1
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Ghaffari K, Moradi-Hasanabad A, Sobhani-Nasab A, Javaheri J, Ghasemi A. Application of cell-derived exosomes in the hematological malignancies therapy. Front Pharmacol 2023; 14:1263834. [PMID: 37745073 PMCID: PMC10515215 DOI: 10.3389/fphar.2023.1263834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023] Open
Abstract
Exosomes are small membrane vesicles of endocytic origin that are produced by both tumor and normal cells and can be found in physiological fluids like plasma and cell culture supernatants. They include cytokines, growth factors, proteins, lipids, RNAs, and metabolites and are important intercellular communication controllers in several disorders. According to a vast amount of research, exosomes could support or inhibit tumor start and diffusion in a variety of solid and hematological malignancies by paracrine signaling. Exosomes are crucial therapeutic agents for a variety of illnesses, such as cancer and autoimmune diseases. This review discusses the most current and encouraging findings from in vitro and experimental in vivo research, as well as the scant number of ongoing clinical trials, with a focus on the impact of exosomes in the treatment of malignancies. Exosomes have great promise as carriers of medications, antagonists, genes, and other therapeutic materials that can be incorporated into their core in a variety of ways. Exosomes can also alter the metabolism of cancer cells, alter the activity of immunologic effectors, and alter non-coding RNAs, all of which can alter the tumor microenvironment and turn it from a pro-tumor to an anti-tumor milieu. This subject is covered in the current review, which also looks at how exosomes contribute to the onset and progression of hematological malignancies, as well as their importance in diagnosing and treating these conditions.
Collapse
Affiliation(s)
- Kazem Ghaffari
- Department of Basic and Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Amin Moradi-Hasanabad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Sobhani-Nasab
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Javaheri
- Department of Health and Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ghasemi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
3
|
Beetler DJ, Di Florio DN, Bruno KA, Ikezu T, March KL, Cooper LT, Wolfram J, Fairweather D. Extracellular vesicles as personalized medicine. Mol Aspects Med 2023; 91:101155. [PMID: 36456416 PMCID: PMC10073244 DOI: 10.1016/j.mam.2022.101155] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are released from all cells in the body, forming an important intercellular communication network that contributes to health and disease. The contents of EVs are cell source-specific, inducing distinct signaling responses in recipient cells. The specificity of EVs and their accumulation in fluid spaces that are accessible for liquid biopsies make them highly attractive as potential biomarkers and therapies for disease. The duality of EVs as favorable (therapeutic) or unfavorable (pathological) messengers is context dependent and remains to be fully determined in homeostasis and various disease states. This review describes the use of EVs as biomarkers, drug delivery vehicles, and regenerative therapeutics, highlighting examples involving viral infections, cancer, and neurological diseases. There is growing interest to provide personalized therapy based on individual patient and disease characteristics. Increasing evidence suggests that EV biomarkers and therapeutic approaches are ideal for personalized medicine due to the diversity and multifunctionality of EVs.
Collapse
Affiliation(s)
- Danielle J Beetler
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Damian N Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Keith L March
- Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Li Y, Wen J, Liang D, Sun H. Extracellular Vesicles and Their Associated miRNAs as Potential Biomarkers in Intracranial Aneurysm. Front Mol Biosci 2022; 9:785314. [PMID: 35795823 PMCID: PMC9252459 DOI: 10.3389/fmolb.2022.785314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Intracranial aneurysms (IA) are abnormal expansions of the intracranial arteries. Once it ruptures, the mortality and disability rate are high. The cost of imaging examinations is high, and rupture risk cannot be predicted, making it difficult for high-risk groups to be screened and prevented. Thus, clinically effective biomarkers are required to screen high-risk groups, estimate the risk of rupture, and determine the appropriate early intervention step. This article introduces the current research and application of exosome-derived microRNA (miRNA) as biomarkers of intracranial aneurysms and their limitations, which can give researchers a general overview of the research in this field. It can also serve as a reference point for selecting related research directions.
Collapse
Affiliation(s)
- Yuman Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahao Wen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dingyue Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain–Inspired Intelligence, Southern Medical University, Guangzhou, China
- *Correspondence: Haitao Sun,
| |
Collapse
|
5
|
Bonifay A, Ghayad S, Lacroix R, Dignat-George F. [Extracellular vesicles-associated biomarkers: Opportunities and challenges in cardiovascular diseases and cancer]. Med Sci (Paris) 2021; 37:1158-1165. [PMID: 34928220 DOI: 10.1051/medsci/2021208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cardiovascular diseases and cancer are the leading causes of mortality and morbidity in the world. The search for pertinent biomarkers for risk stratification and treatment monitoring is a challenge. Rapid advances in the identification of the molecular and functional content of extracellular vesicles (EV) and ongoing progress in developing highly sensitive methodologies, identify EV as promising biomarkers easily accessible in liquid biopsies. Thanks to robust and sensitive methodologies, the measurability of biological targets on EV allows to define vesicular biomarkers pertinent for disease management. Adaptation of the pre-analytical and analytical steps to each EV-associated biomarker, technological improvement and standardization efforts driven by scientific societies are essential prerequisites to accelerate the transfer of these EV-associated biomarkers to the clinics and to support the development of personalized medicine.
Collapse
Affiliation(s)
- Amandine Bonifay
- Aix-Marseille Université, C2VN (Centre de recherche en cardiovasculaire et nutrition), Inserm 1263, INRAe 1260, 13000 Marseille, France - Service d'hématologie et de biologie vasculaire, CHU La Conception, AP-HM, 13005 Marseille, France
| | - Sandra Ghayad
- Aix-Marseille Université, C2VN (Centre de recherche en cardiovasculaire et nutrition), Inserm 1263, INRAe 1260, 13000 Marseille, France
| | - Romaric Lacroix
- Aix-Marseille Université, C2VN (Centre de recherche en cardiovasculaire et nutrition), Inserm 1263, INRAe 1260, 13000 Marseille, France - Service d'hématologie et de biologie vasculaire, CHU La Conception, AP-HM, 13005 Marseille, France
| | - Françoise Dignat-George
- Aix-Marseille Université, C2VN (Centre de recherche en cardiovasculaire et nutrition), Inserm 1263, INRAe 1260, 13000 Marseille, France - Service d'hématologie et de biologie vasculaire, CHU La Conception, AP-HM, 13005 Marseille, France
| |
Collapse
|
6
|
Ma D, Guan B, Song L, Liu Q, Fan Y, Zhao L, Wang T, Zhang Z, Gao Z, Li S, Xu H. A Bibliometric Analysis of Exosomes in Cardiovascular Diseases From 2001 to 2021. Front Cardiovasc Med 2021; 8:734514. [PMID: 34513962 PMCID: PMC8424118 DOI: 10.3389/fcvm.2021.734514] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Exosomes in cardiovascular diseases (CVDs) have become an active research field with substantial value and potential. Nevertheless, there are few bibliometric studies in this field. We aimed to visualize the research hotspots and trends of exosomes in CVDs using a bibliometric analysis to help understand the future development of basic and clinical research. Methods: The articles and reviews regarding exosomes in the CVDs were culled from the Web of Science Core Collection, and knowledge maps were generated using CiteSpace and VOSviewer software. Results: A total of 1,039 articles were included. The number of exosome articles in the CVDs increased yearly. These publications came from 60 countries/regions, led by the US and China. The primary research institutions were Shanghai Jiao Tong University and Nanjing Medical University. Circulation Research was the journal and co-cited journal with the most studies. We identified 473 authors among which Lucio Barile had the most significant number of articles and Thery C was co-cited most often. After analysis, the most common keywords are myocardium infarction, microRNA and mesenchymal stem cells. Ischemic heart disease, pathogenesis, regeneration, stem cells, targeted therapy, biomarkers, cardiac protection, and others are current and developing areas of study. Conclusion: We identified the research hotspots and trends of exosomes in CVDs using bibliometric and visual methods. Research on exosomes is flourishing in the cardiovascular medicine. Regenerative medicine, exosome engineering, delivery vehicles, and biomarkers will likely become the focus of future research.
Collapse
Affiliation(s)
- Dan Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luxia Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyu Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yixuan Fan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Tongxin Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zihao Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuye Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siming Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Xiang K, Akram M, Elbossaty WF, Yang J, Fan C. Exosomes in atrial fibrillation: therapeutic potential and role as clinical biomarkers. Heart Fail Rev 2021; 27:1211-1221. [PMID: 34251579 DOI: 10.1007/s10741-021-10142-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia, is a global epidemic. AF can cause heart failure and myocardial infarction and increase the risk of stroke, disability, and thromboembolic events. AF is becoming increasingly ubiquitous and is associated with increased morbidity and mortality at higher ages, resulting in an increasing threat to human health as well as substantial medical and social costs. Currently, treatment strategies for AF focus on controlling heart rate and rhythm with medications to restore and maintain sinus rhythm, but this approach has limitations. Catheter ablation is not entirely satisfactory and does not address the issues underlying AF. Research exploring the mechanisms causing AF is urgently needed for improved prevention, diagnosis, and treatment of AF. Exosomes are small vesicles (30-150 nm) released by cells that transmit information between cells. MicroRNAs in exosomes play an important role in the pathogenesis of AF and are established as a biomarker for AF. In this review, a summary of the role of exosomes in AF is presented. The role of exosomes and microRNAs in AF occurrence, their therapeutic potential, and their potential role as clinical biomarkers is considered. A better understanding of exosomes has the potential to improve the prognosis of AF patients worldwide, reducing the global medical burden of this disease.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Jinfu Yang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
8
|
Ionescu RF, Cretoiu SM. MicroRNAs as monitoring markers for right-sided heart failure and congestive hepatopathy. J Med Life 2021; 14:142-147. [PMID: 34104236 PMCID: PMC8169151 DOI: 10.25122/jml-2021-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The last decades showed a worrying increase in the evolution of cardiovascular diseases towards different stages of heart failure (HF), as a stigma of the western lifestyle. MicroRNAs (miRNAs), non-coding RNAs, which are approximately 22-nucleotide long, were shown to regulate gene expression at the post-transcriptional level and play a role in the pathogenesis and progression of HF. miRNAs research is of high interest nowadays, as these molecules display mechanisms of action that can influence the course of evolution of common chronic diseases, including HF. The potential of post-transcriptional regulation by miRNAs concerning the diagnosis, management, and therapy for HF represents a new promising approach in the accurate assessment of cardiovascular diseases. This review aims to assess the current knowledge of miRNAs in cardiovascular diseases, especially right-sided heart failure and hepatomegaly. Moreover, attention is focused on their role as potential molecular biomarkers and more promising aspects involving miRNAs as future therapeutic targets in the pathophysiology of HF.
Collapse
Affiliation(s)
- Ruxandra Florentina Ionescu
- Department of Cardiology I, Central Military Emergency University Hospital Dr. Carol Davila, Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
9
|
Gao H, Wang X, Lin C, An Z, Yu J, Cao H, Fan Y, Liang X. Exosomal MALAT1 derived from ox-LDL-treated endothelial cells induce neutrophil extracellular traps to aggravate atherosclerosis. Biol Chem 2021; 401:367-376. [PMID: 31318684 DOI: 10.1515/hsz-2019-0219] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
The objective of this study was to reveal a novel mechanism underlying the progression of atherosclerosis (AS) associated with endothelial cells (ECs) and neutrophils. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were used to observe the morphology and particle size of isolated exosomes. Western blotting was applied to examine exosomal markers, while the expression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The production of inflammatory cytokines and reactive oxygen species (ROS) was determined by an enzyme-linked immunosorbent assay (ELISA) and a dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. Circulating neutrophil extracellular traps (NETs) were represented by myeloperoxidase (MPO)-DNA complexes. NETs formation was assessed using immunofluorescence microscopy. Atherosclerotic lesion development was measured by Oil Red O (ORO) staining. In the results, MALAT1 expression was increased in exosomes extracted from oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs). When co-cultured with human neutrophils, exosomes derived from ox-LDL-treated HUVECs were revealed to promote NETs formation, which was mediated by exosomal MALAT1. Furthermore, ox-LDL-treated HUVECs-derived exosomes were demonstrated to trigger hyperlipidemia, inflammatory response and NETs release in a mouse model of AS. In conclusion, exosomal MALAT1 derived from ox-LDL-treated ECs initiated NETs formation, which in turn deteriorated AS.
Collapse
Affiliation(s)
- Hailai Gao
- Department of Cardiovascular, The First Hospital of Harbin, No. 151 Diduan Street, Daoli District, Harbin 150010, Heilongjiang, China
| | - XiaoLi Wang
- Department of Pneumology, Qingdao Women and Children's Hospital, No. 6 Tongfu Road, Shibei District, Qingdao 266000, Shandong, China
| | - Chaolan Lin
- Department of Cardiovascular, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Zhujun An
- Department of ICU, Harbin Red Cross Center Hospital, No. 415 Xinyang Road, Daoli District, Harbin 150076, Heilongjiang, China
| | - Jiangbo Yu
- Department of Cardiovascular, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Huanyi Cao
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Horse Material Water, Shatin, New Territories, Hong Kong
| | - Ying Fan
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Xiao Liang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| |
Collapse
|
10
|
Xiang X, Guan F, Jiao F, Li H, Zhang W, Zhang Y, Qin W. A new urinary exosome enrichment method by a combination of ultrafiltration and TiO 2 nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1591-1600. [PMID: 33729255 DOI: 10.1039/d1ay00102g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exosomes are small membrane-bound vesicles secreted by most cell types and play an important role in cell-to-cell communication. Increasing evidence shows that exosomal proteins in urine may be used as novel biomarkers for certain diseases. Purified urinary exosomes are necessary for downstream studies and application development. However, conventional methods for exosome isolation and enrichment are technically challenging and time-consuming. Poor specificity, low recovery and instrumental dependence also limit the use of these methods. It is particularly urgent to develop a rapid and efficient extraction method for basic research and clinical application. Particularly, urine is a dilute solution system with relatively low abundance of exosomes, due to which the isolation of urinary exosome requires more efficient technology. Here, we propose a new strategy for facile exosome isolation from human urine by utilizing the ultrafiltration technique and the specific interaction of TiO2 with the phosphate groups on the lipid bilayer of exosomes. Downstream characterization and proteomic analysis indicate that high-quality exosomes can be obtained from human urine by this ultrafiltration-TiO2 series method in 20 minutes, and 91.5% exosomes with an intact structure are captured from urine by this method. Moreover, 1874 protein groups have been identified through LC-MS. The results show that the protein identification of our method is 23% higher at least than those obtained by conventional strategies. We also identified 30 differential proteins by comparing the urinary exosomes from healthy male and female volunteers. These proteins are related to biological processes, such as lipid metabolism, fatty acid metabolism and nucleotide metabolism. Our analysis reveals that combining conventional ultrafiltration and TiO2-based isolation is ideal to overcome the inherent limitations of identification of exosome proteins derived from urine, and yield highly pure exosome components for downstream proteomic analysis.
Collapse
Affiliation(s)
- Xiaochao Xiang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Moreira-Costa L, Barros AS, Lourenço AP, Leite-Moreira AF, Nogueira-Ferreira R, Thongboonkerd V, Vitorino R. Exosome-Derived Mediators as Potential Biomarkers for Cardiovascular Diseases: A Network Approach. Proteomes 2021; 9:proteomes9010008. [PMID: 33535467 PMCID: PMC7930981 DOI: 10.3390/proteomes9010008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are widely recognized as the leading cause of mortality worldwide. Despite the advances in clinical management over the past decades, the underlying pathological mechanisms remain largely unknown. Exosomes have drawn the attention of researchers for their relevance in intercellular communication under both physiological and pathological conditions. These vesicles are suggested as complementary prospective biomarkers of CVDs; however, the role of exosomes in CVDs is still not fully elucidated. Here, we performed a literature search on exosomal biogenesis, characteristics, and functions, as well as the different available exosomal isolation techniques. Moreover, aiming to give new insights into the interaction between exosomes and CVDs, network analysis on the role of exosome-derived mediators in coronary artery disease (CAD) and heart failure (HF) was also performed to incorporate the different sources of information. The upregulated exosomal miRNAs miR-133a, miR-208a, miR-1, miR-499-5p, and miR-30a were described for the early diagnosis of acute myocardial infarction, while the exosome-derived miR-192, miR-194, miR-146a, and miR-92b-5p were considered as potential biomarkers for HF development. In CAD patients, upregulated exosomal proteins, including fibrinogen beta/gamma chain, inter-alpha-trypsin inhibitor heavy chain, and alpha-1 antichymotrypsin, were assessed as putative protein biomarkers. From downregulated proteins in CAD patients, albumin, clusterin, and vitamin D-binding protein were considered relevant to assess prognosis. The Vesiclepedia database included miR-133a of exosomal origin upregulated in patients with CAD and the exosomal miR-192, miR-194, and miR-146a upregulated in patients with HF. Additionally, Vesiclepedia included 5 upregulated and 13 downregulated exosomal proteins in patients in CAD. The non-included miRNAs and proteins have not yet been identified in exosomes and can be proposed for further research. This report highlights the need for further studies focusing on the identification and validation of miRNAs and proteins of exosomal origin as biomarkers of CAD and HF, which will enable, using exosomal biomarkers, the guiding of diagnosis/prognosis in CVDs.
Collapse
Affiliation(s)
- Liliana Moreira-Costa
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
- Correspondence: (L.M.-C.); (R.V.)
| | - António S. Barros
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
| | - André P. Lourenço
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
| | - Adelino F. Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
- Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rita Nogueira-Ferreira
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Rui Vitorino
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus Universitário de Santiago, Agra do Crasto, 3810-193 Aveiro, Portugal
- Correspondence: (L.M.-C.); (R.V.)
| |
Collapse
|
12
|
Circulating Exosomal miRNAs as Novel Biomarkers for Stable Coronary Artery Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3593962. [PMID: 33381550 PMCID: PMC7748912 DOI: 10.1155/2020/3593962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
Exosomal miRNAs are currently being explored as a novel class of biomarkers in cardiovascular diseases. However, few reports have focused on the value of circulating exosomal miRNAs as biomarkers for stable coronary artery disease (SCAD). Here, we aimed to investigate whether miRNAs involved in cardiovascular diseases in circulating exosomes could serve as novel diagnostic biomarkers for SCAD. Firstly, the serum exosomes were isolated and purified by the ExoQuick reagent and identified by transmission electron microscopy, western blot, and nanoparticle tracking analysis. Then, the purified exosomes were quantified by measuring the exosome protein concentration and calculating the total protein amount. Next, eight miRNAs involved in cardiovascular diseases, miR-192-5p, miR-148b-3p, miR-125a-3p, miR-942-5p, miR-149-5p, miR-32-5p, miR-144-3p, and miR-142-5p, were quantified in circulating exosomes from the control group (n = 20) and the SCAD group (n = 20) by quantitative real-time polymerase chain reaction (qPCR). Finally, the gene targets of the differentially expressed miRNAs were predicted, and the functions and signaling pathways of these targets were analyzed using an online database. The isolated exosomes had a bilayer membrane with a diameter of about 100 nm and expressed exosomal markers including CD63, Tsg101, and Flotillin but negatively expressed Calnexin. Both the exosome protein concentration and total protein amount exhibited no significant differences between the two groups. The qPCR assay demonstrated that among the eight miRNAs, the expression levels of miR-942-5p, miR-149-5p, and miR-32-5p in the serum exosomes from the SCAD group were significantly higher than that from the control group. And the three miRNAs for SCAD diagnosis exhibited AUC values of 0.693, 0.702, and 0.691, respectively. GO categories and signaling pathways analysis showed that some of the predictive targets of these miRNAs were involved in the pathophysiology processes of SCAD. In conclusion, our findings suggest that serum exosomal miR-942-5p, miR-149-5p, and miR-32-5p may serve as potential diagnostic biomarkers for SCAD.
Collapse
|
13
|
Blanda V, Bracale UM, Di Taranto MD, Fortunato G. Galectin-3 in Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21239232. [PMID: 33287402 PMCID: PMC7731136 DOI: 10.3390/ijms21239232] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding protein belonging to the lectin family with pleiotropic regulatory activities and several physiological cellular functions, such as cellular growth, proliferation, apoptosis, differentiation, cellular adhesion, and tissue repair. Inflammation, tissue fibrosis and angiogenesis are the main processes in which Gal-3 is involved. It is implicated in the pathogenesis of several diseases, including organ fibrosis, chronic inflammation, cancer, atherosclerosis and other cardiovascular diseases (CVDs). This review aims to explore the connections of Gal-3 with cardiovascular diseases since they represent a major cause of morbidity and mortality. We herein discuss the evidence on the pro-inflammatory role of Gal-3 in the atherogenic process as well as the association with plaque features linked to lesion stability. We report the biological role and molecular mechanisms of Gal-3 in other CVDs, highlighting its involvement in the development of cardiac fibrosis and impaired myocardium remodelling, resulting in heart failure and atrial fibrillation. The role of Gal-3 as a prognostic marker of heart failure is described together with possible diagnostic applications to other CVDs. Finally, we report the tentative use of Gal-3 inhibition as a therapeutic approach to prevent cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Valeria Blanda
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (V.B.); (G.F.)
- Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Umberto Marcello Bracale
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, 80131 Naples, Italy;
| | - Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (V.B.); (G.F.)
- CEINGE S.C.a r.l. Biotecnologie Avanzate, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-7463530
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (V.B.); (G.F.)
- CEINGE S.C.a r.l. Biotecnologie Avanzate, 80131 Naples, Italy
| |
Collapse
|
14
|
Zhou R, Wang L, Zhao G, Chen D, Song X, Momtazi-Borojeni AA, Yuan H. Circulating exosomal microRNAs as emerging non-invasive clinical biomarkers in heart failure: Mega bio-roles of a nano bio-particle. IUBMB Life 2020; 72:2546-2562. [PMID: 33053610 DOI: 10.1002/iub.2396] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Exosomes are nano-sized extracellular vesicles containing a cell-specific biologically active cargo of proteins and genetic materials. Exosomes are constitutively released from almost all cell-types and affect neighboring or distant cells through a complex intercellular exchange of the genetic information and/or regulation of certain gene expressions that change the function and behavior of recipient cells. Those released into body fluids are the major mediators of intercellular communications. The success of the biological functions of exosomes is highly mediated by the effective transfer of microRNAs (miRs). Exosomes secreted by a damaged or diseased heart can exhibit alterations in the miRs' profile that may reflect the cellular origin and (patho)physiological state, as a "signature" or "fingerprint" of the donor cell. It has been shown that the transportation of cardiac-specific miRs in exosomes can be rapidly detected and measured, holding great potential as biomarkers in heart diseases. Currently, the search for new biomarkers of heart diseases remains a large and increasing enterprise. Notably, circulating exosomal miRs (Exo-miRs) have successfully gained huge interests for their diagnostic and prognostic potentials. The present review highlights circulating Exo-miRs explored for diagnosis/prognosis and outcome prediction in patients with heart failure (HF). To this end, we explain the feasibility of exosomes as clinical biomarkers, discuss the priority of circulating Exo-miRs over non-exosomal ones as a biomarker, and then outline reported circulating Exo-miRs having the biomarker function in HF patients, together with their mechanism of action. In conclusion, circulating Exo-miRs represent emerging diagnostic (Exo-miR-92b-5p, Exo-miR-146a, Exo-miR-181c, and Exo-miR-495) and prognostic (Exo-miR-192, Exo-miR-194, Exo-miR-34a, Exo-miR-425, Exo-miR-744) biomarkers for HF.
Collapse
Affiliation(s)
- Runfa Zhou
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiyan Wang
- Clinical Skill Training Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Gang Zhao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Chen
- Department of Cardiology Electrocardiogram Room, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoning Song
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Amir A Momtazi-Borojeni
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
15
|
Ding SQ, Chen YQ, Chen J, Wang SN, Duan FX, Shi YJ, Hu JG, Lü HZ. Serum exosomal microRNA transcriptome profiling in subacute spinal cord injured rats. Genomics 2020; 112:5086-5100. [PMID: 32919018 DOI: 10.1016/j.ygeno.2019.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are involved in a series of pathology of spinal cord injury (SCI). Although, locally expressed miRNAs have advantages in studying the pathological mechanism, they cannot be used as biomarkers. The "free circulation" miRNAs can be used as biomarkers, but they have low concentration and poor stability in body fluids. Exosomal miRNAs in body fluids have many advantages comparing with free miRNAs. Therefore, we hypothesized that the specific miRNAs in the central nervous system might be transported to the peripheral circulation and concentrated in exosomes after injury. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and subactue SCI rats were analyzed. The results showed that SCI can lead to changes of serum exosomal miRNAs. These changed miRNAs and their associated signaling pathways may explain the pathological mechanism of suacute SCI. More importantly, we found some valuable serum exosomal miRNAs for diagnosis and prognosis of SCI.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Sai-Nan Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Fei-Xiang Duan
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Jiao Shi
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
16
|
Burrello J, Bolis S, Balbi C, Burrello A, Provasi E, Caporali E, Gauthier LG, Peirone A, D'Ascenzo F, Monticone S, Barile L, Vassalli G. An extracellular vesicle epitope profile is associated with acute myocardial infarction. J Cell Mol Med 2020; 24:9945-9957. [PMID: 32666618 PMCID: PMC7520329 DOI: 10.1111/jcmm.15594] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
The current standard biomarker for myocardial infarction (MI) is high-sensitive troponin. Although powerful in clinical setting, search for new markers is warranted as early diagnosis of MI is associated with improved outcomes. Extracellular vesicles (EVs) attracted considerable interest as new blood biomarkers. A training cohort used for diagnostic modelling included 30 patients with STEMI, 38 with stable angina (SA) and 30 matched-controls. Extracellular vesicle concentration was assessed by nanoparticle tracking analysis. Extracellular vesicle surface-epitopes were measured by flow cytometry. Diagnostic models were developed using machine learning algorithms and validated on an independent cohort of 80 patients. Serum EV concentration from STEMI patients was increased as compared to controls and SA. EV levels of CD62P, CD42a, CD41b, CD31 and CD40 increased in STEMI, and to a lesser extent in SA patients. An aggregate marker including EV concentration and CD62P/CD42a levels achieved non-inferiority to troponin, discriminating STEMI from controls (AUC = 0.969). A random forest model based on EV biomarkers discriminated the two groups with 100% accuracy. EV markers and RF model confirmed high diagnostic performance at validation. In conclusion, patients with acute MI or SA exhibit characteristic EV biomarker profiles. EV biomarkers hold great potential as early markers for the management of patients with MI.
Collapse
Affiliation(s)
- Jacopo Burrello
- Laboratory of Cellular and Molecular CardiologyCardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE)LuganoSwitzerland
| | - Sara Bolis
- Laboratory of Cellular and Molecular CardiologyCardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE)LuganoSwitzerland
- Laboratory for Cardiovascular TheranosticsCardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE)LuganoSwitzerland
| | - Carolina Balbi
- Laboratory of Cellular and Molecular CardiologyCardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE)LuganoSwitzerland
| | - Alessio Burrello
- Department of ElectricalElectronic and Information Engineering "Guglielmo Marconi" (DEI)University of BolognaBolognaItaly
| | - Elena Provasi
- Laboratory of Cellular and Molecular CardiologyCardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE)LuganoSwitzerland
| | - Elena Caporali
- Laboratory of Cellular and Molecular CardiologyCardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE)LuganoSwitzerland
| | - Lorenzo Grazioli Gauthier
- Laboratory of Cellular and Molecular CardiologyCardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE)LuganoSwitzerland
| | - Andrea Peirone
- Division of CardiologyDepartment of Medical SciencesUniversity of TorinoTorinoItaly
| | - Fabrizio D'Ascenzo
- Division of CardiologyDepartment of Medical SciencesUniversity of TorinoTorinoItaly
| | - Silvia Monticone
- Division of Internal MedicineDepartment of Medical SciencesUniversity of TorinoTorinoItaly
| | - Lucio Barile
- Laboratory for Cardiovascular TheranosticsCardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE)LuganoSwitzerland
- Faculty of Biomedical SciencesUniversità della Svizzera Italiana (USI)LuganoSwitzerland
- Institute of Life ScienceScuola Superiore Sant'AnnaPisaItaly
| | - Giuseppe Vassalli
- Laboratory of Cellular and Molecular CardiologyCardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE)LuganoSwitzerland
- Faculty of Biomedical SciencesUniversità della Svizzera Italiana (USI)LuganoSwitzerland
- Center for Molecular CardiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
17
|
MicroRNAs as sentinels and protagonists of carotid artery thromboembolism. Clin Sci (Lond) 2020; 134:169-192. [PMID: 31971230 DOI: 10.1042/cs20190651] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Stroke is the leading cause of serious disability in the world and a large number of ischemic strokes are due to thromboembolism from unstable carotid artery atherosclerotic plaque. As it is difficult to predict plaque rupture and surgical treatment of asymptomatic disease carries a risk of stroke, carotid disease continues to present major challenges with regard to clinical decision-making and revascularization. There is therefore an imminent need to better understand the molecular mechanisms governing plaque instability and rupture, as this would allow for the development of biomarkers to identify at-risk asymptomatic carotid plaque prior to disease progression and stroke. Further, it would aid in creation of therapeutics to stabilize carotid plaque. MicroRNAs (miRNAs) have been implicated as key protagonists in various stages of atherosclerotic plaque initiation, development and rupture. Notably, they appear to play a crucial role in carotid artery thromboembolism. As the molecular pathways governing the role of miRNAs are being uncovered, we are learning that their involvement is complex, tissue- and stage-specific, and highly selective. Notably, miRNAs can be packaged and secreted in extracellular vesicles (EVs), where they participate in cell-cell communication. The measurement of EV-encapsulated miRNAs in the circulation may inform disease mechanisms occurring in the plaque itself, and therefore may serve as sentinels of unstable plaque as well as therapeutic targets.
Collapse
|
18
|
Vanhie A, Tomassetti C, D'Hooghe TM. Peritoneal fluid exosomes as potential biomarkers for endometriosis: mind and bridge the gap between innovation and validation/development into benefit for patients. Fertil Steril 2020; 113:326-327. [PMID: 32106978 DOI: 10.1016/j.fertnstert.2019.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Arne Vanhie
- Research Group Reproductive Medicine, Department of Development and Regeneration, Organ Systems, Group Biomedical Sciences, KU Leuven (University of Leuven), Leuven, Belgium; Department of Obstetrics and Gynecology, Leuven University Fertility Center, University Hospital Gasthuisberg, Leuven, Belgium
| | - Carla Tomassetti
- Research Group Reproductive Medicine, Department of Development and Regeneration, Organ Systems, Group Biomedical Sciences, KU Leuven (University of Leuven), Leuven, Belgium; Department of Obstetrics and Gynecology, Leuven University Fertility Center, University Hospital Gasthuisberg, Leuven, Belgium
| | - Thomas M D'Hooghe
- Research Group Reproductive Medicine, Department of Development and Regeneration, Organ Systems, Group Biomedical Sciences, KU Leuven (University of Leuven), Leuven, Belgium; Department of Obstetrics, Gynecology and Reproductive Sciences,Yale School of Medicine, New Haven, Connecticut; Global Medical Affairs Fertility, Research and Development, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
19
|
Busatto S, Zendrini A, Radeghieri A, Paolini L, Romano M, Presta M, Bergese P. The nanostructured secretome. Biomater Sci 2020; 8:39-63. [PMID: 31799977 DOI: 10.1039/c9bm01007f] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term secretome, which traditionally strictly refers to single proteins, should be expanded to also include the great variety of nanoparticles secreted by cells (secNPs) into the extracellular space, which ranges from high-density lipoproteins of a few nanometers to extracellular vesicles and fat globules of hundreds of nanometers. Widening the definition is urged by the ever-increasing understanding of the role of secNPs as regulators/mediators of key physiological and pathological processes, which also puts them in the running as breakthrough cell-free therapeutics and diagnostics. "Made by cells for cells", secNPs are envisioned as a sweeping paradigm shift in nanomedicine, promising to overcome the limitations of synthetic nanoparticles by unsurpassed circulation and targeting abilities, precision and sustainability. From a longer/wider perspective, advanced manipulation would possibly make secNPs available as building blocks for future "biogenic" nanotechnology. However, the current knowledge is fragmented and sectorial (the majority of the studies being focused on a specific biological and/or medical aspect of a given secNP class or subclass), the understanding of the nanoscale and interfacial properties is limited and the development of bioprocesses and regulatory initiatives is in the early days. We believe that new multidisciplinary competencies and synergistic efforts need to be attracted and augmented to move forward. This review will contribute to the effort by attempting for the first time to rationally gather and elaborate secNPs and their traits into a unique concise framework - from biogenesis to colloidal properties, engineering and clinical translation - disclosing the overall view and easing comparative analysis and future exploitation.
Collapse
Affiliation(s)
- S Busatto
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Circulating Exosomal SOCS2-AS1 Acts as a Novel Biomarker in Predicting the Diagnosis of Coronary Artery Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9182091. [PMID: 32352013 PMCID: PMC7171639 DOI: 10.1155/2020/9182091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Background and Aims Critical roles of circulating exosomal long noncoding RNAs (lncRNAs) have been implicated in multiple diseases. However, little is known about their roles in coronary artery disease (CAD). The aim of the present study was to investigate the relationships between circulating exosomal lncRNAs and CAD and identify the aberrantly expressed disease-related lncRNAs as biomarkers in diagnosing CAD. Methods The aberrantly expressed lncRNAs in plasma exosomes from CAD patients and controls were identified by microarray analysis and verified by quantitative real-time PCR (qRT-PCR). Then, the correlation between the expression level of candidate biomarker and clinic features in CAD patients, mild coronary artery stenosis (mCAS) patients, and controls was analyzed. Finally, we used the receiver operating characteristic (ROC) curve to examine the diagnosis value of candidate biomarkers. Results The downregulated SOCS2-AS1 was determined by microarray analysis and verified by qRT-PCR in plasma from CAD patients in contrast to controls. The SOCS2-AS1 expression level in plasma exosomes was negatively correlated with PLT and Lpa. Moreover, CAD patients with elevated levels of plasma exosome-encapsulated SOCS2-AS1 were susceptible to multicoronary artery lesions. Additionally, the area under ROC (AUC) of SOCS2-AS1 was 0.704 (95% CI = 0.607–0.801, P < 0.001) for diagnosis of CAD. Conclusions Plasma exosome-encapsulated SOCS2-AS1 was an independent protective factor against CAD and could be potentially used as a novel biomarker for the diagnosis of CAD.
Collapse
|
21
|
Circulating exosomes from patients with peripheral artery disease influence vascular cell migration and contain distinct microRNA cargo. JVS Vasc Sci 2020; 1:28-41. [PMID: 32550603 PMCID: PMC7299234 DOI: 10.1016/j.jvssci.2020.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective Peripheral artery disease (PAD) is a chronic condition characterized by inflammation. Emerging literature suggests that circulating exosomes and their microRNA (miRNA) contents may influence atherosclerosis and vascular remodeling. We hypothesize that circulating exosomes in patients with PAD directly modulate vascular cell phenotype and contain proinflammatory miRNAs. Methods Exosomes (particle size, 30-150 nm) were isolated from plasma of healthy individuals (n = 6), patients with mild PAD (mPAD; median Rutherford class, 2.5; n = 6), and patients with severe PAD (sPAD; median Rutherford class, 4; n = 5). Exosome identity, size, and concentration were determined by Western blot and nanoparticle tracking analysis. Human vascular smooth muscle cell (VSMC) and endothelial cell (EC) migration was assessed by a standard wound closure assay after exposure to exosome preparations. Monocyte-derived macrophages isolated from healthy volunteers were exposed to exosome preparations, and targeted gene expression was analyzed using quantitative polymerase chain reaction. Exosome miRNA cargos were isolated, and a panel of defined, vascular-active miRNAs was assessed by quantitative polymerase chain reaction. Results There was no difference in overall exosome particle concentration or size between the three groups (one-way analysis of variance [ANOVA], P > .05). Compared with exosomes from healthy individuals, exosomes from mPAD and sPAD patients increased VSMC migration (1.0 ± 0.09-fold vs 1.5 ± 0.09-fold vs 2.0 ± 0.12-fold wound closure; ANOVA, P < .0001) and inhibited EC migration (1.8 ± 0.07-fold vs 1.5 ± 0.04-fold vs 1.3 ± 0.02-fold wound closure; ANOVA, P < .01) in a stepwise fashion. Exosomes also induced changes in monocyte-derived macrophage gene expression that did not appear PAD specific. Hierarchical analysis of exosome miRNA revealed distinct clustering of vascular-active miRNAs between the three groups. Several miRNAs that promote inflammatory pathways in vascular cells were expressed at higher levels in exosomes from sPAD patients. Conclusions Circulating exosomes from individuals with PAD exert in vitro functional effects on VSMCs and ECs that may promote adverse vessel remodeling. Exosomes from healthy individuals, mPAD patients, and sPAD patients contain distinct signatures of immune-regulatory miRNA. Together these data suggest that the proinflammatory cargo of circulating exosomes correlates with atherosclerosis severity in PAD patients and could influence vascular injury and repair. Exosomes and their cargo have been implicated in several vascular remodeling processes including atherosclerosis, angiogenesis, and neointimal hyperplasia. In this study, we demonstrate that circulating exosomes from individuals with peripheral artery disease exert in vitro effects on vascular cells that may adversely affect vessel remodeling. Moreover, these exosomes contain elevated levels of vascular-active microRNA. Our results suggest that exosomes may serve as both biomarkers and effectors of vascular disease in patients with peripheral artery disease and motivate further investigation into the role of exosomes and their contents in aberrant remodeling in vascular diseases.
Collapse
|
22
|
Nazri HM, Imran M, Fischer R, Heilig R, Manek S, Dragovic RA, Kessler BM, Zondervan KT, Tapmeier TT, Becker CM. Characterization of exosomes in peritoneal fluid of endometriosis patients. Fertil Steril 2020; 113:364-373.e2. [PMID: 32106990 PMCID: PMC7057257 DOI: 10.1016/j.fertnstert.2019.09.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To demonstrate the feasibility of studying exosomes directly from peritoneal fluid, we isolated exosomes from endometriosis patient samples and from controls, and characterized their cargo. DESIGN Case-control experimental study. SETTING Academic clinical center. PATIENT (S) Women with and without endometriosis who underwent laparoscopic surgery (n = 28 in total). INTERVENTION (S) None. MAIN OUTCOME MEASURE (S) Concentration of exosomes within peritoneal fluid and protein content of the isolated exosomes. RESULT (S) Peritoneal fluid samples were pooled according to the cycle phase and disease stage to form six experimental groups, from which the exosomes were isolated. Exosomes were successfully isolated from peritoneal fluid in all the study groups. The concentration varied with cycle phase and disease stage. Proteomic analysis showed specific proteins in the exosomes derived from endometriosis patients that were absent in the controls. Five proteins were found exclusively in the endometriosis groups: PRDX1, H2A type 2-C, ANXA2, ITIH4, and the tubulin α-chain. CONCLUSION (S) Exosomes are present in peritoneal fluid. The characterization of endometriosis-specific exosomes opens up new avenues for the diagnosis and investigation of endometriosis.
Collapse
Affiliation(s)
- Hannah M Nazri
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Maria Imran
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Raphael Heilig
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sanjiv Manek
- Department of Cellular Pathology, Oxford University Hospitals, Oxford, United Kingdom
| | - Rebecca A Dragovic
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Krina T Zondervan
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom; Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas T Tapmeier
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom.
| | - Christian M Becker
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Luo Y, Huang L, Luo W, Ye S, Hu Q. Genomic analysis of lncRNA and mRNA profiles in circulating exosomes of patients with rheumatic heart disease. Biol Open 2019; 8:bio.045633. [PMID: 31784421 PMCID: PMC6918777 DOI: 10.1242/bio.045633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rheumatic heart disease (RHD) remains one of the most common cardiovascular conditions in developing countries. Accumulating evidence suggests that circulating exosomes and their cargoes, including mRNA and long noncoding RNA (lncRNA), play essential roles in many cardiovascular diseases. However, their specific roles in RHD remain unexplored. In the present study, we identified 231 lncRNAs and 179 mRNAs differentially expressed in the circulating exosomes harvested from RHD patients compared to healthy controls. We performed gene ontology (GO) and KEGG pathway analysis, and identified five pairs of lncRNAs and their flanking coding genes simultaneously dysregulated in the circulating exosomes. Collectively, we provide the first transcriptome analysis identifying differentially expressed lncRNAs and mRNAs in circulating exosomes of RHD patients, which may bring valuable insights for the discovery of potential biomarkers and therapeutic targets for RHD.
Collapse
Affiliation(s)
- Yanli Luo
- Department of Anesthesiology, Xiangya Hospital, Central-South University, Changsha, Hunan Province, China 410008
| | - Lingjin Huang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central-South University, Changsha, Hunan Province, China 410008
| | - Wanjun Luo
- Department of Cardiovascular Surgery, Xiangya Hospital, Central-South University, Changsha, Hunan Province, China 410008
| | - Shu Ye
- Department of Dermatology, Hunan Children's Hospital, Changsha, Hunan Province, China 410007
| | - Qinghua Hu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central-South University, Changsha, Hunan Province, China 410008
| |
Collapse
|
24
|
Ding SQ, Chen YQ, Chen J, Wang SN, Duan FX, Shi YJ, Hu JG, Lü HZ. Serum exosomal microRNA transcriptome profiling in subacute spinal cord injured rats. Genomics 2019; 112:2092-2105. [PMID: 31830526 DOI: 10.1016/j.ygeno.2019.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are involved in a series of pathology of spinal cord injury (SCI). Although, locally expressed miRNAs have advantages in studying the pathological mechanism, they cannot be used as biomarkers. The "free circulation" miRNAs can be used as biomarkers, but they have low concentration and poor stability in body fluids. Exosomal miRNAs in body fluids have many advantages comparing with free miRNAs. Therefore, we hypothesized that the specific miRNAs in the central nervous system might be transported to the peripheral circulation and concentrated in exosomes after injury. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and subactue SCI rats were analyzed. The results showed that SCI can lead to changes of serum exosomal miRNAs. These changed miRNAs and their associated signaling pathways may explain the pathological mechanism of suacute SCI. More importantly, we found some valuable serum exosomal miRNAs for diagnosis and prognosis of SCI.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Sai-Nan Wang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Fei-Xiang Duan
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Jiao Shi
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
25
|
Patil M, Henderson J, Luong H, Annamalai D, Sreejit G, Krishnamurthy P. The Art of Intercellular Wireless Communications: Exosomes in Heart Disease and Therapy. Front Cell Dev Biol 2019; 7:315. [PMID: 31850349 PMCID: PMC6902075 DOI: 10.3389/fcell.2019.00315] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanoscale membrane-bound extracellular vesicles secreted by most eukaryotic cells in the body that facilitates intercellular communication. Exosomes carry several signaling biomolecules, including miRNA, proteins, enzymes, cell surface receptors, growth factors, cytokines and lipids that can modulate target cell biology and function. Due to these capabilities, exosomes have emerged as novel intercellular signaling mediators in both homeostasis and pathophysiological conditions. Recent studies document that exosomes (both circulating or released from heart tissue) have been actively involved in cardiac remodeling in response to stressors. Also, exosomes released from progenitor/stem cells have protective effects in heart diseases and shown to have regenerative potential in the heart. In this review we discuss- the critical role played by circulating exosomes released from various tissues and from cells within the heart in cardiac health; the gap in knowledge that needs to be addressed to promote future research; and exploitation of recent advances in exosome engineering to develop novel therapy.
Collapse
Affiliation(s)
- Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John Henderson
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hien Luong
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Divya Annamalai
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gopalkrishna Sreejit
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
26
|
Ding SQ, Chen J, Wang SN, Duan FX, Chen YQ, Shi YJ, Hu JG, Lü HZ. Identification of serum exosomal microRNAs in acute spinal cord injured rats. Exp Biol Med (Maywood) 2019; 244:1149-1161. [PMID: 31450959 DOI: 10.1177/1535370219872759] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is important to find specific and easily detectable diagnostic markers in acute stage of spinal cord injury for guiding treatment and estimating prognosis. Although, microRNAs are attractive biomarkers, there is still no uniform standard for clinical evaluation of spinal cord injury based on “free circulation” miRNA spectrum. The reason may be that miRNA analysis from biological fluids is influenced by many pre-analysis variables. Exosome miRNAs are widely distributed in body fluids and have many advantages comparing with free miRNAs. The specific miRNAs in the central nervous system can be transported to the peripheral circulation and concentrated in exosomes. Therefore, we hypothesized that there might be some physiological changes associated with spinal cord injury in serum exosomal miRNAs. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and acute spinal cord injury rats were analyzed, and integrative bioinformatics were used to analyze the function and regulation of putative target genes. The results showed that acute spinal cord injury can lead to changes in miRNA expression in the circulating exosomes. The changed miRNAs and their associated pathways may explain the pathology of acute spinal cord injury. More importantly, we determined serum exosomal miR-125b-5p, miR-152-3p, and miR-130a-3p are specific and easily detectable diagnostic markers in acute spinal cord injury. More interestingly, we also found some valuable known and novel miRNAs. Further bioinformatics analysis and functional research will be of great help to make clear their role in the pathological process of spinal cord injury and judging whether they can be used as diagnostic markers. Impact statement This research hypothesized that there might be some physiological changes associated with SCI in serum exosomal miRNAs. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and acute SCI rats were analyzed, and integrative bioinformatics were used to analyze the function and regulation of putative target genes. The results showed that acute SCI can lead to changes in miRNA expression in the circulating exosomes. The changed miRNAs and their associated pathways may explain the pathology of acute SCI. More importantly, we determined serum exosomal miR-125b-5p, miR-152-3p, and miR-130a-3p are specific and easily detectable diagnostic markers in acute SCI.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - Jing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| | - Sai-Nan Wang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| | - Fei-Xiang Duan
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - Yu-Qing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| | - Yu-Jiao Shi
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| |
Collapse
|