1
|
Polat Gültekin B, Hamurcu M. Evaluation of optical coherence tomography angiography and pattern and flash electroretinography in diabetes mellitus without retinopathy. Ann Med 2024; 56:2397573. [PMID: 39233610 PMCID: PMC11378657 DOI: 10.1080/07853890.2024.2397573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/27/2023] [Accepted: 04/21/2024] [Indexed: 09/06/2024] Open
Abstract
PURPOSE To evaluate the findings and the correlation of optical coherence tomography angiography and pattern and flash electroretinography in diabetes mellitus without retinopathy. METHODS Seventy-six eyes of 38 diabetic patients and age- and gender-matched control subjects were included in the study. The foveal avascular zone (FAZ), whole, foveal, parafoveal and perifoveal vascular densities of the superficial capillary plexus (SCP), deep capillary plexus (DCP) and choriocapillary plexus (CCP) layers were analyzed using optical coherence tomography angiography (OCTA). The amplitudes and implicit times of P50 and N95 waves of the pattern ERG (pERG) and the amplitudes and implicit times of the scotopic and photopic b-waves and oscillatory potentials (OP) of the flash ERG (fERG) tests were evaluated using the Metrovision brand monpack model device. RESULTS The mean age of the patients was 59.7 ± 7.9 [range 43-79] years. Eighteen (47%) of the patients were female and 20 (53%) were male. The mean duration of diabetes was 7.45 ± 6.2 [range 1-20] years. No significant difference in FAZ area was found between study subjects and controls. Vascular density (VD) values of the superficial capillary plexus (SCP) layer were significantly lower (whole VD, 44.7 ± 3.3 vs. 46.6 ± 3.2%, p = 0.01, foveal VD 16.8 ± 6.4 vs. 24.9 ± 6.1%, p < 0.01, parafoveal VD 45.6 ± 4.5 vs. 47.1 ± 4.4%, p = 0.27 and perifoveal VD 45.5 ± 3.3 vs. 47.3 ± 3.1%, p = 0.01, respectively) in the diabetic group except the parafoveal area. VD measurements in deep and choriocapillary plexuses did not significantly differ between the groups (p > 0.05). ERG tests revealed significantly lower scotopic b-wave amplitudes (130.2 ± 39.3 µV vs.163.3 ± 47.8 µV, p < 0.01) and photopic b-wave amplitudes (83.2 ± 20.7 µV vs. 99.6 ± 29.4 µV, p < 0.01) in the diabetic patients. The implicit time of the photopic responses was significantly prolonged (28.9 ± 1.3 ms vs. 27.8 ± 2.1 ms, p = 0.01) in the patients. Oscillatory potentials in all components consisting of O1 to O4 and the sum of the OP potentials were lower in the diabetic group than the control subjects (p < 0.001). The P50 and N95 amplitudes and implicit times were comparable between the groups (p > 0.05). Correlation analysis showed a positive correlation between N95 amplitudes in pERG and the superficial vessel densities in OCTA (r = 0.26, p = 0.04). A negative correlation was found between photopic implicit times in fERG and the choriocapillary vessel densities (r=-0.27, p = 0.03). CONCLUSION OCTA revealed decreased superficial vascular densities with the onset of the metabolic process of diabetes mellitus. As a result of these structural changes, lower scotopic and photopic amplitudes, decreased OP amplitudes, and prolonged implicit times in flash ERG were obtained.
Collapse
Affiliation(s)
| | - Mualla Hamurcu
- Ankara Bilkent City Hospital Ophthalmology Clinic, Ankara, Turkey
| |
Collapse
|
2
|
Barboni MTS, Sustar Habjan M, Petrovic Pajic S, Hawlina M. Electroretinographic oscillatory potentials in Leber hereditary optic neuropathy. Doc Ophthalmol 2024; 148:133-143. [PMID: 38451375 PMCID: PMC11096212 DOI: 10.1007/s10633-024-09968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE Leber hereditary optic neuropathy (LHON) affects retinal ganglion cells causing severe vision loss. Pattern electroretinogram and photopic negative response (PhNR) of the light-adapted (LA) full-field electroretinogram (ERG) are typically affected in LHON. In the present study, we evaluated dark-adapted (DA) and LA oscillatory potentials (OPs) of the flash ERG in genetically characterized LHON patients to dissociate slow from fast components of the response. METHODS Seven adult patients (mean age = 28.4 ± 5.6) in whom genetic diagnosis confirmed LHON with mtDNA or nuclear DNAJC30 (arLHON) pathogenic variants were compared to 12 healthy volunteers (mean age = 35.0 ± 12.1). Full-field ERGs were recorded from both eyes. Offline digital filters at 50, 75 and 100 Hz low cutoff frequencies were applied to isolate high-frequency components from the original ERG signals. RESULTS ERG a-waves and b-waves were comparable between LHON patients and controls, while PhNR was significantly reduced (p = 0.009) in LHON patients compared to controls, as expected. OPs derived from DA signals (75 Hz low cutoff frequency) showed reduced peak amplitude for OP2 (p = 0.019). LA OP differences between LHON and controls became significant (OP2: p = 0.047, OP3: p = 0.039 and OP4: p = 0.013) when the 100 Hz low-cutoff frequency filter was applied. CONCLUSIONS Reduced OPs in LHON patients may represent disturbed neuronal interactions in the inner retina with preserved photoreceptoral (a-wave) to bipolar cell (b-wave) activation. Reduced DA OP2 and high-cutoff LA OP alterations may be further explored as functional measures to characterize LHON status and progression.
Collapse
Affiliation(s)
| | - Maja Sustar Habjan
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000, Ljubljana, Slovenia
| | - Sanja Petrovic Pajic
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000, Ljubljana, Slovenia
- Clinic for Eye Diseases, University Clinical Center of Serbia, Belgrade, Serbia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000, Ljubljana, Slovenia.
- Medical Faculty, Department of Ophthalmology, University of Ljubljana, Grablovičeva 46, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Hein M, Qambari H, An D, Balaratnasingam C. Current understanding of subclinical diabetic retinopathy informed by histology and high-resolution in vivo imaging. Clin Exp Ophthalmol 2024; 52:464-484. [PMID: 38363022 DOI: 10.1111/ceo.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
The escalating incidence of diabetes mellitus has amplified the global impact of diabetic retinopathy. There are known structural and functional changes in the diabetic retina that precede the fundus photography abnormalities which currently are used to diagnose clinical diabetic retinopathy. Understanding these subclinical alterations is important for effective disease management. Histology and high-resolution clinical imaging reveal that the entire neurovascular unit, comprised of retinal vasculature, neurons and glial cells, is affected in subclinical disease. Early functional manifestations are seen in the form of blood flow and electroretinography disturbances. Structurally, there are alterations in the cellular components of vasculature, glia and the neuronal network. On clinical imaging, changes to vessel density and thickness of neuronal layers are observed. How these subclinical disturbances interact and ultimately manifest as clinical disease remains elusive. However, this knowledge reveals potential early therapeutic targets and the need for imaging modalities that can detect subclinical changes in a clinical setting.
Collapse
Affiliation(s)
- Martin Hein
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Hassanain Qambari
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Dong An
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Chandrakumar Balaratnasingam
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
- Department of Ophthalmology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Ba‐Ali S, Larsen M, Andersen HU, Lund‐Andersen H. Full-field and multifocal electroretinogram in non-diabetic controls and diabetics with and without retinopathy. Acta Ophthalmol 2022; 100:e1719-e1728. [PMID: 35661609 PMCID: PMC9795888 DOI: 10.1111/aos.15184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/05/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To compare retinal function assessed by full-field electroretinography (ffERG) and multifocal electroretinography (mfERG) in diabetes without retinopathy, diabetes with moderate non-proliferative diabetic retinopathy (NPDR) and in the absence of diabetes. METHODS Scotopic and photopic ffERG and mfERG was made in non-fasting volunteers, including 26 diabetic participants without retinopathy, 22 diabetic participants with moderate NPDR and 22 participants without diabetes using full International Society for Clinical Electrophysiology of Vision protocols. RESULTS Of the ffERG responses, significant deviation (p ≤ 0.05, corrected for multiple sampling and other relevant confounders) from the non-diabetic participants was seen in the diabetic participants only for the OP1-OP3 oscillatory amplitudes and the OP2 implicit time. This finding was independent of whether retinopathy was present or not. For the mfERG, minor amplitude or implicit time deviations were found for a small number of rings (R2, R4 and R5). Receiver of operating characteristic analysis showed that the single most prominent abnormality of the ffERG in diabetes, regardless of whether retinopathy was present or not, was the OP2 implicit time (area under the curve ≥ 0.80). CONCLUSION This bi-modal study of electroretinographic characteristics found that the most prominent anomaly associated with diabetes was a prolongation of the implicit time of the OP2 of the scotopic ffERG, while the most prominent added effect of non-proliferative diabetic retinopathy was a further prolongation of the OP2 implicit time. Although the variation in ERG characteristics is far too large for diagnostic purposes, the close association of the oscillatory potentials with the amacrine cells of the retina indicate that their function is particularly sensitive to diabetes.
Collapse
Affiliation(s)
- Shakoor Ba‐Ali
- Department of OphthalmologyRigshospitaletGlostrupDenmark,Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Michael Larsen
- Department of OphthalmologyRigshospitaletGlostrupDenmark,Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | | - Henrik Lund‐Andersen
- Department of OphthalmologyRigshospitaletGlostrupDenmark,Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark,Steno Diabetes CenterCopenhagenDenmark
| |
Collapse
|
5
|
Midena E, Torresin T, Longhin E, Midena G, Pilotto E, Frizziero L. Early Microvascular and Oscillatory Potentials Changes in Human Diabetic Retina: Amacrine Cells and the Intraretinal Neurovascular Crosstalk. J Clin Med 2021; 10:jcm10184035. [PMID: 34575150 PMCID: PMC8466765 DOI: 10.3390/jcm10184035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022] Open
Abstract
To analyze the early microvascular retinal changes and oscillatory potentials alterations secondary to diabetic retinal damage, 44 eyes of 22 diabetic patients without and with mild diabetic retinopathy (DR) and 18 eyes of 9 healthy controls were examined. All subjects underwent spectral domain optical coherence tomography (SD-OCT), OCT angiography (OCTA), and electroretinography of oscillatory potentials (OPs). At OCTA, vessel area density (VAD), vessel length fraction (VLF), and fractal dimension (FD) were significantly reduced in the superficial vascular plexus (SVP), VLF and FD in the intermediate capillary plexus (ICP), and FD in the deep capillary plexus (DCP) in the diabetic group compared to the control group. The amplitude (A) of OP2, OP3, OP4 and the sum of OPs were significantly reduced in the diabetic group versus the controls, and the last two parameters were reduced also in patients without DR versus the controls. Moreover, in the diabetic group, a significant direct correlation was found between the A of OP1, OP2, OP3 and sOP and the VLF and FD in the SVP, while a statistically significant inverse correlation was found between the A of OP3 and OP4 and the VDI in the ICP and DCP. The reduced oscillatory potentials suggest a precocious involvement of amacrine cells in diabetic eyes, independently of DR presence, and their correlation with vascular parameters underlines the relevance of the crosstalk between these cells and vascular components in the pathophysiology of this chronic disease.
Collapse
Affiliation(s)
- Edoardo Midena
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (T.T.); (E.L.); (E.P.); (L.F.)
- IRCCS—Fondazione Bietti, 00198 Rome, Italy;
- Correspondence: ; Tel.: +39-049-821-2110
| | - Tommaso Torresin
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (T.T.); (E.L.); (E.P.); (L.F.)
| | - Evelyn Longhin
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (T.T.); (E.L.); (E.P.); (L.F.)
| | | | - Elisabetta Pilotto
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (T.T.); (E.L.); (E.P.); (L.F.)
| | - Luisa Frizziero
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (T.T.); (E.L.); (E.P.); (L.F.)
| |
Collapse
|
6
|
Dellaa A, Mbarek S, Kahloun R, Dogui M, Khairallah M, Hammoum I, Rayana-Chekir NB, Charfeddine R, Lachapelle P, Chaouacha-Chekir RB. Functional alterations of retinal neurons and vascular involvement progress simultaneously in the Psammomys obesus model of diabetic retinopathy. J Comp Neurol 2021; 529:2620-2635. [PMID: 33474721 DOI: 10.1002/cne.25114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/11/2022]
Abstract
To investigate the progression of diabetic retinopathy (DR) in a new diurnal animal model, we monitored clinically the DR in Psammomys obesus (P. obesus) during 7 months using electroretinography (ERG) and imaging techniques. After the onset of DR, all ERG components decreased progressively. In scotopic conditions, by 3-months of disease progression, the diabetic P. obesus displayed a significant decrease in amplitude of b-max, b-wave responses, and mixed b-waves. While mixed a-wave decreased between 4 and 7 months. Significant differences of OP2 appeared following 1 month of disease. In photopic conditions, we noticed a decrease in the a-wave at 2 months, while it took more than 5 months in b-wave amplitude. The photopic negative response (PhNR) and the i-wave amplitudes decreased following 4 and 5 months. OP1 and OP2 were the first to be altered and a significant decrease in the amplitude started after 3 months. Finally, 30 Hz-flicker and photopic S-cone were impaired after 2 and 3 months, respectively. The assessment of the eye fundus of the retina revealed an abnormal vascular architecture appeared at Months 6 and 7. In addition, we noticed exudates in the superior periphery of the retina at the same stage. The retina thickness showed a significant reduction at Month 7. Our results indicate that the clinical correlates of human DR are present in diabetic P. obesus. The depressed of ERGs, disruption of retinal architecture, and the appearance of exudates may reflect vascular and neuronal damage throughout the retina as are seen in the advanced stages of human DR.
Collapse
Affiliation(s)
- Ahmed Dellaa
- Laboratory of Physiopathology, Food and Biomolecules, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole Sidi Thabet, University of Manouba, Tunisia
| | - Sihem Mbarek
- Laboratory of Physiopathology, Food and Biomolecules, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole Sidi Thabet, University of Manouba, Tunisia
| | - Rim Kahloun
- Department of Ophthalmology, Hospital of Fattouma Bourguiba, Monastir, Tunisia
| | - Mohamed Dogui
- Department of Functional Explorations of the Nervous System, Hospital of Sahloul, Sousse, Tunisia
| | - Moncef Khairallah
- Department of Ophthalmology, Hospital of Fattouma Bourguiba, Monastir, Tunisia
| | - Imane Hammoum
- Laboratory of Physiopathology, Food and Biomolecules, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole Sidi Thabet, University of Manouba, Tunisia
| | - Narjess Ben Rayana-Chekir
- Les Ophtalmologistes Associés de Sousse, Résidence Médicale Essalem, Place du Maghreb Arabe-Sousse, Tunisia
| | | | - Pierre Lachapelle
- Department of Ophthalmology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rafika Ben Chaouacha-Chekir
- Laboratory of Physiopathology, Food and Biomolecules, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole Sidi Thabet, University of Manouba, Tunisia
| |
Collapse
|
7
|
Dahanayake P, Dassanayake TL, Pathirage M, Senanayake S, Sedgwick M, Weerasinghe V. Detection of early diabetic retinopathy using visual electrophysiological tests. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-020-00916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
McAnany JJ, Park JC, Chau FY, Leiderman YI, Lim JI, Blair NP. AMPLITUDE LOSS OF THE HIGH-FREQUENCY FLICKER ELECTRORETINOGRAM IN EARLY DIABETIC RETINOPATHY. Retina 2020; 39:2032-2039. [PMID: 30024576 DOI: 10.1097/iae.0000000000002262] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate retinal dysfunction in diabetic patients who have mild or no nonproliferative diabetic retinopathy (DR) using the high-frequency flicker electroretinogram. METHODS Light-adapted flicker electroretinograms were recorded from 15 diabetic patients who have no clinically apparent retinopathy, 15 diabetic patients who have mild nonproliferative DR, and 15 nondiabetic, age-equivalent controls. Electroretinograms were elicited by full-field flicker at 2 temporal frequencies, 31.25 and 62.5 Hz, and were recorded using conventional techniques. Amplitude and timing of the flicker responses were compared among the groups and correlated with clinical characteristics including age, acuity, disease duration, and HbA1c. RESULTS The 31.25-Hz flicker amplitude was slightly, but nonsignificantly, smaller for subjects with no DR and mild nonproliferative DR , compared with the control group (both t < 1.38, P > 0.31); small, nonsignificant response delays for both patient groups were also observed (both t < 1.57, P > 0.12). By contrast, there were significant amplitude reductions for the 62.5-Hz flicker stimulus: mean amplitude was reduced by 32% for subjects with no DR and by 41% for subjects with mild nonproliferative DR (both t > 2.92 and P < 0.01). Response timing at 62.5 Hz did not differ significantly from control for either group (both t < 1.2 and P > 0.39). Electroretinogram amplitude and timing were not correlated significantly with clinical characteristics. CONCLUSION The 62.5-Hz flicker electroretinogram is useful for evaluating retinal dysfunction in diabetic patients who have mild or no DR because this response can be significantly reduced. Attenuation of the high-frequency flicker electroretinogram, which is primarily generated by bipolar cells, suggests a relatively early retinal site of neural dysfunction.
Collapse
Affiliation(s)
- J Jason McAnany
- Departments of Ophthalmology and Visual Sciences, and.,Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Jason C Park
- Departments of Ophthalmology and Visual Sciences, and
| | - Felix Y Chau
- Departments of Ophthalmology and Visual Sciences, and
| | | | | | | |
Collapse
|
9
|
Diabetic Retinopathy: The Role of Mitochondria in the Neural Retina and Microvascular Disease. Antioxidants (Basel) 2020; 9:antiox9100905. [PMID: 32977483 PMCID: PMC7598160 DOI: 10.3390/antiox9100905] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR), a common chronic complication of diabetes mellitus and the leading cause of vision loss in the working-age population, is clinically defined as a microvascular disease that involves damage of the retinal capillaries with secondary visual impairment. While its clinical diagnosis is based on vascular pathology, DR is associated with early abnormalities in the electroretinogram, indicating alterations of the neural retina and impaired visual signaling. The pathogenesis of DR is complex and likely involves the simultaneous dysregulation of multiple metabolic and signaling pathways through the retinal neurovascular unit. There is evidence that microvascular disease in DR is caused in part by altered energetic metabolism in the neural retina and specifically from signals originating in the photoreceptors. In this review, we discuss the main pathogenic mechanisms that link alterations in neural retina bioenergetics with vascular regression in DR. We focus specifically on the recent developments related to alterations in mitochondrial metabolism including energetic substrate selection, mitochondrial function, oxidation-reduction (redox) imbalance, and oxidative stress, and critically discuss the mechanisms of these changes and their consequences on retinal function. We also acknowledge implications for emerging therapeutic approaches and future research directions to find novel mitochondria-targeted therapeutic strategies to correct bioenergetics in diabetes. We conclude that retinal bioenergetics is affected in the early stages of diabetes with consequences beyond changes in ATP content, and that maintaining mitochondrial integrity may alleviate retinal disease.
Collapse
|
10
|
Abstract
Diabetic retinopathy is now well understood as a neurovascular disease. Significant deficits early in diabetes are found in the inner retina that consists of bipolar cells that receive inputs from rod and cone photoreceptors, ganglion cells that receive inputs from bipolar cells, and amacrine cells that modulate these connections. These functional deficits can be measured in vivo in diabetic humans and animal models using the electroretinogram (ERG) and behavioral visual testing. Early effects of diabetes on both the human and animal model ERGs are changes to the oscillatory potentials that suggest dysfunctional communication between amacrine cells and bipolar cells as well as ERG measures that suggest ganglion cell dysfunction. These are coupled with changes in contrast sensitivity that suggest inner retinal changes. Mechanistic in vitro neuronal studies have suggested that these inner retinal changes are due to decreased inhibition in the retina, potentially due to decreased gamma aminobutyric acid (GABA) release, increased glutamate release, and increased excitation of retinal ganglion cells. Inner retinal deficits in dopamine levels have also been observed that can be reversed to limit inner retinal damage. Inner retinal targets present a promising new avenue for therapies for early-stage diabetic eye disease.
Collapse
|
11
|
Mendonça HR, Carpi-Santos R, da Costa Calaza K, Blanco Martinez AM. Neuroinflammation and oxidative stress act in concert to promote neurodegeneration in the diabetic retina and optic nerve: galectin-3 participation. Neural Regen Res 2020; 15:625-635. [PMID: 31638084 PMCID: PMC6975153 DOI: 10.4103/1673-5374.266910] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/01/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a lifelong disease characterized by glucose metabolic imbalance, in which low insulin levels or impaired insulin signaling lead to hyperglycemic state. Within 20 years of diabetes progression, 95% of patients will have diabetic retinopathy, the leading cause of visual defects in working-age people worldwide. Although diabetes is considered a microvascular disease, recent studies have shown that neurodegeneration precedes vascular changes within the diabetic visual system, albeit its mechanisms are still under investigation. Neuroinflammation and oxidative stress are intrinsically related phenomena, since macrophage/microglia and astrocytes are the main sources of reactive oxygen species during central nervous system chronic degenerative diseases, and both pathological processes are increased in the visual system during diabetes. The present review will focus on recent findings of the contribution of oxidative stress derived from neuroinflammation in the early neurodegenerative aspects of the diabetic visual system and their relationship with galectin-3.
Collapse
Affiliation(s)
- Henrique Rocha Mendonça
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitrio Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Pólo Universitário Macaé, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociências, Federal University of Rio de Janeiro, Macaé, Brazil
- Laboratório Integrado de Morfologia, Instituto de Biodiversidade e Sustentabilidade, Núcleo de Pesquisas Ecológicas de Macaé, Federal University of Rio de Janeiro, Macaé, Brazil
| | - Raul Carpi-Santos
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karin da Costa Calaza
- Laboratório de Neurobiologia da Retina, Departamento de Neurobiologia, Programa de Pós-Graduação em Neurociências, Fluminense Federal University, Niterói, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitrio Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
McAnany JJ, Park JC. Cone Photoreceptor Dysfunction in Early-Stage Diabetic Retinopathy: Association Between the Activation Phase of Cone Phototransduction and the Flicker Electroretinogram. Invest Ophthalmol Vis Sci 2019; 60:64-72. [PMID: 30640972 PMCID: PMC6333111 DOI: 10.1167/iovs.18-25946] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose To define the nature and extent of cone photoreceptor abnormalities in diabetic individuals who have mild or no retinopathy by assessing the activation phase of cone phototransduction and the flicker ERG in these individuals. Methods Light-adapted single-flash and flicker ERGs were recorded from 20 diabetic individuals who have no clinically apparent retinopathy (NDR), 20 diabetic individuals who have mild nonproliferative diabetic retinopathy (NPDR), and 20 nondiabetic, age-equivalent controls. A-waves elicited by flashes of different retinal illuminance were fit with a delayed Gaussian model to derive Rmp3 (maximum amplitude of the massed photoreceptor response) and S (phototransduction sensitivity). Fundamental amplitude and phase of ERGs elicited by full-field sinusoidal flicker were obtained across a frequency range of 6 to 100 Hz. Results ANVOA indicated that both diabetic groups had significant S losses compared with the controls, whereas mean Rmp3 did not differ significantly among the groups. ANOVA also indicated significantly reduced flicker ERG amplitude for frequencies ≥56 Hz for both diabetic groups compared with the controls. Flicker ERG timing (phase) did not differ significantly among the groups. Log Rmp3 + log S was significantly correlated with the patients' high-frequency (62.5 Hz) flicker ERG amplitude loss (r = 0.69, P < 0.001). Conclusions The delayed Gaussian a-wave model is useful for characterizing abnormalities in the activation phase of cone phototransduction and can help explain flicker ERG abnormalities in early-stage diabetic retinopathy. Reduced cone sensitivity and attenuated high-frequency flicker ERGs provide evidence for impaired cone function in these individuals.
Collapse
Affiliation(s)
- J Jason McAnany
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jason C Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
13
|
Lin JB, Apte RS. NAD + and sirtuins in retinal degenerative diseases: A look at future therapies. Prog Retin Eye Res 2018; 67:118-129. [PMID: 29906612 PMCID: PMC6235699 DOI: 10.1016/j.preteyeres.2018.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022]
Abstract
Retinal degenerative diseases are a major cause of morbidity in modern society because visual impairment significantly decreases the quality of life of patients. A significant challenge in treating retinal degenerative diseases is their genetic and phenotypic heterogeneity. However, despite this diversity, many of these diseases share a common endpoint involving death of light-sensitive photoreceptors. Identifying common pathogenic mechanisms that contribute to photoreceptor death in these diverse diseases may lead to a unifying therapy for multiple retinal diseases that would be highly innovative and address a great clinical need. Because the retina and photoreceptors, in particular, have immense metabolic and energetic requirements, many investigators have hypothesized that metabolic dysfunction may be a common link unifying various retinal degenerative diseases. Here, we discuss a new area of research examining the role of NAD+ and sirtuins in regulating retinal metabolism and in the pathogenesis of retinal degenerative diseases. Indeed, the results of numerous studies suggest that NAD+ intermediates or small molecules that modulate sirtuin function could enhance retinal metabolism, reduce photoreceptor death, and improve vision. Although further research is necessary to translate these findings to the bedside, they have strong potential to truly transform the standard of care for patients with retinal degenerative diseases.
Collapse
Affiliation(s)
- Jonathan B Lin
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajendra S Apte
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
Hammoum I, Benlarbi M, Dellaa A, Kahloun R, Messaoud R, Amara S, Azaiz R, Charfeddine R, Dogui M, Khairallah M, Lukáts Á, Ben Chaouacha-Chekir R. Retinal dysfunction parallels morphologic alterations and precede clinically detectable vascular alterations in Meriones shawi, a model of type 2 diabetes. Exp Eye Res 2018; 176:174-187. [PMID: 30009825 DOI: 10.1016/j.exer.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022]
Abstract
Diabetic retinopathy is a major cause of reduced visual acuity and acquired blindness. The aim of this work was to analyze functional and vascular changes in diabetic Meriones shawi (M.sh) an animal model of metabolic syndrome and type 2 diabetes. The animals were divided into four groups. Two groups were fed a high fat diet (HFD) for 3 and 7 months, two other groups served as age-matched controls. Retinal function was assessed using full field electroretinogram (Ff-ERG). Retinal thickness and vasculature were examined by optical coherence tomography, eye fundus and fluorescein angiography. Immunohistochemistry was used to examine key proteins of glutamate metabolism and synaptic transmission. Diabetic animals exhibited significantly delayed scotopic and photopic ERG responses and decreases in scotopic and photopic a- and b-wave amplitudes at both time points. Furthermore, a decrease of the amplitude of the flicker response and variable changes in the scotopic and photopic oscillatory potentials was reported. A significant decrease in retinal thickness was observed. No evident change in the visual streak area and no sign of vascular abnormality was present; however, some exudates in the periphery were visible in 7 months diabetic animals. Imunohistochemistry detected a decrease in the expression of glutamate synthetase, vesicular glutamate transporter 1 and synaptophysin proteins. Results indicate that a significant retinal dysfunction was present in the HFD induced diabetes involving both rod and cone pathways and this dysfunction correlate well with the morphological abnormalities reported previously. Furthermore, neurodegeneration and abnormalities in retinal function occur before vascular alterations would be detectable in diabetic M.sh.
Collapse
Affiliation(s)
- Imane Hammoum
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia; Faculty of Sciences of Tunis, El Manar University (UTM), Tunis, Tunisia
| | - Maha Benlarbi
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia
| | - Ahmed Dellaa
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia
| | - Rim Kahloun
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Riadh Messaoud
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Soumaya Amara
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Rached Azaiz
- UNIMED Pharmaceutical Industry, Industrial Area Kalaa Kebira, Sousse, Tunisia
| | - Ridha Charfeddine
- UNIMED Pharmaceutical Industry, Industrial Area Kalaa Kebira, Sousse, Tunisia
| | - Mohamed Dogui
- Service of Functional Explorations of the Nervous System, Sahloul University Hospital, Sousse, Tunisia
| | - Moncef Khairallah
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rafika Ben Chaouacha-Chekir
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia.
| |
Collapse
|
15
|
Dellaa A, Benlarbi M, Hammoum I, Gammoudi N, Dogui M, Messaoud R, Azaiz R, Charfeddine R, Khairallah M, Lachapelle P, Ben Chaouacha-Chekir R. Electroretinographic evidence suggesting that the type 2 diabetic retinopathy of the sand rat Psammomys obesus is comparable to that of humans. PLoS One 2018; 13:e0192400. [PMID: 29420665 PMCID: PMC5805270 DOI: 10.1371/journal.pone.0192400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/23/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose Type 2 diabetic retinopathy is the main cause of acquired blindness in adults. The aim of this work was to examine the retinal function of the sand rat Psammomys obesus as an animal model of diet-induced type 2 diabetes when subjected to a hypercaloric regimen. Materials and methods Hyperglycemia was induced in Psammomys obesus by high caloric diet (4 kcal/g). The visual function of control (n = 7) and diabetic (n = 7) adult rodents were followed up during 28 consecutive weeks with full-field electroretinogram(ERG) recordings evoked to flashes of white light according to the standard protocol of the International Society for Clinical Electrophysiology of Vision protocol (ISCEV). Results Twenty-eight weeks following the induction of diabetes, results revealed significantly reduced and delayed photopic and scotopic ERG responses in diabetic rats compared to control rats. More specifically, we noted a significant decrease in the amplitude of the dark-adapted 0.01ERG (62%), a- and b-wave amplitudes of the dark-adapted 3.0 ERG (33.6%, 55.1%) and the four major oscillatory potentials components (OP1-OP4) (39.0%, 75.2%, 54.8% and 53.7% respectively). In photopic conditions, diabetic rats showed a significant decrease in a- and b-wave (30.4%, 43.4%), photopic negative response (55.3%), 30 Hz flicker (63.7%), OP1-OP4(51.6%, 61.8%, 68.3% and 47.5% respectively) and S-cone (34.7%). Significantly delayed implicit times were observed for all ERG components in the diabetic animals. Results obtained are comparable to those characterizing the retinal function of patients affected with advanced stage of diabetic retinopathy. Conclusion Psammomys obesus is a useful translational model to study the pathophysiology of diabetic retinopathy in order to explore new therapeutic avenues in human patients.
Collapse
Affiliation(s)
- Ahmed Dellaa
- Laboratory of Physiopathology, Food and Biomolecules of the Higher Institute of Biotechnology Sidi Thabet, Manouba University, BiotechPole Sidi Thabet, Ariana, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Bizerte, Tunisia
| | - Maha Benlarbi
- Laboratory of Physiopathology, Food and Biomolecules of the Higher Institute of Biotechnology Sidi Thabet, Manouba University, BiotechPole Sidi Thabet, Ariana, Tunisia
| | - Imane Hammoum
- Laboratory of Physiopathology, Food and Biomolecules of the Higher Institute of Biotechnology Sidi Thabet, Manouba University, BiotechPole Sidi Thabet, Ariana, Tunisia
| | - Nouha Gammoudi
- Department of functional explorations of the nervous system, University Hospital of Sahloul, Sousse, Tunisia
| | - Mohamed Dogui
- Department of functional explorations of the nervous system, University Hospital of Sahloul, Sousse, Tunisia
| | - Riadh Messaoud
- Department of Ophthalmology, University Hospital of Fattouma Bourguiba, Monastir, Tunisia
| | - Rached Azaiz
- UNIMED Pharmaceutical Industry, industrial area Kalaa Kebira, Sousse, Tunisia
| | - Ridha Charfeddine
- UNIMED Pharmaceutical Industry, industrial area Kalaa Kebira, Sousse, Tunisia
| | - Moncef Khairallah
- Department of Ophthalmology, University Hospital of Fattouma Bourguiba, Monastir, Tunisia
| | - Pierre Lachapelle
- Department of Ophthalmology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rafika Ben Chaouacha-Chekir
- Laboratory of Physiopathology, Food and Biomolecules of the Higher Institute of Biotechnology Sidi Thabet, Manouba University, BiotechPole Sidi Thabet, Ariana, Tunisia
- * E-mail:
| |
Collapse
|
16
|
Abstract
Diabetes mellitus represents a growing international public health issue with a near quadrupling in its worldwide prevalence since 1980. Though it has many known microvascular complications, vision loss from diabetic retinopathy is one of the most devastating for affected individuals. In addition, there is increasing evidence to suggest that diabetic patients have a greater risk for glaucoma as well. Though the pathophysiology of glaucoma is not completely understood, both diabetes and glaucoma appear to share some common risk factors and pathophysiologic similarities with studies also reporting that the presence of diabetes and elevated fasting glucose levels are associated with elevated intraocular pressure-the primary risk factor for glaucomatous optic neuropathy. While no study has completely addressed the possibility of detection bias, most recent epidemiologic evidence suggests that diabetic populations are likely enriched with glaucoma patients. As the association between diabetes and glaucoma becomes better defined, routine evaluation for glaucoma in diabetic patients, particularly in the telemedicine setting, may become a reasonable consideration to reduce the risk of vision loss in these patients.
Collapse
Affiliation(s)
- Brian J Song
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA.
| | - Lloyd Paul Aiello
- Beetham Eye Institute, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Place, Boston, MA, 02115, USA
| | - Louis R Pasquale
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02215, USA
| |
Collapse
|
17
|
Rosenstein RE, Fernandez DC. Induction of ischemic tolerance as a promising treatment against diabetic retinopathy. Neural Regen Res 2014; 9:1581-4. [PMID: 25368643 PMCID: PMC4211198 DOI: 10.4103/1673-5374.141782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2014] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy is a leading cause of acquired blindness, and it is the most common ischemic disorder of the retina. Available treatments are not very effective. Efforts to inhibit diabetic retinopathy have focused either on highly specific therapeutic approaches for pharmacologic targets or using genetic approaches to change expression of certain enzymes. However, it might be wise to choose innovative treatment modalities that act by multiple potential mechanisms. The resistance to ischemic injury, or ischemic tolerance, can be transiently induced by prior exposure to a non-injurious preconditioning stimulus. A complete functional and histologic protection against retinal ischemic damage can be achieved by previous preconditioning with non-damaging ischemia. In this review, we will discuss evidence that supports that ischemic conditioning could help avert the dreaded consequences that results from retinal diabetic damage.
Collapse
Affiliation(s)
- Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Diego C Fernandez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina ; Present address: Johns Hopkins University, Department of Biology, Baltimore, MD, USA
| |
Collapse
|
18
|
Pardue MT, Barnes CS, Kim MK, Aung MH, Amarnath R, Olson DE, Thulé PM. Rodent Hyperglycemia-Induced Inner Retinal Deficits are Mirrored in Human Diabetes. Transl Vis Sci Technol 2014; 3:6. [PMID: 24959388 DOI: 10.1167/tvst.3.3.6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/28/2014] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To evaluate the utility of low luminance stimuli to functionally probe inner retinal rod pathways in the context of diabetes mellitus in both rat and human subjects. METHODS Inner retinal dysfunction was assessed using oscillatory potential (OP) delays in diabetic rats. Scotopic electroretinograms (ERGs) in response to a series of increasing flash luminances were recorded from streptozotocin (STZ)-treated and control Sprague-Dawley rats after 7, 14, 20, and 29 weeks of hyperglycemia. We then evaluated OP delays in human diabetic subjects with (DR) and without (DM) diabetic retinopathy using the International Society for Clinical Electrophysiology in Vision (ISCEV) standard scotopic protocol and two additional dim test flashes. RESULTS Beginning 7 weeks after STZ, OP implicit times in diabetic rats were progressively delayed in response to dim, but not bright stimuli. In many diabetic subjects the standard ISCEV dim flash failed to illicit measureable OPs. However, OPs became measurable using a brighter, nonstandard dim flash (Test Flash 1, -1.43 log cd s/m2), and exhibited prolonged implicit times in the DM group compared with control subjects (CTRL). CONCLUSIONS Delays in scotopic OP implicit times are an early response to hyperglycemia in diabetic rats. A similar, inner retinal, rod-driven response was detected in diabetic human subjects without diabetic retinopathy, only when a nonstandard ISCEV flash intensity was employed during ERG testing. TRANSLATIONAL RELEVANCE The addition of a dim stimulus to standard ISCEV flashes with assessment of OP latency during ERG testing may provide a detection method for early retinal dysfunction in diabetic patients.
Collapse
Affiliation(s)
- Machelle T Pardue
- Rehab R&D Center of Excellence, Veterans Affairs Medical Center, Decatur, GA ; Department of Ophthalmology, Emory University, Atlanta, GA ; Neuroscience Program, Emory University, Atlanta, GA
| | - Claire S Barnes
- Rehab R&D Center of Excellence, Veterans Affairs Medical Center, Decatur, GA ; Department of Ophthalmology, Emory University, Atlanta, GA
| | - Moon K Kim
- Rehab R&D Center of Excellence, Veterans Affairs Medical Center, Decatur, GA ; Department of Ophthalmology, Emory University, Atlanta, GA
| | - Moe H Aung
- Neuroscience Program, Emory University, Atlanta, GA
| | - Raj Amarnath
- Rehab R&D Center of Excellence, Veterans Affairs Medical Center, Decatur, GA
| | - Darin E Olson
- Medical Service, Veterans Affairs Medical Center, Decatur, GA ; Division of Endocrinology, Metabolism, & Lipids, Emory University, Atlanta, GA
| | - Peter M Thulé
- Medical Service, Veterans Affairs Medical Center, Decatur, GA ; Division of Endocrinology, Metabolism, & Lipids, Emory University, Atlanta, GA
| |
Collapse
|
19
|
Gardašević Topčić I, Šuštar M, Brecelj J, Hawlina M, Jaki Mekjavić P. Morphological and electrophysiological outcome in prospective intravitreal bevacizumab treatment of macular edema secondary to central retinal vein occlusion. Doc Ophthalmol 2014; 129:27-38. [PMID: 24906869 DOI: 10.1007/s10633-014-9445-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/22/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate intravitreal bevacizumab (IVB) treatment in patients with central retinal vein occlusion (CRVO) by spectral domain optical coherence tomography (OCT) and electroretinography (ERG). METHODS Twenty-two CRVO patients were treated with IVB injections and followed for 1 year. Morphological effect of treatment was observed with fluorescent angiography and OCT. Functional effect was followed with best corrected visual acuity (BCVA) and ERG: combined rod-cone response of the standard full-field ERG (dark adapted 3.0 ERG), photopic negative response (PhNR), and pattern ERG (PERG). RESULTS Best corrected visual acuity (BCVA) improved by 18.2 letters after 6 months (p ≤ 0.001) and additional 4.7 letters by the 12th month (p ≤ 0.001). The central retinal thickness of 829.8 ± 256.7 μm decreased to 398.8 ± 230 μm (p ≤ 0.001) after 6 months and to 303.7 ± 128.9 μm during the following 6 months (p ≤ 0.001). The total macular volume (14.4 ± 4.2 mm(3)) decreased to 9.6 ± 3.2 mm(3) and 8.5 ± 2.0 mm(3) after 6 months and 1 year of treatment, respectively (p ≤ 0.001). Electrophysiological measures improved significantly after 6 months and 1 year of treatment: the a-wave implicit time of dark adapted 3.0 ERG from 25.6 ± 2.3 to 24.1 ± 2.1 and 24.1 ± 2.0 ms (p ≤ 0.01); the PhNR from -5.9 ± 6.6 to -9.4 ± 6.1 and -10.4 ± 4.6 µV (p ≤ 0.05); the PERG P50 amplitude from 0.2 ± 0.3 to 0.9 ± 0.6 and 1.1 ± 0.6 µV (p ≤ 0.001); and N95 amplitude from 0.4 ± 0.6 to 1.2 ± 0.9 and 1.6 ± 0.9 µV (p ≤ 0.001). CONCLUSIONS Intravitreal bevacizumab (IVB) treatment of macular edema due to CRVO improved standard morphological measures and the electrophysiological function of outer and inner retinal layers, which was most evident in central retina.
Collapse
|
20
|
Chiang STH, Yeh SM, Chen YC, Lin SL, Tseng JK. Investigation of the Protective Effects of Taurine against Alloxan-Induced Diabetic Retinal Changes via Electroretinogram and Retinal Histology with New Zealand White Rabbits. Int J Endocrinol 2014; 2014:631549. [PMID: 25298779 PMCID: PMC4178915 DOI: 10.1155/2014/631549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/31/2014] [Accepted: 09/04/2014] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to investigate the protective role of orally administered taurine against diabetic retinal changes via electroretinogram (ERG) and retinal histology on rabbits. Rabbits were randomly assigned into groups: Group I (vehicle administration only); Group II (diabetes: induced by 100 mg/kg alloxan injection); Group III (diabetes and fed with 200 mg/kg taurine); and Group IV (diabetes and fed with 400 mg/kg taurine). The body weight and blood glucose levels of the rabbits were monitored weekly. The ERG was measured on weeks 5 and 15. Retinal histology was analyzed in the end of the experiment. Results revealed that a taurine supplement significantly ameliorates the alloxan-induced hyperglycemia and protects the retina from electrophysiological changes. Group II showed a significant (P < 0.05) change in the mean scotopic b-wave amplitude when compared to that of Group I, whereas the diabetic rabbits treated with taurine (Group III and IV) were analogous to Group I. Histologically, the amount of Bipolar and Müller cells showed no difference (P > 0.05) between all groups and when compared with those of Group I. Our study provides solid evidences that taurine possesses an antidiabetic activity, reduced loss of body weight, and less electrophysiological changes of the diabetic retina.
Collapse
Affiliation(s)
- Samuel Tung-Hsing Chiang
- Department of Optometry and Vision Science, Faculty of Medical and Health Science, The University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Shang-Min Yeh
- School of Optometry, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Section 3, Keelung Road, Taipei 11054, Taiwan
| | - Shiun-Long Lin
- Department of Veterinary Medicine, National Chung Hsing University, No. 250, Kuo-Kuang Road, Taichung 40227, Taiwan
| | - Jung-Kai Tseng
- School of Optometry, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- *Jung-Kai Tseng:
| |
Collapse
|
21
|
Li X, Zhang M, Zhou H. The morphological features and mitochondrial oxidative stress mechanism of the retinal neurons apoptosis in early diabetic rats. J Diabetes Res 2014; 2014:678123. [PMID: 24527463 PMCID: PMC3910261 DOI: 10.1155/2014/678123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/10/2013] [Accepted: 11/25/2013] [Indexed: 01/01/2023] Open
Abstract
This paper aims to explore the relationship of retinal neuron apoptosis and manganese superoxidase dismutase (MnSOD) at early phase of diabetic retinopathy. Sprague-Dawley rats were grouped into normal controls and diabetics. Data were collected after 4, 8, and 12 weeks (n = 12). The pathological changes and ultrastructure of the retina, the apoptosis rate of retinal neurons by TdT-mediated dUTP nick end label (TUNEL), mRNA expressions of MnSOD and copper-zinc superoxide dismutase (Cu-Zn SOD), and the activities of total SOD (T-SOD) and subtypes of SOD were tested. For the controls, there was no abnormal structure or apoptosis of retinal neurons at any time. There was no change of structure for rats with diabetes at 4 or 8 weeks, but there was a decrease of retinal ganglion cells (RGCs) number and thinner inner nuclear layer (INL) at 12 weeks. The apoptosis ratio of RGCs was higher than that of the controls at 8 and 12 weeks (P < 0.001). The activity and mRNA levels of MnSOD were lower in diabetics at 4, 8, and 12 weeks (P < 0.05). In summary, the apoptosis of the retinal neurons occurred at 8 weeks after the onset of diabetes. Retinal neuron apoptosis in early diabetic rats may be associated with the decreased activity and mRNA of MnSOD.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Ophthalmology, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Maonian Zhang
- Department of Ophthalmology, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
- *Maonian Zhang:
| | - Huanfen Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| |
Collapse
|
22
|
Exclusion of aldose reductase as a mediator of ERG deficits in a mouse model of diabetic eye disease. Vis Neurosci 2012; 29:267-74. [PMID: 23101909 DOI: 10.1017/s0952523812000326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Streptozotocin (STZ)-induced diabetes is associated with reductions in the electrical response of the outer retina and retinal pigment epithelium (RPE) to light. Aldose reductase (AR) is the first enzyme required in the polyol-mediated metabolism of glucose, and AR inhibitors have been shown to improve diabetes-induced electroretinogram (ERG) defects. Here, we used control and AR -/- mice to determine if genetic inactivation of this enzyme likewise inhibits retinal electrophysiological defects observed in a mouse model of type 1 diabetes. STZ was used to induce hyperglycemia and type 1 diabetes. Diabetic and age-matched nondiabetic controls of each genotype were maintained for 22 weeks, after which ERGs were used to measure the light-evoked components of the RPE (dc-ERG) and the neural retina (a-wave, b-wave). In comparison to their nondiabetic controls, wildtype (WT) and AR -/- diabetic mice displayed significant decreases in the c-wave, fast oscillation, and off response components of the dc-ERG but not in the light peak response. Nondiabetic AR -/- mice displayed larger ERG component amplitudes than did nondiabetic WT mice; however, the amplitude of dc-ERG components in diabetic AR -/- animals were similar to WT diabetics. ERG a-wave amplitudes were not reduced in either diabetic group, but b-wave amplitudes were lower in WT and AR -/-diabetic mice. These findings demonstrate that the light-induced responses of the RPE and outer retina are disrupted in diabetic mice, but these defects are not due to photoreceptor dysfunction, nor are they ameliorated by deletion of AR. This latter finding suggests that benefits observed in other studies utilizing pharmacological inhibitors of AR might have been secondary to off-target effects of the drugs.
Collapse
|
23
|
Wong VHY, Vingrys AJ, Bui BV. Glial and neuronal dysfunction in streptozotocin-induced diabetic rats. J Ocul Biol Dis Infor 2011; 4:42-50. [PMID: 23275800 DOI: 10.1007/s12177-011-9069-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/02/2011] [Indexed: 11/29/2022] Open
Abstract
Neuronal dysfunction has been noted very soon after the induction of diabetes by streptozotocin injection in rats. It is not clear from anatomical evidence whether glial cell dysfunction accompanies the well-documented neuronal deficit. Here, we isolate the Müller cell driven slow-P3 component of the full-field electroretinogram and show that it is attenuated at 4 weeks following the onset of streptozotocin-hyperglycaemia. We also found a concurrent reduction in the sensitivity of the phototransduction cascade, as well as in the components of the electroretinogram known to indicate retinal ganglion cell and amacrine cell integrity. Our data support the idea that neuronal and Müller cell dysfunction occurs at the same time in streptozotocin-induced hyperglycaemia.
Collapse
Affiliation(s)
- Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010 Victoria Australia
| | | | | |
Collapse
|
24
|
Wong VHY, Bui BV, Vingrys AJ. Clinical and experimental links between diabetes and glaucoma. Clin Exp Optom 2010; 94:4-23. [PMID: 21091536 DOI: 10.1111/j.1444-0938.2010.00546.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glaucoma is a leading cause of blindness. It is a multifactorial condition, the risk factors for which are increasingly well defined from large-scale epidemiological studies. One risk factor that remains controversial is the presence of diabetes. It has been proposed that diabetic eyes are at greater risk of injury from external stressors, such as elevated intraocular pressure. Alternatively, diabetes may cause ganglion cell loss, which becomes additive to a glaucomatous ganglion cell injury. Several clinical trials have considered whether a link exists between diabetes and glaucoma. In this review, we outline these studies and consider the causes for their lack of concordant findings. We also review the biochemical and cellular similarities between the two conditions. Moreover, we review the available literature that attempts to answer the question of whether the presence of diabetes increases the risk of developing glaucoma. At present, laboratory studies provide robust evidence for an association between diabetes and glaucoma.
Collapse
Affiliation(s)
- Vickie H Y Wong
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | | |
Collapse
|
25
|
Qingli Li, Yiting Wang, Jingfa Zhang, Guotong Xu, Yongqi Xue. Quantitative Analysis of Protective Effect of Erythropoietin on Diabetic Retinal Cells Using Molecular Hyperspectral Imaging Technology. IEEE Trans Biomed Eng 2010; 57:1699-1706. [DOI: 10.1109/tbme.2010.2041663] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
26
|
Faucher C, Carcenac G, Kergoat H. Hyper-response of OP3 to systemic hyperoxia in the dark-adapted retina. Ophthalmic Physiol Opt 2009; 29:634-40. [DOI: 10.1111/j.1475-1313.2009.00674.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Zhou W, Rangaswamy N, Ktonas P, Frishman LJ. Oscillatory potentials of the slow-sequence multifocal ERG in primates extracted using the Matching Pursuit method. Vision Res 2007; 47:2021-36. [PMID: 17512027 PMCID: PMC2072998 DOI: 10.1016/j.visres.2007.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/17/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
This study used the Matching Pursuit (MP) method, a time-frequency analysis, to identify and characterize oscillatory potentials (OPs) in the primate electroretinogram (ERG). When the slow-sequence mfERG from the macular region of the retina was matched with Gabor functions, OPs were identified in two distinct bands: a high-frequency band peaking around 150 Hz that contributes to early OPs, and a low-frequency band peaking around 80 Hz that contributes to both early and late OPs. Pharmacological blockade and experimental glaucoma studies showed that the high-frequency OPs depend upon sodium-dependent spiking activity of retinal ganglion cells, whereas the low-frequency OPs depend primarily upon non-spiking activity of amacrine cells, and more distal retinal activity.
Collapse
Affiliation(s)
- Wei Zhou
- College of Optometry, University of Houston, Houston, TX
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX
- * Corresponding authors’ ;
| | | | - Periklis Ktonas
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX
| | - Laura J. Frishman
- College of Optometry, University of Houston, Houston, TX
- * Corresponding authors’ ;
| |
Collapse
|
28
|
Meyer-Rüsenberg B, Pavlidis M, Stupp T, Thanos S. Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy. Graefes Arch Clin Exp Ophthalmol 2006; 245:1009-18. [PMID: 17186260 DOI: 10.1007/s00417-006-0489-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/19/2006] [Accepted: 10/21/2006] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To examine whether systemic diseases like diabetes and arterial hypertension, which frequently cause retinopathies leading to blindness effect the morphology of retinal ganglion cells (RGC). METHODS Histological retina material with a history of being untreated, or laser-coagulated (LC) diabetic retinopathy (DR), or arterial hypertensive retinopathy (AHR) was used. The RGC were labeled by introducing crystals of the fluorescent carbocyanine dye DiI into the nerve fiber layer, which contains ganglion cell axons. RESULTS The typical silhouettes of both major types of RGC, parasol and midget cells, were identified. The axons in DR and AHR retinas showed morphology changes such as irregular swelling and beading. Dendritic field sizes were significantly reduced in RGC of both the hypertonic and diabetic retinas. A significant reduction in branching frequency was evident in both the diabetic and hypertonic retinas, in both the midget and the parasol cells. In LC retinas, both parasol and midget RGC were observed within the LC spots, although their numbers were dramatically decreased compared with normal retinas. CONCLUSIONS The data suggest that diabetes and arterial hypertonia have similar effects on the morphology of RGC, in addition to causing microvascular alterations and bleeding. Therefore, therapeutic measures and prognostic outcomes in diabetic and hypertensive retinopathy should also consider regressive changes in retinal neurons.
Collapse
Affiliation(s)
- Birthe Meyer-Rüsenberg
- Department of Experimental Ophthalmology, School of Medicine, University of Münster, Domagkstrasse 15, 48149 Münster, Germany
| | | | | | | |
Collapse
|
29
|
Bearse MA, Adams AJ, Han Y, Schneck ME, Ng J, Bronson-Castain K, Barez S. A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog Retin Eye Res 2006; 25:425-48. [PMID: 16949855 PMCID: PMC2773701 DOI: 10.1016/j.preteyeres.2006.07.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The prevalence of diabetes has been accelerating at an alarming rate in the last decade; some describe it as an epidemic. Diabetic eye complications are the leading cause of blindness in adults aged 25-74 in the United States. Early diagnosis and development of effective preventatives and treatments of diabetic retinopathy are essential to save sight. We describe efforts to establish functional indicators of retinal health and predictors of diabetic retinopathy. These indicators and predictors will be needed as markers of the efficacy of new therapies. Clinical trials aimed at either prevention or early treatments will rely heavily on the discovery of sensitive methods to identify patients and retinal locations at risk, as well as to evaluate treatment effects. We report on recent success in revealing local functional changes of the retina with the multifocal electroretinogram (mfERG). This objective measure allows the simultaneous recording of responses from over 100 small retinal patches across the central 45 degrees field. We describe the sensitivity of mfERG implicit time measurement for revealing functional alterations of the retina in diabetes, the local correspondence between functional (mfERG) and structural (vascular) abnormalities in eyes with early nonproliferative retinopathy, and longitudinal studies to formulate models to predict the retinal sites of future retinopathic signs. A multivariate model including mfERG implicit time delays and 'person' risk factors achieved 86% sensitivity and 84% specificity for prediction of new retinopathy development over one year at specific locations in eyes with some retinopathy at baseline. A preliminary test of the model yielded very positive results. This model appears to be the first to predict, quantitatively, the retinal locations of new nonproliferative diabetic retinopathy development over a one-year period. In a separate study, the predictive power of a model was assessed over one- and two-year follow-ups. This permitted successful prediction of new retinopathy development in eyes with and without retinopathy at baseline. Finally, we briefly describe our current research efforts to (a) locally predict future sight-threatening diabetic macular edema, (b) investigate local retinal function change in adolescent patients with diabetes, and (c) better understand the physiological bases of the mfERG delays. The ability to predict the retinal locations of future retinopathy based on mfERG implicit time provides clinicians a powerful tool to screen, follow-up, and even consider early prophylactic treatment of the retinal tissue in diabetic patients. It also aids identification of 'at risk' populations for clinical trials of candidate therapies, which may greatly reduce their cost by decreasing the size of the needed sample and the duration of the trial.
Collapse
Affiliation(s)
- Marcus A Bearse
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA 94720-2020, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Rangaswamy NV, Zhou W, Harwerth RS, Frishman LJ. Effect of experimental glaucoma in primates on oscillatory potentials of the slow-sequence mfERG. Invest Ophthalmol Vis Sci 2006; 47:753-67. [PMID: 16431977 PMCID: PMC2040122 DOI: 10.1167/iovs.05-1051] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the effect of experimental glaucoma in macaque monkeys on oscillatory potentials (OPs) in the slow-sequence multifocal electroretinogram (mfERG). METHODS Photopic slow-sequence mfERGs were recorded from anesthetized adult macaque monkeys and normal human subjects. The stimulus consisted of 103 equal-sized hexagons within 17 degrees of the fovea. The m-sequence was slowed, with 14 blank frames, approximately 200 ms, interleaved between flashes for monkeys and 7 blank frames, approximately 100 ms, for humans, to produce waveforms similar to the photopic full-field flash ERG. Recordings were made under control conditions (24 monkey eyes, 7 human) and after laser-induced experimental glaucoma in monkeys (n = 8). A Fourier fast transform [FFT] was used to determine the frequency ranges of the major OPs. OP amplitudes were quantified by using root mean square (RMS) for two-frequency bands in five horizontal and four vertical locations. Visual field defects were assessed using behavioral static perimetry. Full-field photopic flash ERGs also were recorded. RESULTS OPs in two distinct frequency bands were discriminated in the monkey mfERG: fast OPs, with a peak frequency of 143 +/- 20 Hz, and slow OPs, with a peak at 77 +/- 8 Hz. There were similar findings in humans and with the flash ERG in monkeys. The fast OP RMS in monkey control eyes was significantly larger in temporal than nasal retina (P < 0.01) and in superior versus inferior retina (P < 0.05) as reported previously. The slow OP RMS was largest in the foveal region. Experimental glaucoma reduced fast OP RMS in all locations studied, even when visual field defects were moderate (MD = -5 to -10 dB; P < 0.05), whereas the slow OP RMS was reduced significantly primarily in the foveal region when field defects were severe (MD < -10 dB; P < 0.05). The fast OP RMS showed a moderate correlation with local visual field sensitivity and with local ganglion cell density (calculated from visual field sensitivity). For the slow OPs the correlation was much poorer. Consistent with previous studies, the photopic negative response (PhNR) amplitude was significantly reduced when the visual sensitivity was minimally affected. CONCLUSIONS OPs in the ERG of primates fall in two frequency bands: fast OPs with a peak frequency around 143 Hz and slow OPs, with a peak frequency around 77 Hz. The fast OPs, which rely more on the integrity of retinal ganglion cells and their axons than do the slow OPs, have potential utility for monitoring the progression of glaucoma and the effects of treatment.
Collapse
|
31
|
Mortlock KE, Chiti Z, Drasdo N, Owens DR, North RV. Silent substitution S-cone electroretinogram in subjects with diabetes mellitus. Ophthalmic Physiol Opt 2006; 25:392-9. [PMID: 16101944 DOI: 10.1111/j.1475-1313.2005.00299.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A defect in the blue sensitive mechanism has been reported in certain ocular and systemic diseases. For example, tritanopic colour vision defects and changes to the S-cone electroretinogram (ERG) have been demonstrated in glaucoma and diabetes mellitus. Electrophysiological methods of eliciting the S-cone ERG, however, often result in considerable L- and M-cone intrusion. We report the findings of a study employing the silent substitution S-cone ERG technique, which is thought to represent an almost pure S-cone signal, and the L'Anthony desaturated D15 colour vision test in subjects with Type 1 or 2 diabetes mellitus with no or minimal background retinopathy. The results of this study show a significantly increased S-cone ERG b-wave implicit time and significantly worse colour vision in those with background retinopathy compared with those with no diabetic retinopathy. This suggests that S-cone pathway dysfunction may be responsible for the deterioration in colour vision found in diabetes mellitus.
Collapse
Affiliation(s)
- Katharine E Mortlock
- School of Optometry and Vision Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cathays Park, Cardiff, CF10 3NB, UK
| | | | | | | | | |
Collapse
|
32
|
Aizu Y, Katayama H, Takahama S, Hu J, Nakagawa H, Oyanagi K. Topical instillation of ciliary neurotrophic factor inhibits retinal degeneration in streptozotocin-induced diabetic rats. Neuroreport 2004; 14:2067-71. [PMID: 14600499 DOI: 10.1097/00001756-200311140-00012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Intraocular injections of ciliary neurotrophic factor (CNTF) or intraocular adenovirus-mediated CNTF gene transfer have been reported to inhibit retinal alterations in inherited retinal degeneration in mice strains. To investigate whether or not CNTF administered by eye drops prevents retinal degeneration in streptozotocin (STZ)-induced diabetic rats, recombinant CNTF was administered to eyes of diabetic rats (n=20) twice daily for 1 month after the onset of diabetes. The b-wave amplitude of electroretinogram in CNTF-administered diabetic rats was significantly larger than that of diabetic rats, and approached that of the controls. Atrophy of the inner plexiform layer, and cavity formation in the pigment epithelium, which were observed in diabetic rats, were prevented in CNTF-administered diabetic rats. These results indicate that CNTF administration by eye drops prevents retinal degeneration in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Yoshinori Aizu
- Research and Development Center, BML, 1361-1 Matoba, Kawagoe City, Saitama 350-1101, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Park SH, Park JW, Park SJ, Kim KY, Chung JW, Chun MH, Oh SJ. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia 2003; 46:1260-8. [PMID: 12898017 DOI: 10.1007/s00125-003-1177-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Revised: 02/10/2003] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Neurodegenerative changes in the diabetic retina occurring before diabetic retinopathy could be inevitable by the altered energy (glucose) metabolism, in the sense that dynamic image-processing activity of the retinal neurons is exclusively dependent on glucose. We therefore investigated the morphological changes in the neural retina, including neuronal cell death, of a streptozotocin-induced model of diabetes. METHODS Streptozotocin was intravenously injected. Rats were maintained hyperglycaemic without insulin treatment for 1 week and 4, 8, 12, and 24 weeks, respectively. Diabetic retinas were processed for histology, electron microscopy, and immunohistochemistry using the TUNEL method. RESULTS A slight reduction in the thickness of the inner retina was observed throughout the diabetic retinas and a remarkable reduction was seen in the outer nuclear layer 24 weeks after the onset of diabetes. The post-synaptic processes of horizontal cells in the deep invaginations of the photoreceptors showed degeneration changes from 1 week onwards. A few necrotic ganglion cells were observed after 4 weeks. At 12 weeks, some amacrine cells and a few horizontal cells showed necrotic features. Three to seven cellular layers in the outer nuclear layer and nerve terminals, rolled by the fine processes of the Müller cells near the somata of the degenerated ganglion cells, were apparent at 24 weeks. Apoptosis appeared in a few photoreceptor cells at 4 weeks, and the number of apoptotic photoreceptors increased thereafter. CONCLUSION/INTERPRETATION These findings suggest that the visual loss associated with diabetic retinopathy could be attributed to an early phase of substantial photoreceptor loss, in addition to later microangiopathy.
Collapse
Affiliation(s)
- S-H Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Socho-gu, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Bui BV, Armitage JA, Tolcos M, Cooper ME, Vingrys AJ. ACE inhibition salvages the visual loss caused by diabetes. Diabetologia 2003; 46:401-8. [PMID: 12687339 DOI: 10.1007/s00125-003-1042-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2002] [Revised: 10/15/2002] [Indexed: 11/27/2022]
Abstract
AIMS We consider the nature of retinal dysfunction in streptozotocin rats and assess the functional benefits of administering an angiotensin enzyme inhibitor or an inhibitor of advanced glycation end product formation. METHODS Sprague-Dawley rats (n=44) were randomly assigned to control (C=12, C(p)=4, C(a)=4) and diabetic groups (Streptozotocin, D=24). Diabetes was diagnosed based on a range of physiological and biochemical parameters at 4, 8 and 12 weeks. Streptozotocin animals were administered insulin daily (4 units protophane). Animals were treated with either an Angiotensin Converting Enzyme inhibitor (perindopril, C(p)=4, D(p)=8) or an inhibitor of advanced glycation end product formation (aminoguanidine, C(a)=4, D(a)=8). Dark-adapted electroretinograms were measured on anaesthetized animals at 12 weeks following streptozotocin treatment. Photoreceptoral and inner retinal responses were extracted, modelled and compared using ANOVA. RESULTS Streptozotocin injection increased blood glucose, glycosylated haemoglobin, fluid intake and urine volume, whereas body weight was decreased. Perindopril treatment produced improvements (p<0.05) in all indices, whereas aminoguanidine therapy produced some improvement in blood glucose and water intake. Streptozotocin rats showed losses of photoreceptoral-P3 (-27%), postreceptoral-P2 (-15%) and oscillatory potential (-19%) amplitudes of a similar magnitude. Perindopril therapy returned photoreceptoral and inner retinal function to within control limits. However, aminoguanidine treatment gave no significant functional improvement. CONCLUSIONS Our findings provide evidence for a selective neuropathy in diabetes with a primary photoreceptoral lesion. Treatment with perindopril, an angiotensin converting enzyme inhibitor, ameliorates the neuropathy.
Collapse
Affiliation(s)
- B V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|
35
|
Aizu Y, Oyanagi K, Hu J, Nakagawa H. Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin-diabetic rats. Neuropathology 2002; 22:161-70. [PMID: 12416555 DOI: 10.1046/j.1440-1789.2002.00439.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early pathological and electro-physiological changes of the retina in the streptozotocin (STZ)-diabetic rats were investigated through optical and electron microscopy in two strains and electro-retinography in one strain. In Sprague-Dawley (SD) rats I month after the onset of diabetes, the thickness of the inner plexiform layer (IPL) and photoreceptor segment layer (PSL) was significantly reduced by 9.9% and 18.9%, respectively (P < 0.01, P < 0.05). In Brown-Norway (BN) rats STZ-diabetic for 1 month, the thickness of the IPL was also significantly reduced by 15.7% (P < 0.05). Cytochemical study using peanut agglutinin (PNA), a lectin binding selectively to the cone photoreceptor-associated domains of the inter-photoreceptor matrix, revealed a marked reduction in intensity, number and length of the PNA-binding cone photoreceptors. Electron microscopy showed deepened hollows in the basal infoldings of the retinal pigment epithelium (RPE) of STZ-rats diabetic for 1 month and large concavities into the cytoplasm in STZ-rats diabetic for 6 months. Blood vessels in the retina and choroid were unremarkable. Single-flash electro-retinogram revealed a reduction in the amplitudes of alpha- and beta-waves of electro-retinogram (ERG) of 1 month STZ BN rats (P < 0.05). These findings indicate that the degeneration of rods/cones in the PSL and RPE are the most prominent pathological alteration sites in the early stage of diabetic rats.
Collapse
Affiliation(s)
- Yoshinori Aizu
- Research & Development Center, BML, Kawagoe City, Saitama, Japan
| | | | | | | |
Collapse
|
36
|
Faucher C, Kergoat H. Modulation of the scotopic electroretinogram and oscillatory potentials with systemic hyperoxia and hypercapnia in humans. Curr Eye Res 2002; 24:376-86. [PMID: 12434306 DOI: 10.1076/ceyr.24.5.376.8520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Systemic hyperoxia reduces blood flow to the retina while systemic hypercapnia has the opposite effect. However, the effect this modification in blood flow has on neuroretinal function in humans has not been documented yet. The purpose of this study was to evaluate the effect of pure oxygen and carbogen breathing on scotopic electroretinograms (ERGs) and oscillatory potentials (OPs) in humans. METHODS Thirty-five healthy adults volunteered for this study. The ERGs and OPs were recorded: 1) during room air breathing, 2) after a period of pure oxygen (O(2)) or carbogen breathing, 3) in room air just after the flow of gas was interrupted, and 4) 10 minutes after the end of the gas administration. RESULTS The amplitude and latency of the a- and b-waves were not altered during systemic hyperoxia. The amplitude of OP3 increased during hyperoxia while the amplitude of the other OPs was not altered. The latency of all OPs remained stable throughout the O(2) session. Ten minutes after the end of pure O(2) breathing, the a- and b-wave latencies were delayed. No change was found in the amplitude of the a-wave during the carbogen session that increased the end-tidal carbon dioxide by 7.1%, whereas the b-wave was reduced ten minutes after the end of carbogen breathing. The amplitude of OP5 was reduced during carbogen breathing, as well as 10 minutes later. The amplitude of all other OPs, as well as the latencies of all ERG and OP components remained stable throughout the carbogen session. CONCLUSIONS Breathing pure O(2) or carbogen did not compromise retinal function in any major way, likely due to adequate retinal and choroidal regulatory mechanisms. Further investigations are required to better delineate the impact and temporal characteristics of such physiological challenges on retinal function.
Collapse
Affiliation(s)
- Caroline Faucher
- School of Optometry, University of Montreal, Quebec, Montreal, Canada
| | | |
Collapse
|
37
|
Abstract
Diabetic retinopathy is a major sight-threatening disease and is a leading cause of blindness. There is an emerging body of evidence that suggests that neuronal changes are an early phenomenon in the diabetic retina and that several cell types are affected, including the ganglion cells. The degeneration of these cells is thought to occur via overstimulation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor. Characteristic features of the normal mammalian retina and of the diabetic retina, and the involvement of NMDA receptors in diabetic retinopathy, are discussed. (c) 2002 Prous Science. All rights reserved.
Collapse
|
38
|
Agardh E, Bruun A, Agardh CD. Retinal glial cell immunoreactivity and neuronal cell changes in rats with STZ-induced diabetes. Curr Eye Res 2001; 23:276-84. [PMID: 11852429 DOI: 10.1076/ceyr.23.4.276.5459] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To study whether diabetes could influence glial cells, retinal neurons, and pigment epithelial cells and if so, to evaluate whether any changes could be influenced by aminoguanidine (AG) or probucol (PB). METHODS Streptozocin (STZ)-induced diabetic male Wistar rats and age-matched control rats were fed a normal diet, addition of AG in the drinking water (0.5 g/l for diabetic and 1.0 g/l for control rats) or PB in the pellets (1 % w/w) for one or six months. Paraffin embedded retinal sections were incubated in the primary antibodies GFAP, calbindin, RPE65, and Hu, for glial, horizontal, pigment epithelial, and ganglion cells, respectively, and in fluorescent secondary antibodies. RESULTS One month after STZ injection, GFAP immunoreactivity was sparse, but after six months it was prominent in glial cells in 5/5 diabetic and 1/7 control retinas (p = 0.015). Neither AG, nor PB influenced this immunoreactivity. Numbers of retinal pigment epithelial cells and cells in the ganglion cell layer, were similar at one and six months of diabetes. By time, the number of horizontal cells decreased (p < 0.001) and branching and numbers of their terminals were reduced (p < 0.001). CONCLUSION Diabetes for six months resulted in increased glial cell immunoreactivity, and by age, horizontal cell numbers and branching of their terminals decreased, morphological patterns that were unaffected by AG or PB. The numbers of retinal pigment epithelial cells and cells in the ganglion cell layer were unaffected both by age and diabetes.
Collapse
Affiliation(s)
- E Agardh
- Department of Ophthalmology, Malmö University Hospital, Sweden.
| | | | | |
Collapse
|
39
|
Moore P, El-sherbeny A, Roon P, Schoenlein PV, Ganapathy V, Smith SB. Apoptotic cell death in the mouse retinal ganglion cell layer is induced in vivo by the excitatory amino acid homocysteine. Exp Eye Res 2001; 73:45-57. [PMID: 11428862 DOI: 10.1006/exer.2001.1009] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homocysteine, an excitatory amino acid and a homolog of cysteine, induces neuronal cell death in brain via stimulation of N-methyl-D-aspartate (NMDA) receptors. It also selectively activates NMDA receptors of retinal ganglion cells, but it is not known if high levels of homocysteine are toxic to these cells. The purpose of this study was to determine whether increased levels of homocysteine caused death of neurons in the ganglion cell layer; if so whether this death occurred via an apoptotic mechanism and to determine the consequences of simultaneous elevation of homocysteine and glutamate, a known retinal excitotoxin, on the viability of neurons of the ganglion cell layer. C57BL/6 mice were injected intravitreally with either homocysteine or glutamate/homocysteine combined (final concentrations: 25, 75, and 200 microM); injection of glutamate (25 and 200 microM) served as a positive control. Eyes were harvested and cryosections prepared 5-6 days post-injection. Systematic morphometric analysis of retinas of mice injected with homocysteine indicated that the total number of cells in the ganglion cell layer decreased by about 23% following exposure to 200 microM homocysteine. To determine whether the neurons of the ganglion cell layer were dying by apoptosis, the TUNEL method was used and was confirmed by immunohistochemical studies of caspase-3, known to be expressed at high levels during retinal ganglion cell apoptosis. Microscopic analysis revealed significantly more TUNEL-positive cells in the ganglion cell layer in homocysteine-injected eyes than in contralateral PBS-injected eyes. Retinas injected with 75 and 200 microM homocysteine displayed significantly more TUNEL-positive neurons in the ganglion cell layer (2 and 2.9, respectively) than PBS-injected retinas (0.25). In eyes injected simultaneously with homocysteine/glutamate, the number of apoptotic cells in the ganglion cell layer almost doubled that for homocysteine or glutamate injections alone. Immunohistochemical analysis of activated caspase-3 revealed numerous positively labelled neurons in the ganglion cell layer in homocysteine and homocysteine/glutamate-injected eyes, but not in PBS-injected eyes. Quantification of this data revealed a significantly greater number of caspase-3-positive neurons in the ganglion cell layer of retinas injected with 75 and 200 microM homocysteine (2.9 and 4.4, respectively) than for PBS-injected retinas (0.5). This confirms that death of neurons in the ganglion cell layer is occurring by apoptosis. The present study provides the first evidence that homocysteine is toxic to neurons of the ganglion cell layer. In addition, it provides evidence that these retinal neurons are dying by apoptosis and it demonstrates for the first time that excitotoxic damage to neurons of the ganglion cell layer is potentiated by simultaneous elevation of homocysteine and glutamate. These findings are relevant to retinal ganglion cell death characteristic of diabetic retinopathy, which is thought to be mediated by overstimulation of the NMDA receptor.
Collapse
Affiliation(s)
- P Moore
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912-2000, U.S.A
| | | | | | | | | | | |
Collapse
|
40
|
Holder GE. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 2001; 20:531-61. [PMID: 11390258 DOI: 10.1016/s1350-9462(00)00030-6] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The pattern electroretinogram (PERG) provides an objective measure of central retinal function, and has become an important element of the author's clinical visual electrophysiological practice. The PERG contains two main components, a positivity at approximately 50ms (P50) and a larger negativity at approximately 95ms (N95). The P50 component is affected by macular dysfunction with concomitant reduction in N95. The PERG therefore complements the Ganzfeld ERG in the assessment of patients with retinal disease. In contrast, the ganglion cell origins of the N95 component allow electrophysiological evaluation of ganglion cell function both in primary disease and in dysfunction secondary to optic nerve disease, where selective loss of N95 can be observed. Both macular dysfunction and optic nerve disease can give abnormalities in the visual evoked cortical potential (VEP), and the PERG thus facilitates more meaningful VEP interpretation. This review addresses the origins and recording of the PERG, and then draws on extensive clinical data from patients with genetically determined retinal and macular dystrophies, other retinal diseases and a variety of optic nerve disorders, to present an integrated approach to diagnosis.
Collapse
Affiliation(s)
- G E Holder
- Department of Electrophysiology, Moorfields Eye Hospital, City Road, London EC1V 2PD, UK.
| |
Collapse
|
41
|
Abstract
Persons with type 1 diabetes show electrophysiological abnormalities of the visual system which are revealed by methods such as flash electroretinogram (FERG), oscillatory potentials (OPs), pattern electroretinogram (PERG), focal electroretinogram (focal ERG), visual evoked potentials (VEP) in basal condition and after photostress. This review reports the changes in electrophysiological responses of the different structures composing the visual system observed in persons with type 1 diabetes before the development of the overt clinical retinopathy. In persons with type 1 diabetes without retinopathy (IDD), the earlier abnormal electrophysiological responses are recorded from the innermost retinal layers and postretinal visual pathways, as suggested by impaired PERGs and delayed retinocortical time (RCT). These are observed in IDD persons with a disease duration shorter than 6 months. Further electrophysiological changes are recorded from the macula (abnormal focal ERG and VEP after photostress) in IDD persons with disease duration greater than 1 year. Additional electrophysiological changes are recorded from the middle and outer retinal layers (impaired FERG and OPs) in IDD persons with a disease duration greater than 10 years. All the electrophysiological tests show a greater degree of abnormal responses in persons with type 1 diabetes when a background retinopathy is present.
Collapse
Affiliation(s)
- V Parisi
- Cattedra di Clinica Oculistica, Università di Roma Tor Vergata, Rome, Italy
| | | |
Collapse
|
42
|
Alessandrini M, Paris V, Bruno E, Giacomini PG. Impaired saccadic eye movement in diabetic patients: the relationship with visual pathways function. Doc Ophthalmol 2000; 99:11-20. [PMID: 10947006 DOI: 10.1023/a:1002464316347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to evaluate whether a correlation existed between saccadic eye movements and visual pathways function in diabetic patients. Saccadic or fast Eye Movement System (EMS) and Visual Evoked Potentials (VEPs) were assessed in 20 insulin-dependent diabetic mellitus (IDDM) patients without long-term complications and in stable metabolic control and in 21 age-matched control subjects. In IDDM patients we observed significantly (p<0.01) longer EMS latency, while EMS velocity and accuracy were similar to those of controls; VEPs showed a significant delay in N75, P100, N145 latencies and significant reduction of N75-P100 and P100-N145 amplitudes. In IDDM patients no relationships between EMS and VEP parameters were found. In conclusion, EMS latency delay suggests an impairment of the saccadic eye movement system, while impaired VEPs may be ascribed to a dysfunction of the visual pathways. The lack of correlation between VEPs impairment and EMS latency delay suggests that in our IDDM patients the delay of saccadic latency cannot be exclusively related to a visual pathways dysfunction and could be ascribed to a diffuse neuronal involvement.
Collapse
Affiliation(s)
- M Alessandrini
- Department of Biopathology and Diagnostic of Imaging, University of Rome Tor Vergata, Italy.
| | | | | | | |
Collapse
|
43
|
Abstract
Normal vision depends on the normal function of retinal neurons, so vision loss in diabetes must ultimately be explained in terms of altered neuronal function. However to date relatively little attention has been paid to the impact of diabetes on the neural retina. Instead, the focus of most research has been primarily on retinal vascular changes, with the assumption that they cause altered neuronal function and consequently vision loss. An increasing body of evidence suggests that alterations in neuronal function and viability may contribute to the pathogenic mechanisms of diabetic retinopathy beginning shortly after the onset of diabetes. This view arises from neurophysiological, psychometric, histopathological and biochemical observations in humans and experimental animals. The collective evidence from past and recent studies supports the hypothesis that neurodegeneration, together with functional changes in the vasculature, is an important component of diabetic retinopathy. The authors invite other investigators to include the neural retina as a component of their studies so that the pathogenesis of diabetic retinopathy can be understood more clearly.
Collapse
Affiliation(s)
- E Lieth
- Department of Neuroscience and Anatomy, Pennsylvania State University College of Medicine, Penn State Geisinger Health System, Hershey 17033, USA.
| | | | | | | |
Collapse
|
44
|
Abstract
Electroretinography (ERG) is an objective method of evaluating retinal function. Since its introduction to clinical practice in the 1940s, it has become a useful and routine diagnostic clinical tool in ophthalmology. This review summarizes the role of ERG as a clinical technique for evaluating the progression of diabetic retinopathy and as a research tool for increasing our understanding of the pathophysiology of diabetic retinopathy. Most studies show unequivocally that the different types of ERG tests detect local abnormalities or widespread pathology, even in very early stages of the disease. It seems plausible that measurements from ERG recordings, particularly the oscillatory potentials, may be useful for predicting progression from nonproliferative to the more sight-threatening stages--preproliferative or proliferative--of diabetic retinopathy. Some recent work implies that the ERG can also be a useful diagnostic method for discriminating between eyes with diabetic retinopathy and those without the condition.
Collapse
Affiliation(s)
- R Tzekov
- Retina Foundation of the Southwest, Dallas, Texas 75231, USA
| | | |
Collapse
|
45
|
Abstract
This chapter is an overview of current knowledge on the oscillatory potentials (OPs) of the retina. The first section describes the characteristics of the OPs. The basic, adaptational, pharmacological and developmental characteristics of the OPs are different from the a- and b-waves, the major components of the electroretinogram (ERG). The OPs are most easily recorded in mesopic adaptational conditions and reflect rapid changes of adaptation. They represent photopic and scotopic processes, probably an interaction between cone and rod activity in the retina. The OPs are sensitive to disruption of inhibitory (dopamine, GABA-, and glycine-mediated) neuronal pathways and are not selectively affected by excitatory amino acids. The earlier OPs are associated with the on-components and the late OPs with the off-components in response to a brief stimulus of light. The postnatal appearance of the first oscillatory activity is preceded by the a- and b-waves. The earlier OPs appear postnatally prior to, and mature differently from, the later ones. The second section deals with present views on the origin of the OPs. These views are developed from experimental studies with the vertebrate retina including the primate retina and clinical studies. Findings favor the conclusion that the OPs reflect neuronal synaptic activity in inhibitory feedback pathways initiated by the amacrines in the inner retina. The bipolar (or the interplexiform) cells are the probable generators of the OPs. Dopaminergic neurons, probably amacrines (or interplexiform cells), are involved in the generation of the OPs. The earlier OPs are generated in neurons related to the on-pathway of the retina and the later ones to the off-channel system. Peptidergic neurons may be indirectly involved as modulators. The individual OPs seem to represent the activation of several retinal generators. The earlier OPs are more dependent on an intact rod function and the later ones on an intact cone system. Thus, the OPs are good indicators of neuronal adaptive mechanisms in the retina and are probably the only post-synaptic neuronal components that can be recorded in the ERG except when structured stimuli are used. The last section describes the usefulness of the oscillatory response as an instrument to study the postnatal development of neuronal adaptation of the retina. In this section clinical examples of of the sensitivity of the OPs for revealing early disturbance in neuronal function in different retinal diseases such as pediatric, vascular and degenerative retinopathies are also given.
Collapse
|
46
|
Parisi V, Uccioli L, Parisi L, Colacino G, Manni G, Menzinger G, Bucci MG. Neural conduction in visual pathways in newly-diagnosed IDDM patients. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1998; 108:490-6. [PMID: 9780019 DOI: 10.1016/s0168-5597(98)00026-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
OBJECTIVES Visual evoked potentials (VEPs) show abnormal responses in newly-diagnosed insulin-dependent diabetic (IDDM) patients. Electrophysiological methods allow one to dissect and explore different structures contributing to neural conduction in the visual pathways. The aim of our work was to assess whether the VEP abnormalities are due to impaired function of the retinal layers and/or a delayed conduction in the postretinal visual pathways. METHODS Simultaneous recordings of VEP and pattern-electroretinogram (PERG) were performed at two intervals (at entry of the study and after 3 months) in 14 newly-diagnosed IDDM patients (age: 24.8+/-6.8 years; duration of disease: 3+/-1.5 months), and in 14 age-matched control subjects. RESULTS In comparison with control subjects, IDDM patients showed: VEP P100 latencies significantly delayed (P < 0.01), a significant impairment of all PERG parameters (P < 0.01) and retinocortical time (RCT, difference between VEP P100 and PERG P50 latencies) and latency window (LW, difference between VEP N75 and PERG P50 latencies) also significantly increased (P < 0.01). All electrophysiological parameters were not significantly changed when retested after 3 months. No correlations were found between VEP P100 latency, RCT, LW and PERG parameters. CONCLUSIONS Impaired PERG indicates an involvement of the innermost retinal layers; increased values of RCT and LW represent an index of delayed neural conduction in the postretinal visual pathways. Therefore two sources, one retinal (impaired PERG) and one postretinal (delayed RCT and LW), may independently contribute in to the abnormal responses of VEP observed in newly-diagnosed IDDM patients. Three months of relatively-stable metabolic control have not normalized the VEP and PERG impairment.
Collapse
Affiliation(s)
- V Parisi
- Cattedra di Clinica Oculistica, Universita' di Roma Tor Vergata, Italy.
| | | | | | | | | | | | | |
Collapse
|
47
|
Ewing FM, Deary IJ, Strachan MW, Frier BM. Seeing beyond retinopathy in diabetes: electrophysiological and psychophysical abnormalities and alterations in vision. Endocr Rev 1998; 19:462-76. [PMID: 9715375 DOI: 10.1210/edrv.19.4.0340] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Contrast sensitivity testing, in common with color vision (another test of psychophysical function), demonstrates significant changes in diabetic subjects compared with nondiabetic controls, and there is some evidence for a relationship with grade of retinopathy. Changes in contrast sensitivity have been demonstrated in children and adults with diabetes of short duration, and some evidence exists for a correlation with poor glycemic control, although prospective studies are required to assess this relationship over a longer time period. Although both color vision and contrast sensitivity demonstrate similar patterns, studies that directly compare the two tests suggest that measurement of contrast sensitivity is the more sensitive and specific.
Collapse
Affiliation(s)
- F M Ewing
- Department of Diabetes, Royal Infirmary of Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|
48
|
Graham SL, Klistorner A. Electrophysiology: A review of signal origins and applications to investigating glaucoma. ACTA ACUST UNITED AC 1998. [DOI: 10.1111/j.1442-9071.1998.tb01446.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Parisi V, Uccioli L, Monticone G, Parisi L, Manni G, Ippoliti D, Menzinger G, Bucci MG. Electrophysiological assessment of visual function in IDDM patients. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1997; 104:171-9. [PMID: 9146484 DOI: 10.1016/s0168-5597(97)96606-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Various electrophysiological tests have been employed to reveal functional abnormalities at different levels of the visual system in insulin-dependent diabetic (IDDM) patients. The aim of our work was to assess, with a comprehensive neurophysiological protocol evaluating the retinal, macular and visual pathways functions, whether and when such electrophysiological abnormalities do appear in IDDM patients free of any fluorangiographic sign of retinopathy with various disease duration. Flash-electroretinogram (ERG), oscillatory potentials (OPs), pattern-electroretinogram (PERG), and visual evoked potentials (VEPs) in basal condition and after photostress were assessed in 12 control subjects (C) and 42 aged-matched IDDM patients without clinical retinopathy (DR-) divided, on the basis of the disease duration, into 4 groups (1-5, 6-10, 11-15, 16-20 years). In addition another age-matched group of IDDM patients with a background retinopathy (DR+; n = 12; duration of disease 18 +/- 49 years) was evaluated. In all IDDM DR-patients PERG and VEP were significantly impaired. In addition, groups 11-15 and 16-20 years displayed impaired OPs. All electrophysiological parameters were further impaired in DR+ patients. In conclusion, retinal, macular and visual pathways functions are differently impaired in IDDM (DR-) patients with different disease duration. Electrophysiological impairment starts in the nervous conduction of the visual pathways with an early involvement, goes on in the innermost retinal layers and in the macula and ends in the middle and outer retinal layers.
Collapse
Affiliation(s)
- V Parisi
- Cattedra di Clinica Oculistica, Università di Roma Tor Vergata, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kergoat H, Forcier P. Correlation of an exercise-induced increase in systemic circulation with neural retinal function in humans. Doc Ophthalmol 1996; 92:145-57. [PMID: 9181342 DOI: 10.1007/bf02583286] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the effects of physical exertion on intraocular pressure and systemic blood pressure are well established, the retinal response to such physiologic stress has not been examined. We studied the effect of short-term intense exercise on the principal waves in the scotopic and photopic flash electroretinograms, as well as the lower-amplitude oscillatory potentials. Sixteen healthy volunteers between 20 and 30 years of age participated in this experiment. The electroretinograms and oscillatory potentials were recorded with a Nicolet CA-1000 clinical averager, using DTL-type fiber electrodes. All retinal potentials were taken immediately before and after a minimum 20-min period of stationary bicycling that increased the heart rate to about 140 beats per minute. The electroretinograms were recorded from eyes with dilated pupils, 10 min after white-light adaptation of the right eye, and 30 min after dark adaptation of the left eye. Red flashes and dim white flashes were used to elicit photopic and scotopic electroretinograms, respectively. While no changes were recorded for any of the electroretinogram components recorded under photopic conditions, the amplitude of OP5 was decreased and the implicit time of OP4 was delayed after exercise for scotopic conditions. We concluded that exercise caused component-specific changes in the scotopic oscillatory potentials. Since it is well known that oscillatory potentials are vulnerable to ischemia, scotopic oscillatory potentials may be used as simple noninvasive indices of the reactivity of the retinal vascular autoregulatory system during exercise.
Collapse
Affiliation(s)
- H Kergoat
- Université de Montréal, Québec, Canada.
| | | |
Collapse
|