1
|
Zhao S, Qing J, Yang Z, Tian T, Yan Y, Li H, Bai Y. Genome-Wide Identification and Expression Analysis of the HSF Gene Family in Ammopiptanthus mongolicus. Curr Issues Mol Biol 2024; 46:11375-11393. [PMID: 39451558 PMCID: PMC11505871 DOI: 10.3390/cimb46100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Ammopiptanthus mongolicus is an ancient remnant species from the Mediterranean displaying characteristics such as high-temperature tolerance, drought resistance, cold resistance, and adaptability to impoverished soil. In the case of high-temperature tolerance, heat shock transcription factors (HSFs) are integral transcriptional regulatory proteins exerting a critical role in cellular processes. Despite extensive research on the HSF family across various species, there has been no analysis specifically focused on A. mongolicus. In this study, we identified 24 members of the AmHSF gene family based on the genome database of A. mongolicus, which were unevenly distributed over 9 chromosomes. Phylogenetic analysis showed that these 24 members can be categorized into 5 primary classes consisting of a total of 13 subgroups. Analysis of the physical and chemical properties revealed significant diversity among these proteins. With the exception of the AmHSFB3 protein, which is localized in the cytoplasm, all other AmHSF proteins were found to be situated in the nucleus. Comparison of amino acid sequences revealed that all AmHSF proteins contain a conserved DNA-binding domains structure, and the DNA-binding domains and oligomerization domains of the AmHSF gene exhibit conservation with counterparts across diverse species; we investigated the collinearity of AmHSF genes in relation to those of three other representative species. Through GO enrichment analysis, evidence emerged that AmHSF genes are involved in heat stress responses and may be involved in multiple transcriptional regulatory pathways that coordinate plant growth and stress responses. Finally, through a comprehensive analysis using transcriptome data, we examined the expression levels of 24 AmHSFs under 45 °C. The results revealed significant differences in the expression profiles of AmHSFs at different time intervals during exposure to high temperatures, highlighting their crucial role in responding to heat stress. In summary, these results provide a better understanding of the role and regulatory mechanisms of HSF in the heat stress response of A. mongolicus, meanwhile also establishing a foundation for further exploration of the biological functions of AmHSF in the adversity response of A. mongolicus.
Collapse
Affiliation(s)
- Shuai Zhao
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010019, China; (S.Z.)
| | - Jun Qing
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010019, China; (S.Z.)
| | - Zhiguo Yang
- Institute of Desertification Studies, Inner Mongolia Academy of Forestry, Hohhot 010019, China
| | - Tian Tian
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010019, China; (S.Z.)
| | - Yanqiu Yan
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010019, China; (S.Z.)
| | - Hui Li
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010019, China; (S.Z.)
| | - Yu’e Bai
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010019, China; (S.Z.)
| |
Collapse
|
2
|
Guo C, Huang Z, Chen J, Yu G, Wang Y, Wang X. Identification of Novel Regulators of Leaf Senescence Using a Deep Learning Model. PLANTS (BASEL, SWITZERLAND) 2024; 13:1276. [PMID: 38732491 PMCID: PMC11085074 DOI: 10.3390/plants13091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Deep learning has emerged as a powerful tool for investigating intricate biological processes in plants by harnessing the potential of large-scale data. Gene regulation is a complex process that transcription factors (TFs), cooperating with their target genes, participate in through various aspects of biological processes. Despite its significance, the study of gene regulation has primarily focused on a limited number of notable instances, leaving numerous aspects and interactions yet to be explored comprehensively. Here, we developed DEGRN (Deep learning on Expression for Gene Regulatory Network), an innovative deep learning model designed to decipher gene interactions by leveraging high-dimensional expression data obtained from bulk RNA-Seq and scRNA-Seq data in the model plant Arabidopsis. DEGRN exhibited a compared level of predictive power when applied to various datasets. Through the utilization of DEGRN, we successfully identified an extensive set of 3,053,363 high-quality interactions, encompassing 1430 TFs and 13,739 non-TF genes. Notably, DEGRN's predictive capabilities allowed us to uncover novel regulators involved in a range of complex biological processes, including development, metabolism, and stress responses. Using leaf senescence as an example, we revealed a complex network underpinning this process composed of diverse TF families, including bHLH, ERF, and MYB. We also identified a novel TF, named MAF5, whose expression showed a strong linear regression relation during the progression of senescence. The mutant maf5 showed early leaf decay compared to the wild type, indicating a potential role in the regulation of leaf senescence. This hypothesis was further supported by the expression patterns observed across four stages of leaf development, as well as transcriptomics analysis. Overall, the comprehensive coverage provided by DEGRN expands our understanding of gene regulatory networks and paves the way for further investigations into their functional implications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (C.G.); (Z.H.); (J.C.); (G.Y.); (Y.W.)
| |
Collapse
|
3
|
Li L, Ju Y, Zhang C, Tong B, Lu Y, Xie X, Li W. Genome-wide analysis of the heat shock transcription factor family reveals saline-alkali stress responses in Xanthoceras sorbifolium. PeerJ 2023; 11:e15929. [PMID: 37753174 PMCID: PMC10519200 DOI: 10.7717/peerj.15929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/30/2023] [Indexed: 09/28/2023] Open
Abstract
The heat shock transcription factor (HSF) family is involved in regulating growth, development, and abiotic stress. The characteristics and biological functions of HSF family member in X. sorbifolium, an important oil and ornamental plant, have never been reported. In this study, 21 XsHSF genes were identified from the genome of X. sorbifolium and named XsHSF1-XsHSF21 based on their chromosomal positions. Those genes were divided into three groups, A, B, and C, containing 12, one, and eight genes, respectively. Among them, 20 XsHSF genes are located on 11 chromosomes. Protein structure analysis suggested that XsHSF proteins were conserved, displaying typical DNA binding domains (DBD) and oligomerization domains (OD). Moreover, HSF proteins within the same group contain specific motifs, such as motif 5 in the HSFC group. All XsHSF genes have one intron in the CDS region, except XsHSF1 which has two introns. Promoter analysis revealed that in addition to defense and stress responsiveness elements, some promoters also contained a MYB binding site and elements involved in multiple hormones responsiveness and anaerobic induction. Duplication analysis revealed that XsHSF1 and XsHSF4 genes were segmentally duplicated while XsHSF2, XsHSF9, and XsHSF13 genes might have arisen from transposition. Expression pattern analysis of leaves and roots following salt-alkali treatment using qRT-PCR indicated that five XsHSF genes were upregulated and one XsHSF gene was downregulated in leaves upon NaCl treatment suggesting these genes may play important roles in salt response. Additionally, the expression levels of most XsHSFs were decreased in leaves and roots following alkali-induced stress, indicating that those XsHSFs may function as negative regulators in alkali tolerance. MicroRNA target site prediction indicated that 16 of the XsHSF genes may be regulated by multiple microRNAs, for example XsHSF2 might be regulated by miR156, miR394, miR395, miR408, miR7129, and miR854. And miR164 may effect the mRNA levels of XsHSF3 and XsHSF17, XsHSF9 gene may be regulated by miR172. The expression trends of miR172 and miR164 in leaves and roots on salt treatments were opposite to the expression trend of XsHSF9 and XsHSF3 genes, respectively. Promoter analysis showed that XsHSFs might be involved in light and hormone responses, plant development, as well as abiotic stress responses. Our results thus provide an overview of the HSF family in X. sorbifolium and lay a foundation for future functional studies to reveal its roles in saline-alkali response.
Collapse
Affiliation(s)
- Lulu Li
- Qingdao Agricultural University, Qingdao, China
| | - Yiqian Ju
- Qingdao Agricultural University, Qingdao, China
| | | | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Wei Li
- Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Global Analysis of Dark- and Heat-Regulated Alternative Splicing in Arabidopsis. Int J Mol Sci 2023; 24:ijms24065299. [PMID: 36982373 PMCID: PMC10049525 DOI: 10.3390/ijms24065299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Alternative splicing (AS) is one of the major post-transcriptional regulation mechanisms that contributes to plant responses to various environmental perturbations. Darkness and heat are two common abiotic factors affecting plant growth, yet the involvement and regulation of AS in the plant responses to these signals remain insufficiently examined. In this study, we subjected Arabidopsis seedlings to 6 h of darkness or heat stress and analyzed their transcriptome through short-read RNA sequencing. We revealed that both treatments altered the transcription and AS of a subset of genes yet with different mechanisms. Dark-regulated AS events were found enriched in photosynthesis and light signaling pathways, while heat-regulated AS events were enriched in responses to abiotic stresses but not in heat-responsive genes, which responded primarily through transcriptional regulation. The AS of splicing-related genes (SRGs) was susceptible to both treatments; while dark treatment mostly regulated the AS of these genes, heat had a strong effect on both their transcription and AS. PCR analysis showed that the AS of the Serine/Arginine-rich family gene SR30 was reversely regulated by dark and heat, and heat induced the upregulation of multiple minor SR30 isoforms with intron retention. Our results suggest that AS participates in plant responses to these two abiotic signals and reveal the regulation of splicing regulators during these processes.
Collapse
|
5
|
Redox Signaling in Plant Heat Stress Response. Antioxidants (Basel) 2023; 12:antiox12030605. [PMID: 36978852 PMCID: PMC10045013 DOI: 10.3390/antiox12030605] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The increase in environmental temperature due to global warming is a critical threat to plant growth and productivity. Heat stress can cause impairment in several biochemical and physiological processes. Plants sense and respond to this adverse environmental condition by activating a plethora of defense systems. Among them, the heat stress response (HSR) involves an intricate network of heat shock factors (HSFs) and heat shock proteins (HSPs). However, a growing amount of evidence suggests that reactive oxygen species (ROS), besides potentially being responsible for cellular oxidative damage, can act as signal molecules in HSR, leading to adaptative responses. The role of ROS as toxic or signal molecules depends on the fine balance between their production and scavenging. Enzymatic and non-enzymatic antioxidants represent the first line of defense against oxidative damage and their activity is critical to maintaining an optimal redox environment. However, the HS-dependent ROS burst temporarily oxidizes the cellular environment, triggering redox-dependent signaling cascades. This review provides an overview of the redox-activated mechanisms that participate in the HSR.
Collapse
|
6
|
Guo S, Zhou G, Wang J, Lu X, Zhao H, Zhang M, Guo X, Zhang Y. High-Throughput Phenotyping Accelerates the Dissection of the Phenotypic Variation and Genetic Architecture of Shank Vascular Bundles in Maize (Zea mays L.). PLANTS 2022; 11:plants11101339. [PMID: 35631765 PMCID: PMC9145235 DOI: 10.3390/plants11101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
The vascular bundle of the shank is an important ‘flow’ organ for transforming maize biological yield to grain yield, and its microscopic phenotypic characteristics and genetic analysis are of great significance for promoting the breeding of new varieties with high yield and good quality. In this study, shank CT images were obtained using the standard process for stem micro-CT data acquisition at resolutions up to 13.5 μm. Moreover, five categories and 36 phenotypic traits of the shank including related to the cross-section, epidermis zone, periphery zone, inner zone and vascular bundle were analyzed through an automatic CT image process pipeline based on the functional zones. Next, we analyzed the phenotypic variations in vascular bundles at the base of the shank among a group of 202 inbred lines based on comprehensive phenotypic information for two environments. It was found that the number of vascular bundles in the inner zone (IZ_VB_N) and the area of the inner zone (IZ_A) varied the most among the different subgroups. Combined with genome-wide association studies (GWAS), 806 significant single nucleotide polymorphisms (SNPs) were identified, and 1245 unique candidate genes for 30 key traits were detected, including the total area of vascular bundles (VB_A), the total number of vascular bundles (VB_N), the density of the vascular bundles (VB_D), etc. These candidate genes encode proteins involved in lignin, cellulose synthesis, transcription factors, material transportation and plant development. The results presented here will improve the understanding of the phenotypic traits of maize shank and provide an important phenotypic basis for high-throughput identification of vascular bundle functional genes of maize shank and promoting the breeding of new varieties with high yield and good quality.
Collapse
Affiliation(s)
- Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng 252059, China; (S.G.); (G.Z.)
| | - Guoliang Zhou
- College of Agronomy, Liaocheng University, Liaocheng 252059, China; (S.G.); (G.Z.)
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Jinglu Wang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Huan Zhao
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Minggang Zhang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
- Correspondence: (X.G.); (Y.Z.)
| | - Ying Zhang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
- Correspondence: (X.G.); (Y.Z.)
| |
Collapse
|
7
|
Shen C, Yuan J. Genome-wide characterization and expression analysis of the heat shock transcription factor family in pumpkin (Cucurbita moschata). BMC PLANT BIOLOGY 2020; 20:471. [PMID: 33054710 PMCID: PMC7557022 DOI: 10.1186/s12870-020-02683-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/01/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Crop quality and yield are affected by abiotic and biotic stresses, and heat shock transcription factors (Hsfs) are considered to play important roles in regulating plant tolerance under various stresses. To investigate the response of Cucurbita moschata to abiotic stress, we analyzed the genome of C. moschata. RESULTS In this research, a total of 36 C. moschata Hsf (CmHsf) members were identified and classified into three subfamilies (I, II, and III) according to their amino acid sequence identity. The Hsfs of the same subfamily usually exhibit a similar gene structure (intron-exon distribution) and conserved domains (DNA-binding and other functional domains). Chromosome localization analysis showed that the 36 CmHsfs were unevenly distributed on 18 of the 21 chromosomes (except for Cm_Chr00, Cm_Chr08 and Cm_Chr20), among which 18 genes formed 9 duplicated gene pairs that have undergone segmental duplication events. The Ka/Ks ratio showed that the duplicated CmHsfs have mainly experienced strong purifying selection. High-level synteny was observed between C. moschata and other Cucurbitaceae species. CONCLUSIONS The expression profile of CmHsfs in the roots, stems, cotyledons and true leaves revealed that the CmHsfs exhibit tissue specificity. The analysis of cis-acting elements and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that some key CmHsfs were activated by cold stress, heat stress, hormones and salicylic acid. This study lays the foundation for revealing the role of CmHsfs in resistance to various stresses, which is of great significance for the selection of stress-tolerant C. moschata.
Collapse
Affiliation(s)
- Changwei Shen
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jingping Yuan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China.
| |
Collapse
|
8
|
Wan X, Yang J, Guo C, Bao M, Zhang J. Genome-wide identification and classification of the Hsf and sHsp gene families in Prunus mume, and transcriptional analysis under heat stress. PeerJ 2019; 7:e7312. [PMID: 31392093 PMCID: PMC6673427 DOI: 10.7717/peerj.7312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/18/2019] [Indexed: 11/20/2022] Open
Abstract
The transcriptional activation of heat shock proteins (Hsps) by heat shock transcription factors (Hsfs) is presumed to have a pivotal role in plant heat stress (HS) response. Prunus mume is an ornamental woody plant with distinctive features, including rich varieties and colors. In this study, 18 Hsfs and 24 small Hsps (sHsps) were identified in P. mume. Their chromosomal locations, protein domains, conserved motifs, phylogenetic relationships, and exon–intron structures were analyzed and compared with Arabidopsis thaliana Hsfs or sHsps. A total of 18 PmHsf members were classified into three major classes, A, B, and C. A total of 24 PmsHsps were grouped into eight subfamilies (CI to CIII, P, endoplasmic reticulum, M, and CI- or P-related). Quantitative reverse transcription PCR analysis revealed that members of the A2, A7, and A9 groups became the prominent Hsfs after heat shock, suggesting their involvement in a key regulatory role of heat tolerance. Most of the PmsHsp genes were up-regulated upon exposure to HS. Overall, our data contribute to an improved understanding of the complexity of the P. mume Hsf and sHsp gene families, and provide a basis for directing future systematic studies investigating the roles of the Hsf and sHsp gene families.
Collapse
Affiliation(s)
- Xueli Wan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Jie Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,School of Nuclear Technology and Chemisity & Biology, Hubei University of Science and Technology, Xianning, China
| | - Cong Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Junwei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Kimotho RN, Baillo EH, Zhang Z. Transcription factors involved in abiotic stress responses in Maize ( Zea mays L.) and their roles in enhanced productivity in the post genomics era. PeerJ 2019; 7:e7211. [PMID: 31328030 PMCID: PMC6622165 DOI: 10.7717/peerj.7211] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Maize (Zea mays L.) is a principal cereal crop cultivated worldwide for human food, animal feed, and more recently as a source of biofuel. However, as a direct consequence of water insufficiency and climate change, frequent occurrences of both biotic and abiotic stresses have been reported in various regions around the world, and recently, this has become a constant threat in increasing global maize yields. Plants respond to abiotic stresses by utilizing the activities of transcription factors (TFs), which are families of genes coding for specific TF proteins. TF target genes form a regulon that is involved in the repression/activation of genes associated with abiotic stress responses. Therefore, it is of utmost importance to have a systematic study on each TF family, the downstream target genes they regulate, and the specific TF genes involved in multiple abiotic stress responses in maize and other staple crops. METHOD In this review, the main TF families, the specific TF genes and their regulons that are involved in abiotic stress regulation will be briefly discussed. Great emphasis will be given on maize abiotic stress improvement throughout this review, although other examples from different plants like rice, Arabidopsis, wheat, and barley will be used. RESULTS We have described in detail the main TF families in maize that take part in abiotic stress responses together with their regulons. Furthermore, we have also briefly described the utilization of high-efficiency technologies in the study and characterization of TFs involved in the abiotic stress regulatory networks in plants with an emphasis on increasing maize production. Examples of these technologies include next-generation sequencing, microarray analysis, machine learning, and RNA-Seq. CONCLUSION In conclusion, it is expected that all the information provided in this review will in time contribute to the use of TF genes in the research, breeding, and development of new abiotic stress tolerant maize cultivars.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Elamin Hafiz Baillo
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Yamasaki Y, Gao F, Jordan MC, Ayele BT. Seed maturation associated transcriptional programs and regulatory networks underlying genotypic difference in seed dormancy and size/weight in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2017; 17:154. [PMID: 28915785 PMCID: PMC5603048 DOI: 10.1186/s12870-017-1104-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 09/08/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Maturation forms one of the critical seed developmental phases and it is characterized mainly by programmed cell death, dormancy and desiccation, however, the transcriptional programs and regulatory networks underlying acquisition of dormancy and deposition of storage reserves during the maturation phase of seed development are poorly understood in wheat. The present study performed comparative spatiotemporal transcriptomic analysis of seed maturation in two wheat genotypes with contrasting seed weight/size and dormancy phenotype. RESULTS The embryo and endosperm tissues of maturing seeds appeared to exhibit genotype-specific temporal shifts in gene expression profile that might contribute to the seed phenotypic variations. Functional annotations of gene clusters suggest that the two tissues exhibit distinct but genotypically overlapping molecular functions. Motif enrichment predicts genotypically distinct abscisic acid (ABA) and gibberellin (GA) regulated transcriptional networks contribute to the contrasting seed weight/size and dormancy phenotypes between the two genotypes. While other ABA responsive element (ABRE) motifs are enriched in both genotypes, the prevalence of G-box-like motif specifically in tissues of the dormant genotype suggests distinct ABA mediated transcriptional mechanisms control the establishment of dormancy during seed maturation. In agreement with this, the bZIP transcription factors that co-express with ABRE enriched embryonic genes differ with genotype. The enrichment of SITEIIATCYTC motif specifically in embryo clusters of maturing seeds irrespective of genotype predicts a tissue specific role for the respective TCP transcription factors with no or minimal contribution to the variations in seed dormancy. CONCLUSION The results of this study advance our understanding of the seed maturation associated molecular mechanisms underlying variation in dormancy and weight/size in wheat seeds, which is a critical step towards the designing of molecular strategies for enhancing seed yield and quality.
Collapse
Affiliation(s)
- Yuji Yamasaki
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2 Canada
| | - Feng Gao
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2 Canada
| | - Mark C. Jordan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5 Canada
| | - Belay T. Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
11
|
Shaikhali J, Wingsle G. Redox-regulated transcription in plants: Emerging concepts. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
12
|
|
13
|
Maikova A, Zalutskaya Z, Lapina T, Ermilova E. The HSP70 chaperone machines of Chlamydomonas are induced by cold stress. JOURNAL OF PLANT PHYSIOLOGY 2016; 204:85-91. [PMID: 27543887 DOI: 10.1016/j.jplph.2016.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 05/16/2023]
Abstract
The responses of Chlamydomonas reinhardtii cells to low temperatures have not been extensively studied compared with other stresses. Like other organisms, this green alga has heat shock protein 70s (HSP70s) that are located in chloroplast, mitochondrion and cytosol. To test whether temperature downshifts affected HSP70s synthesis, we used real-time PCR and protein gel blot analysis. C. reinhardtii cells exposed to cold stress show increased HSP70s mRNA levels. Genes encoding other components of HSP70 chaperone machines (e.g. CGE1, CDJ1, HSP90C and HSP90A) are also up-regulated in response to decreased temperature. We demonstrated that the accumulation of all analyzed mRNA occur more slowly and with reduced amplitude in cells exposed to cold than in cells treated with heat. Furthermore, C. reinhardtii cells display the splicing of the CGE1 transcript that was dependent on low temperature. Finally, the transcription regulator of C. reinhardtii HSF1 is also cold-responsive, suggesting its role in the transcriptional regulation of HSP genes at low temperature.
Collapse
Affiliation(s)
- Anna Maikova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia
| | - Zhanneta Zalutskaya
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia
| | - Tatiana Lapina
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia.
| |
Collapse
|
14
|
Zhang J, Jia H, Li J, Li Y, Lu M, Hu J. Molecular evolution and expression divergence of the Populus euphratica Hsf genes provide insight into the stress acclimation of desert poplar. Sci Rep 2016; 6:30050. [PMID: 27425424 PMCID: PMC4948027 DOI: 10.1038/srep30050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/29/2016] [Indexed: 12/27/2022] Open
Abstract
Heat shock transcription factor (Hsf) family is one of the most important regulators in the plant kingdom. Hsf has been demonstrated to be involved in various processes associated with plant growth, development as well as in response to hormone and abiotic stresses. In this study, we carried out a comprehensive analysis of Hsf family in desert poplar, Populus euphratica. Total of 32 genes encoding Hsf were identified and they were classified into three main classes (A, B, and C). Gene structure and conserved motif analyses indicated that the members in each class were relatively conserved. Total of 10 paralogous pairs were identified in PeuHsf family, in which nine pairs were generated by whole genome duplication events. Ka/Ks analysis showed that PeuHsfs underwent purifying selection pressure. In addition, various cis-acting elements involved in hormone and stress responses located in the promoter regions of PeuHsfs. Gene expression analysis indicated that several PeuHsfs were tissue-specific expression. Compared to Arabidopsis, more PeuHsf genes were significantly induced by heat, drought, and salt stresses (21, 19, and 22 PeuHsfs, respectively). Our findings are helpful in understanding the distinguished adaptability of P. euphratica to extreme environment and providing a basis for functional analysis of PeuHsfs in the future.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yu Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
15
|
Yang X, Zhu W, Zhang H, Liu N, Tian S. Heat shock factors in tomatoes: genome-wide identification, phylogenetic analysis and expression profiling under development and heat stress. PeerJ 2016; 4:e1961. [PMID: 27190703 PMCID: PMC4867723 DOI: 10.7717/peerj.1961] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
The HSF (heat shock factor) gene family contains highly conserved plant-specific transcription factors that play an important role in plant high-temperature stress responses. The present study aimed to characterize the HSF transcription factor genes in tomato (Solanum lycopersicum), which is an important vegetable crop worldwide and the model plant for fruit development studies. Twenty-six SlyHSF genes were identified in tomato, and the phylogenetic analysis showed the possible evolution profile of subgroups among in the plant kingdom. A new group O was identified that involved HSF genes in primitive plant species, like in the green algae, mosses and lycophytes. The gene structure and motifs of each SlyHSF were comprehensively analyzed. We identified orthologous, co-orthologous and paralogous HSF gene pairs in tomato, Arabidopsis and rice, and constructed a complex interaction network among these genes. The SlyHSF genes were expressed differentially in different species and at a higher level in mature fruits. The qPCR analysis was performed and showed SlyHSF genes greatly participate in plant heat tolerant pathways. Our comprehensive genome-wide analysis provided insights into the HSF gene family of tomatoes.
Collapse
Affiliation(s)
- Xuedong Yang
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences , Shanghai , China
| | - Weimin Zhu
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences , Shanghai , China
| | - Hui Zhang
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences , Shanghai , China
| | - Na Liu
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences , Shanghai , China
| | - Shoubo Tian
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences , Shanghai , China
| |
Collapse
|
16
|
Li HC, Zhang HN, Li GL, Liu ZH, Zhang YM, Zhang HM, Guo XL. Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:1080-1091. [PMID: 32480747 DOI: 10.1071/fp15080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/04/2015] [Indexed: 05/22/2023]
Abstract
Based on the information of 25 heat shock transcription factor (Hsf) homologues in maize according to a genome-wide analysis, ZmHsf06 was cloned from maize leaves and transformed into Arabidopsis thaliana (L. Heynh.) (ecotype, Col-0). Three transgenic positive lines were selected to assess the basic and acquired thermotolerance and drought-stress tolerance under stresses and for some physiological assays. The sequence analysis indicates that ZmHsf06 contained the characteristic domains of class A type plant Hsfs. The results of qRT-PCR showed that the expression levels of ZmHsf06 were elevated by heat shock and drought stress to different extents in three transgenic lines. Phenotypic observation shows that compared with the Wt (wild-type) controls, the overexpressing ZmHsf06 of Arabidopsis plants have enhanced basal and acquired thermotolerance, stronger drought-stress tolerance and growth advantages under mild heat stress conditions. These results are further confirmed by physiological and biochemical evidence that transgenic Arabidopsis plants exhibit higher seed germination rate, longer axial-root length, higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), higher leaf chlorophyll content, but lower relative electrical conductivity (REC), malondialdehyde (MDA) and osmotic potential (OP) than the Wt controls after heat shock and drought treatments. ZmHsf06 may be a central representative of maize Hsfs and could be useful in molecular breeding of maize or other crops for enhanced tolerances, particularly during terminal heat and drought stresses.
Collapse
Affiliation(s)
- Hui-Cong Li
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China
| | - Hua-Ning Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China
| | - Guo-Liang Li
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China
| | - Zi-Hui Liu
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China
| | - Yan-Min Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China
| | - Hong-Mei Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China
| | - Xiu-Lin Guo
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China
| |
Collapse
|
17
|
Liu ZW, Wu ZJ, Li XH, Huang Y, Li H, Wang YX, Zhuang J. Identification, classification, and expression profiles of heat shock transcription factors in tea plant (Camellia sinensis) under temperature stress. Gene 2015; 576:52-9. [PMID: 26431998 DOI: 10.1016/j.gene.2015.09.076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 02/03/2023]
Abstract
In vascular plants, heat shock transcription factors (Hsfs) regulate heat stress response by regulating the expression of heat shock proteins. This study systematically and comprehensively analyzed the Hsf family in tea plant [Camellia sinensis (L.) O. Kuntze]. A total of 16 CsHsfs were identified from the transcriptome database of tea plant and analyzed for their phylogenetic relationships, motifs, and physicochemical characteristics. On the basis of the phylogenetic comparison of tea plant with Arabidopsis thaliana, Populus trichocarpa, Theobroma cacao, and Oryza sativa, the CsHsfs were classified into three classes, namely, A (56.25%), B (37.50%), and C (6.25%). Heat mapping showed that the expression profiles of CsHsf genes under non-stress conditions varied among four tea plant cultivars, namely, 'Yunnanshilixiang', 'Chawansanhao', 'Ruchengmaoyecha', and 'Anjibaicha'. Six CsHsf genes (CsHsfA1a, CsHsfA1b, CsHsfA6, CsHsfB1, CsHsfB2b, and CsHsfC1) were selected from classes A, B, and C to analyze the expression profiles of CsHsf genes through quantitative real-time PCR in 'Yingshuang', 'Anjibaicha', and 'Yunnanshilixiang' under high (38 °C) or low (4 °C) temperature stress. Temperature stress positively or negatively regulated all of the selected CsHsf genes, and the expression levels evidently varied even among CsHsf genes belonging to the same class. This study provided a relatively detailed summary of Hsfs in tea plant and may serve as a reference for further studies on the mechanism of temperature stress regulation by CsHsfs.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Jun Wu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Huang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Functional Analysis of the Maize C-Repeat/DRE Motif-Binding Transcription Factor CBF3 Promoter in Response to Abiotic Stress. Int J Mol Sci 2015; 16:12131-46. [PMID: 26030672 PMCID: PMC4490434 DOI: 10.3390/ijms160612131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/16/2015] [Accepted: 05/20/2015] [Indexed: 11/16/2022] Open
Abstract
The ZmCBF3 gene is a member of AP2/ERF transcription factor family, which is a large family of plant-specific transcription factors that share a well-conserved DNA-binding domain. To understand the regulatory mechanism of ZmCBF3 gene expression, we isolated and characterized the ZmCBF3 promoter (PZmCBF3). Three deletion fragments of PZmCBF3 were generated, C1-C3, from the translation start codon at position -1079, -638, and -234, and fused to the GUS reporter gene. Each deletion construct was analyzed by Agrobacterium-mediated stable transformation and expression in Arabidopsis thaliana. GUS expression assays indicated that the PZmCBF3 exhibited root-specific expression activity. A 234-bp fragment upstream of the ZmCBF3 gene conferred a high level of GUS activity in Arabidopsis. Some cis-acting elements involved in the down-regulation of gene expression were detected in the promoter, encompassing positions -1079 to -234. PZmCBF3 was activated by cold stress. The MYCCONSENSUSAT elements (CANNTG) were responsible for the ability of PZmCBF3 to respond to cold stress. The results of the present study suggest that PZmCBF3 might play a role in cold tolerance in maize.
Collapse
|
19
|
Driedonks N, Xu J, Peters JL, Park S, Rieu I. Multi-Level Interactions Between Heat Shock Factors, Heat Shock Proteins, and the Redox System Regulate Acclimation to Heat. FRONTIERS IN PLANT SCIENCE 2015; 6:999. [PMID: 26635827 PMCID: PMC4647109 DOI: 10.3389/fpls.2015.00999] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/30/2015] [Indexed: 05/12/2023]
Abstract
High temperature has become a global concern because it seriously affects the growth and reproduction of plants. Exposure of plant cells to high temperatures result in cellular damage and can even lead to cell death. Part of the damage can be ascribed to the action of reactive oxygen species (ROS), which accumulate during abiotic stresses such as heat stress. ROS are toxic and can modify other biomacromolecules including membrane lipids, DNA, and proteins. In order to protect the cells, ROS scavenging is essential. In contrast with their inherent harms, ROS also function as signaling molecules, inducing stress tolerance mechanisms. This review examines the evidence for crosstalk between the classical heat stress response, which consists of heat shock factors (HSFs) and heat shock proteins (HSPs), with the ROS network at multiple levels in the heat response process. Heat stimulates HSF activity directly, but also indirectly via ROS. HSFs in turn stimulate the expression of HSP chaperones and also affect ROS scavenger gene expression. In the short term, HSFs repress expression of superoxide dismutase scavenger genes via induction of miRNA398, while they also activate scavenger gene expression and stabilize scavenger protein activity via HSP induction. We propose that these contrasting effects allow for the boosting of the heat stress response at the very onset of the stress, while preventing subsequent oxidative damage. The described model on HSFs, HSPs, ROS, and ROS scavenger interactions seems applicable to responses to stresses other than heat and may explain the phenomenon of crossacclimation.
Collapse
Affiliation(s)
- Nicky Driedonks
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Jiemeng Xu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Janny L. Peters
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, Manhattan, KS, USA
| | - Ivo Rieu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
- *Correspondence: Ivo Rieu,
| |
Collapse
|
20
|
Zhang J, Li Y, Jia HX, Li JB, Huang J, Lu MZ, Hu JJ. The heat shock factor gene family in Salix suchowensis: a genome-wide survey and expression profiling during development and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:748. [PMID: 26442061 PMCID: PMC4584977 DOI: 10.3389/fpls.2015.00748] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/01/2015] [Indexed: 05/18/2023]
Abstract
Heat shock transcription factors (Hsfs), which act as important transcriptional regulatory proteins, play crucial roles in plant developmental processes, and stress responses. Recently, the genome of the shrub willow Salix suchowensis was fully sequenced. In this study, a total of 27 non-redundant Hsf genes were identified from the S. suchowensis genome. Phylogenetic analysis revealed that the members of the SsuHsf family can be divided into three groups (class A, B, and C) based on their structural characteristics. Promoter analysis indicated that the SsuHsfs promoters included various cis-acting elements related to hormone and/or stress responses. Furthermore, the expression profiles of 27 SsuHsfs were analyzed in different tissues and under various stresses (heat, drought, salt, and ABA treatment) using RT-PCR. The results demonstrated that the SsuHsfs were involved in abiotic stress responses. Our results contribute to a better understanding of the complexity of the SsuHsf gene family, and will facilitate functional characterization in future studies.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
| | - Yu Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Hui-Xia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
| | - Jian-Bo Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Juan Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
| | - Jian-Jun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
- *Correspondence: Jian-Jun Hu, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
21
|
Xue GP, Sadat S, Drenth J, McIntyre CL. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:539-57. [PMID: 24323502 PMCID: PMC3904712 DOI: 10.1093/jxb/ert399] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Heat shock factors (Hsfs) play a central regulatory role in acquired thermotolerance. To understand the role of the major molecular players in wheat adaptation to heat stress, the Hsf family was investigated in Triticum aestivum. Bioinformatic and phylogenetic analyses identified 56 TaHsf members, which are classified into A, B, and C classes. Many TaHsfs were constitutively expressed. Subclass A6 members were predominantly expressed in the endosperm under non-stress conditions. Upon heat stress, the transcript levels of A2 and A6 members became the dominant Hsfs, suggesting an important regulatory role during heat stress. Many TaHsfA members as well as B1, C1, and C2 members were also up-regulated during drought and salt stresses. The heat-induced expression profiles of many heat shock protein (Hsp) genes were paralleled by those of A2 and A6 members. Transactivation analysis revealed that in addition to TaHsfA members (A2b and A4e), overexpression of TaHsfC2a activated expression of TaHsp promoter-driven reporter genes under non-stress conditions, while TaHsfB1b and TaHsfC1b did not. Functional heat shock elements (HSEs) interacting with TaHsfA2b were identified in four TaHsp promoters. Promoter mutagenesis analysis demonstrated that an atypical HSE (GAACATTTTGGAA) in the TaHsp17 promoter is functional for heat-inducible expression and transactivation by Hsf proteins. The transactivation of Hsp promoter-driven reporter genes by TaHsfC2a also relied on the presence of HSE. An activation motif in the C-terminal domain of TaHsfC2a was identified by amino residue substitution analysis. These data demonstrate the role of HsfA and HsfC2 in regulation of Hsp genes in wheat.
Collapse
Affiliation(s)
- Gang-Ping Xue
- CSIRO Plant Industry, 306 Carmody Rd, St Lucia, Qld 4067, Australia
| | - Shahab Sadat
- Department of Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Janneke Drenth
- CSIRO Plant Industry, 306 Carmody Rd, St Lucia, Qld 4067, Australia
| | | |
Collapse
|
22
|
Evrard A, Kumar M, Lecourieux D, Lucks J, von Koskull-Döring P, Hirt H. Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2. PeerJ 2013; 1:e59. [PMID: 23638397 PMCID: PMC3628891 DOI: 10.7717/peerj.59] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/07/2013] [Indexed: 01/02/2023] Open
Abstract
So far little is known on the functional role of phosphorylation in the heat stress response of plants. Here we present evidence that heat stress activates the Arabidopsis mitogen-activated protein kinase MPK6. In vitro and in vivo evidence is provided that MPK6 specifically targets the major heat stress transcription factor HsfA2. Activation of MPK6 results in complex formation with HsfA2. MPK6 phosphorylates HsfA2 on T249 and changes its intracellular localisation. Protein kinase and phosphatase inhibitor studies indicate that HsfA2 protein stability is regulated in a phosphorylation-dependent manner, but this mechanism is independent of MPK6. Overall, our data show that heat stress-induced targeting of HsfA2 by MPK6 participates in the complex regulatory mechanism how plants respond to heat stress.
Collapse
Affiliation(s)
| | - Mukesh Kumar
- Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - David Lecourieux
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, France
| | - Jessica Lucks
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany
| | | | | |
Collapse
|
23
|
Liu Y, Zhang C, Chen J, Guo L, Li X, Li W, Yu Z, Deng J, Zhang P, Zhang K, Zhang L. Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 64:92-8. [PMID: 23399534 DOI: 10.1016/j.plaphy.2012.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/19/2012] [Indexed: 05/21/2023]
Abstract
Arabidopsis heat shock factor HsfA1a is present in a latent, monomeric state under normal conditions; its activation involves heat stress-induced trimerization, binding to heat shock element in target promoters, and the acquisition of transcriptional competence. HsfA1a is an important regulator for heat stress-induced gene expression and thermotolerance. However, it is not clear whether HsfA1a is directly activated by stress and the mechanisms of the stress signaling are poorly understood. We analyzed HsfA1a activation by trimerization and DNA-binding assays in vitro and in vivo in response to heat stress, low/high pH, and hydrogen peroxide treatments. Our results show that purified recombinant HsfA1a was activated by these stress treatments in vitro. The same treatments also induced the binding to HSP18.2 and HSP70 promoters as examined by chromatin immunoprecipitation, and the HsfA1a DNA binding paralleled the mRNA expression of its target genes induced by different stresses. Stress-induced DNA-binding could be reversed, both in vitro and in vivo, by subsequent incubation with reducing agents (DTT, NADPH). These data suggest that HsfA1a can directly sense stress and become activated, and this process is dependent on the redox state. An N-terminal deletion of the amino acid residues from 48 to 74 negatively affected pH- and hydrogen peroxide-, but not heat-stress sensing.
Collapse
Affiliation(s)
- Yanfang Liu
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pigllucci M. How organisms respond to environmental changes: from phenotypes to molecules (and vice versa). Trends Ecol Evol 2012; 11:168-73. [PMID: 21237793 DOI: 10.1016/0169-5347(96)10008-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability of organisms to produce different phenotypes under different environmental conditions (phenotypic plasticity) has been an object of evolutionary and ecological studies since the neodarwinian synthesis. Yet, until lately, our knowledge in this field was limited to statistical approaches based on the classical tools of quantitative genetics. In recent years, however, a new dialog between organismal biologists and researchers interested in uncovering the mechanistic details of physiological and phenotypic responses has yielded several new insights. Some classic examples of phenotypic plasticity have now been traced to specific alterations in DNA transcription and RNA translation rates, and to changes in patterns of protein expression. Conversely, the explicit use of evolutionary and ecological theory is helping us to put a panoply of molecular data into a coherent historical and organismal perspective.
Collapse
Affiliation(s)
- M Pigllucci
- Massimo Pigliucci is at the Depts of Botany and Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1100, USA
| |
Collapse
|
25
|
Shakeel S, Haq NU, Heckathorn SA, Hamilton EW, Luthe DS. Ecotypic variation in chloroplast small heat-shock proteins and related thermotolerance in Chenopodium album. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:898-908. [PMID: 21684754 DOI: 10.1016/j.plaphy.2011.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 05/05/2011] [Indexed: 05/19/2023]
Abstract
Production of chloroplast-localized small heat-shock proteins (Cp-sHSP) is correlated with increased thermotolerance in plants. Ecotypic variation in function and expression of Cp-sHSPs was analyzed in two Chenopodium album ecotypes from cool vs. warm-temperate USA habitats [New York (NY) and Mississippi (MS) respectively]. P(et) was more heat tolerant in the MS than the NY ecotype, and MS ecotype derived proportionally greater protection of P(et) by Cp-sHSP during high temperatures. Four genes encoding Cp-sHSPs were isolated and characterized: CaHSP25.99n (NY-1) and CaHSP26.23n (NY-2) from NY ecotype, and CaHSP26.04m (MS-1) and CaHSP26.26m (MS-2) from MS ecotype. The genes were nearly identical in predicted amino-acid sequence and hydrophobicity. Gene expression analysis indicated that MS-1 and MS-2 transcripts were constitutively expressed at low levels at 25 °C, while no NY-1 and NY-2 transcripts were detected at this temperature. Maximum accumulation of NY-1 and NY-2 transcripts occurred at 33 °C and 40 °C for MS-1 and MS-2. Immunoblot analysis revealed that (1) protein expression was highest at 37 °C in both ecotypes, but was greater in MS than NY ecotype at 40 °C; and (2) import of Cp-sHSP into chloroplasts was more heat-labile in NY ecotype. The higher expression of one isoform in MS ecotype may contribute to its enhanced thermotolerance. Absence of correlation between protein and transcript levels, suggests the post-transcriptional regulation is occurring. Promoter analysis of these genes revealed significant variations in heat-shock elements (HSE), core motifs required for heat-shock-factor binding. We propose a correlation between unique promoter architecture, Cp-sHSP expression and thermotolerance in both ecotypes.
Collapse
Affiliation(s)
- Samina Shakeel
- Department of Biochemistry, and Molecular Biology, Mississippi State University, MS, USA.
| | | | | | | | | |
Collapse
|
26
|
Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, Cheng BJ. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics 2011; 12:76. [PMID: 21272351 PMCID: PMC3039612 DOI: 10.1186/1471-2164-12-76] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 01/27/2011] [Indexed: 11/15/2022] Open
Abstract
Background Heat shock response in eukaryotes is transcriptionally regulated by conserved heat shock transcription factors (Hsfs). Hsf genes are represented by a large multigene family in plants and investigation of the Hsf gene family will serve to elucidate the mechanisms by which plants respond to stress. In recent years, reports of genome-wide structural and evolutionary analysis of the entire Hsf gene family have been generated in two model plant systems, Arabidopsis and rice. Maize, an important cereal crop, has represented a model plant for genetics and evolutionary research. Although some Hsf genes have been characterized in maize, analysis of the entire Hsf gene family were not completed following Maize (B73) Genome Sequencing Project. Results A genome-wide analysis was carried out in the present study to identify all Hsfs maize genes. Due to the availability of complete maize genome sequences, 25 nonredundant Hsf genes, named ZmHsfs were identified. Chromosomal location, protein domain and motif organization of ZmHsfs were analyzed in maize genome. The phylogenetic relationships, gene duplications and expression profiles of ZmHsf genes were also presented in this study. Twenty-five ZmHsfs were classified into three major classes (class A, B, and C) according to their structural characteristics and phylogenetic comparisons, and class A was further subdivided into 10 subclasses. Moreover, phylogenetic analysis indicated that the orthologs from the three species (maize, Arabidopsis and rice) were distributed in all three classes, it also revealed diverse Hsf gene family expression patterns in classes and subclasses. Chromosomal/segmental duplications played a key role in Hsf gene family expansion in maize by investigation of gene duplication events. Furthermore, the transcripts of 25 ZmHsf genes were detected in the leaves by heat shock using quantitative real-time PCR. The result demonstrated that ZmHsf genes exhibit different expression levels in heat stress treatment. Conclusions Overall, data obtained from our investigation contributes to a better understanding of the complexity of the maize Hsf gene family and provides the first step towards directing future experimentation designed to perform systematic analysis of the functions of the Hsf gene family.
Collapse
Affiliation(s)
- Yong-Xiang Lin
- Key Lab of Crop Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | | | | | | | | | | |
Collapse
|
27
|
Xuan Y, Zhou S, Wang L, Cheng Y, Zhao L. Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. PLANT PHYSIOLOGY 2010; 153:1895-906. [PMID: 20576787 PMCID: PMC2923878 DOI: 10.1104/pp.110.160424] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/23/2010] [Indexed: 05/19/2023]
Abstract
To characterize the role of nitric oxide (NO) in the tolerance of Arabidopsis (Arabidopsis thaliana) to heat shock (HS), we investigated the effects of heat on three types of Arabidopsis seedlings: wild type, noa1(rif1) (for nitric oxide associated1/resistant to inhibition by fosmidomycin1) and nia1nia2 (for nitrate reductase [NR]-defective double mutant), which both exhibit reduced endogenous NO levels, and a rescued line of noa1(rif1). After HS treatment, the survival ratios of the mutant seedlings were lower than those of wild type; however, they were partially restored in the rescued line. Treatment of the seedlings with sodium nitroprusside or S-nitroso-N-acetylpenicillamine revealed that internal NO affects heat sensitivity in a concentration-dependent manner. Calmodulin 3 (CaM3) is a key component of HS signaling in Arabidopsis. Real-time reverse transcription-polymerase chain reaction analysis after HS treatment revealed that the AtCaM3 mRNA level was regulated by the internal NO level. Sodium nitroprusside enhanced the survival of the wild-type and noa1(rif1) seedlings; however, no obvious effects were observed for cam3 single or cam3noa1(rif1) double mutant seedlings, suggesting that AtCaM3 is involved in NO signal transduction as a downstream factor. This point was verified by phenotypic analysis and thermotolerance testing using seedlings of three AtCaM3-overexpressing transgenic lines in an noa1(rif1) background. Electrophoretic mobility-shift and western-blot analyses demonstrated that after HS treatment, NO stimulated the DNA-binding activity of HS transcription factors and the accumulation of heat shock protein 18.2 (HSP18.2) through AtCaM3. These data indicate that NO functions in signaling and acts upstream of AtCaM3 in thermotolerance, which is dependent on increased HS transcription factor DNA-binding activity and HSP accumulation.
Collapse
|
28
|
Li M, Berendzen KW, Schöffl F. Promoter specificity and interactions between early and late Arabidopsis heat shock factors. PLANT MOLECULAR BIOLOGY 2010; 73:559-67. [PMID: 20458611 PMCID: PMC2882041 DOI: 10.1007/s11103-010-9643-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 04/26/2010] [Indexed: 05/18/2023]
Abstract
The class A heat shock factors HsfA1a and HsfA1b are highly conserved, interacting regulators, responsible for the immediate-early transcription of a subset of heat shock genes in Arabidopsis. In order to determine functional cooperation between them, we used a reporter assay based on transient over-expression in Arabidopsis protoplasts. Reporter plasmids containing promoters of Hsf target genes fused with the GFP coding region were co-transformed with Hsf effector plasmids. The GFP reporter gene activity was quantified using flow cytometry. Three of the tested target gene promoters (Hsp25.3, Hsp18.1-CI, Hsp26.5) resulted in a strong reporter gene activity, with HsfA1a or HsfA1b alone, and significantly enhanced GFP fluorescence when both effectors were co-transformed. A second set of heat shock promoters (HsfA2, Hsp17.6CII, Hsp17.6C-CI) was activated to much lower levels. These data suggest that HsfA1a/1b cooperate synergistically at a number of target gene promoters. These targets are also regulated via the late HsfA2, which is the most strongly heat-induced class A-Hsf in Arabidopsis. HsfA2 has also the capacity to interact with HsfA1a and HsfA1b as determined by bimolecular fluorescence complementation (BiFC) in Arabidopsis protoplasts and yeast-two-hybrid assay. However, there was no synergistic effect on Hsp18.1-CI promoter-GFP reporter gene expression when HsfA2 was co-expressed with either HsfA1a or HsfA1b. These data provide evidence that interaction between early and late HSF is possible, but only interaction between the early Hsfs results in a synergistic enhancement of expression of certain target genes. The interaction of HsfA1a/A1b with the major-late HsfA2 may possibly support recruitment of HsfA2 and replacement of HsfA1a/A1b at the same target gene promoters.
Collapse
Affiliation(s)
- Ming Li
- Zentrum für Molekularbiologie der Pflanzen (ZMBP), Allgemeine Genetik, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Kenneth W. Berendzen
- Zentrum für Molekularbiologie der Pflanzen (ZMBP), Molekularbiologie der Pflanzen, Universität Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Friedrich Schöffl
- Zentrum für Molekularbiologie der Pflanzen (ZMBP), Allgemeine Genetik, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
29
|
Li M, Doll J, Weckermann K, Oecking C, Berendzen KW, Schöffl F. Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins. Eur J Cell Biol 2010; 89:126-32. [DOI: 10.1016/j.ejcb.2009.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
30
|
New Insights into the Roles of Molecular Chaperones in Chlamydomonas and Volvox. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:75-113. [DOI: 10.1016/b978-0-12-381047-2.00002-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, Sun DY. Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. PLANT PHYSIOLOGY 2009; 149:1773-84. [PMID: 19211698 PMCID: PMC2663753 DOI: 10.1104/pp.108.133744] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Accepted: 02/10/2009] [Indexed: 05/18/2023]
Abstract
Heat shock (HS) is a common form of stress suffered by plants. It has been proposed that calmodulin (CaM) is involved in HS signal transduction, but direct evidence has been lacking. To investigate the potential regulatory function of CaM in the HS signal transduction pathway, T-DNA knockout mutants for AtCaM2, AtCaM3, and AtCaM4 were obtained and their thermotolerance tested. Of the three knockout mutant plants, there were no differences compared with wild-type plants under normal conditions. However, the AtCaM3 knockout mutant showed a clear reduction in thermotolerance after heat treatment at 45 degrees C for 50 min. Overexpression of AtCaM3 in either the AtCaM3 knockout or wild-type background significantly rescued or increased the thermotolerance, respectively. Results from electrophoretic mobility-shift assays, real-time quantitative reverse transcription-polymerase chain reaction, and western-blot analyses revealed that, after HS, the DNA-binding activity of HS transcription factors, mRNA transcription of HS protein genes, and accumulation of HS protein were down-regulated in the AtCaM3 knockout mutant and up-regulated in the AtCaM3-overexpressing transgenic lines. Taken together, these results suggest that endogenous AtCaM3 is a key component in the Ca2+-CaM HS signal transduction pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Molecular Cell Biology, Hebei Normal University, Shijiazhuang 050016, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Guo L, Chen S, Liu K, Liu Y, Ni L, Zhang K, Zhang L. Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2008; 49:1306-1315. [PMID: 18641404 DOI: 10.1093/pcp/pcn105] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The information about DNA-binding sites of regulatory protein is important to understanding the regulatory network of DNA-protein interactions in the genome. In this report we integrated chromatin immunoprecipitation with DNA cloning to isolate genomic sites bound in vivo by heat shock factor HsfA1a in Arabidopsis thaliana. Plantlets were subjected to formaldehyde crosslinking, followed by immunoprecipitation of chromatin. The immunoprecipitated DNA was amplified by PCR and cloned. From a library enriched in putative HsfA1a-binding sites, 21 different genomic fragments were identified (65-332 bp). Six fragments contained known HsfA1a-binding motif (perfect heat shock element). Six fragments contained novel HsfA1a-binding motifs: (1) gap-type, (2) TTC-rich-type, (3) stress responsive element (STRE). Representatives of each were verified by in vitro electrophoretic mobility shift assay. About 81% of the isolated fragments contained the HsfA1a-binding motifs, and/or could be bound by HsfA1a, demonstrating that the method is efficient in the isolation of genomic binding sites of a regulatory protein. The nearest downstream genes to the HsfA1a-binding fragments, which were considered as potential HsfA1a target genes, include a set of classical heat shock protein genes: Hsp17.4, Hsp18.2, Hsp21, Hsp81-1, Hsp101, and several novel genes encoding a non-race specific disease resistance protein and a transmembrane CLPTM1 family protein.
Collapse
Affiliation(s)
- Lihong Guo
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics 2008; 35:105-18. [DOI: 10.1016/s1673-8527(08)60016-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/29/2007] [Accepted: 09/29/2007] [Indexed: 10/22/2022]
|
34
|
Pigliucci M, Byrd N. Genetics and evolution of phenotypic plasticity to nutrient stress in Arabidopsis: drift, constraints or selection? Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.1998.tb01531.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Döring P. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:264-74. [PMID: 17999647 DOI: 10.1111/j.1365-313x.2007.03334.x] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The dehydration-responsive element binding protein (DREB)/C-repeat binding factor (CBF) family are the classical transcriptional regulators involved in plant responses to drought, salt and cold stress. Recently it was demonstrated that DREB2A is induced by heat stress (hs) and is a regulator of the hs response of Arabidopsis. Here we provide molecular insights into the regulation and function of hs transcription factor HsfA3. Among the 21 members of the Arabidopsis Hsf family, HsfA3 is the only Hsf that is transcriptionally induced during hs by DREB2A, and HsfA3 in turn regulates the expression of Hsp-encoding genes. This transcription factor cascade was reconstructed in transient GUS reporter assays in mesophyll protoplasts by showing that DREB2A could activate the HsfA3 promoter, whereas HsfA3 in turn was shown to be a potent activator on the promoters of Hsp genes. Direct binding to the corresponding promoters was demonstrated by electrophoretic mobility shift assays, and the involvement of HsfA3 in the hs response in vivo was shown directly by observation of reduced thermotolerance in HsfA3 mutant lines. Altogether these data demonstrate that HsfA3 is transcriptionally controlled by DREB2A and important for the establishment of thermotolerance.
Collapse
Affiliation(s)
- Franziska Schramm
- Institute of Molecular Biosciences, Biocenter N200/R306, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
He ZS, Xie R, Zou HS, Wang YZ, Zhu JB, Yu GQ. Structure and alternative splicing of a heat shock transcription factor gene, MsHSF1, in Medicago sativa. Biochem Biophys Res Commun 2007; 364:1056-61. [PMID: 17976370 DOI: 10.1016/j.bbrc.2007.10.131] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
Plant heat shock transcription factors (HSF) are highly complex. In this study, we identified an alfalfa HSF gene MsHSF1 that is composed of four exons and three introns in the encoding region. The intron1-exon2-intron2-exon3-intron3 as an intervening sequence was inserted at the conserved position that separates the coding region for the DNA-binding domain by single intron in other known plant HSF genes. Alternative splicing of MsHSF1 has generated five transcript isoforms. Spliced transcript MsHSF1b consisted of exon1 and exon4, encodes a class A1 HSF protein that can specifically bind to the heat shock elements in vitro. Other four spliced transcripts (MsHSF1a-1 to 4) consist of exon1, part of the intervening sequence and exon4. These transcripts carry the premature termination codon and are low-abundant. Apparently these transcripts are the targets of nonsense-mediated mRNA decay (NMD). These results provide new insight into roles in the expression regulation of plant HSF genes.
Collapse
Affiliation(s)
- Zhi-shui He
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| | | | | | | | | | | |
Collapse
|
37
|
Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 2007; 282:37794-804. [PMID: 17965410 DOI: 10.1074/jbc.m707168200] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant survival requires the ability to acclimate to heat. When plants are subjected to heat shock, the expression of various genes is induced, and the plants become tolerant of higher temperatures. We found that transient treatment with geldanamycin and radicicol, two heat shock protein 90 (HSP90) inhibitors, induced heat-inducible genes and heat acclimation in Arabidopsis thaliana seedlings. Heat shock reduced the activity of exogenously expressed glucocorticoid receptor (GR). Since GR activity depends on HSP90, this suggests that heat shock reduces cytosolic HSP90 activity in vivo. Microarray analysis revealed that many of the genes that are up-regulated by both heat shock and HSP90 inhibitors are involved in protein folding and degradation, suggesting that the activation of a protein maintenance system is a crucial part of this response. Most of these genes have heat shock response element-like motifs in their promoters, which suggests that heat shock transcription factor (HSF) is involved in the response to HSP90 inhibition. Several HSF genes are expressed constitutively in A. thaliana, including AtHsfA1d. Recombinant AtHsfA1d protein recognizes the heat shock response element motif and interacts with A. thaliana cytosolic HSP90, HSP90.2. Overexpression of a dominant negative form of HSP90.2 induced the heat-inducible gene. Thus, it appears that in the absence of heat shock, cytosolic HSP90 negatively regulates heat-inducible genes by actively suppressing HSF function. Upon heat shock, cytosolic HSP90 is transiently inactivated, which may lead to HSF activation.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Schulz-Raffelt M, Lodha M, Schroda M. Heat shock factor 1 is a key regulator of the stress response in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:286-95. [PMID: 17711413 DOI: 10.1111/j.1365-313x.2007.03228.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We report here on the characterization of heat shock factor 1 (HSF1), encoded by one of two HSF genes identified in the genome of Chlamydomonas reinhardtii. Chlamydomonas HSF1 shares features characteristic of class A HSFs of higher plants. HSF1 is weakly expressed under non-stress conditions and rapidly induced by heat shock. Heat shock also resulted in hyperphosphorylation of HSF1, and the extent of phosphorylation correlated with the degree of induction of heat shock genes, suggesting a role for phosphorylation in HSF1 activation. HSF1, like HSFs in yeasts, forms high-molecular-weight complexes, presumably trimers, under non-stress, stress and recovery conditions. Immunoprecipitation of HSF1 under these conditions led to the identification of cytosolic HSP70A as a protein constitutively interacting with HSF1. Strains in which HSF1 was strongly under-expressed by RNAi were highly sensitive to heat stress. 14C-labelling of nuclear-encoded proteins under heat stress revealed that synthesis of members of the HSP100, HSP90, HSP70, HSP60 and small HSP families in the HSF1-RNAi strains was dramatically reduced or completely abolished. This correlated with a complete loss of HSP gene induction at the RNA level. These data suggest that HSF1 is a key regulator of the stress response in Chlamydomonas.
Collapse
Affiliation(s)
- Miriam Schulz-Raffelt
- Institute of Biology II, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
39
|
Volkov RA, Panchuk II, Mullineaux PM, Schöffl F. Heat stress-induced H(2)O (2) is required for effective expression of heat shock genes in Arabidopsis. PLANT MOLECULAR BIOLOGY 2006; 61:733-46. [PMID: 16897488 DOI: 10.1007/s11103-006-0045-4] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 03/15/2006] [Indexed: 05/11/2023]
Abstract
The mechanisms of sensing and signalling of heat and oxidative stresses are not well understood. The central question of this paper is whether in plant cells oxidative stress, in particular H(2)O(2), is required for heat stress- and heat shock factor (HSF)-dependent expression of genes. Heat stress increases intracellular accumulation of H(2)O(2) in Arabidopsis cell culture. The accumulation was greatly diminished using ascorbate as a scavenger or respectively diphenyleneiodonium chloride (DPI) as an inhibitor of reactive oxygen species production. The mRNA of heat shock protein (HSP) genes, exemplified by Hsp17.6, Hsp18.2, and the two cytosolic ascorbate peroxidase genes Apx1, Apx2, reached similar levels by moderate heat stress (37 degrees C) or by treatment with H(2)O(2), butylperoxide and diamide at room temperature. The heat-induced expression levels were significantly reduced in the presence of ascorbate or DPI indicating that H(2)O(2) is an essential component in the heat stress signalling pathway. Rapid (15 min) formation of heat shock promoter element (HSE) protein-binding complex of high molecular weight in extracts of heat-stressed or H(2)O(2)-treated cells and the inability to form this complex after ascorbate treatment suggests that oxidative stress affects gene expression via HSF activation and conversely, that H(2)O(2) is involved in HSF activation during the early phase of heat stress. The heat stress induction of a high mobility HSE-binding complex, characteristic for later phase of heat shock response, was blocked by ascorbate and DPI. H(2)O(2 )was unable to induce this complex suggesting that H(2)O(2) is involved only in the early stages of HSF activation. Significant induction of the genes tested after diamid treatment and moderate expression of the sHSP genes in the presence of 50 mM ascorbate at 37 degrees C occurred without activation of HSF, indicating that other mechanisms may be involved in stress signalling.
Collapse
Affiliation(s)
- Roman A Volkov
- Zentrum für Molekularbiologie der Pflanzen--Allgemeine Genetik, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
40
|
Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Döring P. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. PLANT MOLECULAR BIOLOGY 2006; 60:759-72. [PMID: 16649111 DOI: 10.1007/s11103-005-5750-x] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 12/06/2005] [Indexed: 05/08/2023]
Abstract
Within the Arabidopsis family of 21 heat stress transcription factors (Hsfs) HsfA2 is the strongest expressed member under heat stress (hs) conditions. Irrespective of the tissue, HsfA2 accumulates under heat stress similarly to other heat stress proteins (Hsps). A SALK T-DNA insertion line with a complete HsfA2-knockout was analyzed with respect to the changes in the transcriptome under heat stress conditions. Ascorbate peroxidase 2 (APX2) was identified as the most affected transcript in addition to several sHsps, individual members of the Hsp70 and Hsp100 family, as well as many transcripts of genes with yet unknown functions. For functional validation, the transcription activation potential of HsfA2 on GUS reporter constructs containing 1 kb upstream promoter sequences of selected target genes were analyzed using transient reporter assays in mesophyll protoplasts. By deletion analysis the promoter region of the strongest affected target gene APX2 was functionally mapped in detail to verify potential HsfA2 binding sites. By electrophoretic mobility shift assays we identified TATA-Box proximal clusters of heat stress elements (HSE) in the promoters of selected target genes as potential HsfA2 binding sites. The results presented here demonstrate that the expression of HsfA2 in Arabidopsis is strictly heat stress-dependent and this transcription factor represents a regulator of a subset of stress response genes in Arabidopsis.
Collapse
Affiliation(s)
- Franziska Schramm
- Institute of Molecular Bio Sciences, Biocenter N200/R306, Goethe University, Marie-Curie-Str. 9, D-60439, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Busch W, Wunderlich M, Schöffl F. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:1-14. [PMID: 15610345 DOI: 10.1111/j.1365-313x.2004.02272.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In order to assess specific functional roles of plant heat shock transcription factors (HSF) we conducted a transcriptome analysis of Arabidopsis thaliana hsfA1a/hsfA1b double knock out mutants and wild-type plants. We used Affymetrix ATH1 microarrays (representing more than 24 000 genes) and conducted hybridizations for heat-treated or non-heat-treated leaf material of the respective lines. Heat stress had a severe impact on the transcriptome of mutant and wild-type plants. Approximately 11% of all monitored genes of the wild type showed a significant effect upon heat stress treatment. The difference in heat stress-induced gene expression between mutant and wild type revealed a number of HsfA1a/1b-regulated genes. Besides several heat shock protein and other stress-related genes, we found HSFA-1a/1b-regulated genes for other functions including protein biosynthesis and processing, signalling, metabolism and transport. By screening the profiling data for genes in biochemical pathways in which known HSF targets were involved, we discovered that at each step in the pathway leading to osmolytes, the expression of genes is regulated by heat stress and in several cases by HSF. Our results document that in the immediate early phase of the heat shock response HSF-dependent gene expression is not limited to known stress genes, which are involved in protection from proteotoxic effects. HsfA1a and HsfA1b-regulated gene expression also affects other pathways and mechanisms dealing with a broader range of physiological adaptations to stress.
Collapse
Affiliation(s)
- Wolfgang Busch
- Zentrum für Molekularbiologie der Pflanzen (ZMBP), Allgemeine Genetik, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
42
|
Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schöffl F. Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. PLANT PHYSIOLOGY 2004; 136:3148-58. [PMID: 15466240 PMCID: PMC523375 DOI: 10.1104/pp.104.042606] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 07/02/2004] [Accepted: 07/19/2004] [Indexed: 05/17/2023]
Abstract
Heat shock factors (HSFs) are transcriptional regulators of the heat shock response. The major target of HSFs are the genes encoding heat shock proteins (HSPs), which are known to have a protective function that counteracts cytotoxic effects. To identify other HSF target genes, which may be important determinants for the generation of stress tolerance in Arabidopsis, we screened a library enriched for genes that are up-regulated in HSF3 (AtHsfA1b)-overexpressing transgenic plants (TPs). Galactinol synthase1 (GolS1) is one of the genes that is heat-inducible in wild type, but shows constitutive mRNA levels in HSF3 TPs. The generation and analysis of TPs containing GolS1-promoter::beta-glucuronidase-reporter gene constructs showed that, upon heat stress, the expression is transcriptionally controlled and occurs in all vegetative tissues. Functional consequences of GolS1 expression were investigated by the quantification of raffinose, stachyose, and galactinol contents in wild type, HSF3 TPs, and two different GolS1 knockout mutants (gols1-1 and gols1-2). This analysis demonstrates that (1) raffinose content in leaves increases upon heat stress in wild-type but not in the GolS1 mutant plants; and (2) the level of raffinose is enhanced and stachyose is present at normal temperature in HSF3 TPs. These data provide evidence that GolS1 is a novel HSF target gene, which is responsible for heat stress-dependent synthesis of raffinose, a member of the raffinose family oligosaccharides. The biological function of this osmoprotective substance and the role of HSF-dependent genes in this biochemical pathway are discussed.
Collapse
Affiliation(s)
- Tressa Jacob Panikulangara
- Zentrum für Molekularbiologie der Pflanzen, Allgemeine Genetik , Universität Tübingen, D-72076 Tubingen, Germany
| | | | | | | | | |
Collapse
|
43
|
Czarnecka-Verner E, Pan S, Salem T, Gurley WB. Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. PLANT MOLECULAR BIOLOGY 2004; 56:57-75. [PMID: 15604728 DOI: 10.1007/s11103-004-2307-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant heat shock transcription factors (HSFs) are capable of transcriptional activation (class A HSFs) or both, activation and repression (class B HSFs). However, the details of mechanism still remain unclear. It is likely, that the regulation occurs through interactions of HSFs with general transcription factors (GTFs), as has been described for numerous other transcription factors. Here, we show that class A HSFs may activate transcription through direct contacts with TATA-binding protein (TBP). Class A HSFs can also interact weakly with TFIIB. Conversely, class B HSFs inhibit promoter activity through an active mechanism of repression that involves the C-terminal regulatory region (CTR) of class B HSFs. Deletion analysis revealed two sites in the CTR of soybean GmHSFB1 potentially involved in protein-protein interactions with GTFs: one is the repressor domain (RD) located in the N-terminal half of the CTR, and the other is a TFIIB binding domain (BD) that shows affinity for TFIIB and is located C-terminally from the RD. A Gal4 DNA binding domain-RD fusion repressed activity of LexA-activators, while Gal4-BD proteins synergistically activated strong and weak transcriptional activators. In vitro binding studies were consistent with this pattern of activity since the BD region alone interacted strongly with TFIIB, and the presence of RD had an inhibitory effect on TFIIB binding and transcriptional activation.
Collapse
Affiliation(s)
- Eva Czarnecka-Verner
- Microbiology and Cell Science Department, Program of Plant Molecular and Cellular Biology, University of Florida, Bldg. 981, Gainesville, FL 32611-0700, USA.
| | | | | | | |
Collapse
|
44
|
Kotak S, Port M, Ganguli A, Bicker F, von Koskull-Döring P. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:98-112. [PMID: 15200645 DOI: 10.1111/j.1365-313x.2004.02111.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Heat stress transcription factors (Hsfs) are the major regulators of the plant heat stress (hs) response. Sequencing of the Arabidopsis genome revealed the existence of 21 open-reading frames (ORFs) encoding putative Hsfs assigned to classes A-C. Here we present results of a functional genomics approach to the Arabidopsis Hsf family focused on the analysis of their C-terminal domains (CTDs) harboring conserved modules for their function as transcription factors and their intracellular localization. Using reporter assays in tobacco protoplasts and yeast as well as glutathione-S-transferase (GST) pull-down assays, we demonstrate that short peptide motifs enriched with aromatic and large hydrophobic amino acid (aa) residues embedded in an acidic surrounding (AHA motifs) are essential for transcriptional activity of class A Hsfs. In contrast to this, class B and C Hsfs lack AHA motifs and have no activator function on their own. We also provide evidence for the function of a leucine (Leu)-rich region centered around a conserved QMGPhiL motif at the very C-terminus as a nuclear export signal (NES) of class A Hsfs. Sequence comparison indicates that the combination of a C-terminal AHA motif with the consensus sequence FWxxF/L,F/I/L as well as the adjacent NES represents a signature domain for plant class A Hsfs, which allowed to identify more than 60 new Hsfs from the expressed sequence tag (EST) database.
Collapse
Affiliation(s)
- Sachin Kotak
- Department of Molecular Cell Biology, Biocenter N200, 3OG, Goethe-University Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
45
|
Li B, Liu HT, Sun DY, Zhou RG. Ca(2+) and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro. PLANT & CELL PHYSIOLOGY 2004; 45:627-34. [PMID: 15169945 DOI: 10.1093/pcp/pch074] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
DNA-binding activity of a maize heat shock transcription factor (HSF) was induced by heat shock of a whole cell extract at 44 degrees C. Addition of the calcium ion chelator EGTA reduced the binding of the HSF to heat shock element (HSE) in vitro. Re-addition of CaCl(2) to the sample pretreated with EGTA restored the ability of the HSF to bind to DNA. DNA-binding activity of the HSF was also induced by directly adding CaCl(2) to a whole cell extract at non-heat-shock temperature, but not by MgCl(2). During HS at 44 degrees C, calmodulin (CaM) antagonists chlorpromazine (CPZ) and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W7) inhibited DNA-binding activity of the HSF in a concentration-dependent manner, but N-(6-aminohexyl)-1-naphthalenesulfonamide (W5), an inactive structural analogue of W7, did not. Addition of antiserum specific to CaM reduced the binding of the HSF to HSE. Re-addition of CaM to the sample pretreated with antiserum could restore the binding activity of the HSF. DNA-binding activity of the HSF was promoted by directly adding CaM to a whole cell extract at 44 degrees C, but not by BSA. Moreover, at non-heat-shock temperature, DNA-binding activity of the HSF was also induced by directly adding CaM to a whole cell extract, but not by BSA. Our observations further confirm the role of Ca(2+) in activation of the HSF in plant and provide the first example of the role of CaM in regulation of DNA-binding activity of the HSF. These results suggest that Ca(2+) and CaM are involved in HSP gene expression likely through regulating the activity of the HSF.
Collapse
Affiliation(s)
- Bing Li
- Institute of Molecular Cell Biology, Hebei Normal University, Shijiazhuang 050016, P.R. China
| | | | | | | |
Collapse
|
46
|
Lohmann C, Eggers-Schumacher G, Wunderlich M, Schöffl F. Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol Genet Genomics 2003; 271:11-21. [PMID: 14655047 DOI: 10.1007/s00438-003-0954-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Accepted: 10/31/2003] [Indexed: 10/26/2022]
Abstract
In order to assess the specific functional roles of different plant heat shock transcription factors (HSFs) we have isolated T-DNA insertion mutants in the AtHsf1 and AtHsf3 genes of Arabidopsis thaliana. Complete and selective loss of the promoter binding activities of AtHSF1 or AtHSF3, verified by immunoprecipitation assays, had no obvious effects on the heat shock (HS) response in the individual mutant lines. Only hsf1(-) /hsf3(-)double mutants were significantly impaired in HS gene expression. In these plants the inability to form high-molecular-weight HSE-binding complexes correlates with a dramatic change in the kinetics of mRNA accumulation from all HSF target genes tested, including members of the Hsp100, Hsp90, Hsp70 and small Hsp families, and genes for two heat-inducible class B-HSFs. After prolonged HS, the amounts of most heat shock mRNAs expressed, except transcripts of Hsp18.2, reached approximately the same levels as in wild type plants. Our data indicate that AtHSF1 and AtHSF3 are key regulators of the immediate stress-induced activation of HS gene transcription, and consequently determine the kinetics of the negative feed back loop that is responsible for the transience of HS gene expression in wild type.
Collapse
Affiliation(s)
- C Lohmann
- Zentrum für Molekularbiologie der Pflanzen (ZMBP), Allgemeine Genetik, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
47
|
Effects of calmodulin on DNA-binding activity of heat shock transcription factorin vitro. CHINESE SCIENCE BULLETIN-CHINESE 2003. [DOI: 10.1007/bf03183293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:271-83. [PMID: 12535341 DOI: 10.1046/j.1365-313x.2003.01625.x] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Systemic infections of plants by viruses require that viruses modify host cells in order to facilitate infections. These modifications include induction of host factors required for replication, propagation and movement, and suppression of host defense responses, which are likely to be associated with changes in host gene expression. Past studies of the effects of viral infection on gene expression in susceptible hosts have been limited to only a handful of genes. To gain broader insight into the responses elicited by viruses in susceptible hosts, high-density oligonucleotide probe microarray technology was used. Arabidopsis leaves were either mock inoculated or inoculated with cucumber mosaic cucumovirus, oil seed rape tobamovirus, turnip vein clearing tobamovirus, potato virus X potexvirus, or turnip mosaic potyvirus. Inoculated leaves were collected at 1, 2, 4, and 5 days after inoculation, total RNA was isolated, and samples were hybridized to Arabidopsis GeneChip microarrays (Affymetrix). Microarray hybridization revealed co-ordinated changes in gene expression in response to infection by diverse viruses. These changes include virus-general and virus-specific alterations in the expression of genes associated with distinct defense or stress responses. Analyses of the promoters of these genes further suggest that diverse RNA viruses elicit common responses in susceptible plant hosts through signaling pathways that have not been previously characterized.
Collapse
Affiliation(s)
- Steven A Whitham
- Department of Plant Pathology, Iowa State University, Ames, IA 50011-1020, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci U S A 2002; 99:7530-5. [PMID: 12032317 PMCID: PMC124274 DOI: 10.1073/pnas.112209199] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A rice spotted leaf (lesion-mimic) gene, Spl7, was identified by map-based cloning. High-resolution mapping with cleaved amplified polymorphic sequence markers enabled us to define a genomic region of 3 kb as a candidate for Spl7. We found one ORF that showed high similarity to a heat stress transcription factor (HSF). Transgenic analysis verified the function of the candidate gene for Spl7: leaf spot development was suppressed in spl7 mutants with a wild-type Spl7 transgene. Thus, we conclude that Spl7 encodes the HSF protein. The transcript of spl7 was observed in mutant plants. The levels of mRNAs (Spl7 in wild type and spl7 in mutant) increased under heat stress. Sequence analysis revealed only one base substitution in the HSF DNA-binding domain of the mutant allele, causing a change from tryptophan to cysteine.
Collapse
Affiliation(s)
- Utako Yamanouchi
- Institute of the Society for Techno-Innovation of Agriculture, Forestry, and Fisheries, Tsukuba, Ibaraki 305-0854, Japan
| | | | | | | | | |
Collapse
|
50
|
Mathew A, Mathur SK, Jolly C, Fox SG, Kim S, Morimoto RI. Stress-specific activation and repression of heat shock factors 1 and 2. Mol Cell Biol 2001; 21:7163-71. [PMID: 11585899 PMCID: PMC99891 DOI: 10.1128/mcb.21.21.7163-7171.2001] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vertebrate cells express a family of heat shock transcription factors (HSF1 to HSF4) that coordinate the inducible regulation of heat shock genes in response to diverse signals. HSF1 is potent and activated rapidly though transiently by heat shock, whereas HSF2 is a less active transcriptional regulator but can retain its DNA binding properties for extended periods. Consequently, the differential activation of HSF1 and HSF2 by various stresses may be critical for cells to survive repeated and diverse stress challenges and to provide a mechanism for more precise regulation of heat shock gene expression. Here we show, using a novel DNA binding and detection assay, that HSF1 and HSF2 are coactivated to different levels in response to a range of conditions that cause cell stress. Above a low basal activity of both HSFs, heat shock preferentially activates HSF1, whereas the amino acid analogue azetidine or the proteasome inhibitor MG132 coactivates both HSFs to different levels and hemin preferentially induces HSF2. Unexpectedly, we also found that heat shock has dramatic adverse effects on HSF2 that lead to its reversible inactivation coincident with relocalization from the nucleus. The reversible inactivation of HSF2 is specific to heat shock and does not occur with other stressors or in cells expressing high levels of heat shock proteins. These results reveal that HSF2 activity is negatively regulated by heat and suggest a role for heat shock proteins in the positive regulation of HSF2.
Collapse
Affiliation(s)
- A Mathew
- Department of Biochemistry, Molecular Biology, and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|