However, there are no final conclusions about the triggered pathological mechanism(s) and the follow-up of pathological dysfunctions. Nevertheless, it is a fact, that iron, a major component of oxidative reactions, as well as neuromelanin, the major intraneuronal chelator of iron, undergo an age-dependent increase. And ageing is a major risk factor for PD. Iron is significantly increased in the substantia nigra pars compacta (SNpc) of PD. Reasons for this finding include disturbances in iron-related import and export mechanisms across the blood-brain barrier (BBB), localized opening of the BBB at the nigro-striatal tract including brain vessel pathology. Whether this pathology is of primary or secondary importance is not known. We assume that there is a better fit to the top-down hypotheses and pathogens entering the brain via the olfactory system, then to the bottom-up (gut-brain) hypothesis of PD pathology. Triggers for the bottom-up, the dual-hit and the top-down pathologies include chemicals, viruses and bacteria. If so, hepcidin, a regulator of iron absorption and its distribution into tissues, is suggested to play a major role in the pathogenesis of iron dyshomeostasis and risk for initiating and progressing ɑ-synuclein pathology. The role of glial components to the pathology of PD is still unknown. However, the dramatic loss of glutathione (GSH), which is mainly synthesized in glia, suggests dysfunction of this process, or GSH uptake into neurons. Loss of GSH and increase in SNpc iron concentration have been suggested to be early, may be even pre-symptomatic processes in the pathology of PD, despite the fact that they are progression factors. The role of glial ferritin isoforms has not been studied so far in detail in human post-mortem brain tissue and a close insight into their role in PD is called upon. In conclusion, "iron" is a major player in the pathology of PD. Selective chelation of excess iron at the site of the substantia nigra, where a dysfunction of the BBB is suggested, with peripherally acting iron chelators is suggested to contribute to the portfolio and therapeutic armamentarium of anti-Parkinson medications.
Collapse
Affiliation(s)
- P Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, University of Wuerzburg, Wuerzburg, Germany. .,Department of Psychiatry, University of Southern Denmark, Odense, Denmark.
| | - C Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - S Strobel
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - T Iordache
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Târgu Mureș, Romania
| | - J Sian-Hülsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| |
Collapse
|
4
|
Rai SN, Singh P, Varshney R, Chaturvedi VK, Vamanu E, Singh MP, Singh BK. Promising drug targets and associated therapeutic interventions in Parkinson's disease. Neural Regen Res 2021; 16:1730-1739. [PMID: 33510062 PMCID: PMC8328771 DOI: 10.4103/1673-5374.306066] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is one of the most debilitating brain diseases. Despite the availability of symptomatic treatments, response towards the health of PD patients remains scarce. To fulfil the medical needs of the PD patients, an efficacious and etiological treatment is required. In this review, we have compiled the information covering limitations of current therapeutic options in PD, novel drug targets for PD, and finally, the role of some critical beneficial natural products to control the progression of PD.
Collapse
Affiliation(s)
| | - Payal Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ritu Varshney
- Department of Bioengineering and Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | | | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, Bucharest, Romania
| | - M. P. Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | - Brijesh Kumar Singh
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Cheng Q, Huang J, Liang J, Ma M, Zhao Q, Lei X, Shi C, Luo L. Evaluation of abnormal iron distribution in specific regions in the brains of patients with Parkinson's disease using quantitative susceptibility mapping and R2 * mapping. Exp Ther Med 2020; 19:3778-3786. [PMID: 32346442 PMCID: PMC7185157 DOI: 10.3892/etm.2020.8645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
The primary aim of the present study was to evaluate abnormal iron distribution in specific regions of the brains in patients with Parkinson's disease (PD) using quantitative susceptibility mapping (QSM) and R2* mapping, and to compare the diagnostic performances of QSM and R2* mapping in differentiating patients with PD with that in normal controls. A total of 25 patients with idiopathic PD and 28 sex-and age-matched normal controls were included in the present study and their brains investigated using a 3T scanner. Magnetic resonance imaging techniques, namely, QSM and R2* mapping, were applied to generate susceptibility and R2* values. The differences in susceptibility and R2* values in deep grey matter nuclei between patients with PD and the normal controls were compared using independent samples t-tests. The abilities of QSM and R2* mapping to classify patients with PD and normal controls were analyzed using receiver operating characteristic curves. Correlation analyses between imaging parameters (e.g. susceptibility and R2* values) and clinical feature (disease severity assessed using the Hoehn and Yahr score) were performed. The intra-class correlation coefficient (ICC) for susceptibility (ICC=0.977; P<0.001) and R2* (ICC=0.945; P<0.001) values between two neuro-radiologists were >0.81, showing excellent inter-rater agreement. The susceptibility values were significantly increased in the substantia nigra (SN) and red nucleus, but were decreased in the putamen of patients with PD compared with that in the corresponding brain regions of normal controls. However, increased R2* values were observed only in the SN in patients with PD. QSM showed higher sensitivity and specificity compared with R2* mapping to separate the patients with PD from the normal controls. There were no significant correlations between the susceptibility/R2* values and clinical features in all targeted regions of the brains in patients with PD. In conclusion, both QSM and R2* mapping are feasible to calculate the iron levels in human brains, and QSM provides a more sensitive and accurate method to assess regional abnormal iron distribution in patients with PD.
Collapse
Affiliation(s)
- Qingqing Cheng
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Jiaxi Huang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Jianye Liang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Mengjie Ma
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Qian Zhao
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xueping Lei
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510799, P.R. China
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
6
|
Pretorius E, Page MJ, Mbotwe S, Kell DB. Lipopolysaccharide-binding protein (LBP) can reverse the amyloid state of fibrin seen or induced in Parkinson's disease. PLoS One 2018; 13:e0192121. [PMID: 29494603 PMCID: PMC5832207 DOI: 10.1371/journal.pone.0192121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/18/2018] [Indexed: 01/13/2023] Open
Abstract
The thrombin-induced polymerisation of fibrinogen to form fibrin is well established as a late stage of blood clotting. It is known that Parkinson's Disease (PD) is accompanied by dysregulation in blood clotting, but it is less widely known as a coagulopathy. In recent work, we showed that the presence of tiny amounts of bacterial lipopolysaccharide (LPS) in healthy individuals could cause clots to adopt an amyloid form, and this could be observed via scanning electron microscopy (SEM) or via the fluorescence of thioflavin-T. This could be prevented by the prior addition of lipopolysaccharide-binding protein (LBP). We had also observed by SEM this unusual clotting in the blood of patients with Parkinson's Disease. We hypothesised, and here show, that this too can be prevented by LBP in the context of PD. This adds further evidence implicating inflammatory microbial cell wall products as an accompaniment to the disease, and may be part of its aetiology. This may lead to novel treatment strategies in PD designed to target microbes and their products.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Martin J. Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sthembile Mbotwe
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- School of Chemistry, The University of Manchester, Manchester, Lancs, United Kingdom
- The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancs, United Kingdom
| |
Collapse
|
7
|
Chuang YH, Paul KC, Bronstein JM, Bordelon Y, Horvath S, Ritz B. Parkinson's disease is associated with DNA methylation levels in human blood and saliva. Genome Med 2017; 9:76. [PMID: 28851441 PMCID: PMC5576382 DOI: 10.1186/s13073-017-0466-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Background Several articles suggest that DNA methylation levels in blood relate to Parkinson’s disease (PD) but there is a need for a large-scale study that involves suitable population based controls. The purposes of the study were: (1) to study whether PD status is associated with DNA methylation levels in blood/saliva; (2) to study whether observed associations relate to blood cell types; and (3) to characterize genome-wide significant markers (“CpGs”) and clusters of CpGs (co-methylation modules) in terms of biological pathways. Methods In a population-based case control study of PD, we studied blood samples from 335 PD cases and 237 controls and saliva samples from another 128 cases and 131 controls. DNA methylation data were generated from over 486,000 CpGs using the Illumina Infinium array. We identified modules of CpGs (clusters) using weighted correlation network analysis (WGCNA). Results Our cross-sectional analysis of blood identified 82 genome-wide significant CpGs (including cg02489202 in LARS2 p = 8.3 × 10–11 and cg04772575 in ABCB9 p = 4.3 × 10–10). Three out of six PD related co-methylation modules in blood were significantly enriched with immune system related genes. Our analysis of saliva identified five significant CpGs. PD-related CpGs are located near genes that relate to mitochondrial function, neuronal projection, cytoskeleton organization, systemic immune response, and iron handling. Conclusions This study demonstrates that: (1) PD status has a profound association with DNA methylation levels in blood and saliva; and (2) the most significant PD-related changes reflect changes in blood cell composition. Overall, this study highlights the role of the immune system in PD etiology but future research will need to address the causal structure of these relationships. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0466-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Hsuan Chuang
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, 650 Charles E. Young Drive, Box 951772, Los Angeles, CA, 90095-1772, USA
| | - Kimberly C Paul
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, 650 Charles E. Young Drive, Box 951772, Los Angeles, CA, 90095-1772, USA
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yvette Bordelon
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Box 708822, Los Angeles, CA, 90095-7088, USA. .,Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, 650 Charles E. Young Drive, Box 951772, Los Angeles, CA, 90095-1772, USA. .,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA. .,Department of Environmental Health, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Krityakiarana W, Zhao PM, Nguyen K, Gomez-Pinilla F, Kotchabhakdi N, de Vellis J, Espinosa-Jeffrey A. Proof-of Concept that an Acute Trophic Factors Intervention After Spinal Cord Injury Provides an Adequate Niche for Neuroprotection, Recruitment of Nestin-Expressing Progenitors and Regeneration. Neurochem Res 2016; 41:431-49. [PMID: 26883642 PMCID: PMC5352162 DOI: 10.1007/s11064-016-1850-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/16/2022]
Abstract
Trophic factor treatment has been shown to improve the recovery of brain and spinal cord injury (SCI). In this study, we examined the effects of TSC1 (a combination of insulin-like growth factor 1 and transferrin) 4 and 8 h after SCI at the thoracic segment level (T12) in nestin-GFP transgenic mice. TSC1 treatment for 4 and 8 h increased the number of nestin-expressing cells around the lesion site and prevented Wallerian degeneration. Treatment with TSC1 for 4 h significantly increased heat shock protein (HSP)-32 and HSP-70 expression 1 and 2 mm from lesion site (both, caudal and rostral). Conversely, the number of HSP-32 positive cells decreased after an 8-h TSC1 treatment, although it was still higher than in both, non-treated SCI and intact spinal cord animals. Furthermore, TSC1 increased NG2 expressing cell numbers and preserved most axons intact, facilitating remyelination and repair. These results support our hypothesis that TSC1 is an effective treatment for cell and tissue neuroprotection after SCI. An early intervention is crucial to prevent secondary damage of the injured SC and, in particular, to prevent Wallerian degeneration.
Collapse
Affiliation(s)
- Warin Krityakiarana
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles E. Young Drive South, Suite 375E, Los Angeles, CA, 90095-7332, USA.
- Division of Physiotherapy, Faculty of Health Science, Srinakharinwirot University, Bangkok, Thailand.
| | - Paul M Zhao
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles E. Young Drive South, Suite 375E, Los Angeles, CA, 90095-7332, USA
| | - Kevin Nguyen
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles E. Young Drive South, Suite 375E, Los Angeles, CA, 90095-7332, USA
| | - Fernando Gomez-Pinilla
- Department of Physiological Sciences and Department of Neurosurgery, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naiphinich Kotchabhakdi
- Neuro-Behavioural Biology Center, Institute of Science and Technology for Research and Development, Mahidol University, 999 Phutthamonthol 4 Road, Salaya, Phutthamonthol, Nakornpathom, 73170, Thailand
| | - Jean de Vellis
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles E. Young Drive South, Suite 375E, Los Angeles, CA, 90095-7332, USA
| | - Araceli Espinosa-Jeffrey
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles E. Young Drive South, Suite 375E, Los Angeles, CA, 90095-7332, USA.
| |
Collapse
|
9
|
He N, Ling H, Ding B, Huang J, Zhang Y, Zhang Z, Liu C, Chen K, Yan F. Region-specific disturbed iron distribution in early idiopathic Parkinson's disease measured by quantitative susceptibility mapping. Hum Brain Mapp 2015; 36:4407-20. [PMID: 26249218 DOI: 10.1002/hbm.22928] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 02/06/2023] Open
Abstract
In Parkinson's disease (PD), iron elevation in specific brain regions as well as selective loss of dopaminergic neurons is a major pathologic feature. A reliable quantitative measure of iron deposition is a potential biomarker for PD and may contribute to the investigation of iron-mediated PD. The primary purpose of this study is to assess iron variations in multiple deep grey matter nuclei in early PD with a novel MRI technique, quantitative susceptibility mapping (QSM). The inter-group differences of susceptibility and R2* value in deep grey matter nuclei, namely head of caudate nucleus (CN), putamen (PUT), global pallidus (GP), substantia nigra (SN), and red nucleus (RN), and the correlations between regional iron deposition and the clinical features were explored in forty-four early PD patients and 35 gender and age-matched healthy controls. Susceptibility values were found to be elevated within bilateral SN and RN contralateral to the most affected limb in early PD compared with healthy controls (HCs). The finding of increased susceptibility in bilateral SN is consistent with work on a subgroup of patients at the earliest clinical detectable state (Hoehn and Yahr [1967]: Neurology 17:427-442; Stage I). However, increased R2* values were only seen within SN contralateral to the most affected limb in the PD group when compared with controls. Furthermore, bilateral SN magnetic susceptibility positively correlated with disease duration and UPDRS-III scores in early PD. This finding supports the potential value of QSM as a non-invasive quantitative biomarker of early PD.
Collapse
Affiliation(s)
- Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huawei Ling
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Ding
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Huang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhang
- MR Research, GE Healthcare, Shanghai, China
| | | | - Chunlei Liu
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina.,Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Kemin Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Goldstein DS, Kopin IJ, Sharabi Y. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol Ther 2014; 144:268-82. [PMID: 24945828 PMCID: PMC4591072 DOI: 10.1016/j.pharmthera.2014.06.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 02/07/2023]
Abstract
Several neurodegenerative diseases involve loss of catecholamine neurons-Parkinson disease is a prototypical example. Catecholamine neurons are rare in the nervous system, and why they are vulnerable in PD and related disorders has been mysterious. Accumulating evidence supports the concept of "autotoxicity"-inherent cytotoxicity of catecholamines and their metabolites in the cells in which they are produced. According to the "catecholaldehyde hypothesis" for the pathogenesis of Parkinson disease, long-term increased build-up of 3,4-dihydroxyphenylacetaldehyde (DOPAL), the catecholaldehyde metabolite of dopamine, causes or contributes to the eventual death of dopaminergic neurons. Lewy bodies, a neuropathologic hallmark of PD, contain precipitated alpha-synuclein. Bases for the tendency of alpha-synuclein to precipitate in the cytoplasm of catecholaminergic neurons have also been mysterious. Since DOPAL potently oligomerizes and aggregates alpha-synuclein, the catecholaldehyde hypothesis provides a link between alpha-synucleinopathy and catecholamine neuron loss in Lewy body diseases. The concept developed here is that DOPAL and alpha-synuclein are nodes in a complex nexus of interacting homeostatic systems. Dysfunctions of several processes, including decreased vesicular sequestration of cytoplasmic catecholamines, decreased aldehyde dehydrogenase activity, and oligomerization of alpha-synuclein, lead to conversion from the stability afforded by negative feedback regulation to the instability, degeneration, and system failure caused by induction of positive feedback loops. These dysfunctions result from diverse combinations of genetic predispositions, environmental exposures, stress, and time. The notion of catecholamine autotoxicity has several implications for treatment, disease modification, and prevention. Conversely, disease modification clinical trials would provide key tests of the catecholaldehyde hypothesis.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Irwin J Kopin
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
11
|
Pretorius E, Swanepoel AC, Buys AV, Vermeulen N, Duim W, Kell DB. Eryptosis as a marker of Parkinson's disease. Aging (Albany NY) 2014; 6:788-819. [PMID: 25411230 PMCID: PMC4247384 DOI: 10.18632/aging.100695] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/24/2014] [Indexed: 12/20/2022]
Abstract
A major trend in recent Parkinson's disease (PD) research is the investigation of biological markers that could help in identifying at-risk individuals or to track disease progression and response to therapies. Central to this is the knowledge that inflammation is a known hallmark of PD and of many other degenerative diseases. In the current work, we focus on inflammatory signalling in PD, using a systems approach that allows us to look at the disease in a more holistic way. We discuss cyclooxygenases, prostaglandins, thromboxanes and also iron in PD. These particular signalling molecules are involved in PD pathophysiology, but are also very important in an aberrant coagulation/hematology system. We present and discuss a hypothesis regarding the possible interaction of these aberrant signalling molecules implicated in PD, and suggest that these molecules may affect the erythrocytes of PD patients. This would be observable as changes in the morphology of the RBCs and of PD patients relative to healthy controls. We then show that the RBCs of PD patients are indeed rather dramatically deranged in their morphology, exhibiting eryptosis (a kind of programmed cell death). This morphological indicator may have useful diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Albe C Swanepoel
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Antoinette V Buys
- Microscopy and Microanalysis Unit, University of Pretoria, Arcadia 0007, South Africa
| | - Natasha Vermeulen
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Wiebren Duim
- Department of Neurology Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, Lancs, UK
| |
Collapse
|
12
|
Alexander GE. Biology of Parkinson's disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22033559 PMCID: PMC3181806 DOI: 10.31887/dcns.2004.6.3/galexander] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is the second most common movement disorder. The characteristic motor impairments - bradykinesia, rigidity, and resting tremor - result from degenerative loss of midbrain dopamine (DA) neurons in the substantia nigra, and are responsive to symptomatic treatment with dopaminergic medications and functional neurosurgery. PD is also the second most common neurodegenerative disorder. Viewed from this perspective, PD is a disorder of multiple functional systems, not simply the motor system, and of multiple neurotransmitter systems, not merely that of DA. The characteristic pathology - intraneuronal Lewy body inclusions and reduced numbers of surviving neurons - is similar in each of the targeted neuron groups, suggesting a common neurodegenerative process. Pathological and experimental studies indicate that oxidative stress, proteolytic stress, and inflammation figure prominently in the pathogenesis of PD. Yet, whether any of these mechanisms plays a causal role in human PD is unknown, because to date we have no proven neuroprotective therapies that slow or reverse disease progression in patients with PD. We are beginning to understand the pathophysiology of motor dysfunction in PD, but its etiopathogenesis as a neurodegenerative disorder remains poorly understood.
Collapse
Affiliation(s)
- Garrett E Alexander
- Department of Neurology, Emory University School of Medicine, Atlanta, Ga, USA
| |
Collapse
|
13
|
Cantu D, Fulton RE, Drechsel DA, Patel M. Mitochondrial aconitase knockdown attenuates paraquat-induced dopaminergic cell death via decreased cellular metabolism and release of iron and H₂O₂. J Neurochem 2011; 118:79-92. [PMID: 21517855 PMCID: PMC3182850 DOI: 10.1111/j.1471-4159.2011.07290.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial oxidative stress is a contributing factor in the etiology of numerous neuronal disorders. However, the precise mechanism(s) by which mitochondrial reactive oxygen species modify cellular targets to induce neurotoxicity remains unknown. In this study, we determined the role of mitochondrial aconitase (m-aconitase) in neurotoxicity by decreasing its expression. Incubation of the rat dopaminergic cell line, N27, with paraquat (PQ(2+) ) resulted in aconitase inactivation, increased hydrogen peroxide (H(2) O(2) ) and increased ferrous iron (Fe(2+) ) at times preceding cell death. To confirm the role of m-aconitase in dopaminergic cell death, we knocked down m-aconitase expression via RNA interference. Incubation of m-aconitase knockdown N27 cells with PQ(2+) resulted in decreased H(2) O(2) production, Fe(2+) accumulation, and cell death compared with cells expressing basal levels of m-aconitase. To determine the metabolic role of m-aconitase in mediating neuroprotection, we conducted a complete bioenergetic profile. m-Aconitase knockdown N27 cells showed a global decrease in metabolism (glycolysis and oxygen consumption rates) which blocked PQ(2+) -induced H(+) leak and respiratory capacity deficiency. These findings suggest that dopaminergic cells are protected from death by decreasing release of H(2) O(2) and Fe(2+) in addition to decreased cellular metabolism.
Collapse
Affiliation(s)
- David Cantu
- Graduate Program in Neuroscience, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
- Department of Neuroscience, Tufts University School of Medicine 136 Harrison Ave., SC201, Boston, MA 02111
| | - Ruth E. Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Derek A. Drechsel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Manisha Patel
- Graduate Program in Neuroscience, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
14
|
Figueredo YN, García-Pupo L, Cuesta Rubio O, Delgado Hernández R, Naal Z, Curti C, Pardo Andreu GL. A strong protective action of guttiferone-A, a naturally occurring prenylated benzophenone, against iron-induced neuronal cell damage. J Pharmacol Sci 2011; 116:36-46. [PMID: 21512303 DOI: 10.1254/jphs.10273fp] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with several reported pharmacological actions. We have assessed the protective action of GA on iron-induced neuronal cell damage by employing the PC12 cell line and primary culture of rat cortical neurons (PCRCN). A strong protection by GA, assessed by the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carbox-anilide (XTT) assay, was revealed, with IC(50) values <1 µM. GA also inhibited Fe(3+)-ascorbate reduction, iron-induced oxidative degradation of 2-deoxiribose, and iron-induced lipid peroxidation in rat brain homogenate, as well as stimulated oxygen consumption by Fe(2+) autoxidation. Absorption spectra and cyclic voltammograms of GA-Fe(2+)/Fe(3+) complexes suggest the formation of a transient charge transfer complex between Fe(2+) and GA, accelerating Fe(2+) oxidation. The more stable Fe(3+) complex with GA would be unable to participate in Fenton-Haber Weiss-type reactions and the propagation phase of lipid peroxidation. The results show a potential of GA against neuronal diseases associated with iron-induced oxidative stress.
Collapse
Affiliation(s)
- Yanier Núñez Figueredo
- Laboratorio de Farmacología Molecular, Centro de Investigación y Desarrollo de Medicamentos, Ciudad Habana, Cuba
| | | | | | | | | | | | | |
Collapse
|
15
|
Xu Q, Kanthasamy AG, Reddy MB. Phytic Acid Protects against 6-Hydroxydopamine-Induced Dopaminergic Neuron Apoptosis in Normal and Iron Excess Conditions in a Cell Culture Model. PARKINSONS DISEASE 2011; 2011:431068. [PMID: 21331377 PMCID: PMC3038597 DOI: 10.4061/2011/431068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 01/13/2011] [Indexed: 01/27/2023]
Abstract
Iron may play an important role in Parkinson's disease (PD) since it can induce oxidative stress-dependent neurodegeneration. The objective of this study was to determine whether the iron chelator, phytic acid (IP6) can protect against 6-hydroxydopamine- (6-OHDA-) induced apoptosis in immortalized rat mesencephalic dopaminergic cells under normal and iron-excess conditions. Caspase-3 activity was increased about 6-fold after 6-OHDA treatment (compared to control; P < .001) and 30 μmol/L IP6 pretreatment decreased it by 38% (P < .05). Similarly, a 63% protection (P < .001) against 6-OHDA induced DNA fragmentation was observed with IP6 pretreatment. Under iron-excess condition, a 6-fold increase in caspase-3 activity (P < .001) and a 42% increase in DNA fragmentation (P < .05) with 6-OHDA treatment were decreased by 41% (P < .01) and 27% (P < .05), respectively, with 30 μmol/L IP6. Together, our data suggest that IP6 protects against 6-OHDA-induced cell apoptosis in both normal and iron-excess conditions, and IP6 may offer neuroprotection in PD.
Collapse
Affiliation(s)
- Qi Xu
- Foreign Language Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | | | | |
Collapse
|
16
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
17
|
George JL, Mok S, Moses D, Wilkins S, Bush AI, Cherny RA, Finkelstein DI. Targeting the progression of Parkinson's disease. Curr Neuropharmacol 2010; 7:9-36. [PMID: 19721815 PMCID: PMC2724666 DOI: 10.2174/157015909787602814] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/15/2008] [Accepted: 09/09/2008] [Indexed: 02/07/2023] Open
Abstract
By the time a patient first presents with symptoms of Parkinson's disease at the clinic, a significant proportion (50-70%) of the cells in the substantia nigra (SN) has already been destroyed. This degeneration progresses until, within a few years, most of the cells have died. Except for rare cases of familial PD, the initial trigger for cell loss is unknown. However, we do have some clues as to why the damage, once initiated, progresses unabated. It would represent a major advance in therapy to arrest cell loss at the stage when the patient first presents at the clinic. Current therapies for Parkinson's disease focus on relieving the motor symptoms of the disease, these unfortunately lose their effectiveness as the neurodegeneration and symptoms progress. Many experimental approaches are currently being investigated attempting to alter the progression of the disease. These range from replacement of the lost neurons to neuroprotective therapies; each of these will be briefly discussed in this review. The main thrust of this review is to explore the interactions between dopamine, alpha synuclein and redox-active metals. There is abundant evidence suggesting that destruction of SN cells occurs as a result of a self-propagating series of reactions involving dopamine, alpha synuclein and redox-active metals. A potent reducing agent, the neurotransmitter dopamine has a central role in this scheme, acting through redox metallo-chemistry to catalyze the formation of toxic oligomers of alpha-synuclein and neurotoxic metabolites including 6-hydroxydopamine. It has been hypothesized that these feed the cycle of neurodegeneration by generating further oxidative stress. The goal of dissecting and understanding the observed pathological changes is to identify therapeutic targets to mitigate the progression of this debilitating disease.
Collapse
Affiliation(s)
- J L George
- The Mental Health Research Institute of Victoria , 155 Oak Street, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Rhodes SL, Ritz B. Genetics of iron regulation and the possible role of iron in Parkinson's disease. Neurobiol Dis 2008; 32:183-95. [PMID: 18675357 DOI: 10.1016/j.nbd.2008.07.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is acknowledged as the second most common neurodegenerative disorder after Alzheimer's Disease. Older age may be the only unequivocal risk factor for PD although the male to female ratio is consistently greater than 1 in populations of European ancestry. Characteristic features of PD include dopaminergic neuron death in the substantia nigra (SN) pars compacta, accumulation of alpha-synuclein inclusions known as Lewy bodies in the SN, and brain iron accumulation beyond that observed in non-PD brains of a similar age. In this review article, we will provide an overview of human and animal studies investigating the contributions of iron in PD, a summary of human studies of iron-related genes in PD, a review of the literature on the genetics of iron metabolism, and some hypotheses on possible roles for iron in the pathogenic processes of PD including potential interactions between iron and other factors associated with Parkinson's disease.
Collapse
Affiliation(s)
- Shannon L Rhodes
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | |
Collapse
|
19
|
Intracellular localization and subsequent redistribution of metal transporters in a rat choroid plexus model following exposure to manganese or iron. Toxicol Appl Pharmacol 2008; 230:167-74. [PMID: 18420243 DOI: 10.1016/j.taap.2008.02.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 02/19/2008] [Accepted: 02/19/2008] [Indexed: 11/23/2022]
Abstract
Confocal microscopy was used to investigate the effects of manganese (Mn) and iron (Fe) exposure on the subcellular distribution of metal transporting proteins, i.e., divalent metal transporter 1 (DMT1), metal transporter protein 1 (MTP1), and transferrin receptor (TfR), in the rat intact choroid plexus which comprises the blood-cerebrospinal fluid barrier. In control tissue, DMT1 was concentrated below the apical epithelial membrane, MTP1 was diffuse within the cytosol, and TfR was distributed in vesicles around nuclei. Following Mn or Fe treatment (1 and 10 microM), the distribution of DMT1 was not affected. However, MTP1 and TfR moved markedly toward the apical pole of the cells. These shifts were abolished when microtubules were disrupted. Quantitative RT-PCR and Western blot analyses revealed a significant increase in mRNA and protein levels of TfR but not DMT1 and MTP1 after Mn exposure. These results suggest that early events in the tissue response to Mn or Fe exposure involve microtubule-dependent, intracellular trafficking of MTP1 and TfR. The intracellular trafficking of metal transporters in the choroid plexus following Mn exposure may partially contribute to Mn-induced disruption in Fe homeostasis in the cerebrospinal fluid (CSF) following Mn exposure.
Collapse
|
20
|
Johnston J, Prynne CJ, Stephen AM, Wadsworth MEJ. Haem and non-haem iron intake through 17 years of adult life of a British Birth Cohort. Br J Nutr 2007; 98:1021-8. [PMID: 17524184 PMCID: PMC3182539 DOI: 10.1017/s0007114507749255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An investigation was carried out to determine whether there were significant changes in the intake of haem and non-haem Fe of adult men and women in the UK from 1982 (aged 36 years) to 1999 (aged 53 years). The 1253 subjects studied were members of the Medical Research Council National Survey of Health and Development; a longitudinal study of a nationally representative cohort of births in 1946. Food intake was recorded in a 5-d diary at age 36 years in 1982, 43 years in 1989 and 53 years in 1999. Outcome measures were mean intakes of total Fe, haem and non-haem Fe, by year, gender and food source. There were significant changes in total Fe, haem Fe and non-haem Fe intake over the three time points. Total Fe intake was significantly higher in 1989 than in 1982 or 1999 for both men and women but haem Fe was significantly lower in 1999 mainly due to a 40% fall in haem Fe from beef during this period. Haem Fe from processed meats fell by more than 50% between 1989 and 1999 but that from poultry rose by more than 50%. Cereal foods remained the most important source of non-haem Fe and the contribution from breakfast cereals rose relative to that of bread over the 17 years. Several factors could be responsible for these changes, particularly the importance of the epidemic of BSE from 1990. The possible advantages of a lower haem Fe intake in older subjects are discussed.
Collapse
Affiliation(s)
- J. Johnston
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, UK
| | - C. J. Prynne
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, UK
- Corresponding author: Dr C. J. Prynne, fax +44 (0) 1223 437515,
| | - A. M. Stephen
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, UK
| | - M. E. J. Wadsworth
- MRC National Survey of Health and Development, University College and Royal Free Medical School, 1–19 Torrington Place, London WC1E 6BT, UK
| |
Collapse
|
21
|
Li GJ, Zhao Q, Zheng W. Alteration at translational but not transcriptional level of transferrin receptor expression following manganese exposure at the blood-CSF barrier in vitro. Toxicol Appl Pharmacol 2005; 205:188-200. [PMID: 15893546 PMCID: PMC3980884 DOI: 10.1016/j.taap.2004.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 10/05/2004] [Accepted: 10/06/2004] [Indexed: 12/01/2022]
Abstract
Manganese exposure alters iron homeostasis in blood and cerebrospinal fluid (CSF), possibly by acting on iron transport mechanisms localized at the blood-brain barrier and/or blood-CSF barrier. This study was designed to test the hypothesis that manganese exposure may change the binding affinity of iron regulatory proteins (IRPs) to mRNAs encoding transferrin receptor (TfR), thereby influencing iron transport at the blood-CSF barrier. A primary culture of choroidal epithelial cells was adapted to grow on a permeable membrane sandwiched between two culture chambers to mimic blood-CSF barrier. Trace (59)Fe was used to determine the transepithelial transport of iron. Following manganese treatment (100 microM for 24 h), the initial flux rate constant (K(i)) of iron was increased by 34%, whereas the storage of iron in cells was reduced by 58%, as compared to controls. A gel shift assay demonstrated that manganese exposure increased the binding of IRP1 and IRP2 to the stem loop-containing mRNAs. Consequently, the cellular concentrations of TfR proteins were increased by 84% in comparison to controls. Assays utilizing RT-PCR, quantitative real-time reverse transcriptase-PCR, and nuclear run off techniques showed that manganese treatment did not affect the level of heterogeneous nuclear RNA (hnRNA) encoding TfR, nor did it affect the level of nascent TfR mRNA. However, manganese exposure resulted in a significantly increased level of TfR mRNA and reduced levels of ferritin mRNA. Taken together, these results suggest that manganese exposure increases iron transport at the blood-CSF barrier; the effect is likely due to manganese action on translational events relevant to the production of TfR, but not due to its action on transcriptional, gene expression of TfR. The disrupted protein-TfR mRNA interaction in the choroidal epithelial cells may explain the toxicity of manganese at the blood-CSF barrier.
Collapse
Affiliation(s)
| | | | - Wei Zheng
- Corresponding author. Fax: +1 765 496 1377. (W. Zheng)
| |
Collapse
|
22
|
McGahan MC, Harned J, Mukunnemkeril M, Goralska M, Fleisher L, Ferrell JB. Iron alters glutamate secretion by regulating cytosolic aconitase activity. Am J Physiol Cell Physiol 2004; 288:C1117-24. [PMID: 15613494 DOI: 10.1152/ajpcell.00444.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate has many important physiological functions, including its role as a neurotransmitter in the retina and the central nervous system. We have made the novel observations that retinal pigment epithelial cells underlying and intimately interacting with the retina secrete glutamate and that this secretion is significantly affected by iron. In addition, iron increased secretion of glutamate in cultured lens and neuronal cells, indicating that this may be a common mechanism for the regulation of glutamate production in many cell types. The activity of the iron-dependent enzyme cytosolic aconitase (c-aconitase) is increased by iron. The conversion of citrate to isocitrate by c-aconitase is the first step in a three-step process leading to glutamate formation. In the present study, iron increased c-aconitase activity, and this increase was associated with an increase in glutamate secretion. Inhibition of c-aconitase by oxalomalate decreased glutamate secretion and completely inhibited the iron-induced increase in glutamate secretion. Derangements in both glutamate secretion and iron metabolism have been noted in neurological diseases and retinal degeneration. Our results are the first to provide a functional link between these two physiologically important substances by demonstrating a significant role for iron in the regulation of glutamate production and secretion in mammalian cells resulting from iron regulation of aconitase activity. Glutamatergic systems are found in many nonneuronal tissues. We provide the first evidence that, in addition to secreting glutamate, retinal pigment epithelial cells express the vesicular glutamate transporter VGLUT1 and that regulated vesicular release of glutamate from these cells can be inhibited by riluzole.
Collapse
Affiliation(s)
- M Christine McGahan
- Dept. of Molecular Biomedical Sciences, North Carolina State Univ., 4700 Hillsborough St., Raleigh, NC 27606, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Double KL, Gerlach M, Schünemann V, Trautwein AX, Zecca L, Gallorini M, Youdim MBH, Riederer P, Ben-Shachar D. Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem Pharmacol 2003; 66:489-94. [PMID: 12907248 DOI: 10.1016/s0006-2952(03)00293-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The vulnerability of the dopaminergic neurons of the substantia nigra (SN) in Parkinson's disease has been related to the presence of the pigment neuromelanin (NM) in these neurons. It is hypothesised that NM may act as an endogenous storage molecule for iron, an interaction suggested to influence free radical production. The current study quantified and characterised the interaction between NM and iron. Iron-binding studies demonstrated that both NM and synthetically-produced dopamine melanin contain equivalent numbers of high and low-affinity binding sites for iron but that the affinity of NM for iron is higher than that of synthetic melanin. Quantification of the total iron content in iron-loaded NM and synthetic melanin demonstrated that the iron-binding capacity of NM is 10-fold greater than that of the model melanin. This data was in agreement with the larger iron cluster size demonstrated by Mössbauer spectroscopy in the native pigment compared with the synthetic melanin. These findings are consistent with the hypothesis that NM may act as an endogenous iron-binding molecule in dopaminergic neurons of the SN in the human brain. The interaction between NM and iron has implications for disorders such as Parkinson's disease where an increase in iron in the SN is associated with increased indices of oxidative stress.
Collapse
Affiliation(s)
- Kay L Double
- Prince of Wales Medical Research Institute, University of New South Wales, Barker Street, Randwick, Sydney, NSW 2031, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Erlejman AG, Oteiza PI. The oxidant defense system in human neuroblastoma IMR-32 cells predifferentiation and postdifferentiation to neuronal phenotypes. Neurochem Res 2002; 27:1499-506. [PMID: 12512954 DOI: 10.1023/a:1021600522299] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Differentiated neurons were investigated for their susceptibility to oxidative damage based on variations in the oxidant defense system occurring during differentiation. The main antioxidant enzymes and substances in human neuroblastoma (IMR-32) cells were evaluated pre- and postdifferentiation to a neuronal phenotype. The activity of CuZn superoxide dismutase (CuZnSOD) and Mn superoxide dismutase (MnSOD) and the concentration of CuZnSOD were higher, but the activity and concentration of catalase were lower after differentiation. Differentiated cells had higher activity of glutathione peroxidase (GPx), lower concentration of total glutathione, a higher ratio of oxidised/reduced glutathione and lower activity of glucose-6-phosphate dehydrogenase than undifferentiated cells. We conclude that differentiated neuronal cells may be highly susceptible to oxidant-mediated damage based on the relative activities of the main antioxidant enzymes and on a limited capacity to synthesise and/or recycle glutathione.
Collapse
Affiliation(s)
- Alejandra G Erlejman
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|