1
|
Ledesma-Aparicio J, Mailloux-Salinas P, Arias-Chávez DJ, Campos-Pérez E, Calixto-Tlacomulco S, Cruz-Rangel A, Reyes-Grajeda JP, Bravo G. Transcriptomic Analysis of the Protective Effect of Piperine on Orlistat Hepatotoxicity in Obese Male Wistar Rats. J Biochem Mol Toxicol 2024; 38:e70040. [PMID: 39503200 DOI: 10.1002/jbt.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
Obesity is a risk factor for the development of noncommunicable diseases that impair the quality of life. Orlistat is one of the most widely used drugs in the management of obesity due to its accessibility and low cost. However, cases of hepatotoxicity have been reported due to the consumption of this drug. On the other hand, piperine is an alkaloid found in black pepper that has demonstrated antiobesity, antihyperlipidemic, antioxidant, prebiotic, and hepatoprotective effects. The aim of this study was to evaluate the protective effect of piperine on the toxicity of orlistat in liver tissue. Obese male rats were administered piperine (30 mg/kg), orlistat (60 mg/kg), and the orlistat-piperine combination (30 mg/kg + 60 mg/kg) daily for 6 weeks. It was observed that the orlistat-piperine treatment resulted in greater weight loss, decreased biochemical markers (lipid profile, liver enzymes, pancreatic lipase activity), and histopathological analysis showed decreased hepatic steatosis and reduction of duodenal inflammation. Transcriptomic analysis revealed that the administration of piperine with orlistat increased the expression of genes related to the beta-oxidation of fatty acids, carbohydrate metabolism, detoxification of xenobiotics, and response to oxidative stress. Therefore, the results suggest that the administration of orlistat-piperine activates signaling pathways that confer a hepatoprotective effect, reducing the toxic impact of this drug.
Collapse
Affiliation(s)
- Jessica Ledesma-Aparicio
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Patrick Mailloux-Salinas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - David Julian Arias-Chávez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Elihu Campos-Pérez
- Departamento de Patología, Hospital General Dra Matilde Petra Montoya Lafragua, ISSSTE, Mexico City, Mexico
| | - Sandra Calixto-Tlacomulco
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Armando Cruz-Rangel
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Juan Pablo Reyes-Grajeda
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Guadalupe Bravo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| |
Collapse
|
2
|
Cohen CF, Roh J, Lee SH, Park CK, Berta T. Targeting Nociceptive Neurons and Transient Receptor Potential Channels for the Treatment of Migraine. Int J Mol Sci 2023; 24:ijms24097897. [PMID: 37175602 PMCID: PMC10177956 DOI: 10.3390/ijms24097897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Migraine is a neurovascular disorder that affects approximately 12% of the global population. While its exact causes are still being studied, researchers believe that nociceptive neurons in the trigeminal ganglia play a key role in the pain signals of migraine. These nociceptive neurons innervate the intracranial meninges and convey pain signals from the meninges to the thalamus. Targeting nociceptive neurons is considered promising due to their accessibility and distinct molecular profile, which includes the expression of several transient receptor potential (TRP) channels. These channels have been linked to various pain conditions, including migraine. This review discusses the role and mechanisms of nociceptive neurons in migraine, the challenges of current anti-migraine drugs, and the evidence for well-studied and emerging TRP channels, particularly TRPC4, as novel targets for migraine prevention and treatment.
Collapse
Affiliation(s)
- Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jueun Roh
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
| |
Collapse
|
3
|
Rotchell JM, Jenner LC, Chapman E, Bennett RT, Bolanle IO, Loubani M, Sadofsky L, Palmer TM. Detection of microplastics in human saphenous vein tissue using μFTIR: A pilot study. PLoS One 2023; 18:e0280594. [PMID: 36724150 PMCID: PMC9891496 DOI: 10.1371/journal.pone.0280594] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/03/2023] [Indexed: 02/02/2023] Open
Abstract
Microplastics (MPs) are ubiquitous in the environment, in the human food chain, and have been recently detected in blood and lung tissues. To undertake a pilot analysis of MP contamination in human vein tissue samples with respect to their presence (if any), levels, and characteristics of any particles identified. This study analysed digested human saphenous vein tissue samples (n = 5) using μFTIR spectroscopy (size limitation of 5 μm) to detect and characterise any MPs present. In total, 20 MP particles consisting of five MP polymer types were identified within 4 of the 5 vein tissue samples with an unadjusted average of 29.28 ± 34.88 MP/g of tissue (expressed as 14.99 ± 17.18 MP/g after background subtraction adjustments). Of the MPs detected in vein samples, five polymer types were identified, of irregular shape (90%), with alkyd resin (45%), poly (vinyl propionate/acetate, PVAc (20%) and nylon-ethylene-vinyl acetate, nylon-EVA, tie layer (20%) the most abundant. While the MP levels within tissue samples were not significantly different than those identified within procedural blanks (which represent airborne contamination at time of sampling), they were comprised of different plastic polymer types. The blanks comprised n = 13 MP particles of four MP polymer types with the most abundant being polytetrafluoroethylene (PTFE), then polypropylene (PP), polyethylene terephthalate (PET) and polyfumaronitrile:styrene (FNS), with a mean ± SD of 10.4 ± 9.21, p = 0.293. This study reports the highest level of contamination control and reports unadjusted values alongside different contamination adjustment techniques. This is the first evidence of MP contamination of human vascular tissues. These results support the phenomenon of transport of MPs within human tissues, specifically blood vessels, and this characterisation of types and levels can now inform realistic conditions for laboratory exposure experiments, with the aim of determining vascular health impacts.
Collapse
Affiliation(s)
- Jeanette M. Rotchell
- Department of Biological and Marine Sciences, University of Hull, Hull, United Kingdom
- * E-mail:
| | - Lauren C. Jenner
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Emma Chapman
- Department of Biological and Marine Sciences, University of Hull, Hull, United Kingdom
| | - Robert T. Bennett
- Department of Cardiothoracic Surgery, Castle Hill Hospital, Cottingham, United Kingdom
| | - Israel Olapeju Bolanle
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Mahmoud Loubani
- Department of Cardiothoracic Surgery, Castle Hill Hospital, Cottingham, United Kingdom
| | - Laura Sadofsky
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Timothy M. Palmer
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, United Kingdom
| |
Collapse
|
4
|
Nascimento Da Conceicao V, Sun Y, Ramachandran K, Chauhan A, Raveendran A, Venkatesan M, DeKumar B, Maity S, Vishnu N, Kotsakis GA, Worley PF, Gill DL, Mishra BB, Madesh M, Singh BB. Resolving macrophage polarization through distinct Ca 2+ entry channel that maintains intracellular signaling and mitochondrial bioenergetics. iScience 2021; 24:103339. [PMID: 34816101 PMCID: PMC8591423 DOI: 10.1016/j.isci.2021.103339] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 01/21/2023] Open
Abstract
Transformation of naive macrophages into classically (M1) or alternatively (M2) activated macrophages regulates the inflammatory response. Here, we identified that distinct Ca2+ entry channels determine the IFNγ-induced M1 or IL-4-induced M2 transition. Naive or M2 macrophages exhibit a robust Ca2+ entry that was dependent on Orai1 channels, whereas the M1 phenotype showed a non-selective TRPC1 current. Blockade of Ca2+ entry suppresses pNF-κB/pJNK/STAT1 or STAT6 signaling events and consequently lowers cytokine production that is essential for M1 or M2 functions. Of importance, LPS stimulation shifted M2 cells from Orai1 toward TRPC1-mediated Ca2+ entry and TRPC1-/- mice exhibited transcriptional changes that suppress pro-inflammatory cytokines. In contrast, Orai1-/- macrophages showed a decrease in anti-inflammatory cytokines and exhibited a suppression of mitochondrial oxygen consumption rate and inhibited mitochondrial shape transition specifically in the M2 cells. Finally, alterations in TRPC1 or Orai1 expression determine macrophage polarization suggesting a distinct role of Ca2+ channels in modulating macrophage transformation.
Collapse
Affiliation(s)
| | - Yuyang Sun
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Karthik Ramachandran
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Arun Chauhan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Amritha Raveendran
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Manigandan Venkatesan
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Bony DeKumar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Soumya Maity
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Neelanjan Vishnu
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - George A. Kotsakis
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Paul F. Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Donald L. Gill
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
| | - Bibhuti B. Mishra
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Muniswamy Madesh
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Brij B. Singh
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Ahamad N, Sun Y, Nascimento Da Conceicao V, Xavier Paul Ezhilan CRD, Natarajan M, Singh BB. Differential activation of Ca 2+ influx channels modulate stem cell potency, their proliferation/viability and tissue regeneration. NPJ Regen Med 2021; 6:67. [PMID: 34671058 PMCID: PMC8528841 DOI: 10.1038/s41536-021-00180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022] Open
Abstract
Stem cells have indefinite self-renewable capability; however, factors that modulate their pluripotency/function are not fully identified. Here we show that store-dependent Ca2+ entry is essential for modulating the function of bone marrow-derived mesenchymal stem cells (MSCs). Increasing external Ca2+ modulated cell cycle progression that was critical for MSCs survival. Additionally, Ca2+ was critical for stem proliferation, its differentiation, and maintaining stem cell potential. Ca2+ channel characterization, including gene silencing, showed two distinct Ca2+ entry channels (through Orai1/TRPC1 or via Orai3) that differentially regulate the proliferation and viability of MSCs. Importantly, NFκB translocation, but not JNK/ERK into the nucleus, was observed upon store depletion, which was blocked by the addition of Ca2+ channel inhibitors. Radiation lead to a decrease in saliva secretion, decrease in acinar cell number, and enlarged ducts were observed, which were restored by the transplantation of stem cells that were propagated in higher Ca2+. Finally radiation showed a decrese in TRPC1 expression along with a decrese in AQP5, which was again restored upon MSC tranplantation. Together these results suggest that Ca2+ entry is essential for stem cell function that could be critical for regenerative medicine.
Collapse
Affiliation(s)
- Naseem Ahamad
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Caroline R D Xavier Paul Ezhilan
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Mohan Natarajan
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Brij B Singh
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
6
|
Increasing cytosolic Ca 2+ levels restore cell proliferation and stem cell potency in aged MSCs. Stem Cell Res 2021; 56:102560. [PMID: 34624617 PMCID: PMC8596392 DOI: 10.1016/j.scr.2021.102560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 11/24/2022] Open
Abstract
Aging is an inescapable complex physiological but extendable process, and all cells, including stem cells, are altered over time. Diverse mechanism(s) could modulate stem cell number, their proliferation rate, and promote tissue repair during aging that leads to longevity. However, the factors that could restore aging stem cell potency and would lead to healthy aging are not fully identified. Here we show that maintaining cytosolic Ca2+ levels was essential for modulating stem cells function in aged mesenchymal stem cells (MSCs). Increasing external Ca2+ induced spindle shape stem cell morphology and maintained stem cell surface marker expression in aged bone marrow-derived MSCs. Similarly, stem cell survival and proliferation of aged MSCs was dependent on cytosolic Ca2+ levels. Importantly, Ca2+ entry potentiated cell cycle progression, and stem cell potential was increased in cells incubated with higher external Ca2+. Moreover, blocking Ca2+ entry using SKF 96365, decreased stem cell survival and its proliferation but, treatment with 2-APB did not significantly affected cell proliferation, rather only modulated cell viability. Evaluation of Ca2+ entry channels, showed that TRPC1/Orai1/Orai3 and their regulator STIM1 was essential for MSCs proliferation/viability as gene silencing of Orai1/Orai3/TRPC1/STIM1 significantly inhibited stem cell viability. Finally, MSCs isolated from aged mice that were subjected to higher Ca2+ levels, were able to rescue age-induced loss of MSCs function. Together these results suggest that Ca2+ entry is essential for preventing the loss of aged stem cell function and supplementing Ca2+ not only restored their proliferative potential but, allowed them to develop into younger stem cell lineages that could be critical for regenerative medicine.
Collapse
|
7
|
Fafián-Labora JA, Morente-López M, de Toro FJ, Arufe MC. High-Throughput Screen Detects Calcium Signaling Dysfunction in Hutchinson-Gilford Progeria Syndrome. Int J Mol Sci 2021; 22:ijms22147327. [PMID: 34298947 PMCID: PMC8305791 DOI: 10.3390/ijms22147327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a deadly childhood disorder, which is considered a very rare disease. It is caused by an autosomal dominant mutation on the LMNA gene, and it is characterized by accelerated aging. Human cell lines from HGPS patients and healthy parental controls were studied in parallel using next-generation sequencing (NGS) to unravel new non-previously altered molecular pathways. Nine hundred and eleven transcripts were differentially expressed when comparing healthy versus HGPS cell lines from a total of 21,872 transcripts; ITPR1, ITPR3, CACNA2D1, and CAMK2N1 stood out among them due to their links with calcium signaling, and these were validated by Western blot analysis. It was observed that the basal concentration of intracellular Ca2+ was statistically higher in HGPS cell lines compared to healthy ones. The relationship between genes involved in Ca2+ signaling and mitochondria-associated membranes (MAM) was demonstrated through cytosolic calcium handling by means of an automated fluorescent plate reading system (FlexStation 3, Molecular Devices), and apoptosis and mitochondrial ROS production were examined by means of flow cytometry analysis. Altogether, our data suggest that the Ca2+ signaling pathway is altered in HGPS at least in part due to the overproduction of reactive oxygen species (ROS). Our results unravel a new therapeutic window for the treatment of this rare disease and open new strategies to study pathologies involving both accelerated and healthy aging.
Collapse
|
8
|
Ahamad N, Singh BB. Calcium channels and their role in regenerative medicine. World J Stem Cells 2021; 13:260-280. [PMID: 33959218 PMCID: PMC8080543 DOI: 10.4252/wjsc.v13.i4.260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cells hold indefinite self-renewable capability that can be differentiated into all desired cell types. Based on their plasticity potential, they are divided into totipotent (morula stage cells), pluripotent (embryonic stem cells), multipotent (hematopoietic stem cells, multipotent adult progenitor stem cells, and mesenchymal stem cells [MSCs]), and unipotent (progenitor cells that differentiate into a single lineage) cells. Though bone marrow is the primary source of multipotent stem cells in adults, other tissues such as adipose tissues, placenta, amniotic fluid, umbilical cord blood, periodontal ligament, and dental pulp also harbor stem cells that can be used for regenerative therapy. In addition, induced pluripotent stem cells also exhibit fundamental properties of self-renewal and differentiation into specialized cells, and thus could be another source for regenerative medicine. Several diseases including neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, virus infection (also coronavirus disease 2019) have limited success with conventional medicine, and stem cell transplantation is assumed to be the best therapy to treat these disorders. Importantly, MSCs, are by far the best for regenerative medicine due to their limited immune modulation and adequate tissue repair. Moreover, MSCs have the potential to migrate towards the damaged area, which is regulated by various factors and signaling processes. Recent studies have shown that extracellular calcium (Ca2+) promotes the proliferation of MSCs, and thus can assist in transplantation therapy. Ca2+ signaling is a highly adaptable intracellular signal that contains several components such as cell-surface receptors, Ca2+ channels/pumps/exchangers, Ca2+ buffers, and Ca2+ sensors, which together are essential for the appropriate functioning of stem cells and thus modulate their proliferative and regenerative capacity, which will be discussed in this review.
Collapse
Affiliation(s)
- Nassem Ahamad
- School of Dentistry, UT Health Science Center San Antonio, San Antonio, TX 78257, United States
| | - Brij B Singh
- School of Dentistry, UT Health Science Center San Antonio, San Antonio, TX 78257, United States
| |
Collapse
|
9
|
Abstract
The transient receptor potential (TRP) channel superfamily is comprised of a large group of cation-permeable channels, which display an extraordinary diversity of roles in sensory signaling and are involved in plethora of animal behaviors. These channels are activated through a wide variety of mechanisms and participate in virtually every sensory modality. Modulating TRP channel activity provides an important way to regulate membrane excitability and intracellular calcium levels. This is reflected by the fact that small molecule compounds modulating different TRPs have all entered clinical trials for a variety of diseases. The role of TRPs will be further elucidated in complex diseases of the nervous, intestinal, renal, urogenital, respiratory, and cardiovascular systems in diverse therapeutic areas including pain and itch, headache, pulmonary function, oncology, neurology, visceral organs, and genetic diseases. This review focuses on recent developments in the TRP ion channel-related area and highlights evidence supporting TRP channels as promising targets for new analgesic drugs for therapeutic intervention. This review presents a variety of: (1) phylogeny aspects of TRP channels; (2) some structural and functional characteristics of TRPs; (3) a general view and short characteristics of main seven subfamilies of TRP channels; (4) the evidence for consider TRP channels as therapeutic and analgesic targets; and finally (5) further perspectives of TRP channels research.
Collapse
|
10
|
Hwang SM, Lee JY, Park CK, Kim YH. The Role of TRP Channels and PMCA in Brain Disorders: Intracellular Calcium and pH Homeostasis. Front Cell Dev Biol 2021; 9:584388. [PMID: 33585474 PMCID: PMC7876282 DOI: 10.3389/fcell.2021.584388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Brain disorders include neurodegenerative diseases (NDs) with different conditions that primarily affect the neurons and glia in the brain. However, the risk factors and pathophysiological mechanisms of NDs have not been fully elucidated. Homeostasis of intracellular Ca2+ concentration and intracellular pH (pHi) is crucial for cell function. The regulatory processes of these ionic mechanisms may be absent or excessive in pathological conditions, leading to a loss of cell death in distinct regions of ND patients. Herein, we review the potential involvement of transient receptor potential (TRP) channels in NDs, where disrupted Ca2+ homeostasis leads to cell death. The capability of TRP channels to restore or excite the cell through Ca2+ regulation depending on the level of plasma membrane Ca2+ ATPase (PMCA) activity is discussed in detail. As PMCA simultaneously affects intracellular Ca2+ regulation as well as pHi, TRP channels and PMCA thus play vital roles in modulating ionic homeostasis in various cell types or specific regions of the brain where the TRP channels and PMCA are expressed. For this reason, the dysfunction of TRP channels and/or PMCA under pathological conditions disrupts neuronal homeostasis due to abnormal Ca2+ and pH levels in the brain, resulting in various NDs. This review addresses the function of TRP channels and PMCA in controlling intracellular Ca2+ and pH, which may provide novel targets for treating NDs.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Ji Yeon Lee
- Gil Medical Center, Department of Anesthesiology and Pain Medicine, Gachon University, Incheon, South Korea
| | - Chul-Kyu Park
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Yong Ho Kim
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
11
|
Roos BB, Teske JJ, Bhallamudi S, Pabelick CM, Sathish V, Prakash YS. Neurotrophin Regulation and Signaling in Airway Smooth Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:109-121. [PMID: 34019266 PMCID: PMC11042712 DOI: 10.1007/978-3-030-68748-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Structural and functional aspects of bronchial airways are key throughout life and play critical roles in diseases such as asthma. Asthma involves functional changes such as airway irritability and hyperreactivity, as well as structural changes such as enhanced cellular proliferation of airway smooth muscle (ASM), epithelium, and fibroblasts, and altered extracellular matrix (ECM) and fibrosis, all modulated by factors such as inflammation. There is now increasing recognition that disease maintenance following initial triggers involves a prominent role for resident nonimmune airway cells that secrete growth factors with pleiotropic autocrine and paracrine effects. The family of neurotrophins may be particularly relevant in this regard. Long recognized in the nervous system, classical neurotrophins such as brain-derived neurotrophic factor (BDNF) and nonclassical ligands such as glial-derived neurotrophic factor (GDNF) are now known to be expressed and functional in non-neuronal systems including lung. However, the sources, targets, regulation, and downstream effects are still under investigation. In this chapter, we discuss current state of knowledge and future directions regarding BDNF and GDNF in airway physiology and on pathophysiological contributions in asthma.
Collapse
Affiliation(s)
- Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Sun Y, Kamat A, Singh BB. Isoproterenol-Dependent Activation of TRPM7 Protects Against Neurotoxin-Induced Loss of Neuroblastoma Cells. Front Physiol 2020; 11:305. [PMID: 32390858 PMCID: PMC7193110 DOI: 10.3389/fphys.2020.00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/19/2020] [Indexed: 12/17/2022] Open
Abstract
Neuronal function and their survival depend on the activation of ion channels. Loss of ion channel function is known to induce neurodegenerative diseases such as Parkinson’s that exhibit loss of dopaminergic neurons; however, mechanisms that could limit neuronal loss are not yet fully identified. Our data suggest that neurotoxin-mediated loss of neuroblastoma SH-SY5Y cells is inhibited by the addition of β-adrenergic receptor (β-AR) agonist isoproterenol. The addition of isoproterenol to SHSY-5Y cells showed increased Mg2+ influx and cell survival in the presence of neurotoxin especially at higher concentration of isoproterenol. Importantly, isoproterenol potentiated transient receptor potential melastatin-7 (TRPM7) channel activation that leads to an increase in intracellular Mg2+ levels. The addition of 2APB, which is a known TRPM7 channel blocker, significantly decreased the TRPM7 function and inhibited isoproterenol-mediated protection against neurotoxins. Moreover, neurotoxins inhibited TRPM7 expression and function, but the restoration of TRPM7 expression increased neuroblastoma cell survival. In contrast, TRPM7 silencing increased cell loss, decreased Mg2+ homeostasis, and inhibited mitochondrial function. Moreover, isoproterenol treatment prevented neurotoxin-mediated loss of TRPM7 expression and inhibited Bax expression that induces cell survival. These effects were dependent on the neurotoxin-induced increase in oxidative stress, which inhibits TRPM7 expression and function. Together, our results suggest a positive role for β-AR in activating TRPM7 channels that regulate Mg2+ homeostasis and are essential for the survival of SH-SY5Y cells from neurotoxin.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Amrita Kamat
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Brij B Singh
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
13
|
Hong C, Jeong B, Park HJ, Chung JY, Lee JE, Kim J, Shin YC, So I. TRP Channels as Emerging Therapeutic Targets for Neurodegenerative Diseases. Front Physiol 2020; 11:238. [PMID: 32351395 PMCID: PMC7174697 DOI: 10.3389/fphys.2020.00238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
The development of treatment for neurodegenerative diseases (NDs) such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis is facing medical challenges due to the increasingly aging population. However, some pharmaceutical companies have ceased the development of therapeutics for NDs, and no new treatments for NDs have been established during the last decade. The relationship between ND pathogenesis and risk factors has not been completely elucidated. Herein, we review the potential involvement of transient receptor potential (TRP) channels in NDs, where oxidative stress and disrupted Ca2+ homeostasis consequently lead to neuronal apoptosis. Reactive oxygen species (ROS) -sensitive TRP channels can be key risk factors as polymodal sensors, since progressive late onset with secondary pathological damage after initial toxic insult is one of the typical characteristics of NDs. Recent evidence indicates that the dysregulation of TRP channels is a missing link between disruption of Ca2+ homeostasis and neuronal loss in NDs. In this review, we discuss the latest findings regarding TRP channels to provide insights into the research and quests for alternative therapeutic candidates for NDs. As the structures of TRP channels have recently been revealed by cryo-electron microscopy, it is necessary to develop new TRP channel antagonists and reevaluate existing drugs.
Collapse
Affiliation(s)
- Chansik Hong
- Department of Physiology, Chosun University School of Medicine, Gwangju, South Korea
| | - Byeongseok Jeong
- Department of Physiology, Chosun University School of Medicine, Gwangju, South Korea
| | - Hyung Joon Park
- Department of Physiology, Chosun University School of Medicine, Gwangju, South Korea
| | - Ji Yeon Chung
- Department of Neurology, Chosun University School of Medicine, Gwangju, South Korea
| | - Jung Eun Lee
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Jinsung Kim
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Young-Cheul Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Insuk So
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
14
|
Role of the TRPC1 Channel in Hippocampal Long-Term Depression and in Spatial Memory Extinction. Int J Mol Sci 2020; 21:ijms21051712. [PMID: 32138218 PMCID: PMC7084652 DOI: 10.3390/ijms21051712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Group I metabotropic glutamate receptors (mGluR) are involved in various forms of synaptic plasticity that are believed to underlie declarative memory. We previously showed that mGluR5 specifically activates channels containing TRPC1, an isoform of the canonical family of Transient Receptor Potential channels highly expressed in the CA1-3 regions of the hippocampus. Using a tamoxifen-inducible conditional knockout model, we show here that the acute deletion of the Trpc1 gene alters the extinction of spatial reference memory. mGluR-induced long-term depression, which is partially responsible for memory extinction, was impaired in these mice. Similar results were obtained in vitro and in vivo by inhibiting the channel by its most specific inhibitor, Pico145. Among the numerous known postsynaptic pathways activated by type I mGluR, we observed that the deletion of Trpc1 impaired the activation of ERK1/2 and the subsequent expression of Arc, an immediate early gene that plays a key role in AMPA receptors endocytosis and subsequent long-term depression.
Collapse
|
15
|
Kougioumoutzakis A, Pelletier JG, Laplante I, Khlaifia A, Lacaille JC. TRPC1 mediates slow excitatory synaptic transmission in hippocampal oriens/alveus interneurons. Mol Brain 2020; 13:12. [PMID: 31996247 PMCID: PMC6988362 DOI: 10.1186/s13041-020-0558-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Hippocampal GABAergic interneurons play key roles in regulating principal cell activity and plasticity. Interneurons located in stratum oriens/alveus (O/A INs) receive excitatory inputs from CA1 pyramidal cells and express a Hebbian form of long-term potentiation (LTP) at their excitatory input synapses. This LTP requires the activation of metabotropic glutamate receptors 1a (mGluR1a) and Ca2+ entry via transient receptor potential (TRP) channels. However, the type of TRP channels involved in synaptic transmission at these synapses remains largely unknown. Using patch-clamp recordings, we show that slow excitatory postsynaptic currents (EPSCs) evoked in O/A INs are dependent on TRP channels but may be independent of phospholipase C. Using reverse transcription polymerase chain reaction (RT-PCR) we found that mRNA for TRPC 1, 3–7 was present in CA1 hippocampus. Using single-cell RT-PCR, we found expression of mRNA for TRPC 1, 4–7, but not TRPC3, in O/A INs. Using co-immunoprecipitation assays in HEK-293 cell expression system, we found that TRPC1 and TRPC4 interacted with mGluR1a. Co-immunoprecipitation in hippocampus showed that TRPC1 interacted with mGluR1a. Using immunofluorescence, we found that TRPC1 co-localized with mGluR1a in O/A IN dendrites, whereas TRPC4 localization appeared limited to O/A IN cell body. Down-regulation of TRPC1, but not TRPC4, expression in O/A INs using small interfering RNAs prevented slow EPSCs, suggesting that TRPC1 is an obligatory TRPC subunit for these EPSCs. Our findings uncover a functional role of TRPC1 in mGluR1a-mediated slow excitatory synaptic transmission onto O/A INs that could be involved in Hebbian LTP at these synapses.
Collapse
Affiliation(s)
- André Kougioumoutzakis
- Department of Neurosciences and GRSNC, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Montreal, QC, H3C 3J7, Canada
| | - Joe Guillaume Pelletier
- Department of Neurosciences and GRSNC, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Montreal, QC, H3C 3J7, Canada
| | - Isabel Laplante
- Department of Neurosciences and GRSNC, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Montreal, QC, H3C 3J7, Canada
| | - Abdessattar Khlaifia
- Department of Neurosciences and GRSNC, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Montreal, QC, H3C 3J7, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences and GRSNC, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
16
|
Hong C, Choi SH, Kwak M, Jeong B, Ko J, Park HJ, Choi S, Jun JY, So I. TRPC5 channel instability induced by depalmitoylation protects striatal neurons against oxidative stress in Huntington's disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118620. [PMID: 31812495 DOI: 10.1016/j.bbamcr.2019.118620] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 12/15/2022]
Abstract
Protein S-palmitoylation, the covalent lipid modification of the side chain of Cys residues with the 16‑carbon fatty acid palmitate, is the most common acylation, and it enhances the membrane stability of ion channels. This post-translational modification (PTM) determines a functional mechanism of ion channel life cycle from maturation and membrane trafficking to localization. Especially, neurodevelopment is regulated by balancing the level of synaptic protein palmitoylation/depalmitoylation. Recently, we revealed the pathological role of the transient receptor potential canonical type 5 (TRPC5) channel in striatal neuronal loss during Huntington's disease (HD), which is abnormally activated by oxidative stress. Here, we report a mechanism of TRPC5 palmitoylation at a conserved cysteine residue, that is critical for intrinsic channel activity. Furthermore, we identified the therapeutic effect of TRPC5 depalmitoylation by enhancing the TRPC5 membrane instability on HD striatal cells in order to lower TRPC5 toxicity. Collectively, these findings suggest that controlling S-palmitoylation of the TRPC5 channel as a potential risk factor can modulate TRPC5 channel expression and activity, providing new insights into a therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Chansik Hong
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea.
| | - Seo Hwa Choi
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea
| | - Misun Kwak
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Byeongseok Jeong
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea
| | - Juyeon Ko
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Hyung Joon Park
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea
| | - Seok Choi
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea
| | - Jae Yeoul Jun
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea
| | - Insuk So
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul 03080, South Korea.
| |
Collapse
|
17
|
Du Q, Liao Q, Chen C, Yang X, Xie R, Xu J. The Role of Transient Receptor Potential Vanilloid 1 in Common Diseases of the Digestive Tract and the Cardiovascular and Respiratory System. Front Physiol 2019; 10:1064. [PMID: 31496955 PMCID: PMC6712094 DOI: 10.3389/fphys.2019.01064] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/02/2019] [Indexed: 01/30/2023] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1), a member of the transient receptor potential vanilloid (TRPV) channel family, is a nonselective cation channel that is widely expressed in sensory nerve fibers and nonneuronal cells, including certain vascular endothelial cells and smooth muscle cells. The activation of TRPV1 may be involved in the regulation of various physiological functions, such as the release of inflammatory mediators in the body, gastrointestinal motility function, and temperature regulation. In recent years, a large number of studies have revealed that TRPV1 plays an important role in the physiological and pathological conditions of the digestive system, cardiovascular system, and respiratory system, but there is no systematic report on TRPV1. The objective of this review is to explain the function and effects of TRPV1 on specific diseases, such as irritable bowel syndrome, hypertension, and asthma, and to further investigate the intrinsic relationship between the expression and function of TRPV1 in those diseases to find new therapeutic targets for the cure of related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
TRPC-mediated Ca 2+ signaling and control of cellular functions. Semin Cell Dev Biol 2019; 94:28-39. [PMID: 30738858 DOI: 10.1016/j.semcdb.2019.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
Abstract
Canonical members of the TRP superfamily of ion channels have long been recognized as key elements of Ca2+ handling in a plethora of cell types. The emerging role of TRPC channels in human physiopathology has generated considerable interest in their pharmacological targeting, which requires detailed understanding of their molecular function. Although consent has been reached that receptor-phospholipase C (PLC) pathways and generation of lipid mediators constitute the prominent upstream signaling process that governs channel activity, multimodal sensing features of TRPC complexes have been demonstrated repeatedly. Downstream signaling by TRPC channels is similarly complex and involves the generation of local and global cellular Ca2+ rises, which are well-defined in space and time to govern specific cellular functions. These TRPC-mediated Ca2+ signals rely in part on Ca2+ permeation through the channels, but are essentially complemented by secondary mechanisms such as Ca2+ mobilization from storage sites and Na+/Ca2+ exchange, which involve coordinated interaction with signaling partners. Consequently, the control of cell functions by TRPC molecules is critically determined by dynamic assembly and subcellular targeting of the TRPC complexes. The very recent availability of high-resolution structure information on TRPC channel complexes has paved the way towards a comprehensive understanding of signal transduction by TRPC channels. Here, we summarize current concepts of cation permeation in TRPC complexes, TRPC-mediated shaping of cellular Ca2+ signals and the associated control of specific cell functions.
Collapse
|
19
|
Peixoto-Neves D, Soni H, Adebiyi A. Oxidant-induced increase in norepinephrine secretion from PC12 cells is dependent on TRPM8 channel-mediated intracellular calcium elevation. Biochem Biophys Res Commun 2018; 506:709-715. [PMID: 30376995 DOI: 10.1016/j.bbrc.2018.10.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Reactive oxygen species (ROS) modulate neuronal function, including plasticity and neurotransmitter biosynthesis and release. The cellular mechanisms that underlie redox modulation of neurotransmission are not fully resolved, but potential pathways include ROS-induced alterations in Ca2+ signaling in nerve terminals. In this study, we show that cold-sensitive receptor TRPM8 is activated by pro-oxidant tert-butyl hydroperoxide (tBHP). Polymerase chain reaction, Western immunoblotting, and immunofluorescence indicated that TRPM8 channels are expressed in rat pheochromocytoma 12 (PC12) cells, a phenotypic model of sympathetic neurosecretion when differentiated with nerve growth factor. WS-12, a selective TRPM8 channel agonist, and tBHP increased intracellular Ca2+ concentration in differentiated PC12 cells; an effect attenuated by AMTB, a selective TRPM8 channel blocker, and siRNA-mediated TRPM8 knockdown. Blockade of TRPM8 channels also reduced WS-12- and tBHP-evoked norepinephrine secretion from the cells. These data suggest that TRPM8 channels contribute to oxidant-induced neurotransmission in PC12 cells.
Collapse
Affiliation(s)
| | - Hitesh Soni
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
20
|
Lepannetier S, Gualdani R, Tempesta S, Schakman O, Seghers F, Kreis A, Yerna X, Slimi A, de Clippele M, Tajeddine N, Voets T, Bon RS, Beech DJ, Tissir F, Gailly P. Activation of TRPC1 Channel by Metabotropic Glutamate Receptor mGluR5 Modulates Synaptic Plasticity and Spatial Working Memory. Front Cell Neurosci 2018; 12:318. [PMID: 30271326 PMCID: PMC6149316 DOI: 10.3389/fncel.2018.00318] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023] Open
Abstract
Group I metabotropic glutamate receptors, in particular mGluR5, have been implicated in various forms of synaptic plasticity that are believed to underlie declarative memory. We observed that mGluR5 specifically activated a channel containing TRPC1, an isoform of the canonical family of transient receptor potential (TRPC) channels highly expressed in CA1-3 regions of the hippocampus. TRPC1 is able to form tetrameric complexes with TRPC4 and/or TRPC5 isoforms. TRPC1/4/5 complexes have recently been involved in the efficiency of synaptic transmission in the hippocampus. We therefore used a mouse model devoid of TRPC1 expression to investigate the involvement of mGluR5-TRPC1 pathway in synaptic plasticity and memory formation. Trpc1-/- mice showed alterations in spatial working memory and fear conditioning. Activation of mGluR increased synaptic excitability in neurons from WT but not from Trpc1-/- mice. LTP triggered by a theta burst could not maintain over time in brain slices from Trpc1-/- mice. mGluR-induced LTD was also impaired in these mice. Finally, acute inhibition of TRPC1 by Pico145 on isolated neurons or on brain slices mimicked the genetic depletion of Trpc1 and inhibited mGluR-induced entry of cations and subsequent effects on synaptic plasticity, excluding developmental or compensatory mechanisms in Trpc1-/- mice. In summary, our results indicate that TRPC1 plays a role in synaptic plasticity and spatial working memory processes.
Collapse
Affiliation(s)
- Sophie Lepannetier
- Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Roberta Gualdani
- Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Sabrina Tempesta
- Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Schakman
- Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - François Seghers
- Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Anna Kreis
- Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Xavier Yerna
- Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Amina Slimi
- Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Marie de Clippele
- Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas Tajeddine
- Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research (VIB-KU Leuven Center for Brain & Disease Research), Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, KU Leuven, Leuven, Belgium
| | - Robin S Bon
- School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Fadel Tissir
- Developmental Neurobiology Group, Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Philippe Gailly
- Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
21
|
Wu J, Ryskamp D, Birnbaumer L, Bezprozvanny I. Inhibition of TRPC1-Dependent Store-Operated Calcium Entry Improves Synaptic Stability and Motor Performance in a Mouse Model of Huntington's Disease. J Huntingtons Dis 2018; 7:35-50. [PMID: 29480205 PMCID: PMC6309623 DOI: 10.3233/jhd-170266] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. We previously discovered that mutant Huntingtin sensitizes type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1) to InsP3. This causes calcium leakage from the endoplasmic reticulum (ER) and a compensatory increase in neuronal store-operated calcium (nSOC) entry. We previously demonstrated that supranormal nSOC leads to synaptic loss in striatal medium spiny neurons (MSNs) in YAC128 HD mice. OBJECTIVE We sought to identify calcium channels supporting supranormal nSOC in HD MSNs and to validate these channels as potential therapeutic targets for HD. METHODS Cortico-striatal cultures were established from wild type and YAC128 HD mice and the density of MSN spines was quantified. The expression of candidate nSOC components was suppressed by RNAi knockdown and by CRISPR/Cas9 knockout. TRPC1 knockout mice were crossed with YAC128 HD mice for evaluation of motor performance in a beamwalk assay. RESULTS RNAi-mediated knockdown of TRPC1, TRPC6, Orai1, or Orai2, but not other TRPC isoforms or Orai3, rescued the density of YAC128 MSN spines. Knockdown of stromal interaction molecule 1 (STIM1), an ER calcium sensor and nSOC activator, also rescued YAC128 MSN spines. Knockdown of the same targets suppressed supranormal nSOC in YAC128 MSN spines. These channel subunits co-immunoprecipitated with STIM1 and STIM2 in synaptosomal lysates from mouse striata. Crossing YAC128 mice with TRPC1 knockout mice improved motor performance and rescued MSN spines in vitro and in vivo, indicating that inhibition of TRPC1 may serve as a neuroprotective strategy for HD treatment. CONCLUSIONS TRPC1 channels constitute a potential therapeutic target for treatment of HD.
Collapse
Affiliation(s)
- Jun Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel Ryskamp
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lutz Birnbaumer
- Neurobiology Laboratory, NIEHS, Research Triangle Park, NC, USA
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
22
|
Sukumaran P, Sun Y, Schaar A, Selvaraj S, Singh BB. TRPC Channels and Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 976:85-94. [PMID: 28508315 DOI: 10.1007/978-94-024-1088-4_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder, which involves degeneration of dopaminergic neurons that are present in the substantia nigra pars compacta (SNpc) region. Many factors have been identified that could lead to Parkinson's disease; however, almost all of them are directly or indirectly dependent on Ca2+ signaling. Importantly, though disturbances in Ca2+ homeostasis have been implicated in Parkinson's disease and other neuronal diseases, the identity of the calcium channel remains elusive. Members of the transient receptor potential canonical (TRPC) channel family have been identified as a new class of Ca2+ channels, and it could be anticipated that these channels could play important roles in neurodegenerative diseases, especially in PD. Thus, in this chapter we have entirely focused on TRPC channels and elucidated its role in PD.
Collapse
Affiliation(s)
- Pramod Sukumaran
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Yuyang Sun
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Anne Schaar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Senthil Selvaraj
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Brij B Singh
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA.
| |
Collapse
|
23
|
Sun Y, Sukumaran P, Selvaraj S, Cilz NI, Schaar A, Lei S, Singh BB. TRPM2 Promotes Neurotoxin MPP +/MPTP-Induced Cell Death. Mol Neurobiol 2016; 55:409-420. [PMID: 27957685 DOI: 10.1007/s12035-016-0338-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
Abstract
In neurons, Ca2+ is essential for a variety of physiological processes that regulate gene transcription to neuronal growth and their survival. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ions (MPP+) are potent neurotoxins that selectively destroys the dopaminergic (DA) neurons and mimics Parkinson's disease (PD) like symptoms, but the mechanism as how MPP+/MPTP effects DA neuron survival is not well-understood. In the present study, we found that MPP+ treatment increased the level of reactive oxygen species (ROS) that activates and upregulates the expression and function of melastatin-like transient receptor potential (TRPM) subfamily member, melastatin-like transient receptor potential channel 2 (TRPM2). Correspondingly, TRPM2 expression was also increased in substantia nigra of MPTP-induced PD mouse model and PD patients. ROS-mediated activation of TRPM2 resulted in an increased intracellular Ca2+, which in turn promoted cell death in SH-SY5Y cells. Intracellular Ca2+ overload caused by MPP+-induced ROS also affected calpain activity, followed by increased caspase 3 activities and activation of downstream apoptotic pathway. On the other hand, quenching of H2O2 by antioxidants, resveratrol (RSV), or N-acetylcysteine (NAC) effectively blocked TRPM2-mediated Ca2+ influx, decreased intracellular Ca2+ overload, and increased cell survival. Importantly, pharmacological inhibition of TRPM2 or knockdown of TRPM2 using siRNA, but not control siRNA, showed an increased protection by preventing MPP+-induced Ca2+ increase and inhibited apoptosis. Taken together, we show here a novel role for TRPM2 expression and function in MPP+-induced dopaminergic neuronal cell death.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Pramod Sukumaran
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Senthil Selvaraj
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Nicholas I Cilz
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Anne Schaar
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Saobo Lei
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Brij B Singh
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA.
| |
Collapse
|
24
|
Cholinergic and glutamatergic transmission at synapses between pedunculopotine tegmental nucleus axonal terminals and A7 catecholamine cell group noradrenergic neurons in the rat. Neuropharmacology 2016; 110:237-250. [PMID: 27422407 DOI: 10.1016/j.neuropharm.2016.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 06/23/2016] [Accepted: 07/11/2016] [Indexed: 11/20/2022]
Abstract
We characterized transmission from the pedunculopotine tegmental nucleus (PPTg), which contains cholinergic and glutamatergic neurons, at synapses with noradrenergic (NAergic) A7 neurons. Injection of an anterograde neuronal tracer, biotinylated-dextran amine, into the PPTg resulted in labeling of axonal terminals making synaptic connection with NAergic A7 neurons. Consistent with this, extracellular stimulation using a train of 10 pulses at 100 Hz evoked both fast and slow excitatory synaptic currents (EPSCs) that were blocked, respectively, by DNQX, a non-N-methyl-d-aspartate receptor blocker, or atropine, a cholinergic muscarinic receptor (mAChR) blocker. Interestingly, many spontaneous-like, but stimulation-dependent, EPSCs, were seen for up to one second after the end of stimulation and were blocked by DNQX and decreased by EGTA-AM, a membrane permeable form of EGTA, showing they are glutamatergic EPSCs causing by asynchronous release of vesicular quanta. Moreover, application of atropine or carbachol, an mAChR agonist, caused, respectively, an increase in the number of asynchronous EPSCs or a decrease in the frequency of miniature EPSCs, showing that mAChRs mediated presynaptic inhibition of glutamatergic transmission of the PPTg onto NAergic A7 neurons. In conclusion, our data show direct synaptic transmission of PPTg afferents onto pontine NAergic neurons that involves cooperation of cholinergic and glutamatergic transmission. This dual-transmitter transmission drives the firing rate of NAergic neurons, which may correlate with axonal and somatic/dendritic release of NA.
Collapse
|
25
|
Transient Receptor Potential-canonical 1 is Essential for Environmental Enrichment-Induced Cognitive Enhancement and Neurogenesis. Mol Neurobiol 2016; 54:1992-2002. [DOI: 10.1007/s12035-016-9758-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
26
|
Perspectives of TRPV1 Function on the Neurogenesis and Neural Plasticity. Neural Plast 2016; 2016:1568145. [PMID: 26881090 PMCID: PMC4736371 DOI: 10.1155/2016/1568145] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023] Open
Abstract
The development of new strategies to renew and repair neuronal networks using neural plasticity induced by stem cell graft could enable new therapies to cure diseases that were considered lethal until now. In adequate microenvironment a neuronal progenitor must receive molecular signal of a specific cellular context to determine fate, differentiation, and location. TRPV1, a nonselective calcium channel, is expressed in neurogenic regions of the brain like the subgranular zone of the hippocampal dentate gyrus and the telencephalic subventricular zone, being valuable for neural differentiation and neural plasticity. Current data show that TRPV1 is involved in several neuronal functions as cytoskeleton dynamics, cell migration, survival, and regeneration of injured neurons, incorporating several stimuli in neurogenesis and network integration. The function of TRPV1 in the brain is under intensive investigation, due to multiple places where it has been detected and its sensitivity for different chemical and physical agonists, and a new role of TRPV1 in brain function is now emerging as a molecular tool for survival and control of neural stem cells.
Collapse
|
27
|
Becker EBE. The Moonwalker mouse: new insights into TRPC3 function, cerebellar development, and ataxia. THE CEREBELLUM 2015; 13:628-36. [PMID: 24797279 PMCID: PMC4155175 DOI: 10.1007/s12311-014-0564-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Moonwalker (Mwk) mouse is a recent model of dominantly inherited cerebellar ataxia. The motor phenotype of the Mwk mouse is due to a gain-of-function mutation in the gene encoding the cation-permeable transient receptor potential channel (TRPC3). This mutation converts a threonine into an alanine in the highly conserved cytoplasmic S4–S5 linker of the channel, affecting channel gating. TRPC3 is highly expressed in cerebellar Purkinje cells and type II unipolar brush cells that both degenerate in the Mwk mouse. Studies of the Mwk mouse have provided new insights into the role of TRPC3 in cerebellar development and disease, which could not have been predicted from the Trpc3 knockout phenotype. Here, the genetic, behavioral, histological, and functional characterization of the Mwk mouse is reviewed. Moreover, the relationship of the Mwk mutant to other cerebellar mouse models and its relevance as a model for cerebellar ataxia are discussed.
Collapse
Affiliation(s)
- Esther B E Becker
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK,
| |
Collapse
|
28
|
Scanlon CS, Banerjee R, Inglehart RC, Liu M, Russo N, Hariharan A, van Tubergen EA, Corson SL, Asangani IA, Mistretta CM, Chinnaiyan AM, D'Silva NJ. Galanin modulates the neural niche to favour perineural invasion in head and neck cancer. Nat Commun 2015; 6:6885. [PMID: 25917569 PMCID: PMC4476386 DOI: 10.1038/ncomms7885] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/09/2015] [Indexed: 02/07/2023] Open
Abstract
Perineural invasion (PNI) is an indicator of poor survival in multiple cancers. Unfortunately, there is no targeted treatment for PNI since the molecular mechanisms are largely unknown. PNI is an active process, suggesting that cancer cells communicate with nerves. However, nerve-tumour crosstalk is understudied due to the lack of in vivo models to investigate the mechanisms. Here, we developed an in vivo model of PNI to characterise this interaction. We show that the neuropeptide galanin (GAL) initiates nerve-tumour crosstalk via activation of its G-protein-coupled receptor, GALR2. Our data reveal a novel mechanism by which GAL from nerves stimulates GALR2 on cancer cells to induce NFATC2-mediated transcription of cyclooxygenase-2 and GAL. Prostaglandin E2 promotes cancer invasion, and in a feedback mechanism, GAL released by cancer induces neuritogenesis, facilitating PNI. This study describes a novel in vivo model for PNI and reveals the dynamic interaction between nerve and cancer.
Collapse
Affiliation(s)
- Christina Springstead Scanlon
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA
| | - Rajat Banerjee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA
| | - Ronald C Inglehart
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA
| | - Min Liu
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA
| | - Nickole Russo
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA
| | - Amirtha Hariharan
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA
| | - Elizabeth A van Tubergen
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA
| | - Sara L Corson
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA
| | - Irfan A Asangani
- 1] Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA [2] Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA [3] Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Charlotte M Mistretta
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA
| | - Arul M Chinnaiyan
- 1] Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA [2] Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA [3] Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Nisha J D'Silva
- 1] Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA [2] Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA [3] Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
29
|
Bon RS, Beech DJ. In pursuit of small molecule chemistry for calcium-permeable non-selective TRPC channels -- mirage or pot of gold? Br J Pharmacol 2014; 170:459-74. [PMID: 23763262 DOI: 10.1111/bph.12274] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/29/2013] [Accepted: 05/09/2013] [Indexed: 12/21/2022] Open
Abstract
The primary purpose of this review is to address the progress towards small molecule modulators of human Transient Receptor Potential Canonical proteins (TRPC1, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7). These proteins generate channels for calcium and sodium ion entry. They are relevant to many mammalian cell types including acinar gland cells, adipocytes, astrocytes, cardiac myocytes, cochlea hair cells, endothelial cells, epithelial cells, fibroblasts, hepatocytes, keratinocytes, leukocytes, mast cells, mesangial cells, neurones, osteoblasts, osteoclasts, platelets, podocytes, smooth muscle cells, skeletal muscle and tumour cells. There are broad-ranging positive roles of the channels in cell adhesion, migration, proliferation, survival and turning, vascular permeability, hypertrophy, wound-healing, hypo-adiponectinaemia, angiogenesis, neointimal hyperplasia, oedema, thrombosis, muscle endurance, lung hyper-responsiveness, glomerular filtration, gastrointestinal motility, pancreatitis, seizure, innate fear, motor coordination, saliva secretion, mast cell degranulation, cancer cell drug resistance, survival after myocardial infarction, efferocytosis, hypo-matrix metalloproteinase, vasoconstriction and vasodilatation. Known small molecule stimulators of the channels include hyperforin, genistein and rosiglitazone, but there is more progress with inhibitors, some of which have promising potency and selectivity. The inhibitors include 2-aminoethoxydiphenyl borate, 2-aminoquinolines, 2-aminothiazoles, fatty acids, isothiourea derivatives, naphthalene sulfonamides, N-phenylanthranilic acids, phenylethylimidazoles, piperazine/piperidine analogues, polyphenols, pyrazoles and steroids. A few of these agents are starting to be useful as tools for determining the physiological and pathophysiological functions of TRPC channels. We suggest that the pursuit of small molecule modulators for TRPC channels is important but that it requires substantial additional effort and investment before we can reap the rewards of highly potent and selective pharmacological modulators.
Collapse
Affiliation(s)
- Robin S Bon
- School of Chemistry, University of Leeds, Leeds, UK
| | | |
Collapse
|
30
|
Hong C, Kwak M, Myeong J, Ha K, Wie J, Jeon JH, So I. Extracellular disulfide bridges stabilize TRPC5 dimerization, trafficking, and activity. Pflugers Arch 2014; 467:703-12. [PMID: 24859801 DOI: 10.1007/s00424-014-1540-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/04/2014] [Accepted: 05/16/2014] [Indexed: 12/01/2022]
Abstract
Crucial cysteine residues can be involved in the modulation of protein activity via the modification of thiol (-SH) groups. Among these reactions, disulfide bonds (S-S) play a key role in the folding, stability, and activity of membrane proteins. However, the regulation of extracellular cysteines in classical transient receptor potential (TRPC) channels remains controversial. Here, we examine the functional importance of the extracellular disulfide bond in TRPC5 in modulating channel gating and trafficking. Specifically, we investigated TRPC5 activity in transiently transfected HEK293 cells with wild-type (WT) or cysteine (C553 and C558) mutants in the pore loop. Using reducing agents, we determined that a disulfide linkage mediates the tetrameric formation of the TRPC5 channel. By measuring the TRPC5 current, we observed that C553S or C558S mutants completely lose channel activity induced by lanthanides or receptor stimulation. Co-expression of TRPC5 (WT) with mutants demonstrated a dominant-negative function in mutants, which inhibited the activity of TRPC5 (WT). We generated TRPC5-TRPC5 dimers and observed reduced activity of WT-mutant (C553S or C558S) dimers compared to WT-WT dimers. When pretreated with reducing agents for 12 h, the TRPC5 current decreased due to a reduction in membrane TRPC5 distribution. In addition, we identified a reduced expression of C553S mutant in plasma membrane. We analyzed a dimeric interaction of wild-type and mutant TRPC5 using co-immunoprecipitation and FRET method, indicating a weak interaction between dimeric partners. These results indicated that the disulfide bond between conserved extracellular cysteines, especially C553, is essential for functional TRPC5 activity by channel multimerization and trafficking.
Collapse
Affiliation(s)
- Chansik Hong
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, South Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Physiological Function and Characterization of TRPCs in Neurons. Cells 2014; 3:455-75. [PMID: 24852263 PMCID: PMC4092863 DOI: 10.3390/cells3020455] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/22/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022] Open
Abstract
Ca2+ entry is essential for regulating vital physiological functions in all neuronal cells. Although neurons are engaged in multiple modes of Ca2+ entry that regulates variety of neuronal functions, we will only discuss a subset of specialized Ca2+-permeable non-selective Transient Receptor Potential Canonical (TRPC) channels and summarize their physiological and pathological role in these excitable cells. Depletion of endoplasmic reticulum (ER) Ca2+ stores, due to G-protein coupled receptor activation, has been shown to activate TRPC channels in both excitable and non-excitable cells. While all seven members of TRPC channels are predominately expressed in neuronal cells, the ion channel properties, mode of activation, and their physiological responses are quite distinct. Moreover, many of these TRPC channels have also been suggested to be associated with neuronal development, proliferation and differentiation. In addition, TRPCs also regulate neurosecretion, long-term potentiation and synaptic plasticity. Similarly, perturbations in Ca2+ entry via the TRPC channels have been also suggested in a spectrum of neuropathological conditions. Hence, understanding the precise involvement of TRPCs in neuronal function and in neurodegenerative conditions would presumably unveil avenues for plausible therapeutic interventions for these devastating neuronal diseases.
Collapse
|
32
|
Prakash YS, Martin RJ. Brain-derived neurotrophic factor in the airways. Pharmacol Ther 2014; 143:74-86. [PMID: 24560686 DOI: 10.1016/j.pharmthera.2014.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 12/13/2022]
Abstract
In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, United States; Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, United States.
| | - Richard J Martin
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, United States
| |
Collapse
|
33
|
Abstract
Channelopathies are a heterogeneous group of disorders resulting from the dysfunction of ion channels located in the membranes of all cells and many cellular organelles. These include diseases of the nervous system (e.g., generalized epilepsy with febrile seizures plus, familial hemiplegic migraine, episodic ataxia, and hyperkalemic and hypokalemic periodic paralysis), the cardiovascular system (e.g., long QT syndrome, short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia), the respiratory system (e.g., cystic fibrosis), the endocrine system (e.g., neonatal diabetes mellitus, familial hyperinsulinemic hypoglycemia, thyrotoxic hypokalemic periodic paralysis, and familial hyperaldosteronism), the urinary system (e.g., Bartter syndrome, nephrogenic diabetes insipidus, autosomal-dominant polycystic kidney disease, and hypomagnesemia with secondary hypocalcemia), and the immune system (e.g., myasthenia gravis, neuromyelitis optica, Isaac syndrome, and anti-NMDA [N-methyl-D-aspartate] receptor encephalitis). The field of channelopathies is expanding rapidly, as is the utility of molecular-genetic and electrophysiological studies. This review provides a brief overview and update of channelopathies, with a focus on recent advances in the pathophysiological mechanisms that may help clinicians better understand, diagnose, and develop treatments for these diseases.
Collapse
Affiliation(s)
- June-Bum Kim
- Department of Pediatrics, Seoul Children's Hospital, Seoul, Korea
| |
Collapse
|
34
|
Sheng L, Leshchyns'ka I, Sytnyk V. Cell adhesion and intracellular calcium signaling in neurons. Cell Commun Signal 2013; 11:94. [PMID: 24330678 PMCID: PMC3878801 DOI: 10.1186/1478-811x-11-94] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/05/2013] [Indexed: 01/10/2023] Open
Abstract
Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed.
Collapse
Affiliation(s)
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
35
|
Shabani M, Mahnam A, Sheibani V, Janahmadi M. Alterations in the Intrinsic Burst Activity of Purkinje Neurons in Offspring Maternally Exposed to the CB1 Cannabinoid Agonist WIN 55212-2. J Membr Biol 2013; 247:63-72. [DOI: 10.1007/s00232-013-9612-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
|
36
|
Vohra PK, Thompson MA, Sathish V, Kiel A, Jerde C, Pabelick CM, Singh BB, Prakash YS. TRPC3 regulates release of brain-derived neurotrophic factor from human airway smooth muscle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2953-2960. [PMID: 23899746 DOI: 10.1016/j.bbamcr.2013.07.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/21/2013] [Accepted: 07/23/2013] [Indexed: 12/31/2022]
Abstract
Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca(2+) signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca(2+) entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP-BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20ng/ml, 48h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca(2+) (EGTA; 1mM) or intracellular Ca(2+) (BAPTA; 5μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca(2+) influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca(2+) and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.
Collapse
Affiliation(s)
- Pawan K Vohra
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Michael A Thompson
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Venkatachalem Sathish
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Alexander Kiel
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Calvin Jerde
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Brij B Singh
- Department of Biochemistry and Molecular Biology, University of North Dakota, 264 Centennial Dr, Grand Forks, ND 58202, USA
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| |
Collapse
|
37
|
Linde CI, Feng B, Wang JB, Golovina VA. Histidine triad nucleotide-binding protein 1 (HINT1) regulates Ca(2+) signaling in mouse fibroblasts and neuronal cells via store-operated Ca(2+) entry pathway. Am J Physiol Cell Physiol 2013; 304:C1098-104. [PMID: 23576580 DOI: 10.1152/ajpcell.00073.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent findings indicate that histidine triad nucleotide-binding protein 1 (HINT1) is implicated in the pathophysiology of certain psychiatric disorders and also exhibits tumor suppressor properties. However, the authentic functions of HINT1 in cellular physiology and especially its role in Ca(2+) signaling remain unclear. Here, we studied Ca(2+) signaling in cultured embryonic fibroblasts derived from wild-type control and HINT1 knockout (KO) mice. The resting cytosolic Ca(2+) level (measured with fura-2) was not altered in fibroblasts lacking HINT1. The stored Ca(2+) evaluated by measuring peak amplitude of ATP (10 μM)-induced Ca(2+) transients in Ca(2+)-free medium was significantly larger in HINT1 KO fibroblasts than in wild-type cells. Ca(2+) influx after external Ca(2+) restoration, likely via store- and receptor-operated channels (SOCs and ROCs, respectively), was greatly (by 2-fold) reduced in HINT1 KO fibroblasts. This correlated with a downregulated expression of Orai1 and stromal interacting molecule 1 (STIM1), essential components of store-operated Ca(2+) entry pathway. Expression of canonical transient receptor potential (TRPC)3 and TRPC6, which function as ROCs, was not altered in HINT1 KO fibroblasts. Immunoblots also revealed that Orai1 was downregulated by twofold in brain lysates of HINT1 KO mice compared with the wild-type littermates. Importantly, silencer RNA knockdown of HINT1 in Neuro-2A cells markedly downregulated Orai1 and STIM1 protein expression and significantly (by 2.5-fold) reduced ATP-induced Ca(2+) influx, while ATP-evoked Ca(2+) release was not changed. Thus the study demonstrates a novel function of HINT1 that involves the regulation of SOC-mediated Ca(2+) entry pathway (Orai1 and STIM1), essential for regulation of cellular Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Cristina I Linde
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
38
|
Song H, Thompson SM, Blaustein MP. Nanomolar ouabain augments Ca2+ signalling in rat hippocampal neurones and glia. J Physiol 2013; 591:1671-89. [PMID: 23297310 DOI: 10.1113/jphysiol.2012.248336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Linkage of certain neurological diseases to Na(+) pump mutations and some mood disorders to altered Na(+) pump function has renewed interest in brain Na(+) pumps. We tested nanomolar ouabain on Ca(2+) signalling (fura-2) in rat hippocampal neurone-astrocyte co-cultures. The neurones and astrocytes express Na(+) pumps with a high-ouabain-affinity catalytic subunit (α3 and α2, respectively); both also express pumps with a ouabain-resistant α1 subunit. Neurones and astrocytes were identified by immunocytochemistry and by stimulation; 3-4 μM L-glutamate (Glu) and 3 μM carbachol (CCh) evoked rapid Ca(2+) transients only in neurones, and small, delayed transients in some astrocytes, whereas 0.5-1 μM ATP evoked Ca(2+) transients only in astrocytes. Both cell types responded to 5-10 μM Glu or ATP. The signals evoked by 3-4 μM Glu in neurones were markedly inhibited by 3-10 μm MPEP (blocks metabotropic glutamate receptor mGluR5) and 10 μm LY341495 (non-selective mGluR blocker), but not by 80 μm AP5 (NMDA receptor blocker) or by selective block of mGluR1 or mGluR2. Pre-incubation (0.5-10 min) with 1-10 nm ouabain (EC50 < 1 nm) augmented Glu- and CCh-evoked signals in neurones. This augmentation was abolished by a blocker of the Na(+)-Ca(2+) exchanger, SEA0400 (300 nm). Ouabain (3 nm) pre-incubation also augmented 10 μM cyclopiazonic acid plus 10 mm caffeine-evoked release of Ca(2+) from the neuronal endoplasmic reticulum (ER). The implication is that nanomolar ouabain inhibits α3 Na(+) pumps, increases (local) intracellular Na(+), and promotes Na(+)-Ca(2+) exchanger-mediated Ca(2+) gain and increased storage in the adjacent ER. Ouabain (3 nm) also increased ER Ca(2+) release and enhanced 0.5 μM ATP-evoked transients in astrocytes; these effects were mediated by α2 Na(+) pumps. Thus, nanomolar ouabain may strongly influence synaptic transmission in the brain as a result of its actions on the high-ouabain-affinity Na(+) pumps in both neurones and astrocytes. The significance of these effects is heightened by the evidence that ouabain is endogenous in mammals.
Collapse
Affiliation(s)
- Hong Song
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
39
|
Nagy GA, Botond G, Borhegyi Z, Plummer NW, Freund TF, Hájos N. DAG-sensitive and Ca(2+) permeable TRPC6 channels are expressed in dentate granule cells and interneurons in the hippocampal formation. Hippocampus 2012. [PMID: 23193081 DOI: 10.1002/hipo.22081] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Members of the transient receptor potential (TRP) cation channel family play important roles in several neuronal functions. To understand the precise role of these channels in information processing, their presence on neuronal elements must be revealed. In this study, we investigated the localization of TRPC6 channels in the adult hippocampal formation. Immunostainings with a specific antibody, which was validated in Trpc6 knockout mice, showed that in the dentate gyrus, TRPC6 channels are strongly expressed in granule cells. Immunogold staining revealing the subcellular localization of TRPC6 channels clarified that these proteins were predominantly present on the membrane surface of the dendritic shafts of dentate granule cells, and also in their axons, often associated with intracellular membrane cisternae. In addition, TRPC6 channels could be observed in the dendrites of some interneurons. Double immunofluorescent staining showed that TRPC6 channels were present in the dendrites of hilar interneurons and hippocampal interneurons with horizontal dendrites in the stratum oriens expressing mGlu1a receptors, whereas parvalbumin immunoreactivity was revealed in TRPC6-expressing dendrites with radial appearance in the stratum radiatum. Electron microscopy showed that the immunogold particles depicting TRPC6 channels were located on the surface membranes of the interneuron dendrites. Our results suggest that TRPC6 channels are in a key position to alter the information entry into the trisynaptic loop of the hippocampal formation from the entorhinal cortex, and to control the function of both feed-forward and feed-back inhibitory circuits in this brain region. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gergő A Nagy
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
40
|
Heys JG, Schultheiss NW, Shay CF, Tsuno Y, Hasselmo ME. Effects of acetylcholine on neuronal properties in entorhinal cortex. Front Behav Neurosci 2012; 6:32. [PMID: 22837741 PMCID: PMC3402879 DOI: 10.3389/fnbeh.2012.00032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 06/07/2012] [Indexed: 11/13/2022] Open
Abstract
The entorhinal cortex (EC) receives prominent cholinergic innervation from the medial septum and the vertical limb of the diagonal band of Broca (MSDB). To understand how cholinergic neurotransmission can modulate behavior, research has been directed toward identification of the specific cellular mechanisms in EC that can be modulated through cholinergic activity. This review focuses on intrinsic cellular properties of neurons in EC that may underlie functions such as working memory, spatial processing, and episodic memory. In particular, the study of stellate cells (SCs) in medial entorhinal has resulted in discovery of correlations between physiological properties of these neurons and properties of the unique spatial representation that is demonstrated through unit recordings of neurons in medial entorhinal cortex (mEC) from awake-behaving animals. A separate line of investigation has demonstrated persistent firing behavior among neurons in EC that is enhanced by cholinergic activity and could underlie working memory. There is also evidence that acetylcholine plays a role in modulation of synaptic transmission that could also enhance mnemonic function in EC. Finally, the local circuits of EC demonstrate a variety of interneuron physiology, which is also subject to cholinergic modulation. Together these effects alter the dynamics of EC to underlie the functional role of acetylcholine in memory.
Collapse
Affiliation(s)
- James G. Heys
- Graduate Program for Neuroscience, Center for Memory and Brain, Boston UniversityBoston, MA, USA
| | | | | | | | | |
Collapse
|
41
|
Nelson C, Glitsch MD. Lack of kinase regulation of canonical transient receptor potential 3 (TRPC3) channel-dependent currents in cerebellar Purkinje cells. J Biol Chem 2011; 287:6326-35. [PMID: 22207762 DOI: 10.1074/jbc.m111.246553] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Canonical transient receptor potential (TRPC) channels are widely expressed in the brain and play several roles in development and normal neuronal function. In the cerebellum, Purkinje cell TRPC3 channels underlie the slow excitatory postsynaptic potential observed after parallel fiber stimulation. In these cells TRPC3 channel opening requires stimulation of metabotropic glutamate receptor 1, activation of which can also lead to the induction of long term depression (LTD), which underlies cerebellar motor learning. LTD induction requires protein kinase C (PKC) and protein kinase G (PKG) activation, and although PKC phosphorylation targets are well established, virtually nothing is known about PKG targets in LTD. Because TRPC3 channels are inhibited after phosphorylation by PKC and PKG in expression systems, we examined whether native TRPC3 channels in Purkinje cells are a target for PKG or PKC, thereby contributing to cerebellar LTD. We find that in Purkinje cells, activation of TRPC3-dependent currents is not inhibited by conventional PKC or PKG to any significant extent and that inhibition of these kinases does not significantly impact on TRPC3-mediated currents either. Based on these and previous findings, we propose that TRPC3-dependent currents may differ significantly in their regulation from those overexpressed in expression systems.
Collapse
Affiliation(s)
- Charmaine Nelson
- Department of Physiology, Anatomy, and Genetics, Sherrington Building, Parks Road, Oxford Univerity, Oxford OX1 3PT, United Kingdom
| | | |
Collapse
|
42
|
Storch U, Forst AL, Philipp M, Gudermann T, Mederos y Schnitzler M. Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes. J Biol Chem 2011; 287:3530-40. [PMID: 22157757 DOI: 10.1074/jbc.m111.283218] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Specific biological roles of the classical transient receptor potential channel 1 (TRPC1) are still largely elusive. To investigate the function of TRPC1 proteins in cell physiology, we studied heterologously expressed TRPC1 channels and found that recombinant TRPC1 subunits do not form functional homomeric channels. Instead, by electrophysiological analysis TRPC1 was shown to form functional heteromeric, receptor-operated channel complexes with TRPC3, -4, -5, -6, and -7 indicating that TRPC1 proteins can co-assemble with all members of the TRPC subfamily. In all TRPC1-containing heteromers, TRPC1 subunits significantly decreased calcium permeation. The exchange of select amino acids in the putative pore-forming region of TRPC1 further reduced calcium permeability, suggesting that TRPC1 subunits contribute to the channel pore. In immortalized immature gonadotropin-releasing hormone neurons endogenously expressing TRPC1, -2, -5, and -6, down-regulation of TRPC1 resulted in increased calcium permeability and elevated basal cytosolic calcium concentrations. We did not observe any involvement of TRPC1 in store-operated cation influx. Notably, TRPC1 suppressed the migration of gonadotropin-releasing hormone neurons without affecting cell proliferation. Conversely, in TRPC1 knockdown neurons, specific migratory properties like distance covered, locomotion speed, and directionality were increased. These findings suggest a novel regulatory mechanism relying on the expression of TRPC1 and the subsequent formation of heteromeric TRPC channel complexes with reduced calcium permeability, thereby fine-tuning neuronal migration.
Collapse
Affiliation(s)
- Ursula Storch
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians University, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|