1
|
Thomas M, Day H, Petersen B, Marchant T, Jones C, Singh Y, Chan B. Accuracy of Wireless Pulse Oximeter on Preterm or <2.5 kg Infants. Am J Perinatol 2024; 41:e1606-e1612. [PMID: 37072015 DOI: 10.1055/s-0043-1768068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
OBJECTIVE Monitoring heart rate (HR) and oxygen saturation (SpO2) in infants is essential in the neonatal intensive care unit. Wireless pulse oximeter technology has been advancing but with limited accuracy data on preterm infants. This observational study compared HR and SpO2 of the wireless Owlet Smart Sock 3 (OSS3) to the wired Masimo SET (Masimo) pulse oximeter in preterm or <2.5 kg infants. STUDY DESIGN Twenty-eight eligible infants were enrolled. They weighed between 1.7 and 2.5 kg and were without anomalies or medical instability. OSS3 and Masimo simultaneously monitored HR and SpO2 for 60 minutes. The data were aligned by time epoch and filtered for poor tracings. The agreement was compared using the Pearson's correlation coefficient, the Bland-Altman method, average root mean square (ARMS), and prevalence and bias adjusted kappa (PABAK) analyses. RESULTS Two infants' data were excluded due to motion artifacts or device failures. The corrected gestational age and current weights were 35 ± 3 weeks and 2.0 ± 0.2 kg (mean ± standard deviation), respectively. Over 21 hours of data showed that HR was strongly correlated between the two devices (r = 0.98, p < 0.001), with a difference of -1.3 beats per minute (bpm) and the limit of agreement (LOA) -6.3 to 3.4 bpm based on the Bland-Altman method. SpO2 was positively correlated between the two devices (r = 0.71, p < 0.001) with a SpO2 bias of 0.3% (LOA: -4.6 to 4.5%). The estimated ARMS of OSS3 compared with Masimo was 2.3% for SpO2 in the 70 to 100% range. The precision decreased with lower SpO2. A strong agreement (PABAK = 0.94) was between the two devices on whether SpO2 was above or below 90%. CONCLUSION OSS3 provided comparable HR and SpO2 accuracy to Masimo in preterm or <2.5 kg infants. Motion artifacts, lack of arterial blood gas comparisons, and lack of racial and ethnic diversity are the study limitations. More OSS3 data on the Lower HR and SpO2 ranges were needed before implementing inpatient use. KEY POINTS · Pulse oximeters are vital for monitoring preterm infants' HR and SpO2 levels.. · Limited data exist on the accuracy of the wireless OSS3 on preterm infants.. · This observational study found that the OSS3 is comparable to the Masimo SET in measuring HR and SpO2 in preterm or <2.5 kg infants..
Collapse
Affiliation(s)
- Micaela Thomas
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Heather Day
- Department of Statistics, University of Utah, Salt Lake City, Utah
- Department of Data Science and Fireware, Owlet Baby Care Inc., Lehi, Utah
| | - Brandy Petersen
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Trisha Marchant
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Cory Jones
- Department of Data Science and Fireware, Owlet Baby Care Inc., Lehi, Utah
| | - Yogen Singh
- Division of Neonatology, Loma Linda School of Medicine, Loma Linda, California
- Departments of Neonatology and Pediatric Cardiology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Belinda Chan
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| |
Collapse
|
2
|
Stafford IG, Lai NM, Tan K. Automated oxygen delivery for preterm infants with respiratory dysfunction. Cochrane Database Syst Rev 2023; 11:CD013294. [PMID: 38032241 PMCID: PMC10688253 DOI: 10.1002/14651858.cd013294.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
BACKGROUND Many preterm infants require respiratory support to maintain an optimal level of oxygenation, as oxygen levels both below and above the optimal range are associated with adverse outcomes. Optimal titration of oxygen therapy for these infants presents a major challenge, especially in neonatal intensive care units (NICUs) with suboptimal staffing. Devices that offer automated oxygen delivery during respiratory support of neonates have been developed since the 1970s, and individual trials have evaluated their effectiveness. OBJECTIVES To assess the benefits and harms of automated oxygen delivery systems, embedded within a ventilator or oxygen delivery device, for preterm infants with respiratory dysfunction who require respiratory support or supplemental oxygen therapy. SEARCH METHODS We searched CENTRAL, MEDLINE, CINAHL, and clinical trials databases without language or publication date restrictions on 23 January 2023. We also checked the reference lists of retrieved articles for other potentially eligible trials. SELECTION CRITERIA We included randomised controlled trials and randomised cross-over trials that compared automated oxygen delivery versus manual oxygen delivery, or that compared different automated oxygen delivery systems head-to-head, in preterm infants (born before 37 weeks' gestation). DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our main outcomes were time (%) in desired oxygen saturation (SpO2) range, all-cause in-hospital mortality by 36 weeks' postmenstrual age, severe retinopathy of prematurity (ROP), and neurodevelopmental outcomes at approximately two years' corrected age. We expressed our results using mean difference (MD), standardised mean difference (SMD), and risk ratio (RR) with 95% confidence intervals (CIs). We used GRADE to assess the certainty of evidence. MAIN RESULTS We included 18 studies (27 reports, 457 infants), of which 13 (339 infants) contributed data to meta-analyses. We identified 13 ongoing studies. We evaluated three comparisons: automated oxygen delivery versus routine manual oxygen delivery (16 studies), automated oxygen delivery versus enhanced manual oxygen delivery with increased staffing (three studies), and one automated system versus another (two studies). Most studies were at low risk of bias for blinding of personnel and outcome assessment, incomplete outcome data, and selective outcome reporting; and half of studies were at low risk of bias for random sequence generation and allocation concealment. However, most were at high risk of bias in an important domain specific to cross-over trials, as only two of 16 cross-over trials provided separate outcome data for each period of the intervention (before and after cross-over). Automated oxygen delivery versus routine manual oxygen delivery Automated delivery compared with routine manual oxygen delivery probably increases time (%) in the desired SpO2 range (MD 13.54%, 95% CI 11.69 to 15.39; I2 = 80%; 11 studies, 284 infants; moderate-certainty evidence). No studies assessed in-hospital mortality. Automated oxygen delivery compared to routine manual oxygen delivery may have little or no effect on risk of severe ROP (RR 0.24, 95% CI 0.03 to 1.94; 1 study, 39 infants; low-certainty evidence). No studies assessed neurodevelopmental outcomes. Automated oxygen delivery versus enhanced manual oxygen delivery There may be no clear difference in time (%) in the desired SpO2 range between infants who receive automated oxygen delivery and infants who receive manual oxygen delivery (MD 7.28%, 95% CI -1.63 to 16.19; I2 = 0%; 2 studies, 19 infants; low-certainty evidence). No studies assessed in-hospital mortality, severe ROP, or neurodevelopmental outcomes. Revised closed-loop automatic control algorithm (CLACfast) versus original closed-loop automatic control algorithm (CLACslow) CLACfast allowed up to 120 automated adjustments per hour, whereas CLACslow allowed up to 20 automated adjustments per hour. CLACfast may result in little or no difference in time (%) in the desired SpO2 range compared to CLACslow (MD 3.00%, 95% CI -3.99 to 9.99; 1 study, 19 infants; low-certainty evidence). No studies assessed in-hospital mortality, severe ROP, or neurodevelopmental outcomes. OxyGenie compared to CLiO2 Data from a single small study were presented as medians and interquartile ranges and were not suitable for meta-analysis. AUTHORS' CONCLUSIONS Automated oxygen delivery compared to routine manual oxygen delivery probably increases time in desired SpO2 ranges in preterm infants on respiratory support. However, it is unclear whether this translates into important clinical benefits. The evidence on clinical outcomes such as severe retinopathy of prematurity are of low certainty, with little or no differences between groups. There is insufficient evidence to reach any firm conclusions on the effectiveness of automated oxygen delivery compared to enhanced manual oxygen delivery or CLACfast compared to CLACslow. Future studies should include important short- and long-term clinical outcomes such as mortality, severe ROP, bronchopulmonary dysplasia/chronic lung disease, intraventricular haemorrhage, periventricular leukomalacia, patent ductus arteriosus, necrotising enterocolitis, and long-term neurodevelopmental outcomes. The ideal study design for this evaluation is a parallel-group randomised controlled trial. Studies should clearly describe staffing levels, especially in the manual arm, to enable an assessment of reproducibility according to resources in various settings. The data of the 13 ongoing studies, when made available, may change our conclusions, including the implications for practice and research.
Collapse
Affiliation(s)
| | - Nai Ming Lai
- School of Medicine, Taylor's University, Subang Jaya, Malaysia
| | - Kenneth Tan
- Department of Paediatrics, Monash University, Melbourne, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| |
Collapse
|
3
|
MacFarlane PM, Martin RJ, Di Fiore JM, Raffay TM, Tatsuoka C, Chen Z, Minich N, Quintas G, Sánchez-Illana Á, Kuligowski J, Piñeiro-Ramos JD, Vento M, Hibbs AM. Plasma serotonergic biomarkers are associated with hypoxemia events in preterm neonates. Pediatr Res 2023; 94:1436-1443. [PMID: 37188799 PMCID: PMC11414210 DOI: 10.1038/s41390-023-02620-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/15/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Hypoxemia is a physiological manifestation of immature respiratory control in preterm neonates, which is likely impacted by neurotransmitter imbalances. We investigated relationships between plasma levels of the neurotransmitter serotonin (5-HT), metabolites of tryptophan (TRP), and parameters of hypoxemia in preterm neonates. METHODS TRP, 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), and kynurenic acid (KA) were analyzed in platelet-poor plasma at ~1 week and ~1 month of life from a prospective cohort of 168 preterm neonates <31 weeks gestational age (GA). Frequency of intermittent hypoxemia (IH) events and percent time hypoxemic (<80%) were analyzed in a 6 h window after the blood draw. RESULTS At 1 week, infants with detectable plasma 5-HT had fewer IH events (OR (95% CI) = 0.52 (0.29, 0.31)) and less percent time <80% (OR (95% CI) = 0.54 (0.31, 0.95)) compared to infants with undetectable 5-HT. A similar relationship occurred at 1 month. At 1 week, infants with higher KA showed greater percent time <80% (OR (95% CI) = 1.90 (1.03, 3.50)). TRP, 5-HIAA or KA were not associated with IH frequency at either postnatal age. IH frequency and percent time <80% were positively associated with GA < 29 weeks. CONCLUSIONS Circulating neuromodulators 5-HT and KA might represent biomarkers of immature respiratory control contributing to hypoxemia in preterm neonates. IMPACT Hypoxemia events are frequent in preterm infants and are associated with poor outcomes. Mechanisms driving hypoxemia such as immature respiratory control may include central and peripheral imbalances in modulatory neurotransmitters. This study found associations between the plasma neuromodulators serotonin and kynurenic acid and parameters of hypoxemia in preterm neonates. Imbalances in plasma biomarkers affecting respiratory control may help identify neonates at risk of short- and long-term adverse outcomes.
Collapse
Affiliation(s)
- Peter Mathew MacFarlane
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA.
| | - Richard John Martin
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Juliann Marie Di Fiore
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas Michael Raffay
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Curtis Tatsuoka
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Zhengyi Chen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Nori Minich
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Guillermo Quintas
- Health and Biomedicine, Leitat Technological Center, Carrer de la Innovació, 2, 08225, Terrassa, Spain
- Analytical Unit, Health Research Institute La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Ángel Sánchez-Illana
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
- Department of Analytical Chemistry, Chemistry Faculty, Universtitat de València, Burjassot, Spain
| | - Julia Kuligowski
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
| | - José David Piñeiro-Ramos
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
| | - Maximo Vento
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
| | - Anna Maria Hibbs
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Mandala VK, Bollaboina SKY, Changala B, Kotha R, Kasula L. Intermittent Hypoxia in Preterm Neonates and Its Effect on Neonatal Morbidity and Mortality: A Systematic Review. Cureus 2023; 15:e45561. [PMID: 37868466 PMCID: PMC10586711 DOI: 10.7759/cureus.45561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The goal of the present systematic review was to investigate the occurrence patterns of intermittent hypoxemia in newborns throughout the early postnatal period as well as the link between neonatal intermittent hypoxemia exposure and harmful consequences such as neonatal morbidity and death. We collected data from 2014 to 2023 using several abstracting, referencing, and indexing database libraries in the field of medical sciences. A total of 715 papers were evaluated by both authors, and only seven articles met the specified review criteria after a thorough analysis. In preterm neonates with intermittent hypoxia (IH), severe morbidities such as bronchopulmonary dysplasia (BPD), retinopathy of prematurity (ROP), motor impairment, and cognitive delay were found. Only one study that extended to 18 months noted mortality. The length and occurrence of intermittent hypoxemia and the stage of premature neonates at the time of delivery are all closely associated with these morbidities. Therefore, it becomes important to continuously measure the patterns of occurrence of intermittent hypoxemia during early postnatal life to avoid its long-term morbidity and mortality impact.
Collapse
Affiliation(s)
| | | | | | - Rakesh Kotha
- Neonatology, Osmania Medical College, Hyderabad, IND
| | | |
Collapse
|
5
|
Marcelino M, Cai CL, Wadowski S, Aranda JV, Beharry KD. Biomarkers of lung alveolarization and microvascular maturation in response to intermittent hypoxia and/or early antioxidant/fish oil supplementation in neonatal rats. Pediatr Pulmonol 2023; 58:2352-2363. [PMID: 37265429 PMCID: PMC10463793 DOI: 10.1002/ppul.26495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/11/2023] [Accepted: 05/14/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE Extremely preterm infants experience frequent intermittent hypoxia (IH) episodes during oxygen therapy which causes significant damage to the lungs and curtails important signaling pathways that regulate normal lung alveolarization and microvascular maturation. We tested the hypothesis that early supplementation with fish oil and/or antioxidants in rats exposed to neonatal IH improves expression of lung biomarkers of alveolarization and microvascular maturation, and reduces IH-induced lung injury. STUDY DESIGN/METHODS From birth (P0) to P14, rat pups were exposed to room air (RA) or neonatal IH during which they received daily oral supplementation with either: (1) olive oil (OO) (control); (2) Coenzyme Q10 (CoQ10) in OO; (3) fish oil; (4) glutathione nanoparticles (nGSH); or (5) fish oil +CoQ10. At P14 pups were placed in RA until P21 with no further treatment. RA controls were similarly treated. Lung growth and alveolarization, histopathology, apoptosis, oxidative stress and biomarkers of alveolarization and microvascular maturation were determined. RESULTS Neonatal IH was associated with reduced lung weights and severe histopathological outcomes. These effects were curtailed with fish oil and nGSH. nGSH was also protective against apoptosis, while CoQ10 prevented IH-induced ROS production. Of all treatments, nGSH and CoQ10 + fish oil-induced vascular endothelial growth factor165 and CD31 (Platelet endothelial cell adhesion molecule-1), which are associated with angiogenesis. CoQ10 + fish oil improved alveolarization in RA and IH despite evidence of hemorrhage. CONCLUSIONS The benefits of nGSH and CoQ10 + fish oil suggest an antioxidant effect which may be required to curtail IH-induced lung injury. Further clinical assessment of the effectiveness of nGSH is warranted.
Collapse
Affiliation(s)
- Matthew Marcelino
- State University of New York Downstate Health Sciences University, College of Medicine, Brooklyn, NY 11203
| | - Charles L. Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| | - Stephen Wadowski
- Department of Pediatrics, Division of Pediatric Pulmonology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| | - Jacob V. Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| | - Kay D. Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| |
Collapse
|
6
|
Ambalavanan N, Weese-Mayer DE, Hibbs AM, Claure N, Carroll JL, Moorman JR, Bancalari E, Hamvas A, Martin RJ, Di Fiore JM, Indic P, Kemp JS, Dormishian A, Krahn KN, Qiu J, Dennery PA, Ratcliffe SJ, Troendle JF, Lake DE. Cardiorespiratory Monitoring Data to Predict Respiratory Outcomes in Extremely Preterm Infants. Am J Respir Crit Care Med 2023; 208:79-97. [PMID: 37219236 PMCID: PMC10870840 DOI: 10.1164/rccm.202210-1971oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: Immature control of breathing is associated with apnea, periodic breathing, intermittent hypoxemia, and bradycardia in extremely preterm infants. However, it is not clear if such events independently predict worse respiratory outcome. Objectives: To determine if analysis of cardiorespiratory monitoring data can predict unfavorable respiratory outcomes at 40 weeks postmenstrual age (PMA) and other outcomes, such as bronchopulmonary dysplasia at 36 weeks PMA. Methods: The Prematurity-related Ventilatory Control (Pre-Vent) study was an observational multicenter prospective cohort study including infants born at <29 weeks of gestation with continuous cardiorespiratory monitoring. The primary outcome was either "favorable" (alive and previously discharged or inpatient and off respiratory medications/O2/support at 40 wk PMA) or "unfavorable" (either deceased or inpatient/previously discharged on respiratory medications/O2/support at 40 wk PMA). Measurements and Main Results: A total of 717 infants were evaluated (median birth weight, 850 g; gestation, 26.4 wk), 53.7% of whom had a favorable outcome and 46.3% of whom had an unfavorable outcome. Physiologic data predicted unfavorable outcome, with accuracy improving with advancing age (area under the curve, 0.79 at Day 7, 0.85 at Day 28 and 32 wk PMA). The physiologic variable that contributed most to prediction was intermittent hypoxemia with oxygen saturation as measured by pulse oximetry <90%. Models with clinical data alone or combining physiologic and clinical data also had good accuracy, with areas under the curve of 0.84-0.85 at Days 7 and 14 and 0.86-0.88 at Day 28 and 32 weeks PMA. Intermittent hypoxemia with oxygen saturation as measured by pulse oximetry <80% was the major physiologic predictor of severe bronchopulmonary dysplasia and death or mechanical ventilation at 40 weeks PMA. Conclusions: Physiologic data are independently associated with unfavorable respiratory outcome in extremely preterm infants.
Collapse
Affiliation(s)
| | - Debra E. Weese-Mayer
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Stanley Manne Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anna Maria Hibbs
- University Hospitals Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, Ohio
| | | | - John L. Carroll
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | - Aaron Hamvas
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Stanley Manne Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard J. Martin
- University Hospitals Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, Ohio
| | - Juliann M. Di Fiore
- University Hospitals Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, Ohio
| | | | - James S. Kemp
- Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | | | | | - Jiaxing Qiu
- University of Virginia, Charlottesville, Virginia
| | | | | | | | | |
Collapse
|
7
|
Yazdanyar A, Cai CL, Aranda JV, Shrier E, Beharry KD. Comparison of Bevacizumab and Aflibercept for Suppression of Angiogenesis in Human Retinal Microvascular Endothelial Cells. Pharmaceuticals (Basel) 2023; 16:939. [PMID: 37513851 PMCID: PMC10383229 DOI: 10.3390/ph16070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 07/30/2023] Open
Abstract
Bevacizumab (Avastin) is a vascular endothelial growth factor (VEGF) inhibitor that is widely used for aggressive posterior retinopathy of prematurity (APROP). Its use is associated with multiple adverse effects. Aflibercept (Eylea) is a VEGFR-1 analogue that is approved for ocular use, but its efficacy for APROP is less studied. We tested the hypothesis that Eylea is as effective as Avastin for suppression of intermittent hypoxia (IH)-induced angiogenesis. Human retinal microvascular endothelial cells (HRECs) were treated with Avastin and low- or high-dose Eylea and exposed to normoxia, hyperoxia (50% O2), or neonatal IH for 24, 48, or 72 h. Cells were assessed for migration and tube formation capacities, as well as biomarkers of angiogenesis and oxidative stress. Both doses of Eylea suppressed migration and tube formation in all oxygen environments, although the effect was not as robust as Avastin. Furthermore, the lower dose of Eylea appeared to be more effective than the higher dose. Eylea induced soluble VEGFR-1 (sVEGFR-1) coincident with high IGF-I levels and decreased Notch/Jagged-1, demonstrating a functional association. Given the role of VEGFR-1 and Notch as guidance cues for vascular sprouting, these data suggest that Eylea may promote normal vascular patterning in a dose-dependent manner.
Collapse
Affiliation(s)
- Amirfarbod Yazdanyar
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Retina Group of New England, Waterford, CT 06385, USA
| | - Charles L Cai
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Jacob V Aranda
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Department of Pediatrics/Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Eric Shrier
- Department of Pediatrics/Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Kay D Beharry
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Department of Pediatrics/Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
8
|
Zhang EY, Bartman CM, Prakash YS, Pabelick CM, Vogel ER. Oxygen and mechanical stretch in the developing lung: risk factors for neonatal and pediatric lung disease. Front Med (Lausanne) 2023; 10:1214108. [PMID: 37404808 PMCID: PMC10315587 DOI: 10.3389/fmed.2023.1214108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Chronic airway diseases, such as wheezing and asthma, remain significant sources of morbidity and mortality in the pediatric population. This is especially true for preterm infants who are impacted both by immature pulmonary development as well as disproportionate exposure to perinatal insults that may increase the risk of developing airway disease. Chronic pediatric airway disease is characterized by alterations in airway structure (remodeling) and function (increased airway hyperresponsiveness), similar to adult asthma. One of the most common perinatal risk factors for development of airway disease is respiratory support in the form of supplemental oxygen, mechanical ventilation, and/or CPAP. While clinical practice currently seeks to minimize oxygen exposure to decrease the risk of bronchopulmonary dysplasia (BPD), there is mounting evidence that lower levels of oxygen may carry risk for development of chronic airway, rather than alveolar disease. In addition, stretch exposure due to mechanical ventilation or CPAP may also play a role in development of chronic airway disease. Here, we summarize the current knowledge of the impact of perinatal oxygen and mechanical respiratory support on the development of chronic pediatric lung disease, with particular focus on pediatric airway disease. We further highlight mechanisms that could be explored as potential targets for novel therapies in the pediatric population.
Collapse
Affiliation(s)
- Emily Y. Zhang
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Colleen M. Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth R. Vogel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Coelho-Santos V, Cruz AJN, Shih AY. Does Perinatal Intermittent Hypoxia Affect Cerebrovascular Network Development? Dev Neurosci 2023; 46:44-54. [PMID: 37231864 DOI: 10.1159/000530957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Perinatal hypoxia is an inadequate delivery of oxygen to the fetus in the period immediately before, during, or after the birth process. The most frequent form of hypoxia occurring in human development is chronic intermittent hypoxia (CIH) due to sleep-disordered breathing (apnea) or bradycardia events. CIH incidence is particularly high with premature infants. During CIH, repetitive cycles of hypoxia and reoxygenation initiate oxidative stress and inflammatory cascades in the brain. A dense microvascular network of arterioles, capillaries, and venules is required to support the constant metabolic demands of the adult brain. The development and refinement of this microvasculature is orchestrated throughout gestation and in the initial weeks after birth, at a critical juncture when CIH can occur. There is little knowledge on how CIH affects the development of the cerebrovasculature. However, since CIH (and its treatments) can cause profound abnormalities in tissue oxygen content and neural activity, there is reason to believe that it can induce lasting abnormalities in vascular structure and function at the microvascular level contributing to neurodevelopmental disorders. This mini-review discusses the hypothesis that CIH induces a positive feedback loop to perpetuate metabolic insufficiency through derailment of normal cerebrovascular development, leading to long-term deficiencies in cerebrovascular function.
Collapse
Affiliation(s)
- Vanessa Coelho-Santos
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Anne-Jolene N Cruz
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Ramirez LA, Mohamed R, Marin T, Brands MW, Snyder E, Sullivan JC. Perinatal intermittent hypoxia increases early susceptibility to ANG II-induced hypertension in adult male but not in female Sprague-Dawley rats. Am J Physiol Renal Physiol 2023; 324:F483-F493. [PMID: 36951371 PMCID: PMC10151053 DOI: 10.1152/ajprenal.00308.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
Prenatal, perinatal, and adulthood exposure to chronic intermittent hypoxia (IH) increases blood pressure in rodents. Males exposed to chronic IH have higher blood pressure versus females. However, it is unknown if this same-sex difference exists with acute perinatal IH. We tested the hypothesis that acute perinatal IH increases baseline blood pressure and enhances sensitivity to angiotensin II (ANG II)-induced hypertension in male Sprague-Dawley rats. Male and female pups were randomized to control (room air) or IH (10 min of ∼10% O2 for 3 times/day) for the first 8 days of life. IH decreased oxygen saturation, as confirmed via a pulse oximeter. Pups were weaned at postnatal day 21. Blood pressure was measured via telemetry beginning at 14 wk of age and analyzed separately into light and dark phases to assess circadian rhythm. Osmotic minipumps to deliver ANG II were implanted at 15 wk of age. Perinatal IH exposure did not alter baseline blood pressure. One week of ANG II treatment increased blood pressure in light and dark periods in males exposed to IH versus control; there was no effect in females. Blood pressure among the groups was comparable following 2 wk of ANG II infusion. Perinatal IH did not change the circadian rhythm. Following ANG II treatment, indexes of renal injury were measured. Perinatal IH did not alter kidney size, structure, nephron number, or creatinine clearance. These data indicate that acute perinatal IH enhances early ANG II-induced hypertension in males, independent of nephron loss or decreases in body weight or kidney function.NEW & NOTEWORTHY The impact of acute intermittent hypoxia (IH) in early life on blood pressure in adulthood is unknown. This study used a new model exposing female and male rat pups to acute IH in the first 8 days of life, without exposing the dam. Although baseline blood pressure was not altered in adulthood, IH increased susceptibility to angiotensin II hypertension only in males, supporting increased susceptibility of males exposed to IH to a second cardiovascular stressor.
Collapse
Affiliation(s)
- Lindsey A Ramirez
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Riyaz Mohamed
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Terri Marin
- Department of Nursing Science, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Michael W Brands
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Elizabeth Snyder
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| |
Collapse
|
11
|
Alalaiyan S, Shakeeb D, Al Hazzani F, Binmanee A. Significance of Intermittent Hypoxic Episodes in Premature Infants Prior to Discharge. Cureus 2023; 15:e36113. [PMID: 37065300 PMCID: PMC10098437 DOI: 10.7759/cureus.36113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Objective The aim of this study was to determine the rate and severity of intermittent hypoxic episodes in premature infants who underwent overnight pulse oximetry prior to discharge. Methods Preterm infants with a birth weight of 1500 grams or less and who underwent overnight pulse oximetry prior to discharge were included. Maternal and neonatal demographic data and complications of prematurity were recorded. All infants underwent overnight pulse oximetry prior to discharge and the McGill score was used to categorize the degree of desaturations (categories 1-4; normal, mildly, moderately, and severely abnormal). Results Fifty infants underwent the overnight pulse oximetry The McGill score showed that 2% had no hypoxia, 50% had mild hypoxia, 20% had moderate hypoxia, and 28% had severe hypoxia. The frequency of desaturations (62.5%) was found more in infants with a birth weight of 1000 grams or less. The results showed that the O2 requirement at discharge was significant (p = 0.0341), and increased values of O2 at discharge were associated with more severe hypoxia. As a result of these findings, 40% of infants were discharged home on oxygen and 26% were discharged on caffeine. Fifty-two percent of infants were initially diagnosed to have stages 1 & 2 retinopathy of prematurity (ROP), 14% had stage 3, and 2% had stage 4 ROP. Eight percent of infants required surgical intervention for ROP. Conclusions Clinically inapparent significant episodes of intermittent hypoxia (IH) are frequent in preterm infants in the early postnatal age, and they may persist post-discharge. Knowledge of the association between IH and morbidity among all neonatal intensive care unit (NICU) caregivers would be of great benefit. Indications for screening preterm infants at risk of severe IH should be reconsidered.
Collapse
|
12
|
Ramanand P, Indic P, Travers CP, Ambalavanan N. Comparison of oxygen supplementation in very preterm infants: Variations of oxygen saturation features and their application to hypoxemic episode based risk stratification. Front Pediatr 2023; 11:1016197. [PMID: 36923272 PMCID: PMC10009221 DOI: 10.3389/fped.2023.1016197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/20/2023] [Indexed: 03/02/2023] Open
Abstract
Background Oxygen supplementation is commonly used to maintain oxygen saturation (SpO2) levels in preterm infants within target ranges to reduce intermittent hypoxemic (IH) events, which are associated with short- and long-term morbidities. There is not much information available about differences in oxygenation patterns in infants undergoing such supplementations nor their relation to observed IH events. This study aimed to describe oxygenation characteristics during two types of supplementation by studying SpO2 signal features and assess their performance in hypoxemia risk screening during NICU monitoring. Subjects and methods SpO2 data from 25 infants with gestational age <32 weeks and birthweight <2,000 g who underwent a cross over trial of low-flow nasal cannula (NC) and digitally-set servo-controlled oxygen environment (OE) supplementations was considered in this secondary analysis. Features pertaining to signal distribution, variability and complexity were estimated and analyzed for differences between the supplementations. Univariate and regularized multivariate logistic regression was applied to identify relevant features and develop screening models for infants likely to experience a critically high number of IH per day of observation. Their performance was assessed using area under receiver operating curves (AUROC), accuracy, sensitivity, specificity and F1 scores. Results While most SpO2 measures remained comparable during both supplementations, signal irregularity and complexity were elevated while on OE, pointing to more volatility in oxygen saturation during this supplementation mode. In addition, SpO2 variability measures exhibited early prognostic value in discriminating infants at higher risk of critically many IH events. Poincare plot variability at lag 1 had AUROC of 0.82, 0.86, 0.89 compared to 0.63, 0.75, 0.81 for the IH number, a clinical parameter at observation times of 30 min, 1 and 2 h, respectively. Multivariate models with two features exhibited validation AUROC > 0.80, F1 score > 0.60 and specificity >0.85 at observation times ≥ 1 h. Finally, we proposed a framework for risk stratification of infants using a cumulative risk score for continuous monitoring. Conclusion Analysis of oxygen saturation signal routinely collected in the NICU, may have extensive applications in inferring subtle changes to cardiorespiratory dynamics under various conditions as well as in informing clinical decisions about infant care.
Collapse
Affiliation(s)
- Pravitha Ramanand
- Department of Electrical Engineering, University of Texas at Tyler, Tyler, TX, United States
| | - Premananda Indic
- Department of Electrical Engineering, University of Texas at Tyler, Tyler, TX, United States
| | - Colm P Travers
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Namasivayam Ambalavanan
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Wilson CG, Altamirano AE, Hillman T, Tan JB. Data analytics in a clinical setting: Applications to understanding breathing patterns and their relevance to neonatal disease. Semin Fetal Neonatal Med 2022; 27:101399. [PMID: 36396542 DOI: 10.1016/j.siny.2022.101399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this review, we focus on the use of contemporary linear and non-linear data analytics as well as machine learning/artificial intelligence algorithms to inform treatment of pediatric patients. We specifically focus on methods used to quantify changes in breathing that can lead to increased risk for apnea of prematurity, retinopathy of prematurity (ROP), necrotizing enterocolitis (NEC) and provide a list of potentially useful algorithms that comprise a suite of software tools to enhance prediction of outcome. Next, we provide a brief overview of machine learning/artificial intelligence methods and applications within the sphere of perinatal care. Finally, we provide an overview of the infrastructure needed to use these tools in a clinical setting for real-time data acquisition, data synchrony, data storage and access, and bedside data visualization to assist in clinical decision making and support the medical informatics mission. Our goal is to provide an overview and inspire other investigators to adopt these tools for their own research and optimization of perinatal patient care.
Collapse
Affiliation(s)
- Christopher G Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA; Department of Pediatrics, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA.
| | - A Erika Altamirano
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA.
| | - Tyler Hillman
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA.
| | - John B Tan
- Department of Pediatrics, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA; Huckleberry Care, Irvine, CA, 92618, USA.
| |
Collapse
|
14
|
Neonatal intermittent hypoxia, fish oil, and/or antioxidant supplementation on gut microbiota in neonatal rats. Pediatr Res 2022; 92:109-117. [PMID: 34455420 PMCID: PMC8882692 DOI: 10.1038/s41390-021-01707-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Preterm infants frequently experience intermittent hypoxia (IH) episodes, rendering them susceptible to oxidative stress and gut dysbiosis. We tested the hypothesis that early supplementation with antioxidants and/or fish oil promotes gut biodiversity and mitigates IH-induced gut injury. METHODS Newborn rats were exposed to neonatal IH from birth (P0) to P14 during which they received daily oral supplementation with: (1) coenzyme Q10 (CoQ10) in olive oil, (2) fish oil, (3) glutathione nanoparticles (nGSH), (4) CoQ10 + fish oil, or (5) olive oil (placebo control). Pups were placed in room air (RA) from P14 to P21 with no further treatment. RA controls were similarly treated. Stool samples were assessed for microbiota and terminal ileum for histopathology and morphometry, total antioxidant capacity, lipid peroxidation, and biomarkers of gut injury. RESULTS Neonatal IH induced histopathologic changes consistent with necrotizing enterocolitis, which were associated with increased lipid peroxidation, toll-like receptor, transforming growth factor, and nuclear factor kappa B. Combination of CoQ10 + fish oil and nGSH were most effective for preserving gut integrity, reducing biomarkers of gut injury, and increasing commensal organisms. CONCLUSIONS Combination of antioxidants and fish oil may confer synergistic benefits to mitigate IH-induced injury in the terminal ileum. IMPACT Antioxidant and fish oil (PUFA) co-treatment was most beneficial for reducing neonatal IH-induced gut injury. The synergistic effects of antioxidant and fish oil is likely due to prevention of IH-induced ROS attack on lipids, thus preserving and augmenting its therapeutic benefits. Combination treatment was also effective for increasing the abundance of the non-pathogenic Firmicutes phylum, which is associated with a healthy gastrointestinal system of the newborn. Extremely low gestational age neonates who are at high risk for frequent, repetitive neonatal IH and oxidative stress-induced diseases may benefit from this combination therapy.
Collapse
|
15
|
Zangaladze A, Cai CL, Marcelino M, Aranda JV, Beharry KD. Renal biomarkers of acute kidney injury in response to increasing intermittent hypoxia episodes in the neonatal rat. BMC Nephrol 2021; 22:299. [PMID: 34481475 PMCID: PMC8418040 DOI: 10.1186/s12882-021-02507-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We tested the hypotheses that: 1) early exposure to increasing episodes of clinically relevant intermittent hypoxia (IH) is detrimental to the developing kidneys; and 2) there is a critical number of daily IH episodes which will result in irreparable renal damage that may involve angiotensin (Ang) II and endothelin (ET)-1. METHODS At birth (P0), neonatal rat pups were exposed to brief IH episodes from the first day of life (P0) to P7 or from P0-P14. Pups were either euthanized immediately or placed in room air (RA) until P21. RA littermates served as controls. Kidneys were harvested at P7, P14, and P21 for histopathology; angiotensin converting enzyme (ACE), ACE-2, ET-1, big ET-1, and malondialdehyde (MDA) levels; immunoreactivity of ACE, ACE-2, ET-1, ET-2, ET receptors (ETAR, ETBR), and hypoxia inducible factor (HIF)1α; and apoptosis (TUNEL stain). RESULTS Histopathology showed increased renal damage with 8-12 IH episodes/day, and was associated with Ang II, ACE, HIF1α, and apoptosis. ACE-2 was not expressed at P7, and minimally increased at P14. However, a robust ACE-2 response was seen during recovery with maximum levels noted in the groups recovering from 8 IH episodes/day. ET-1, big ET-1, ETAR, ETBR, and MDA increased with increasing levels of neonatal IH. CONCLUSIONS Chronic neonatal IH causes severe damage to the developing kidney with associated elevations in vasoconstrictors, suggesting hypertension, particularly with 8 neonatal IH episodes. ACE-2 is not activated in early postnatal life, and this may contribute to IH-induced vasoconstriction. Therapeutic targeting of ACE and ET-1 may help decrease the risk for kidney injury in the developing neonate to prevent and/or treat neonatal acute kidney injury and/or chronic kidney disease.
Collapse
Affiliation(s)
- Anano Zangaladze
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew Marcelino
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
- SUNY Eye Institute, New York, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.
- SUNY Eye Institute, New York, NY, USA.
- Department of Pediatrics & Ophthalmology, Neonatal-Perinatal Medicine Clinical & Translational Research Labs, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Box 49, Brooklyn, NY, 11203, USA.
| |
Collapse
|
16
|
Zimmet AM, Sullivan BA, Fairchild KD, Moorman JR, Isler JR, Wallman-Stokes AW, Sahni R, Vesoulis ZA, Ratcliffe SJ, Lake DE. Vital sign metrics of VLBW infants in three NICUs: implications for predictive algorithms. Pediatr Res 2021; 90:125-130. [PMID: 33767372 PMCID: PMC8376742 DOI: 10.1038/s41390-021-01428-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Continuous heart rate (HR) and oxygenation (SpO2) metrics can be useful for predicting adverse events in very low birth weight (VLBW) infants. To optimize the utility of these tools, inter-site variability must be taken into account. METHODS For VLBW infants at three neonatal intensive care units (NICUs), we analyzed the mean, standard deviation, skewness, kurtosis, and cross-correlation of electrocardiogram HR, pulse oximeter pulse rate, and SpO2. The number and durations of bradycardia and desaturation events were also measured. Twenty-two metrics were calculated hourly, and mean daily values were compared between sites. RESULTS We analyzed data from 1168 VLBW infants from birth through day 42 (35,238 infant-days). HR and SpO2 metrics were similar at the three NICUs, with mean HR rising by ~10 beats/min over the first 2 weeks and mean SpO2 remaining stable ~94% over time. The number of bradycardia events was higher at one site, and the duration of desaturations was longer at another site. CONCLUSIONS Mean HR and SpO2 were generally similar among VLBW infants at three NICUs from birth through 6 weeks of age, but bradycardia and desaturation events differed in the first 2 weeks after birth. This highlights the importance of developing predictive analytics tools at multiple sites. IMPACT HR and SpO2 analytics can be useful for predicting adverse events in VLBW infants in the NICU, but inter-site differences must be taken into account in developing predictive algorithms. Although mean HR and SpO2 patterns were similar in VLBW infants at three NICUs, inter-site differences in the number of bradycardia events and duration of desaturation events were found. Inter-site differences in bradycardia and desaturation events among VLBW infants should be considered in the development of predictive algorithms.
Collapse
Affiliation(s)
- Amanda M. Zimmet
- Department of Medicine, University of Virginia, Charlottesville, VA
| | | | | | | | | | | | - Rakesh Sahni
- Department of Pediatrics, Columbia University, New York, NY
| | | | - Sarah J. Ratcliffe
- Department of Public Health Science, University of Virginia, Charlottesville, VA
| | - Douglas E. Lake
- Department of Medicine, University of Virginia, Charlottesville, VA,Sepsis Challenges Response Unit, University of Virginia, Charlottesville, VA
| |
Collapse
|
17
|
Hypoxemia in infants with trisomy 21 in the neonatal intensive care unit. J Perinatol 2021; 41:1448-1453. [PMID: 34035452 PMCID: PMC8576738 DOI: 10.1038/s41372-021-01105-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Newborns with trisomy 21 (T21) often require NICU hospitalization. Oxygen desaturations are frequently observed in these infants, even in the absence of congenital heart defects (CHD). We hypothesized that NICU patients with T21 have more hypoxemia than those without T21. DESIGN All infants with T21 without significant CHD discharged home from the NICU between 2009 and 2018 were included (n = 23). Controls were matched 20:1 for gestational age and length of stay. We compared daily severe hypoxemia events (SpO2 < 80% for ≥10 s) for the whole NICU stay and the pre-discharge week. RESULTS Infants with T21 showed significantly more daily hypoxemia events during their entire NICU stay (median 10 versus 7, p = 0.0064), and more so in their final week (13 versus 7, p = 0.0008). CONCLUSION NICU patients with T21 without CHD experience more severe hypoxemia events than controls, particularly in the week before discharge. Whether this hypoxemia predicts or contributes to adverse outcomes is unknown.
Collapse
|
18
|
Manlapaz-Mann A, Cai CL, Bodkin D, Mustafa G, Aranda JV, Beharry KD. Effects of omega 3 polyunsaturated fatty acids, antioxidants, and/or non-steroidal inflammatory drugs in the brain of neonatal rats exposed to intermittent hypoxia. Int J Dev Neurosci 2021; 81:448-460. [PMID: 33969544 DOI: 10.1002/jdn.10120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Preterm infants experience frequent arterial oxygen desaturations during oxygen therapy, or intermittent hypoxia (IH). Neonatal IH increases oxidative distress which contributes to neuroinflammation and brain injury. We tested the hypotheses that exposure to neonatal IH is detrimental to the immature brain and that early supplementation with antioxidants and/or omega 3 polyunsaturated fatty acids (n-3 PUFAs) combined with non-steroidal anti-inflammatory drugs (NSAIDs) is protective. Newborn rats were exposed to brief hypoxia (12% O2 ) during hyperoxia (50% O2 ) from the first day of life (P0) until P14 during which they received daily oral supplementation with antioxidants, namely coenzyme Q10 (CoQ10) or glutathione nanoparticles (nGSH), n-3 PUFAs and/or topical ocular ketorolac. Placebo controls received daily oral olive oil and topical ocular saline. Room air (RA) littermates remained in 21% O2 from birth to P21 with all treatments identical. At P14 animals were allowed to recover in RA until P21 with no further treatment. Whole brains were harvested for histopathology and morphometric analyses, and assessed for biomarkers of oxidative stress and inflammation, as well as myelin injury. Neonatal IH resulted in higher brain/body weight ratios, an effect that was reversed with n-3 PUFAs and n-3 PUFAs+CoQ10 with or without ketorolac. Neonatal IH was also associated with hemorrhage, oxidative stress, and elevations in inflammatory prostanoids. Supplementation with n-3 PUFAs and nGSH with and without ketorolac were most beneficial for myelin growth and integrity when administered in RA. However, the benefit of n-3 PUFAs was significantly curtailed in neonatal IH. Neonatal IH during a critical time of brain development causes inflammation and oxidative injury. Loss of therapeutic benefits of n-3 PUFAs suggest its susceptibility to oxidation in neonatal IH and therefore indicate that co-administration with antioxidants may be necessary to sustain its efficacy.
Collapse
Affiliation(s)
- Alex Manlapaz-Mann
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Darren Bodkin
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Ghassan Mustafa
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.,SUNY Eye Institute, Brooklyn, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.,SUNY Eye Institute, Brooklyn, NY, USA
| |
Collapse
|
19
|
Wang J, Wang X, Gao Y, Lin Z, Chen J, Gigantelli J, Shapiro JI, Xie Z, Pierre SV. Stress Signal Regulation by Na/K-ATPase As a New Approach to Promote Physiological Revascularization in a Mouse Model of Ischemic Retinopathy. Invest Ophthalmol Vis Sci 2021; 61:9. [PMID: 33275652 PMCID: PMC7718810 DOI: 10.1167/iovs.61.14.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The identification of target pathways to block excessive angiogenesis while simultaneously restoring physiological vasculature is an unmet goal in the therapeutic management of ischemic retinopathies. pNaKtide, a cell-permeable peptide that we have designed by mapping the site of α1 Na/K-ATPase (NKA)/Src binding, blocks the formation of α1 NKA/Src/reactive oxygen species (ROS) amplification loops and restores physiological ROS signaling in a number of oxidative disease models. The aim of this study was to evaluate the importance of the NKA/Src/ROS amplification loop and the effect of pNaKtide in experimental ischemic retinopathy. Methods Human retinal microvascular endothelial cells (HRMECs) and retinal pigment epithelium (ARPE-19) cells were used to evaluate the effect of pNaKtide on viability, proliferation, and angiogenesis. Retinal toxicity and distribution were assessed in those cells and in the mouse. Subsequently, the role and molecular mechanism of NKA/Src in ROS stress signaling were evaluated biochemically in the retinas of mice exposed to the well-established protocol of oxygen-induced retinopathy (OIR). Finally, pNaKtide efficacy was assessed in this model. Results The results suggest a key role of α1 NKA in the regulation of ROS stress and the Nrf2 pathway in mouse OIR retinas. Inhibition of α1 NKA/Src by pNaKtide reduced pathologic ROS signaling and restored normal expression of hypoxia-inducible factor 1-α/vascular endothelial growth factor (VEGF). Unlike anti-VEGF agents, pNaKtide did promote retinal revascularization while inhibiting neovascularization and inflammation. Conclusions Targeting α1 NKA represents a novel strategy to develop therapeutics that not only inhibit neovascularization but also promote physiological revascularization in ischemic eye diseases.
Collapse
Affiliation(s)
- Jiayan Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States.,Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States.,Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Yingnyu Gao
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Zhucheng Lin
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - James Gigantelli
- Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Joseph I Shapiro
- Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| |
Collapse
|
20
|
Abdo M, Hanbal A, Asla MM, Ishqair A, Alfar M, Elnaiem W, Ragab KM, Nourelden AZ, Zaazouee MS. Automated versus manual oxygen control in preterm infants receiving respiratory support: a systematic review and meta-analysis. J Matern Fetal Neonatal Med 2021; 35:6069-6076. [PMID: 33832390 DOI: 10.1080/14767058.2021.1904875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ventilated preterm infants are exposed to deviations from the intended arterial oxygen saturation range. Therefore, an automated control system was developed to rapidly modulate the fraction of inspired oxygen. The aim of this review is to compare the efficacy and safety of automated versus manual oxygen delivery control. METHODS In December 2020, we systematically searched four electronic databases; PubMed, Cochrane Library, Scopus, and Web of Science for eligible randomized controlled trials. We extracted and pooled data as mean difference and 95% confidence interval in an inverse variance method using RevMan software. RESULTS Thirteen trials were included in this systematic review and meta-analysis, enrolling 343 preterm infants on respiratory support. Automated oxygen control increased the time spent within the target arterial oxygen saturation range of 85-96% (MD = 8.96; 95% CI [6.26, 11.67], p<.00001), and 90-95% (MD = 18.25; 95% CI [4.58, 31.65], p = .008). In addition, it reduced the time of hypoxia (<80%); (MD = -1.24; 95% CI [-2.05, -0.43], p = .003), (MD = -0.82; 95% CI [-1.23, -0.41], p<.0001) with predetermined ranges of 85-96% and 90-95%, respectively. Automated control system reduced as well the time of hyperoxia (>98%) (MD = -0.99; 95% CI [-1.74, -0.25], p = .009) at intended range of 90-95%, and number of manual inspired oxygen fraction adjustments (MD = -2.82; 95% CI [-4.56, -1.08], p = .002). CONCLUSIONS Automated oxygen delivery is rapid and effective in controlling infants' oxygen saturation. It can be used to reduce the load over the nurses, but not to substitute the clinical supervision. Further long-term trials of large-scale are required to evaluate the prolonged clinical outcomes.
Collapse
Affiliation(s)
- Mohamed Abdo
- Faculty of Medicine, Assiut University, Assiut, Egypt.,International Medical Research Association (IMedRA), Cairo, Egypt
| | - Ahmed Hanbal
- International Medical Research Association (IMedRA), Cairo, Egypt.,Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Moamen Mostafa Asla
- International Medical Research Association (IMedRA), Cairo, Egypt.,Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Anas Ishqair
- International Medical Research Association (IMedRA), Cairo, Egypt.,Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Merana Alfar
- International Medical Research Association (IMedRA), Cairo, Egypt.,Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Walaa Elnaiem
- International Medical Research Association (IMedRA), Cairo, Egypt.,Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Khaled Mohamed Ragab
- International Medical Research Association (IMedRA), Cairo, Egypt.,Faculty of Medicine, Minia University, Minia, Egypt
| | - Anas Zakarya Nourelden
- International Medical Research Association (IMedRA), Cairo, Egypt.,Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed Sayed Zaazouee
- International Medical Research Association (IMedRA), Cairo, Egypt.,Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
21
|
Abstract
The development of the control of breathing begins in utero and continues postnatally. Fetal breathing movements are needed for establishing connectivity between the lungs and central mechanisms controlling breathing. Maturation of the control of breathing, including the increase of hypoxia chemosensitivity, continues postnatally. Insufficient oxygenation, or hypoxia, is a major stressor that can manifest for different reasons in the fetus and neonate. Though the fetus and neonate have different hypoxia sensing mechanisms and respond differently to acute hypoxia, both responses prevent deviations to respiratory and other developmental processes. Intermittent and chronic hypoxia pose much greater threats to the normal developmental respiratory processes. Gestational intermittent hypoxia, due to maternal sleep-disordered breathing and sleep apnea, increases eupneic breathing and decreases the hypoxic ventilatory response associated with impaired gasping and autoresuscitation postnatally. Chronic fetal hypoxia, due to biologic or environmental (i.e. high-altitude) factors, is implicated in fetal growth restriction and preterm birth causing a decrease in the postnatal hypoxic ventilatory responses with increases in irregular eupneic breathing. Mechanisms driving these changes include delayed chemoreceptor development, catecholaminergic activity, abnormal myelination, increased astrocyte proliferation in the dorsal respiratory group, among others. Long-term high-altitude residents demonstrate favorable adaptations to chronic hypoxia as do their offspring. Neonatal intermittent hypoxia is common among preterm infants due to immature respiratory systems and thus, display a reduced drive to breathe and apneas due to insufficient hypoxic sensitivity. However, ongoing intermittent hypoxia can enhance hypoxic sensitivity causing ventilatory overshoots followed by apnea; the number of apneas is positively correlated with degree of hypoxic sensitivity in preterm infants. Chronic neonatal hypoxia may arise from fetal complications like maternal smoking or from postnatal cardiovascular problems, causing blunting of the hypoxic ventilatory responses throughout at least adolescence due to attenuation of carotid body fibers responses to hypoxia with potential roles of brainstem serotonin, microglia, and inflammation, though these effects depend on the age in which chronic hypoxia initiates. Fetal and neonatal intermittent and chronic hypoxia are implicated in preterm birth and complicate the respiratory system through their direct effects on hypoxia sensing mechanisms and interruptions to the normal developmental processes. Thus, precise regulation of oxygen homeostasis is crucial for normal development of the respiratory control network. © 2021 American Physiological Society. Compr Physiol 11:1653-1677, 2021.
Collapse
Affiliation(s)
- Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, UC Davis Children’s Hospital, UC Davis Health, UC Davis, Davis, California, USA
| | - Girija G. Konduri
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
22
|
Pharmacodynamic Effects of Standard versus High Caffeine Doses in the Developing Brain of Neonatal Rats Exposed to Intermittent Hypoxia. Int J Mol Sci 2021; 22:ijms22073473. [PMID: 33801707 PMCID: PMC8037517 DOI: 10.3390/ijms22073473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Caffeine citrate, at standard doses, is effective for reducing the incidence of apnea of prematurity (AOP) and may confer neuroprotection and decrease neonatal morbidities in extremely low gestational age neonates (ELGANs) requiring oxygen therapy. We tested the hypothesis that high-dose caffeine (HiC) has no adverse effects on the neonatal brain. (2) Methods: Newborn rat pups were randomized to room air (RA), hyperoxia (Hx) or neonatal intermittent hypoxia (IH), from birth (P0) to P14 during which they received intraperitoneal injections of LoC (20 mg/kg on P0; 5 mg/kg/day on P1-P14), HiC (80 mg/kg; 20 mg/kg), or equivalent volume saline. Blood gases, histopathology, myelin and neuronal integrity, and adenosine receptor reactivity were assessed. (3) Results: Caffeine treatment in Hx influenced blood gases more than treatment in neonatal IH. Exposure to neonatal IH resulted in hemorrhage and higher brain width, particularly in layer 2 of the cerebral cortex. Both caffeine doses increased brain width in RA, but layer 2 was increased only with HiC. HiC decreased oxidative stress more effectively than LoC, and both doses reduced apoptosis biomarkers. In RA, both caffeine doses improved myelination, but the effect was abolished in Hx and neonatal IH. Similarly, both doses inhibited adenosine 1A receptor in all oxygen environments, but adenosine 2A receptor was inhibited only in RA and Hx. (4) Conclusions: Caffeine, even at high doses, when administered in normoxia, can confer neuroprotection, evidenced by reductions in oxidative stress, hypermyelination, and increased Golgi bodies. However, varying oxygen environments, such as Hx or neonatal IH, may alter and modify pharmacodynamic actions of caffeine and may even override the benefits caffeine.
Collapse
|
23
|
Qadri A, Cai CL, Deslouches K, Siddiqui F, Aranda JV, Beharry KD. Ocular Versus Oral Propranolol for Prevention and/or Treatment of Oxygen-Induced Retinopathy in a Rat Model. J Ocul Pharmacol Ther 2021; 37:112-130. [PMID: 33535016 DOI: 10.1089/jop.2020.0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose: Propranolol, a nonselective B1/B2 adrenoceptor antagonist, promotes the regression of infantile hemangiomas likely through suppression of vascular endothelial growth factor (VEGF), which prompted its use for the prevention of retinopathy of prematurity. We tested the hypothesis that topical ocular propranolol is safe and effective for reducing the severity of oxygen-induced retinopathy (OIR) in the neonatal rat intermittent hypoxia (IH) model. Methods: At birth (P0), rat pups were randomly assigned to room air or neonatal intermittent hypoxia (IH) consisting of 50% O2 with brief episodes of hypoxia (12% O2) from P0 to P14, during which they received a single daily dose of oral propranolol (1 mg/kg/day in 50 μL in sterile normal saline) or topical ocular propranolol (0.2% in 10 μL in normal saline) from P5 to P14. Placebo-controlled littermates received 50 μL oral or 10 μL topical ocular sterile normal saline. Retinal vascular and astrocyte integrity; retinal histopathology and morphometry; and angiogenesis biomarkers were determined. Results: Topical ocular propranolol improved retinal vascular damage and preserved the astrocytic template, but did not completely prevent OIR. The beneficial effects of propranolol were associated with reduced ocular VEGF and increased endogenous soluble inhibitor, sVEGFR-1, when administered topically. Conclusions: Propranolol failed to completely prevent severe OIR, however, it prevented astrocyte degeneration resulting from neonatal IH-induced damage. We conclude that the mechanisms of propranolol's beneficial effects in neonatal IH may involve in part, astrocyte preservation.
Collapse
Affiliation(s)
- Areej Qadri
- Division of Neonatal/Perinatal Medicine, Department of Pediatrics, State University of New York, Brooklyn, New York, USA
| | - Charles L Cai
- Division of Neonatal/Perinatal Medicine, Department of Pediatrics, State University of New York, Brooklyn, New York, USA
| | - Karen Deslouches
- Division of Neonatal/Perinatal Medicine, Department of Pediatrics, State University of New York, Brooklyn, New York, USA
| | - Faisal Siddiqui
- Division of Neonatal/Perinatal Medicine, Department of Pediatrics, State University of New York, Brooklyn, New York, USA
| | - Jacob V Aranda
- Division of Neonatal/Perinatal Medicine, Department of Pediatrics, State University of New York, Brooklyn, New York, USA.,Department of Ophthalmology, Downstate Medical Center, State University of New York, Brooklyn, New York, USA.,State University of New York Eye Institute, New York, New York, USA
| | - Kay D Beharry
- Division of Neonatal/Perinatal Medicine, Department of Pediatrics, State University of New York, Brooklyn, New York, USA.,Department of Ophthalmology, Downstate Medical Center, State University of New York, Brooklyn, New York, USA.,State University of New York Eye Institute, New York, New York, USA
| |
Collapse
|
24
|
Duggan TJ, Cai CL, Aranda JV, Beharry KD. Acute and chronic effects of intravitreal bevacizumab on lung biomarkers of angiogenesis in the rat exposed to neonatal intermittent hypoxia. Exp Lung Res 2020; 47:121-135. [PMID: 33377400 DOI: 10.1080/01902148.2020.1866712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE/AIM Intravitreal bevacizumab (Avastin) is an irreversible vascular endothelial growth factor (VEGF) inhibitor used to treat severe retinopathy of prematurity (ROP) in extremely low gestational age neonates (ELGANs). ELGANs who are at the highest risk for developing severe ROP often experience brief intermittent hypoxia (IH) episodes which may cause oxidative damage. We tested the hypothesis that intravitreal Avastin leaks into the systemic circulation during exposure to IH and has adverse effects on biomarkers of pulmonary microvascular maturation, thus leading to pulmonary hemorrhage and long-term pulmonary sequelae. METHODS Neonatal rats at postnatal day (PN) 0 (birth) were exposed to either: 1) hyperoxia (50% O2) or 2) neonatal IH (50% O2 with brief episodes of 12% O2) from PN0 to PN14. Room air (RA) littermates served as controls. At PN14, the time of eye opening in rats, a single dose of Avastin (0.125 mg in 5 µL) was injected into the vitreous cavity of the left eyes. A control group received equivalent volume saline. At PN23 and PN45, blood gases, lung-to-body weight ratios, histology, immunofluorescence, and lung biomarkers of angiogenesis were examined. RESULTS At PN23, Avastin increased lung VEGF, nitric oxide derivatives (NOx), and hypoxia-inducible factor (HIF)1a in the hyperoxia-exposed groups, but decreased soluble VEGFR-1 (sVEGFR-1). At PN45, lungs from animals exposed to neonatal IH and treated with Avastin were severely hemorrhagic with morphologic changes in lung architecture consistent with chronic lung disease. This was associated with higher VEGF and NOx levels, and lower insulin-like growth factor (IGF)-I and sVEGFR-1. CONCLUSIONS These findings prove our hypothesis that intravitreal Avastin penetrates the blood-ocular barrier in IH and alters lung biomarkers of angiogenesis. Avastin targeting of VEGF could affect normal lung development which may be exaggerated under pathologic conditions such as IH, ultimately leading to vascular permeability, vessel rupture, and pulmonary hemorrhage.
Collapse
Affiliation(s)
- Thomas J Duggan
- aDepartment of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, New York, USA
| | - Charles L Cai
- aDepartment of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, New York, USA
| | - Jacob V Aranda
- aDepartment of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, New York, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA.,State University of New York Eye Institute, Brooklyn, New York, USA
| | - Kay D Beharry
- aDepartment of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, New York, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA.,State University of New York Eye Institute, Brooklyn, New York, USA
| |
Collapse
|
25
|
Karkoutli AA, Brumund MR, Evans AK. Bronchopulmonary dysplasia requiring tracheostomy: A review of management and outcomes. Int J Pediatr Otorhinolaryngol 2020; 139:110449. [PMID: 33157458 DOI: 10.1016/j.ijporl.2020.110449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/10/2020] [Indexed: 12/27/2022]
Abstract
Bronchopulmonary Dysplasia (BPD) is a pulmonary disease affecting newborns, commonly those with prematurity or low birth weight. Its pathogenesis involves underdevelopment of lung tissue with subsequent limitations in ventilation and oxygenation, resulting in impaired postnatal alveolarization. Despite advances in care with improved survival, BPD remains a prevalent comorbidity of prematurity. In severe cases, management may involve mechanical ventilation via tracheostomy. BPD's demand for multidisciplinary care compounds the challenges in management of this condition. Here, we review existing literature: the history of disease, criteria for diagnosis, pathogenesis, and modes of treatment with a focus on the severe subtype: that which is associated with pulmonary hypertension (PAH) for which tracheostomy is often required to facilitate long-term mechanical ventilation. We review the current recommendations for tracheostomy and decannulation.
Collapse
Affiliation(s)
- Adam Ahmad Karkoutli
- Louisiana State University Health Sciences Center, School of Medicine, 533 Bolivar Street, New Orleans, LA, 70112, USA
| | - Michael R Brumund
- Pediatric Cardiology, Louisiana State University Health Sciences Center, Department of Pediatrics, 200 Henry Clay Avenue, New Orleans, LA, 70118, USA; Children's Hospital New Orleans, 200 Henry Clay Avenue, New Orleans, LA, 70118, USA
| | - Adele K Evans
- Pediatric Otolaryngology, Louisiana State University Health Sciences Center, Department of Otolaryngology - Head and Neck Surgery, 533 Bolivar Street, Suite 566, New Orleans, LA, 70112, USA; Children's Hospital New Orleans, 200 Henry Clay Avenue, New Orleans, LA, 70118, USA.
| |
Collapse
|
26
|
Zasada M, Madetko-Talowska A, Revhaug C, Rognlien AGW, Baumbusch LO, Książek T, Szewczyk K, Grabowska A, Bik-Multanowski M, Józef Pietrzyk J, Kwinta P, Didrik Saugstad O. Transcriptome analysis reveals dysregulation of genes involved in oxidative phosphorylation in a murine model of retinopathy of prematurity. Pediatr Res 2020; 88:391-397. [PMID: 32053824 DOI: 10.1038/s41390-020-0793-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/22/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Retinal gene expression pattern is severely altered after exposition to hyperoxia in mice with oxygen-induced retinopathy (OIR), a common model of retinopathy of prematurity. Gene ontology and signaling pathway analyses may add new insights into a better understanding of the pathogenesis of this disease. METHODS Seven-day-old C57BL/6J mice (n = 60) were exposed to 75% oxygen for 5 days and then recovered in room air. The controls (n = 60) were kept in the normoxic conditions. Retinas were harvested immediately following hyperoxia, during the phase of maximal neovascularization, and at the time of neovascularization regression. The retinal RNA samples were evaluated for gene expression using mouse gene expression microarrays. DAVID annotation tools were used for gene ontology and pathway analyses. RESULTS The most significantly enriched signaling pathways during the neovascularization phase of OIR were: focal adhesion; ECM-receptor interaction; PI3K-Akt; oxidative phosphorylation; and Alzheimer's, Parkinson's and Huntington's disease signaling pathways. Genes involved in apoptosis, cell proliferation, cell differentiation, and immune responses were associated with neovascularization regression. CONCLUSIONS Performed analyses revealed the possible involvement of various signaling pathways in OIR pathomechanism, mostly specific to the OIR phase. Dysregulation of genes involved in oxidative phosphorylation may have an impact on neovascularization development.
Collapse
Affiliation(s)
- Magdalena Zasada
- Department of Paediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Jagiellonian University Medical College, Krakow, Poland
| | - Cecilie Revhaug
- Department of Paediatric Research, Oslo University Hospital Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Anne Gro W Rognlien
- Department of Paediatric Research, Oslo University Hospital Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Lars O Baumbusch
- Department of Paediatric Research, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Teofila Książek
- Department of Medical Genetics, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Szewczyk
- Department of Medical Genetics, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Grabowska
- Department of Medical Genetics, Jagiellonian University Medical College, Krakow, Poland
| | | | - Jacek Józef Pietrzyk
- Department of Paediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Przemko Kwinta
- Department of Paediatrics, Jagiellonian University Medical College, Krakow, Poland.
| | - Ola Didrik Saugstad
- Department of Paediatric Research, Oslo University Hospital Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Dylag AM, Kopin HG, O’Reilly MA, Wang H, Davis SD, Ren CL, Pryhuber GS. Early Neonatal Oxygen Exposure Predicts Pulmonary Morbidity and Functional Deficits at 1 Year. J Pediatr 2020; 223:20-28.e2. [PMID: 32711747 PMCID: PMC9337224 DOI: 10.1016/j.jpeds.2020.04.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To evaluate the predictive value of cumulative oxygen exposure thresholds over the first 2 postnatal weeks, linking them to bronchopulmonary dysplasia (BPD) and 1-year pulmonary morbidity and lung function in extremely low gestational age newborns. STUDY DESIGN Infants (N = 704) enrolled in the Prematurity and Respiratory Outcomes Program, a multicenter prospective cohort study, that survived to discharge were followed through their neonatal intensive care unit hospitalization to 1-year corrected age. Cumulative oxygen exposure (OxygenAUC14) thresholds were derived from univariate models of BPD, stratifying infants into high-, intermediate-, and low-oxygen exposure groups. These groups were then used in multivariate logistic regressions to prospectively predict post-prematurity respiratory disease (PRD), respiratory morbidity score (RMS) in the entire cohort, and pulmonary function z scores (N = 108 subset of infants) at 1-year corrected age. RESULTS Over the first 14 postnatal days, infants exposed to high oxygen averaged ≥33.1% oxygen, infants exposed to intermediate oxygen averaged 29.1%-33.1%, and infants exposed to low oxygen were below both cutoffs. In multivariate models, infants exposed to high oxygen showed increased PRD and RMS, whereas infants exposed to intermediate oxygen demonstrated increased moderate/severe RMS. Infants in the high/intermediate groups had decreased forced expiratory volume at 0.5 seconds/forced vital capacity ratio. CONCLUSIONS OxygenAUC14 establishes 3 thresholds of oxygen exposure that risk stratify infants early in their neonatal course, thereby predicting short-term (BPD) and 1-year (PRD, RMS) respiratory morbidity. Infants with greater OxygenAUC14 have altered pulmonary function tests at 1 year of age, indicating early evidence of obstructive lung disease and flow limitation, which may predispose extremely low gestational age newborns to increased long-term pulmonary morbidity. TRIAL REGISTRATION ClinicalTrials.gov: NCT01435187.
Collapse
Affiliation(s)
- Andrew M. Dylag
- Division of Neonatology, Department of Pediatrics, University of Rochester, Rochester, NY
| | - Hannah G. Kopin
- School of Medicine, School of Public Health Sciences, University of Rochester, Rochester, NY
| | - Michael A. O’Reilly
- Division of Neonatology, Department of Pediatrics, University of Rochester, Rochester, NY
| | - Hongyue Wang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY
| | - Stephanie D. Davis
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Clement L. Ren
- Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Riley Hospital for Children, Indiana University, Indianapolis, IN
| | - Gloria S. Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester, Rochester, NY
| |
Collapse
|
28
|
Son JH, Stevenson TJ, Bowles MD, Scholl EA, Bonkowsky JL. Dopaminergic Co-Regulation of Locomotor Development and Motor Neuron Synaptogenesis is Uncoupled by Hypoxia in Zebrafish. eNeuro 2020; 7:ENEURO.0355-19.2020. [PMID: 32001551 PMCID: PMC7046933 DOI: 10.1523/eneuro.0355-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 11/21/2022] Open
Abstract
Hypoxic injury to the developing human brain is a complication of premature birth and is associated with long-term impairments of motor function. Disruptions of axon and synaptic connectivity have been linked to developmental hypoxia, but the fundamental mechanisms impacting motor function from altered connectivity are poorly understood. We investigated the effects of hypoxia on locomotor development in zebrafish. We found that developmental hypoxia resulted in decreased spontaneous swimming behavior in larva, and that this motor impairment persisted into adulthood. In evaluation of the diencephalic dopaminergic neurons, which regulate early development of locomotion and constitute an evolutionarily conserved component of the vertebrate dopaminergic system, hypoxia caused a decrease in the number of synapses from the descending dopaminergic diencephalospinal tract (DDT) to spinal cord motor neurons. Moreover, dopamine signaling from the DDT was coupled jointly to motor neuron synaptogenesis and to locomotor development. Together, these results demonstrate the developmental processes regulating early locomotor development and a requirement for dopaminergic projections and motor neuron synaptogenesis. Our findings suggest new insights for understanding the mechanisms leading to motor disability from hypoxic injury of prematurity.
Collapse
Affiliation(s)
- Jong-Hyun Son
- Department of Biology, University of Scranton, Scranton, PA 18510
| | - Tamara J Stevenson
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Miranda D Bowles
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Erika A Scholl
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
- Brain and Spine Center, Primary Children's Hospital, Salt Lake City, UT 84108
| |
Collapse
|
29
|
Bumetanide Suppression of Angiogenesis in a Rat Model of Oxygen-Induced Retinopathy. Int J Mol Sci 2020; 21:ijms21030987. [PMID: 32024231 PMCID: PMC7037744 DOI: 10.3390/ijms21030987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Aquaporins (AQPs) are involved in hypoxia-induced angiogenesis and retinal damage. Bumetanide is a diuretic agent, Na+/K+/Cl− cotransporter (NKCC1), and AQP 1–4 inhibitor. We tested the hypothesis that early postnatal treatment with bumetanide suppresses biomarkers of angiogenesis and decreases severe retinopathy oxygen-induced retinopathy (OIR). Neonatal rats were exposed at birth (P0) to either (1) room air (RA); (2) hyperoxia (50% O2); or (3) intermittent hypoxia (IH) consisting of 50% O2 with brief, clustered episodes of 12% O2 from P0 to postnatal day 14 (P14), during which they were treated intraperitoneally (IP) with bumetanide (0.1 mg/kg/day) or an equivalent volume of saline, on P0–P2. Pups were examined at P14 or allowed to recover in RA from P14–P21. Retinal angiogenesis, morphometry, pathology, AQPs, and angiogenesis biomarkers were determined at P14 and P21. Bumetanide reduced vascular abnormalities associated with severe OIR. This was associated with reductions in AQP-4 and VEGF. Bumetanide suppressed sVEGFR-1 in the serum and vitreous fluid, but levels were increased in the ocular tissues during recovery. Similar responses were noted for IGF-I. In this model, early systemic bumetanide administration reduces severe OIR, the benefits of which appear to be mediated via suppression of AQP-4 and VEGF. Further studies are needed to determine whether bumetanide at the right doses may be considered a potential pharmacologic agent to treat retinal neovascularization.
Collapse
|
30
|
Nagraj VP, Sinkin RA, Lake DE, Moorman JR, Fairchild KD. Recovery from bradycardia and desaturation events at 32 weeks corrected age and NICU length of stay: an indicator of physiologic resilience? Pediatr Res 2019; 86:622-627. [PMID: 31272102 PMCID: PMC6851471 DOI: 10.1038/s41390-019-0488-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 11/13/2022]
Abstract
BACKGROUND Preterm very low birth weight (VLBW) infants experience physiologic maturation and transitions off therapies from 32 to 35 weeks postmenstrual age (PMA), which may impact episodic bradycardia and oxygen desaturation. We sought to characterize bradycardias and desaturations from 32 to 35 weeks PMA and test whether events at 32 weeks PMA are associated with NICU length of stay. METHODS For 265 VLBW infants from 32 to 35 weeks PMA, we quantified the number and duration of bradycardias (HR <100 for ≥4 s) and desaturations (SpO2 <80% for ≥10 s) and compared events around discontinuation of CPAP, caffeine, and supplemental oxygen. We modeled associations between clinical variables, bradycardias and desaturations at 32 weeks PMA, and discharge PMA. RESULTS Desaturations decreased from 60 to 41 per day at 32 and 35 weeks, respectively (p < 0.01). Duration of desaturations and number and duration of bradycardias decreased to a smaller extent (p < 0.05), and there was a non-significant trend toward increased desaturations after stopping CPAP and caffeine. Controlling for clinical variables, longer duration of bradycardias and desaturations at 32 weeks PMA was associated with later discharge PMA. CONCLUSION Delayed recovery from bradycardias and desaturations at 32 weeks PMA, perhaps reflecting less physiologic resilience, is associated with prolonged NICU stay for VLBW infants.
Collapse
Affiliation(s)
- V Peter Nagraj
- School of Medicine Research Computing, University of Virginia, Charlottesville, VA
| | - Robert A Sinkin
- Department of Pediatrics, University of Virginia, Charlottesville, VA
| | - Douglas E Lake
- Department of Medicine, University of Virginia, Charlottesville, VA
| | | | - Karen D Fairchild
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
31
|
Maiwald CA, Niemarkt HJ, Poets CF, Urschitz MS, König J, Hummler H, Bassler D, Engel C, Franz AR. Effects of closed-loop automatic control of the inspiratory fraction of oxygen (FiO 2-C) on outcome of extremely preterm infants - study protocol of a randomized controlled parallel group multicenter trial for safety and efficacy. BMC Pediatr 2019; 19:363. [PMID: 31630690 PMCID: PMC6802113 DOI: 10.1186/s12887-019-1735-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/20/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Most extremely low gestational age neonates (ELGANS, postmenstrual age at birth (PMA) < 28 completed weeks) require supplemental oxygen and experience frequent intermittent hypoxemic and hyperoxemic episodes. Hypoxemic episodes and exposure to inadequately high concentrations of oxygen are associated with an increased risk of retinopathy of prematurity (ROP), chronic lung disease of prematurity (BPD), necrotizing enterocolitis (NEC), neurodevelopmental impairment (NDI), and death beyond 36 weeks PMA. Closed-loop automated control of the inspiratory fraction of oxygen (FiO2-C) reduces time outside the hemoglobin oxygen saturation (SpO2) target range, number and duration of hypo- and hyperoxemic episodes and caregivers' workload. Effects on clinically important outcomes in ELGANs such as ROP, BPD, NEC, NDI and mortality have not yet been studied. METHODS An outcome-assessor-blinded, randomized controlled, parallel-group trial was designed and powered to study the effect of FiO2-C (in addition to routine manual control (RMC) of FiO2), compared to RMC only, on death and severe complications related to hypoxemia and/or hyperoxemia. 2340 ELGANS with a GA of 23 + 0/7 to 27 + 6/7 weeks will be recruited in approximately 75 European tertiary care neonatal centers. Study participants are randomly assigned to RMC (control-group) or FiO2-C in addition to RMC (intervention-group). Central randomization is stratified for center, gender and PMA at birth (< 26 weeks and ≥ 26 weeks). FiO2-C is provided by commercially available and CE-marked ventilators with an FiO2-C algorithm intended for use in newborn infants. The primary outcome variable (composite of death, severe ROP, BPD or NEC) is assessed at 36 weeks PMA (or, in case of ROP, until complete vascularization of the retina, respectively). The co-primary outcome variable (composite outcome of death, language/cognitive delay, motor impairment, severe visual impairment or hearing impairment) is assessed at 24 months corrected age. DISCUSSION Short-term studies on FiO2-C showed improved time ELGANs spent within their assigned SpO2 target range, but effects of FiO2-C on clinical outcomes are yet unknown and will be addressed in the FiO2-C trial. This will ensure an appropriate assessment of safety and efficacy before FiO2-C may be implemented as standard therapy. TRIAL REGISTRATION The study is registered at www.ClinicalTrials.gov: NCT03168516 , May 30, 2017.
Collapse
Affiliation(s)
- Christian A. Maiwald
- Department of Neonatology, University Children’s Hospital Tübingen, Calwerstr. 7, 72076 Tübingen, Germany
- Center for Pediatric Clinical Studies (CPCS), University Children’s Hospital Tübingen, Calwerstr. 7, 72076 Tübingen, Germany
| | | | - Christian F. Poets
- Department of Neonatology, University Children’s Hospital Tübingen, Calwerstr. 7, 72076 Tübingen, Germany
| | - Michael S. Urschitz
- Institute of Medical Biostatistics, Epidemiology and Informatics, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jochem König
- Institute of Medical Biostatistics, Epidemiology and Informatics, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | | | - Corinna Engel
- Center for Pediatric Clinical Studies (CPCS), University Children’s Hospital Tübingen, Calwerstr. 7, 72076 Tübingen, Germany
| | - Axel R. Franz
- Department of Neonatology, University Children’s Hospital Tübingen, Calwerstr. 7, 72076 Tübingen, Germany
- Center for Pediatric Clinical Studies (CPCS), University Children’s Hospital Tübingen, Calwerstr. 7, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Patrone LGA, Capalbo AC, Marques DA, Bícego KC, Gargaglioni LH. An age- and sex-dependent role of catecholaminergic neurons in the control of breathing and hypoxic chemoreflex during postnatal development. Brain Res 2019; 1726:146508. [PMID: 31606412 DOI: 10.1016/j.brainres.2019.146508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
Abstract
The respiratory system undergoes significant development during the postnatal phase. Maturation of brainstem catecholaminergic (CA) neurons is important for the control and modulation of respiratory rhythmogenesis, as well as for chemoreception in early life. We demonstrated an inhibitory role for CA neurons in CO2 chemosensitivity in neonatal and juvenile male and female rats, but information regarding their role in the hypoxic ventilatory response (HVR) is lacking. We evaluated the contribution of brainstem CA neurons in the HVR during postnatal (P) development (P7-8, P14-15 and P20-21) in male and female rats through chemical injury with conjugated saporin anti-dopamine beta-hydroxylase (DβH-SAP, 420 ng·μL-1) injected in the fourth ventricle. Ventilation (V̇E) and oxygen consumption were recorded one week after the lesion in unanesthetized rats during exposure to normoxia and hypoxia. Hypoxia reduced breathing variability in P7-8 control rats of both sexes. At P7-8, the HVR for lesioned males and females increased 27% and 24%, respectively. Additionally, the lesion reduced the normoxic breathing variability in both sexes at P7-8, but hypoxia partially reverted this effect. For P14-15, the increase in V̇E during hypoxia was 30% higher for male and 24% higher for female lesioned animals. A sex-specific difference was detected at P20-21, as lesioned males exhibited a 24% decrease in the HVR, while lesioned females experienced a 22% increase. Furthermore, the hypoxia-induced body temperature reduction was attenuated in P20-21 lesioned females. We conclude that brainstem CA neurons modulate the HRV during the postnatal phase, and possibly thermoregulation during hypoxia.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Aretuza C Capalbo
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Danuzia A Marques
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil.
| |
Collapse
|
33
|
Aranda JV, Qu J, Valencia GB, Beharry KD. Pharmacologic interventions for the prevention and treatment of retinopathy of prematurity. Semin Perinatol 2019; 43:360-366. [PMID: 31153620 DOI: 10.1053/j.semperi.2019.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Retinopathy of Prematurity (ROP) is a preventable neovascular retinal disease with a lifetime impact on vision and ocular morbidities. Retinal vessel immaturity and oxygen therapy, influenced or modulated by several risk factors including oxidative stress, intermittent hypoxia and desaturations, inflammation, infection, malnutrition, retinal growth factor deficiencies or excesses, and others are determinant factors of pathologic retinal angiogenesis and ROP. These factors are pharmacologic targets for prevention and/or rescue therapy. These drugs, include intravitreal anti-vascular endothelial growth factor drugs, erythropoietin, ocular propranolol, caffeine, antioxidants, insulin-like growth factor-I, and omega 3 poly-unsaturated fatty acids, and are promising therapies to prevent ROP, but require further studies. Topical ocular non-steroidal anti-inflammatory drugs (NSAIDs) target inflammatory cascade but the best, safest, and most effective ocular NSAID and formulation remain to be developed. Timing of drug intervention appears critical. Moreover, the complex interactions of the various pathophysiologic mechanisms resulting in aberrant angiogenesis thence ROP strongly suggest that drug combinations and synergisms may be required for effective prevention of ROP and a lifetime of blindness.
Collapse
Affiliation(s)
- Jacob V Aranda
- Department of Pediatrics, Division of Neonsatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States; State University of New York Eye Institute, New York, NY 10075, United States.
| | - Jun Qu
- State University of New York Eye Institute, New York, NY 10075, United States; Department of Pharmaceutical Sciences, State University of New York in Buffalo, Buffalo, NY, United States
| | - Gloria B Valencia
- Department of Pediatrics, Division of Neonsatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonsatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States; State University of New York Eye Institute, New York, NY 10075, United States
| |
Collapse
|
34
|
Oxygen desaturations in the early neonatal period predict development of bronchopulmonary dysplasia. Pediatr Res 2019; 85:987-993. [PMID: 30374050 PMCID: PMC6488465 DOI: 10.1038/s41390-018-0223-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND Bradycardia and oxygen desaturation episodes are common among preterm very low birth weight (VLBW) infants in the Neonatal Intensive Care Unit (NICU), and their association with adverse outcomes such as bronchopulmonary dysplasia (BPD) is unclear. METHODS For 502 VLBW infants we quantified bradycardias (HR < 100 for ≥ 4 s) and desaturations (SpO2 < 80% for ≥ 10 s), combined bradycardia and desaturation (BD) events, and percent time in events in the first 4 weeks after birth (32 infant-years of data). We tested logistic regression models of clinical risks (including a respiratory acuity score incorporating FiO2 and level of respiratory support) to estimate the risks of BPD or death and secondary outcomes. We then tested the additive value of the bradycardia and desaturation metrics for outcomes prediction. RESULTS BPD occurred in 187 infants (37%). The clinical risk model had ROC area for BPD of 0.874. Measures of desaturation, but not bradycardia, significantly added to the predictive model. Desaturation metrics also added to clinical risks for prediction of severe intraventricular hemorrhage, retinopathy of prematurity and prolonged length of stay in the NICU. CONCLUSIONS Oxygen desaturations in the first month of the NICU course are associated with risk of BPD and other morbidities in VLBW infants.
Collapse
|
35
|
Automated oxygen delivery for preterm infants with respiratory dysfunction. Hippokratia 2019. [DOI: 10.1002/14651858.cd013294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Hocker AD, Beyeler SA, Gardner AN, Johnson SM, Watters JJ, Huxtable AG. One bout of neonatal inflammation impairs adult respiratory motor plasticity in male and female rats. eLife 2019; 8:45399. [PMID: 30900989 PMCID: PMC6464604 DOI: 10.7554/elife.45399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/21/2019] [Indexed: 11/13/2022] Open
Abstract
Neonatal inflammation is common and has lasting consequences for adult health. We investigated the lasting effects of a single bout of neonatal inflammation on adult respiratory control in the form of respiratory motor plasticity induced by acute intermittent hypoxia, which likely compensates and stabilizes breathing during injury or disease and has significant therapeutic potential. Lipopolysaccharide-induced inflammation at postnatal day four induced lasting impairments in two distinct pathways to adult respiratory plasticity in male and female rats. Despite a lack of adult pro-inflammatory gene expression or alterations in glial morphology, one mechanistic pathway to plasticity was restored by acute, adult anti-inflammatory treatment, suggesting ongoing inflammatory signaling after neonatal inflammation. An alternative pathway to plasticity was not restored by anti-inflammatory treatment, but was evoked by exogenous adenosine receptor agonism, suggesting upstream impairment, likely astrocytic-dependent. Thus, the respiratory control network is vulnerable to early-life inflammation, limiting respiratory compensation to adult disease or injury.
Collapse
Affiliation(s)
- Austin D Hocker
- Department of Human Physiology, University of Oregon, Eugene, United States
| | - Sarah A Beyeler
- Department of Human Physiology, University of Oregon, Eugene, United States
| | - Alyssa N Gardner
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, United States
| | - Stephen M Johnson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, United States
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, United States
| | | |
Collapse
|
37
|
Raffay TM, Dylag AM, Sattar A, Abu Jawdeh EG, Cao S, Pax BM, Loparo KA, Martin RJ, Di Fiore JM. Neonatal intermittent hypoxemia events are associated with diagnosis of bronchopulmonary dysplasia at 36 weeks postmenstrual age. Pediatr Res 2019; 85:318-323. [PMID: 30538265 PMCID: PMC6377834 DOI: 10.1038/s41390-018-0253-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a chronic lung disease and major pulmonary complication after premature birth. We have previously shown that increased intermittent hypoxemia (IH) events have been correlated to adverse outcomes and mortality in extremely premature infants. We hypothesize that early IH patterns are associated with the development of BPD. METHODS IH frequency, duration, and nadirs were assessed using oxygen saturation (SpO2) waveforms in a retrospective cohort of 137 extremely premature newborns (<28 weeks gestation). Daily levels of inspired oxygen and mean airway pressure exposures were also recorded. RESULTS Diagnosis of BPD at 36 weeks postmenstrual age was associated with increased daily IH, longer IH duration, and a higher IH nadir. Significant differences were detected through day 7 to day 26 of life. Infants who developed BPD had lower mean SpO2 despite their exposure to increased inspired oxygen and increased mean airway pressure. CONCLUSIONS BPD was associated with more frequent, longer, and less severe IH events in addition to increased oxygen and pressure exposure within the first 26 days of life. Early IH patterns may contribute to the development of BPD or aid in identification of neonates at high risk.
Collapse
Affiliation(s)
- Thomas M Raffay
- Division of Neonatology, Rainbow Babies & Children’s Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, OH
| | - Andrew M Dylag
- Division of Neonatology, Golisano Children’s Hospital, Department of Pediatrics, University of Rochester, Rochester, NY
| | - Abdus Sattar
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Elie G Abu Jawdeh
- Division of Neonatology, Kentucky Children’s Hospital, Department of Pediatrics, University of Kentucky, Lexington, KY
| | - Shufen Cao
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH
| | - Benjamin M Pax
- Department of Electrical Engineering and Computer Science & Institute for Smart, Secure and Connected Systems, Case Western Reserve University, Cleveland, OH
| | - Kenneth A Loparo
- Department of Electrical Engineering and Computer Science & Institute for Smart, Secure and Connected Systems, Case Western Reserve University, Cleveland, OH
| | - Richard J Martin
- Division of Neonatology, Rainbow Babies & Children’s Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, OH
| | - Juliann M Di Fiore
- Division of Neonatology, Rainbow Babies & Children's Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
38
|
Bonkowsky JL, Son JH. Hypoxia and connectivity in the developing vertebrate nervous system. Dis Model Mech 2018; 11:11/12/dmm037127. [PMID: 30541748 PMCID: PMC6307895 DOI: 10.1242/dmm.037127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The developing nervous system depends upon precise regulation of oxygen levels. Hypoxia, the condition of low oxygen concentration, can interrupt developmental sequences and cause a range of molecular, cellular and neuronal changes and injuries. The roles and effects of hypoxia on the central nervous system (CNS) are poorly characterized, even though hypoxia is simultaneously a normal component of development, a potentially abnormal environmental stressor in some settings, and a clinically important complication, for example of prematurity. Work over the past decade has revealed that hypoxia causes specific disruptions in the development of CNS connectivity, altering axon pathfinding and synapse development. The goals of this article are to review hypoxia's effects on the development of CNS connectivity, including its genetic and molecular mediators, and the changes it causes in CNS circuitry and function due to regulated as well as unintended mechanisms. The transcription factor HIF1α is the central mediator of the CNS response to hypoxia (as it is elsewhere in the body), but hypoxia also causes a dysregulation of gene expression. Animals appear to have evolved genetic and molecular responses to hypoxia that result in functional behavioral alterations to adapt to the changes in oxygen concentration during CNS development. Understanding the molecular pathways underlying both the normal and abnormal effects of hypoxia on CNS connectivity may reveal novel insights into common neurodevelopmental disorders. In addition, this Review explores the current gaps in knowledge, and suggests important areas for future studies. Summary: The nervous system's exposure to hypoxia has developmental and clinical relevance. In this Review, the authors discuss the effects of hypoxia on the development of the CNS, and its long-term behavioral and neurodevelopmental consequences.
Collapse
Affiliation(s)
- Joshua L Bonkowsky
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA
| | - Jong-Hyun Son
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA.,Department of Biology, University of Scranton, Scranton, PA 18510, USA
| |
Collapse
|
39
|
Beharry KD, Cai CL, Siddiqui F, Chowdhury S, D'Agrosa C, Valencia GB, Aranda JV. Comparative Effects of Coenzyme Q10 or n-3 Polyunsaturated Fatty Acid Supplementation on Retinal Angiogenesis in a Rat Model of Oxygen-Induced Retinopathy. Antioxidants (Basel) 2018; 7:E160. [PMID: 30423931 PMCID: PMC6262377 DOI: 10.3390/antiox7110160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022] Open
Abstract
Neonatal intermittent hypoxia (IH) or apnea afflicts 70% to 90% of all preterm infants <28 weeks gestation, and is associated with severe retinopathy of prematurity (ROP). We tested the hypotheses that coenzyme Q10 (CoQ10) or omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation during neonatal IH reduces the severity of oxygen-induced retinopathy (OIR). Newborn rats were exposed to two IH paradigms: (1) 50% O₂ with brief hypoxia (12% O₂); or (2) 21% O₂ with brief hypoxia, until postnatal day 14 (P14), during which they received daily oral CoQ10 in olive oil, n-3 PUFAs in fish oil, or olive oil only and compared to room air (RA) treated groups. Pups were examined at P14, or placed in RA until P21. Retinal angiogenesis, histopathology, and morphometry were determined. Both IH paradigms produced severe OIR, but these were worsened with 50/12% O₂ IH. CoQ10 and n-3 PUFAs reduced the severity of OIR, as well as ocular growth factors in both IH paradigms, but CoQ10 was more effective in 50/12% O₂ IH. Supplementation with either CoQ10 or n-3 PUFAs targeting IH-induced retinal injury is individually effective for ameliorating specific characteristics consistent with ROP. Given the complexity of ROP, further studies are needed to determine whether combined CoQ10 and n-3 PUFAs supplementation would optimize their efficacy and result in a better outcome.
Collapse
Affiliation(s)
- Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
- Department of Ophthalmology; State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
- State University of New York Department of Ophthalmology Eye Institute, New York, NY 10062, USA.
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| | - Faisal Siddiqui
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| | - Sara Chowdhury
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| | - Christina D'Agrosa
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| | - Gloria B Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
- Department of Ophthalmology; State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
- State University of New York Department of Ophthalmology Eye Institute, New York, NY 10062, USA.
| |
Collapse
|
40
|
Peña-Ortega F. Neural Network Reconfigurations: Changes of the Respiratory Network by Hypoxia as an Example. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1015:217-237. [PMID: 29080029 DOI: 10.1007/978-3-319-62817-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neural networks, including the respiratory network, can undergo a reconfiguration process by just changing the number, the connectivity or the activity of their elements. Those elements can be either brain regions or neurons, which constitute the building blocks of macrocircuits and microcircuits, respectively. The reconfiguration processes can also involve changes in the number of connections and/or the strength between the elements of the network. These changes allow neural networks to acquire different topologies to perform a variety of functions or change their responses as a consequence of physiological or pathological conditions. Thus, neural networks are not hardwired entities, but they constitute flexible circuits that can be constantly reconfigured in response to a variety of stimuli. Here, we are going to review several examples of these processes with special emphasis on the reconfiguration of the respiratory rhythm generator in response to different patterns of hypoxia, which can lead to changes in respiratory patterns or lasting changes in frequency and/or amplitude.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM-Campus Juriquilla, Boulevard Juriquilla 3001, Querétaro, 76230, Mexico.
| |
Collapse
|
41
|
Oxygen-Induced Retinopathy from Recurrent Intermittent Hypoxia Is Not Dependent on Resolution with Room Air or Oxygen, in Neonatal Rats. Int J Mol Sci 2018; 19:ijms19051337. [PMID: 29724000 PMCID: PMC5983662 DOI: 10.3390/ijms19051337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022] Open
Abstract
Preterm infants often experience intermittent hypoxia (IH) with resolution in room air (RA) or hyperoxia (Hx) between events. Hypoxia is a major inducer of vascular endothelial growth factor, which plays a key role in normal and aberrant retinal angiogenesis. This study tested the hypothesis that neonatal IH which resolved with RA is less injurious to the immature retina than IH resolved by Hx between events. Newborn rats were exposed to: (1) Hx (50% O2) with brief hypoxia (12% O2); (2) RA with 12% O2; (3) Hx with RA; (4) Hx only; or (5) RA only, from P0 to P14. Pups were examined at P14 or placed in RA until P21. Retinal vascular and astrocyte integrity; retinal layer thickness; ocular and systemic biomarkers of angiogenesis; and somatic growth were determined at P14 and P21. All IH paradigms resulted in significant retinal vascular defects, disturbances in retinal astrocyte template, retinal thickening, and photoreceptor damage concurrent with elevations in angiogenesis biomarkers. These data suggest that the susceptibility of the immature retina to changes in oxygen render no differences in the outcomes between RA or O2 resolution. Interventions and initiatives to curtail O2 variations should remain a high priority to prevent severe retinopathy.
Collapse
|
42
|
de Brito Alves JL, Costa-Silva JH. Maternal protein malnutrition induced-hypertension: New evidence about the autonomic and respiratory dysfunctions and epigenetic mechanisms. Clin Exp Pharmacol Physiol 2017; 45:422-429. [PMID: 29164748 DOI: 10.1111/1440-1681.12892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
Abstract
Maternal protein malnutrition during the critical stages of development (pregnancy, lactation and first infancy) can lead to adult hypertension. Studies have shown that renal and cardiovascular dysfunctions can be associated to the development of hypertension in humans and rats exposed to maternal protein malnutrition. The etiology of hypertension, however, includes a complex network involved in central and peripheral blood pressure control. Recently, the hyperactivity of the sympathetic nervous system in protein-restricted rats has been reported. Studies have shown that protein malnutrition during pregnancy and/or lactation alters blood pressure control through mechanisms that include central sympathetic-respiratory dysfunctions and epigenetic modifications, which may contribute to adult hypertension. Thus, this review will discuss the historical context, new evidences of neurogenic disruption in respiratory-sympathetic activities and possible epigenetic mechanisms involved in maternal protein malnutrition induced- hypertension.
Collapse
Affiliation(s)
- José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, UFPB, João Pessoa, Brazil
| | - João Henrique Costa-Silva
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, UFPE, Vitória de Santo Antão-PE, Brazil
| |
Collapse
|
43
|
Beharry KD, Cai CL, Henry MM, Chowdhury S, Valencia GB, Aranda JV. Co-Enzyme Q10 and n-3 Polyunsaturated Fatty Acid Supplementation Reverse Intermittent Hypoxia-Induced Growth Restriction and Improved Antioxidant Profiles in Neonatal Rats. Antioxidants (Basel) 2017; 6:E103. [PMID: 29258174 PMCID: PMC5745513 DOI: 10.3390/antiox6040103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
Neonatal intermittent hypoxia (IH) increases the risk for many morbidities in extremely low birth weight/gestational age (ELBW/ELGA) neonates with compromised antioxidant systems and poor growth. We hypothesized that supplementation with coenzyme Q10 (CoQ10, ubiquinol) or n-3 polyunsaturated fatty acids (PUFAs) during neonatal IH improves antioxidant profiles and somatic growth in neonatal rats. Newborn rats were exposed to two IH paradigms at birth (P0): (1) 50% O₂ with brief hypoxic episodes (12% O₂); or (2) room air (RA) with brief hypoxia, until P14 during which they received daily oral CoQ10 in olive oil, n-3 PUFAs in fish oil, or olive oil only from P0 to P14. Pups were studied at P14 or placed in RA until P21 for recovery from IH (IHR). Body weight and length; organ weights; and serum antioxidants and growth factors were determined at P14 and P21. Neonatal IH resulted in sustained reductions in somatic growth, an effect that was reversed with n-3 PUFAs. Improved growth was associated with higher serum growth factors. CoQ10 decreased superoxide dismutase (SOD) and glutathione, but increased catalase, suggesting reduced oxidative stress. Further studies are needed to determine the synergistic effects of CoQ10 and n-3 PUFA co-administration for the prevention of IH-induced oxidative stress and postnatal growth deficits.
Collapse
Affiliation(s)
- Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
- Department of Ophthalmology; State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
- SUNY Eye Institute, State University of New York, New York, NY 10062, USA.
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| | - Michael M Henry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| | - Sara Chowdhury
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| | - Gloria B Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
- Department of Ophthalmology; State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
- SUNY Eye Institute, State University of New York, New York, NY 10062, USA.
| |
Collapse
|
44
|
Poonit ND, Zhang YC, Ye CY, Cai HL, Yu CY, Li T, Cai XH. Chronic intermittent hypoxia exposure induces kidney injury in growing rats. Sleep Breath 2017; 22:453-461. [PMID: 29124628 DOI: 10.1007/s11325-017-1587-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/21/2017] [Accepted: 10/20/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The objectives of this paper are to examine the effect of chronic intermittent hypoxia (CIH) on the morphological changes in the kidney of growing rats and to explore the mechanisms underlying the CIH-induced renal damage. METHODS Forty Sprague-Dawley rats were randomly divided into two groups: 2 and 4 weeks CIH groups (2IH, 4IH), and in the control group 2 and 4 weeks air-stimulated groups (2C, 4C), with 10 rats in each group. Pathological changes of renal tissue were observed by HE staining, PAS staining, and Masson staining. Real-time PCR method was used to detect the mRNA expression of HIF-1α, CuZnSOD/ZnSOD, and MnSOD in renal tissue. RESULTS (1) Intermittent hypoxia (IH) caused morphological damage in the kidney. Hypertrophy of epithelial cells in the kidney tubules and dilation in the glomeruli were observed under light microscope in HE and PAS stain, especially in 4IH group. Masson staining showed no significant fibrotic response in the IH groups. (2) Compared with the corresponding control groups, the levels of serum SOD were significantly lower in CIH groups, and especially in 4IH group. The mRNA expression of Cu/ZnSOD and MnSOD in CIH groups decreased significantly as compared to control groups. The mRNA levels of HIF-1α in the kidney were significantly higher in CIH groups than those in the corresponding control groups. CONCLUSION Oxidative stress played a critical role in renal damage by up-regulating HIF-1α transcription and down-regulating Cu/ZnSOD and MnSOD transcription after chronic intermittent hypoxia exposure in growing rats.
Collapse
Affiliation(s)
- Neha-Devi Poonit
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Yi-Chun Zhang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Chu-Yuan Ye
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Hui-Lin Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Chen-Yi Yu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Ting Li
- The Children's Hospital, Zhejiang University School Of Medicine, Hangzhou, 310000, China
| | - Xiao-Hong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, People's Republic of China. .,Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
45
|
Diekman CO, Thomas PJ, Wilson CG. Eupnea, tachypnea, and autoresuscitation in a closed-loop respiratory control model. J Neurophysiol 2017; 118:2194-2215. [PMID: 28724778 DOI: 10.1152/jn.00170.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 11/22/2022] Open
Abstract
How sensory information influences the dynamics of rhythm generation varies across systems, and general principles for understanding this aspect of motor control are lacking. Determining the origin of respiratory rhythm generation is challenging because the mechanisms in a central circuit considered in isolation may be different from those in the intact organism. We analyze a closed-loop respiratory control model incorporating a central pattern generator (CPG), the Butera-Rinzel-Smith (BRS) model, together with lung mechanics, oxygen handling, and chemosensory components. We show that 1) embedding the BRS model neuron in a control loop creates a bistable system; 2) although closed-loop and open-loop (isolated) CPG systems both support eupnea-like bursting activity, they do so via distinct mechanisms; 3) chemosensory feedback in the closed loop improves robustness to variable metabolic demand; 4) the BRS model conductances provide an autoresuscitation mechanism for recovery from transient interruption of chemosensory feedback; and 5) the in vitro brain stem CPG slice responds to hypoxia with transient bursting that is qualitatively similar to in silico autoresuscitation. Bistability of bursting and tonic spiking in the closed-loop system corresponds to coexistence of eupnea-like breathing, with normal minute ventilation and blood oxygen level and a tachypnea-like state, with pathologically reduced minute ventilation and critically low blood oxygen. Disruption of the normal breathing rhythm, through either imposition of hypoxia or interruption of chemosensory feedback, can push the system from the eupneic state into the tachypneic state. We use geometric singular perturbation theory to analyze the system dynamics at the boundary separating eupnea-like and tachypnea-like outcomes.NEW & NOTEWORTHY A common challenge facing rhythmic biological processes is the adaptive regulation of central pattern generator (CPG) activity in response to sensory feedback. We apply dynamical systems tools to understand several properties of a closed-loop respiratory control model, including the coexistence of normal and pathological breathing, robustness to changes in metabolic demand, spontaneous autoresuscitation in response to hypoxia, and the distinct mechanisms that underlie rhythmogenesis in the intact control circuit vs. the isolated, open-loop CPG.
Collapse
Affiliation(s)
- Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey; .,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, New Jersey
| | - Peter J Thomas
- Department of Mathematics, Applied Mathematics, and Statistics, Department of Biology, Department of Cognitive Science, and Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio
| | - Christopher G Wilson
- Lawrence D. Longo Center for Perinatal Biology, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, California; and
| |
Collapse
|
46
|
Cai C, Aranda JV, Valencia GB, Xu J, Beharry KD. Chronic Intermittent Hypoxia Causes Lipid Peroxidation and Altered Phase 1 Drug Metabolizing Enzymes in the Neonatal Rat Liver. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2017; 3:218-236. [PMID: 29806035 PMCID: PMC5967640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Critically ill preterm neonates requiring oxygen therapy often experience frequent apneas with intermittent hypoxia (IH). IH-induced oxidative stress causes lipid peroxidation, which targets the liver and contributes to toxic drug reactions. We tested the hypothesis that incremental IH episodes induce oxidative damage in the neonatal liver and alter the expression of genes that regulate drug metabolism. Newborn rats were exposed to increasing IH episodes (12% O2) during hyperoxia (50% O2), or placed in room air (RA) until postnatal day 21 (P21) for recovery from IH (IHR). RA littermates served as controls, and pups exposed to 50% O2 served as hyperoxia controls. Hepatic histopathology, biomarkers of oxidative stress and oxidative DNA damage, antioxidants, and expression of genes that regulate drug metabolism were assessed. Oxidative stress and DNA damage, evidenced by 8-isoprostaglandin F2α (8-isoPGF2α) and 8-hydroxy-2'-deoxyguanosine (8-OH-dG), respectively, increased as a function of IH episodes, and was associated with decreased superoxide dismutase (SOD) and increased catalase activities. Pathological changes including cellular swelling, steatosis, necrosis, and focal sinusoid congestion were seen in IH, but not in IHR. Similarly, IH was associated with upregulation of several genes involved in DNA repair, which were downregulated during IHR. Of the genes involved in drug metabolism, aldehyde dehydrogenases (involved in lipid peroxidation) and cytochrome P450 (CYP) genes of the 2C family (involved in oxidative stress) were robustly upregulated both in IH and in IHR. Hepatic oxidative stress and lipid peroxidation occurring in response to chronic IH have implications for preterm infants, and may explain, in part, the pharmacokinetic variations and drug toxicities in this vulnerable population.
Collapse
Affiliation(s)
- Charles Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
- SUNY Eye Institute, New York, NY 13202, USA
| | - Gloria B Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Jiliu Xu
- Department of Pediatrics, Division of Gastroenterology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
- SUNY Eye Institute, New York, NY 13202, USA
| |
Collapse
|
47
|
Beharry KD, Cai CL, Valencia GB, Valencia AM, Lazzaro DR, Bany-Mohammed F, Aranda JV. Neonatal Intermittent Hypoxia, Reactive Oxygen Species, and Oxygen-Induced Retinopathy. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2017; 3:12-25. [PMID: 29951586 DOI: 10.20455/ros.2017.805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most of the major morbidities in the preterm newborn are caused by or are associated with oxygen-induced injuries and are aptly called "oxygen radical diseases in neonatology or ORDIN". These include bronchopulmonary dysplasia, retinopathy of prematurity, periventricular leukomalacia, intraventricular hemorrhage, necrotizing enterocolitis and others. Relative hyperoxia immediately after birth, immature antioxidant systems, biomolecular events favoring oxidative stress such as iron availability and the role of hydrogen peroxide as a key molecular mediator of these events are reviewed. Potential therapeutic strategies such as caffeine, antioxidants, non-steroidal anti-inflammatory drugs, and others targeted to these critical sites may help prevent oxidative radical diseases in the newborn resulting in improved neonatal outcomes.
Collapse
Affiliation(s)
- Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,State University of New York Eye Institute, New York, NY 10075, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Gloria B Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Arwin M Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Summerlin Hospital Medical Center, Valley Healthcare System, Las Vegas, NV 89135, USA
| | - Douglas R Lazzaro
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,State University of New York Eye Institute, New York, NY 10075, USA
| | - Fayez Bany-Mohammed
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of California, Irvine, CA 92868, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,State University of New York Eye Institute, New York, NY 10075, USA
| |
Collapse
|
48
|
Hocker AD, Stokes JA, Powell FL, Huxtable AG. The impact of inflammation on respiratory plasticity. Exp Neurol 2017; 287:243-253. [PMID: 27476100 PMCID: PMC5121034 DOI: 10.1016/j.expneurol.2016.07.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 02/08/2023]
Abstract
Breathing is a vital homeostatic behavior and must be precisely regulated throughout life. Clinical conditions commonly associated with inflammation, undermine respiratory function may involve plasticity in respiratory control circuits to compensate and maintain adequate ventilation. Alternatively, other clinical conditions may evoke maladaptive plasticity. Yet, we have only recently begun to understand the effects of inflammation on respiratory plasticity. Here, we review some of common models used to investigate the effects of inflammation and discuss the impact of inflammation on nociception, chemosensory plasticity, medullary respiratory centers, motor plasticity in motor neurons and respiratory frequency, and adaptation to high altitude. We provide new data suggesting glial cells contribute to CNS inflammatory gene expression after 24h of sustained hypoxia and inflammation induced by 8h of intermittent hypoxia inhibits long-term facilitation of respiratory frequency. We also discuss how inflammation can have opposite effects on the capacity for plasticity, whereby it is necessary for increases in the hypoxic ventilatory response with sustained hypoxia, but inhibits phrenic long term facilitation after intermittent hypoxia. This review highlights gaps in our knowledge about the effects of inflammation on respiratory control (development, age, and sex differences). In summary, data to date suggest plasticity can be either adaptive or maladaptive and understanding how inflammation alters the respiratory system is crucial for development of better therapeutic interventions to promote breathing and for utilization of plasticity as a clinical treatment.
Collapse
Affiliation(s)
- Austin D Hocker
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Jennifer A Stokes
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California, United States
| | - Frank L Powell
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States.
| |
Collapse
|
49
|
Abstract
Caffeine is one of the most commonly prescribed medications in preterm neonates and is widely used to treat or prevent apnea of prematurity. Caffeine therapy is safe, effectively decreases apnea, and improves short- and long-term outcomes in preterm infants. In this review, the authors summarize the role of caffeine therapy for preterm infants receiving noninvasive respiratory support. As caffeine is already widely used, recent data are summarized that may guide clinicians in optimizing the use of caffeine therapy, with a review of the timing of initiation, dose, and duration of therapy.
Collapse
Affiliation(s)
- Nicole R. Dobson
- Department of Pediatrics, Tripler Army Medical Center, 1 Jarrett White Road, Honolulu, HI 96859. Tel 808-433-6534.
| | - Ravi Mangal Patel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, 2015 Uppergate Drive Northeast, 3rd Floor, Atlanta, GA 30322, USA.
| |
Collapse
|
50
|
Reduced respiratory neural activity elicits a long-lasting decrease in the CO 2 threshold for apnea in anesthetized rats. Exp Neurol 2016; 287:235-242. [PMID: 27474512 DOI: 10.1016/j.expneurol.2016.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/23/2022]
Abstract
Two critical parameters that influence breathing stability are the levels of arterial pCO2 at which breathing ceases and subsequently resumes - termed the apneic and recruitment thresholds (AT and RT, respectively). Reduced respiratory neural activity elicits a chemoreflex-independent, long-lasting increase in phrenic burst amplitude, a form of plasticity known as inactivity-induced phrenic motor facilitation (iPMF). The physiological significance of iPMF is unknown. To determine if iPMF and neural apnea have long-lasting physiological effects on breathing, we tested the hypothesis that patterns of neural apnea that induce iPMF also elicit changes in the AT and RT. Phrenic nerve activity and end-tidal CO2 were recorded in urethane-anesthetized, ventilated rats to quantify phrenic nerve burst amplitude and the AT and RT before and after three patterns of neural apnea that differed in their duration and ability to elicit iPMF: brief intermittent neural apneas, a single brief "massed" neural apnea, or a prolonged neural apnea. Consistent with our hypothesis, we found that patterns of neural apnea that elicited iPMF also resulted in changes in the AT and RT. Specifically, intermittent neural apneas progressively decreased the AT with each subsequent neural apnea, which persisted for at least 60min. Similarly, a prolonged neural apnea elicited a long-lasting decrease in the AT. In both cases, the magnitude of the AT decrease was proportional to iPMF. In contrast, the RT was transiently decreased following prolonged neural apnea, and was not proportional to iPMF. No changes in the AT or RT were observed following a single brief neural apnea. Our results indicate that the AT and RT are differentially altered by neural apnea and suggest that specific patterns of neural apnea that elicit plasticity may stabilize breathing via a decrease in the AT.
Collapse
|