1
|
Sîrbulescu RF, Ilieş I, Amelung L, Zupanc GKH. Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:671-706. [PMID: 36445471 DOI: 10.1007/s00359-022-01591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
In adult mammals, spontaneous repair after spinal cord injury (SCI) is severely limited. By contrast, teleost fish successfully regenerate injured axons and produce new neurons from adult neural stem cells after SCI. The molecular mechanisms underlying this high regenerative capacity are largely unknown. The present study addresses this gap by examining the temporal dynamics of proteome changes in response to SCI in the brown ghost knifefish (Apteronotus leptorhynchus). Two-dimensional difference gel electrophoresis (2D DIGE) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem mass spectrometry (MS/MS) to collect data during early (1 day), mid (10 days), and late (30 days) phases of regeneration following caudal amputation SCI. Forty-two unique proteins with significant differences in abundance between injured and intact control samples were identified. Correlation analysis uncovered six clusters of spots with similar expression patterns over time and strong conditional dependences, typically within functional families or between isoforms. Significantly regulated proteins were associated with axon development and regeneration; proliferation and morphogenesis; neuronal differentiation and re-establishment of neural connections; promotion of neuroprotection, redox homeostasis, and membrane repair; and metabolism or energy supply. Notably, at all three time points examined, significant regulation of proteins involved in inflammatory responses was absent.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
- Vaccine and Immunotherapy Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Iulian Ilieş
- School of Humanities and Social Sciences, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Lisa Amelung
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Günther K H Zupanc
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany.
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Differential expression of multiple glutamine synthetase genes in air-breathing magur catfish, Clarias magur and their induction under hyper-ammonia stress. Gene 2018; 671:85-95. [PMID: 29864497 DOI: 10.1016/j.gene.2018.05.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 11/22/2022]
Abstract
The present study demonstrates the unique presence of three different gs genes (cmgs01, cmgs02, and cmgs03) in air-breathing ureogenic magur catfish (Clarias magur), which is otherwise reported to be encoded by a single gene in higher vertebrates. Of these three genes, two (cmgs01and cmgs03) were identified as 'liver' form, predominantly expressed in liver cells, and the third one as 'brain' form (cmgs02), expressed chiefly in brain cells. Molecular characterization studies have revealed conservation of homologous active site residues in all the three gs genes. In silico analysis, accompanied by GS enzyme assay and Western blot analysis of different GS isoforms in different subcellular fractions indicated the mitochondrial localization of cmGS01 and cmGS03 in liver and kidney cells and cytosolic localization of cmGS02 in brain cells. Further, exposure of magur catfish to high external ammonia (HEA; 25 mM NH4Cl) led to a significant induction of multiple gs genes as evidenced by higher expression of different gs mRNAs at variable levels in different tissues. The cmgs01 and cmgs03 mRNA levels elevated significantly in liver, kidney, muscle, and gills, whereas the cmgs02 mRNA level increased considerably in the brain after 14 days of exposure to HEA. These increases in mRNA levels were associated with a significant rise in cmGS01 and cmGS03 proteins in liver, kidney, muscle, and gills, and the cmGS02 protein in the brain after 14 days of exposure to HEA. Therefore, it can be concluded that the unique differential expression of three gs genes and their induction under high ammonia level probably helps in detoxification of ammonia to glutamine and further to urea via the ornithine-urea cycle in ureogenic as well as non-ureogenic tissues of these magur catfish.
Collapse
|
3
|
Glutamine synthetase activity and the expression of three glul paralogues in zebrafish during transport. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:274-84. [PMID: 22750401 DOI: 10.1016/j.cbpb.2012.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 01/13/2023]
Abstract
The enzyme glutamine synthetase (GS; glutamate-ammonia ligase, EC 6.3.1.2) plays an important role in the nitrogen metabolism of fish. In this study the GS activity and the corresponding genes were examined to understand how they are regulated in zebrafish in response to hyperammonemic stress during a 72 h simulated transport. Whole body ammonia levels, the activity of the enzyme GS and the mRNA expression of the splice variants of three paralogues of glul, glutamine synthetase gene (glula, glulb and glulc) were examined in brain, liver and kidney of zebrafish. Whole body ammonia reached significantly higher levels by 48 h, while brain showed higher levels as early as 24 h, compared to the values at the start of the transport. The GS activities in brain, liver and kidney were significantly higher at the end of 72 h transport than those at the start. However, only the expression of mRNA of glulb-002 and glulb-003 were significantly upregulated during the simulated transport. In silico analysis of the putative promoter regions of glul paralogues revealed glucocorticoid receptor binding sites. However, glucocorticoid response elements of glulb were not different. The up-regulation of GS enzyme activity and hitherto unreported mRNA expression of glul paralogues during zebrafish transport indicate a physiological response of fish to ammonia.
Collapse
|
4
|
Takagi W, Kajimura M, Bell JD, Toop T, Donald JA, Hyodo S. Hepatic and extrahepatic distribution of ornithine urea cycle enzymes in holocephalan elephant fish (Callorhinchus milii). Comp Biochem Physiol B Biochem Mol Biol 2011; 161:331-40. [PMID: 22227372 DOI: 10.1016/j.cbpb.2011.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/15/2011] [Accepted: 12/17/2011] [Indexed: 11/15/2022]
Abstract
Cartilaginous fish comprise two subclasses, the Holocephali (chimaeras) and Elasmobranchii (sharks, skates and rays). Little is known about osmoregulatory mechanisms in holocephalan fishes except that they conduct urea-based osmoregulation, as in elasmobranchs. In the present study, we examined the ornithine urea cycle (OUC) enzymes that play a role in urea biosynthesis in the holocephalan elephant fish, Callorhinchus milii (cm). We obtained a single mRNA encoding carbamoyl phosphate synthetase III (cmCPSIII) and ornithine transcarbamylase (cmOTC), and two mRNAs encoding glutamine synthetases (cmGSs) and two arginases (cmARGs), respectively. The two cmGSs were structurally and functionally separated into two types: brain/liver/kidney-type cmGS1 and muscle-type cmGS2. Furthermore, two alternatively spliced transcripts with different sizes were found for cmgs1 gene. The longer transcript has a putative mitochondrial targeting signal (MTS) and was predominantly expressed in the liver and kidney. MTS was not found in the short form of cmGS1 and cmGS2. A high mRNA expression and enzyme activities were found in the liver and muscle. Furthermore, in various tissues examined, mRNA levels of all the enzymes except cmCPSIII were significantly increased after hatching. The data show that the liver is the important organ for urea biosynthesis in elephant fish, but, extrahepatic tissues such as the kidney and muscle may also contribute to the urea production. In addition to the role of the extrahepatic tissues and nitrogen metabolism, the molecular and functional characteristics of multiple isoforms of GSs and ARGs are discussed.
Collapse
Affiliation(s)
- Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Matthews GD, Gur N, Koopman WJH, Pines O, Vardimon L. Weak mitochondrial targeting sequence determines tissue-specific subcellular localization of glutamine synthetase in liver and brain cells. J Cell Sci 2010; 123:351-9. [PMID: 20053634 DOI: 10.1242/jcs.060749] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evolution of the uricotelic system for ammonia detoxification required a mechanism for tissue-specific subcellular localization of glutamine synthetase (GS). In uricotelic vertebrates, GS is mitochondrial in liver cells and cytoplasmic in brain. Because these species contain a single copy of the GS gene, it is not clear how tissue-specific subcellular localization is achieved. Here we show that in chicken, which utilizes the uricotelic system, the GS transcripts of liver and brain cells are identical and, consistently, there is no difference in the amino acid sequence of the protein. The N-terminus of GS, which constitutes a 'weak' mitochondrial targeting signal (MTS), is sufficient to direct a chimeric protein to the mitochondria in hepatocytes and to the cytoplasm in astrocytes. Considering that a weak MTS is dependent on a highly negative mitochondrial membrane potential (DeltaPsi) for import, we examined the magnitude of DeltaPsi in hepatocytes and astrocytes. Our results unexpectedly revealed that DeltaPsi in hepatocytes is considerably more negative than that of astrocytes and that converting the targeting signal into 'strong' MTS abolished the capability to confer tissue-specific subcellular localization. We suggest that evolutional selection of weak MTS provided a tool for differential targeting of an identical protein by taking advantage of tissue-specific differences in DeltaPsi.
Collapse
Affiliation(s)
- Gideon D Matthews
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
6
|
Esbaugh AJ, Walsh PJ. Identification of two glucocorticoid response elements in the promoter region of the ubiquitous isoform of glutamine synthetase in gulf toadfish,Opsanus beta. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1075-81. [DOI: 10.1152/ajpregu.00267.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unlike most teleosts, gulf toadfish have the capacity to switch from ammoniotely to ureotely as the predominate means of nitrogen excretion during periods of stress. The switch to ureotely is a result of increased glutamine synthetase (GS) mRNA expression/enzyme activity in the liver and muscle, which is initiated by cortisol. Cortisol typically affects gene expression through the action of cortisol-activated transcription factors, such as glucocorticoid receptors, which bind to glucocorticoid response elements (GRE) in the upstream regulatory region of genes. The purpose of the present study was to identify the GRE responsible for increased GS gene expression during crowding/confinement in gulf toadfish using an in vivo luciferase reporter assay. Upstream promoter regions for both the ubiquitous and gill GS isoforms were amplified by PCR. Additionally, an intron was amplified from the ubiquitous GS isoform that suggested the possibility of two discreet transcripts for the mitochondrial and cytoplasmic proteins. When tested via in vivo reporter assays, both the cytoplasmic and mitochondrial ubiquitous GS promoters showed increased luciferase activity during crowding vs. noncrowded controls; the gill GS promoter showed no effects in response to crowding. In silico analysis of the mitochondrial and cytoplasmic ubiquitous GS promoter constructs showed an overlapping section of 565 bp containing two potential GREs. Mutation of either site alone had no effect on luciferase activity vs. wild-type controls. However, when both sites were mutated a significant decrease in luciferase activity was observed. We conclude that two functional GREs combine to confer cortisol-inducible GS expression in the liver of gulf toadfish.
Collapse
Affiliation(s)
- Andrew J. Esbaugh
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick J. Walsh
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Wright PA, Steele SL, Huitema A, Bernier NJ. Induction of four glutamine synthetase genes in brain of rainbow trout in response to elevated environmental ammonia. ACTA ACUST UNITED AC 2007; 210:2905-11. [PMID: 17690239 DOI: 10.1242/jeb.003905] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The key strategy for coping with elevated brain ammonia levels in vertebrates is the synthesis of glutamine from ammonia and glutamate, catalyzed by glutamine synthetase (GSase). We hypothesized that all four GSase isoforms (Onmy-GS01-GS04) are expressed in the brain of the ammonia-intolerant rainbow trout Oncorhynchus mykiss and that cerebral GSase is induced during ammonia stress. We measured GSase activity and the mRNA expression of Onmy-GS01-GS04 in fore-, mid- and hindbrain and liver, as well as ammonia concentrations in plasma, liver and brain of fish exposed to 9 or 48 h of 0 (control) or 670 micromol l(-1) NH(4)Cl (75% of the 96 h-LC(50) value). The mRNA of all four GSase isoforms were detected in brain (not liver). After 9 h of NH(4)Cl exposure, brain, liver and plasma ammonia content were elevated by two- to fourfold over control values. Midbrain, hindbrain and liver GSase activities were 1.3- to 1.5-fold higher in ammonia-exposed fish relative to control fish. Onmy-GS01-GS04 mRNA levels in brain (not liver) of ammonia-exposed fish (9 h) were significantly elevated by two- to fourfold over control values. After 48 h of the NH(4)Cl treatment, ammonia content and GSase activity, but not mRNA levels, in all tissues examined remained elevated compared to control fish. Taken together, these findings indicate that all four GSase isoforms are constitutively expressed in trout brain and are inducible under high external ammonia conditions. Moreover, elevation of GSase activities in fore-, mid- and hindbrain in response to environmental ammonia underlines the importance of brain GSase in the ammonia-stress response.
Collapse
Affiliation(s)
- P A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1 Canada.
| | | | | | | |
Collapse
|
8
|
Matthews GD, Gould RM, Vardimon L. A single glutamine synthetase gene produces tissue-specific subcellular localization by alternative splicing. FEBS Lett 2005; 579:5527-34. [PMID: 16213501 DOI: 10.1016/j.febslet.2005.08.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 08/30/2005] [Accepted: 08/30/2005] [Indexed: 11/24/2022]
Abstract
Glutamine synthetase (GS) plays a key role in two major biochemical pathways: In liver GS catalyzes ammonia detoxification, whereas in neural tissues it also functions in recycling of the neurotransmitter glutamate. In most species the GS gene gives rise to a cytoplasmic protein in both liver and neural tissues. However, in species that utilize the ureosmotic or uricotelic system for ammonia detoxification, the enzyme is cytoplasmic in neural tissues, but mitochondrial in liver cells. Since most vertebrates have a single copy of the GS gene, it is not clear how tissue-specific subcellular localization is achieved. Here we show that in the ureosmotic elasmobranch, Squalus acanthias (spiny dogfish), two different GS transcripts are generated by tissue-specific alternative splicing. The liver transcript contains an alternative exon that is not present in the neural one. This exon leads to acquisition of an upstream in-frame start codon and formation of a mitochondrial targeting signal (MTS). Therefore, the liver product is targeted to the mitochondria while the neural one is retained in the cytoplasm. These findings present a mechanism in which alternative splicing of an MTS-encoding exon is used to generate tissue-specific subcellular localization.
Collapse
Affiliation(s)
- Gideon D Matthews
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|
9
|
Essex-Fraser PA, Steele SL, Bernier NJ, Murray BW, Stevens ED, Wright PA. Expression of Four Glutamine Synthetase Genes in the Early Stages of Development of Rainbow Trout (Oncorhynchus mykiss) in Relationship to Nitrogen Excretion. J Biol Chem 2005; 280:20268-73. [PMID: 15781468 DOI: 10.1074/jbc.m412338200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The incorporation of ammonia into glutamine, catalyzed by glutamine synthetase, is thought to be important in the detoxification of ammonia in animals. During early fish development, ammonia is continuously formed as yolk proteins and amino acids are catabolized. We followed the changes in ammonia and urea-nitrogen content, ammonia and urea-nitrogen excretion, glutamine synthetase activity, and mRNA expression of four genes coding for glutamine synthetase (Onmy-GS01-GS04) over 3-80 days post fertilization and in adult liver and skeletal muscle of the rainbow trout (Oncorhynchus mykiss). Both ammonia and urea-nitrogen accumulate before hatching, although the rate of ammonia excretion is considerably higher relative to urea-nitrogen excretion. All four genes were expressed during early development, but only Onmy-GS01 and -GS02 were expressed at appreciable levels in adult liver, and expression was very low in muscle tissue. The high level of expression of Onmy-GS01 and -GS03 prior to hatching corresponded to a linear increase in glutamine synthetase activity. We propose that the induction of glutamine synthetase genes early in development and the subsequent formation of the active protein are preparatory for the increased capacity of the embryo to convert the toxic nitrogen end product, ammonia, into glutamine, which may then be utilized in the ornithine-urea cycle or other pathways.
Collapse
|
10
|
Tanguy A, Boutet I, Moraga D. Molecular characterization of the glutamine synthetase gene in the Pacific oyster Crassostrea gigas: expression study in response to xenobiotic exposure and developmental stage. ACTA ACUST UNITED AC 2005; 1681:116-25. [PMID: 15627503 DOI: 10.1016/j.bbaexp.2004.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/01/2004] [Accepted: 10/22/2004] [Indexed: 11/23/2022]
Abstract
In this study, we characterized the full-length cDNA and genomic sequence of the gene encoding cytosolic glutamine synthetase (CgGSII) in the Pacific oyster, Crassostrea gigas. A phylogenetic analysis of GS sequences showed that CgGS clustered with the invertebrate group as expected. We analyzed the expression of mRNA CgGSII using RT-PCR to follow the expression of this gene in gills and digestive gland of oysters exposed, under experimental conditions, to hypoxia and to several contaminants (hydrocarbons and two pesticide treatments, glyphosate and a mixture of atrazine, diuron and isoproturon). We also investigated the expression of CgGSII in different developmental stages of C. gigas. Our results show that CgGSII expression was highly regulated in xenobiotic-exposed oysters compared to the control for all the treatments. Likewise, CgGSII expression was highly regulated according to the developmental stage of C. gigas. Finally, use of CgGSII as a possible marker to monitor xenobiotic exposure in disturbed ecosystems is discussed.
Collapse
Affiliation(s)
- Arnaud Tanguy
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR-CNRS 6539, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Place Nicolas Copernic, 29280 Plouzané, France
| | | | | |
Collapse
|
11
|
Shin D, Park C. N-terminal extension of canine glutamine synthetase created by splicing alters its enzymatic property. J Biol Chem 2003; 279:1184-90. [PMID: 14583610 DOI: 10.1074/jbc.m309940200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It was found that an extra exon exists in the first intron of glutamine synthetase gene, generated by means of alternative splicing. Inclusion of this exon decreased the translation of glutamine synthetase (GS) in human, dog, and mouse. When translated in vitro with the canine GS transcript containing the exon, we obtained two different species of GS enzymes. Besides the known 45-kDa protein, the extended form of GS was identified with additional 40 amino acids on its N-terminal end. An upstream ATG in the extra exon served as a translation initiator for the long form of GS. When the long transcript was translated in vivo in animal cells, only the long GS was expressed. On the other hand, the long GS is less predominant relative to the short one in canine tissues including brain and liver. Subcellular fractionation of canine brain revealed that the long GS is present in all cellular compartments as is the short one, which is consistent with fluorescence microscopy data obtained with green fluorescent protein fused to GS. The short (SGS) and long (LGS) forms of canine GS were purified in Escherichia coli and shown to have similar Km values for l-glutamate and hydroxylamine. However, the Km values for ATP were slightly altered, 1.3 and 1.9 mm for the short and long GSs, respectively. The Kis for l-methionine-S-sulfoximine (MSOX), a highly potent ATP-dependent inactivator of GS, were considerably different such that the values are 0.067 and 0.124 mm for the short and long forms, respectively. When the intrinsic fluorescences of tryptophans were monitored upon bindings of chloride and metal ions without any effect on the oligomeric state, the pattern of quenching in LGS was significantly different from that of SGS. Taken together, the N-terminal extension in the long isoform of GS induces a conformational change of core enzyme, leading to a change in affinity to its substrates as well as in the effector-induced conformational alterations.
Collapse
Affiliation(s)
- Daesung Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Taejon 305-701, Republic of Korea
| | | |
Collapse
|
12
|
Mommsen TP, Busby ER, von Schalburg KR, Evans JC, Osachoff HL, Elliott ME. Glutamine synthetase in tilapia gastrointestinal tract: zonation, cDNA and induction by cortisol. J Comp Physiol B 2003; 173:419-27. [PMID: 12783264 DOI: 10.1007/s00360-003-0350-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2003] [Indexed: 10/26/2022]
Abstract
Glutamine synthetase, an enzyme generally associated with ammonia detoxication in the vertebrate brain and with hepatic nitrogen turnover in mammals, shows substantial activities in the gastrointestinal tract of teleostean fishes. Enzyme activity is highest in the central area of the stomach and reveals a distinct distribution pattern in stomach and along the intestine of tilapia (Oreochromis niloticus), rainbow trout (Oncorhynchus mykiss) and copper rockfish (Sebastes caurinus). In all three species, intestinal activity peaks in the distal region of the intestine. The brain contains the highest titre of the enzyme (46 U g(-1) in tilapia brain versus 15 U g(-1) in tilapia stomach), but because of the relative mass of the stomach, the largest glutamine synthetase pool in tilapia body appears to be localized in the stomach. Activities in white and red muscle are very modest at 0.1% of the brain. Independent of distribution, peak activities of glutamine synthetase in selected areas of tilapia stomach and intestine are significantly (two- to fourfold) increased after a 5-day treatment with an intraperitoneal cortisol deposit. Cortisol also increases glutamine synthetase activity in tilapia liver, white and red muscle, while activities in brain remain unaffected. We cloned and sequenced the predominant transcript of tilapia stomach glutamine synthetase (about 1.9 kb), encoding a 371-amino acid peptide. The open reading frame shows considerable identity with glutamine synthetase in toadfish (92% at peptide level, 87% at nucleotide level), but possesses a longer 3'-untranslated region than the toadfish. The tilapia glutamine synthetase mRNA contains a remnant of a putative mitochondrial leader sequence, but without a conserved second site for initiation of translation. We also find evidence for additional transcripts of glutamine synthetase in tilapia, suggesting multiple genes. Finally, we present evidence for similar abundance of glutamine synthetase transcripts in all regions of rockfish intestine. The physiological significance of the presence of glutamine synthetase in teleostean intestine is discussed.
Collapse
Affiliation(s)
- T P Mommsen
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Victoria, B.C., V8W 3P6, Canada.
| | | | | | | | | | | |
Collapse
|
13
|
Murray BW, Busby ER, Mommsen TP, Wright PA. Evolution of glutamine synthetase in vertebrates: multiple glutamine synthetase genes expressed in rainbow trout (Oncorhynchus mykiss). J Exp Biol 2003; 206:1511-21. [PMID: 12654890 DOI: 10.1242/jeb.00283] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glutamine synthetase (GSase) is a key enzyme in nitrogen metabolism and encoded by a single gene in mammals. Using PCR cloning techniques, including RT-PCR from total RNA and PCR from a cDNA library, we find evidence of four expressed GSase mRNAs for the tetraploid rainbow trout. For two of these mRNAs (Onmy-GS01, -GS02) we characterize the full-length coding regions, and for two others (Onmy-GS03, -GS04), we describe partial sequences. Northern analysis of Onmy-GS01, -GS02, -GS03 and -GS04 indicates that (1) Onmy-GS02 is expressed at higher levels relative to the other transcripts in most adult tissues, with the exception of brain and gill, where Onmy-GS01 is at the highest level, and (2) the tissue with the highest level of expression of all four transcripts is the brain, with decreasing levels in the intestine, liver, red muscle, gill/kidney, white muscle and heart. Clearly, rainbow trout possess multiple GSase genes with differing levels of tissue expression, implying manifold potential routes of regulation for this octameric enzyme. Our data also indicate that caution should be taken when interpreting mRNA expression data of a single gene, unless multiple genes have been ruled out. Consistent with a southern blot, phylogenetic and intron sequence analyses imply that the trout genes are encoded by at least four separate loci, belonging to two distinct evolutionary branches. Our data on rainbow trout, together with those from two full-length zebrafish Danio rerio GSase genes compiled from GenBank ESTs, support the idea that fish GSases are polyphyletic and that gene duplications have occurred at multiple points and in independent lineages throughout the evolution of bony fishes.
Collapse
Affiliation(s)
- Brent W Murray
- Department of Zoology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | | | |
Collapse
|
14
|
Anderson PM, Broderius MA, Fong KC, Tsui KNT, Chew SF, Ip YK. Glutamine synthetase expression in liver, muscle, stomach and intestine ofBostrichthys sinensisin response to exposure to a high exogenous ammonia concentration. J Exp Biol 2002; 205:2053-65. [PMID: 12089209 DOI: 10.1242/jeb.205.14.2053] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYA previous study provided evidence that the adaptive strategy used by the teleost fish Bostrichthys sinensis (sleeper) for detoxifying ammonia during extended periods of air exposure was to synthesize and store glutamine,primarily in the muscle, accompanied by an increase in glutamine synthetase(GSase) activity in liver. The aim of the present study was to assess the effect on GSase expression in various tissues of exposure of B. sinensis to exogenous ammonia. Exogenous ammonia increases internal ammonia concentrations in fish, mimicking environmental situations such as air exposure that preclude loss of ammonia across the gills, and thus triggering alternative mechanisms for ammonia detoxification. The results reveal relatively high levels of GSase activity, not only in liver but also,unexpectedly, in muscle, and even higher levels in intestine and, in particular, stomach. Exposure to ammonia results in significant increases in GSase activity, GSase protein and GSase mRNA levels in all of these tissues except stomach. The amino acid sequences of GSases from liver and stomach deduced from the cDNA sequences are essentially identical and are >97 %identical to the amino acid sequences of GSases from Gulf toadfish(Opsanus beta) and marble goby (Oxyeleotris marmoratus).
Collapse
Affiliation(s)
- P M Anderson
- Department of Biochemistry and Molecular Biology, University of Minnesota, Duluth, Duluth, MN 55812, USA
| | | | | | | | | | | |
Collapse
|
15
|
Zawadzki CH, Machado MF, Renesto E. Differential expression for tissue-specific isozymes in three species of Hypostomus Lacépède, 1803 (Teleostei: Loricariidae). BIOCHEM SYST ECOL 2001; 29:911-922. [PMID: 11445292 DOI: 10.1016/s0305-1978(00)00101-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression patterns of 14 enzymatic systems in skeletal muscle, liver and heart tissues of three species of Hypostomus from the Iguaçu River basin (Brazil) were investigated. Although the patterns were similar for the three species, different tissues showed differential expressions, and the data showed that differential tissue expressions of isoperoxidases may be due to preferential combination or association of polypeptide subunits. The detected patterns for SOD isozymes showed that the quaternary structures of these enzymes were in disagreement with the subunit number reported for the majority of other vertebrate groups. Tissue-specific restriction on heterotetramer formation also were described in LDH and MDHP isozymes. Thus, these tissue-specific gene expression character in the species of Hypostomus have the greatest potential to be recognized and applied in systematic studies among species of Hypostomus.
Collapse
Affiliation(s)
- C H. Zawadzki
- Nupélia (Research Center on Limnology, Ichthyology and Aquaculture), Brazil
| | | | | |
Collapse
|
16
|
Anderson PM. Urea and glutamine synthesis: Environmental influences on nitrogen excretion. FISH PHYSIOLOGY 2001. [DOI: 10.1016/s1546-5098(01)20008-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Walsh PJ, Handel-Fernandez ME, Vincek V. Characterization and sequencing of glutamine synthetase cDNA from liver of the ureotelic gulf toadfish (Opsanus beta). Comp Biochem Physiol B Biochem Mol Biol 1999; 124:251-9. [PMID: 10631802 DOI: 10.1016/s0305-0491(99)00105-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hepatic enzyme, glutamine synthetase (GSase) is a pivotal protein in the regulation of urea synthesis in fish. The sequence of the DNA encoding for GSase from liver of the ureotelic gulf toadfish (Opsanus beta) was analyzed through a suite of molecular techniques (including cDNA cloning, RACE PCR, and genomic PCR). An open reading frame (ORF) was identified in the cDNA sequence which codes for a protein of 394 amino acids with high identity (86%) to dogfish shark GSase. In the course of generating a suitable probe, a partial sequence was also obtained for horned shark GSase which also had high identity with the dogfish shark gene (93%). Like the dogfish shark GSase, the toadfish gene has two methionine translation initiation sites; the downstream site apparently codes for a cytoplasmic isozyme, while the upstream site adds an N-terminal peptide leader sequence of 23 amino acids to the 'cytoplasmic' protein. This leader sequence has characteristics consistent with a mitochondrial targeting peptide, including a cleavage recognition motif (Arg-X-Phe) and the apparent ability to form an amphiphathic helix. Northern analysis revealed that there is a single predominant transcript of approximately 2 kb in size. These results are consistent with the interpretation that in the gulf toadfish GSase cytoplasmic and mitochondrial isozymes are coded for by a single gene and mRNA transcript which is differentially translated at either initiation site. These results are discussed in the context of prior results for enzyme kinetic characteristics and urea synthesis/excretion physiology.
Collapse
Affiliation(s)
- P J Walsh
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, NIEHS Marine and Freshwater Biomedical Sciences Center, Miami, FL 33149-1098, USA.
| | | | | |
Collapse
|
18
|
DeMarco V, Dyess K, Strauss D, West CM, Neu J. Inhibition of glutamine synthetase decreases proliferation of cultured rat intestinal epithelial cells. J Nutr 1999; 129:57-62. [PMID: 9915876 DOI: 10.1093/jn/129.1.57] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The importance of glutamine synthetase (GS) for cell proliferation was examined in rat intestinal crypt cells (IEC-6) by inhibiting its activity with 10 mmol/L methionine sulfoximine (MS) at varying extracellular glutamine (Q) concentrations. In uninhibited cultures, cell number, protein, and DNA accumulation and synthesis showed a dependence on extracellular Q over a concentration range of 0.06 to 1.06 mmol/L, with apparent half-maximal responses of 0.46 mmol/L extracellular Q. In contrast, proliferation of GS-inhibited cultures required >/=1.06 mmol/L extracellular Q, with an apparent half-maximal response of 2 mmol/L. MS inhibited GS activity >97% in extracts of washed cells and appeared to be specific because its effects on proliferation were overcome by 4.06 mmol/L Q and were reversible. The increased dependence of IEC-6 cells on extracellular Q when GS was inhibited suggests that Q derived from GS (GS-Q) contributes importantly to cell proliferation at physiologic levels of extracellular Q (0.6 mmol/L). The unexpectedly high concentration of extracellular Q required to rescue maximal proliferation during GS-inhibition, relative to a reported Km for Q-transport into the cell, indicates that intracellular Q derived from the extracellular medium (exo-Q) is inefficiently utilized. In a previous study, we found that GS-protein and mRNA are concentrated in the proliferative crypt region of the small intestine in vivo, and predicted that GS activity is important for crypt cell proliferation. Here, we show that enzyme activity is important for cell proliferation at physiologic concentrations of Q in this cell culture model. Finally, we speculate that exo-Q and GS-Q are utilized differently in the cell.
Collapse
Affiliation(s)
- V DeMarco
- Department of Pediatrics, Division of Neonatology, University of Florida, College of Medicine, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
19
|
Lie-Venema H, Hakvoort TB, van Hemert FJ, Moorman AF, Lamers WH. Regulation of the spatiotemporal pattern of expression of the glutamine synthetase gene. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 61:243-308. [PMID: 9752723 DOI: 10.1016/s0079-6603(08)60829-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutamine synthetase, the enzyme that catalyzes the ATP-dependent conversion of glutamate and ammonia into glutamine, is expressed in a tissue-specific and developmentally controlled manner. The first part of this review focuses on its spatiotemporal pattern of expression, the factors that regulate its levels under (patho)physiological conditions, and its role in glutamine, glutamate, and ammonia metabolism in mammals. Glutamine synthetase protein stability is more than 10-fold reduced by its product glutamine and by covalent modifications. During late fetal development, translational efficiency increases more than 10-fold. Glutamine synthetase mRNA stability is negatively affected by cAMP, whereas glucocorticoids, growth hormone, insulin (all positive), and cAMP (negative) regulate its rate of transcription. The signal transduction pathways by which these factors may regulate the expression of glutamine synthetase are briefly discussed. The second part of the review focuses on the evolution, structure, and transcriptional regulation of the glutamine synthetase gene in rat and chicken. Two enhancers (at -6.5 and -2.5 kb) were identified in the upstream region and two enhancers (between +156 and +857 bp) in the first intron of the rat glutamine synthetase gene. In addition, sequence analysis suggests a regulatory role for regions in the 3' untranslated region of the gene. The immediate-upstream region of the chicken glutamine synthetase gene is responsible for its cell-specific expression, whereas the glucocorticoid-induced developmental appearance in the neural retina is governed by its far-upstream region.
Collapse
Affiliation(s)
- H Lie-Venema
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Ballantyne JS. Jaws: The Inside Story. The Metabolism of Elasmobranch Fishes. Comp Biochem Physiol B Biochem Mol Biol 1997. [DOI: 10.1016/s0305-0491(97)00272-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Poly WJ. Nongenetic variation, genetic-environmental interactions and altered gene expression. III. Posttranslational modifications. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 118:551-72. [PMID: 9406434 DOI: 10.1016/s0300-9629(96)00041-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of protein electrophoretic data for determining the relationships among species or populations is widespread and generally accepted. However, posttranslational modifications have been discovered in many of the commonly analyzed proteins and enzymes. Posttranslational modifications often alter the electrophoretic mobility of the modified enzyme or protein. Because posttranslational modifications may affect only a fraction of the total enzyme or protein, an additional staining band often appears on gels as a result, and this may confound interpretations. Deamidation, acteylation, proteolytic modification, and oxidation of sulfhydryl groups are modifications that often result in an electrophoretic mobility shift. Sialic acid-induced heterogeneity has been documented for many enzymes, but neuraminidase treatment can often remove sialic acids and produce gel patterns that are easier to interpret. In some cases, ontogenetic and tissue-specific expression may be due to posttranslational modifications rather than gene control and restricted expression, respectively. Methods of preventing, detecting and eliminating posttranslational modifications are discussed. Some posttranslational modifications may be useful for detecting cryptic genetic polymorphisms.
Collapse
Affiliation(s)
- W J Poly
- Department of Zoology, Southern Illinois University, Carbondale, 62901-6501, USA
| |
Collapse
|
22
|
Abstract
Selected teleostean (bony) fish species of the family Batrachoididae (toadfishes and midshipmen) possess high titers of all enzymes of the ornithine-urea cycle in their livers. These species have proven valuable in understanding the short-term regulation of urea synthesis, urea permeability, and transport across epithelial tissues, and how urea synthesis and excretion have evolved among vertebrates. One species in particular, the gulf toadfish (Opsanus beta), has been shown to rapidly switch from ammonia excretion to urea synthesis and excretion during a variety of stress conditions (including confinement). The transition is accompanied by an upregulation of hepatic glutamine synthetase activity, and a switch to pulsatile urea excretion from the anterior end of the fish. In fact, a single day's excretion can be voided in a period of < 3 h. Hypotheses on the environmental significance of these patterns of urea synthesis and excretion are discussed.
Collapse
Affiliation(s)
- P J Walsh
- Division of Marine Biology and Fisheries, NIEHS Marine and Freshwater Biomedical Sciences Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149-1098, USA
| |
Collapse
|
23
|
Walsh PJ. Purification and properties of hepatic glutamine synthetases from the ureotelic gulf toadfish, Opsanus beta. Comp Biochem Physiol B Biochem Mol Biol 1996. [DOI: 10.1016/s0305-0491(96)00197-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|