1
|
Gao S, Li X, Han B. Bacterial and bacterial derivatives-based drug delivery systems: a novel approach for treating central nervous system disorders. Expert Opin Drug Deliv 2025; 22:163-180. [PMID: 39688950 DOI: 10.1080/17425247.2024.2444364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION Bacteria and their derivatives show great potential as drug delivery systems due to their unique chemotaxis, biocompatibility, and targeting abilities. In CNS disease treatment, bacterial carriers can cross the blood-brain barrier (BBB) and deliver drugs precisely, overcoming limitations of traditional methods. Advances in genetic engineering, synthetic biology, and nanotechnology have transformed these systems into multifunctional platforms for personalized CNS treatment. AREAS COVERED This review examines the latest research on bacterial carriers for treating ischemic brain injury, neurodegenerative diseases, and gliomas. Bacteria efficiently cross the blood-brain barrier via active targeting, endocytosis, paracellular transport, and the nose-to-brain route for precise drug delivery. Various bacterial drug delivery systems, such as OMVs and bacterial ghosts, are explored for their design and application. Databases were searched in Google Scholar for the period up to December 2024. EXPERT OPINION Future developments in bacterial drug delivery will rely on AI-driven design and high-throughput engineering, enhancing treatment precision. Personalized medicine will further optimize bacterial carriers for individual patients, but challenges such as biosafety, immune rejection, and scalability must be addressed. As multimodal diagnostic and therapeutic strategies advance, bacterial carriers are expected to play a central role in CNS disease treatment, offering novel precision medicine solutions.
Collapse
Affiliation(s)
- Shizhu Gao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| | - Xin Li
- Orthopedic Medical Center, 2nd hospital of Jilin University, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
2
|
Huffer A, Mao M, Ballard K, Ozdemir T. Biomimetic Hyaluronan Binding Biomaterials to Capture the Complex Regulation of Hyaluronan in Tissue Development and Function. Biomimetics (Basel) 2024; 9:499. [PMID: 39194478 DOI: 10.3390/biomimetics9080499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Within native ECM, Hyaluronan (HA) undergoes remarkable structural remodeling through its binding receptors and proteins called hyaladherins. Hyaladherins contain a group of tandem repeat sequences, such as LINK domains, BxB7 homologous sequences, or 20-50 amino acid long short peptide sequences that have high affinity towards side chains of HA. The HA binding sequences are critical players in HA distribution and regulation within tissues and potentially attractive therapeutic targets to regulate HA synthesis and organization. While HA is a versatile and successful biopolymer, most HA-based therapeutics have major differences from a native HA molecule, such as molecular weight discrepancies, crosslinking state, and remodeling with other HA binding proteins. Recent studies showed the promise of HA binding domains being used as therapeutic biomaterials for osteoarthritic, ocular, or cardiovascular therapeutic products. However, we propose that there is a significant potential for HA binding materials to reveal the physiological functions of HA in a more realistic setting. This review is focused on giving a comprehensive overview of the connections between HA's role in the body and the potential of HA binding material applications in therapeutics and regenerative medicine. We begin with an introduction to HA then discuss HA binding molecules and the process of HA binding. Finally, we discuss HA binding materials anf the future prospects of potential HA binding biomaterials systems in the field of biomaterials and tissue engineering.
Collapse
Affiliation(s)
- Amelia Huffer
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines, Rapid City, SD 57701, USA
| | - Mingyang Mao
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines, Rapid City, SD 57701, USA
| | - Katherine Ballard
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines, Rapid City, SD 57701, USA
| | - Tugba Ozdemir
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines, Rapid City, SD 57701, USA
| |
Collapse
|
3
|
Wei S, Li Z, Xia H, Wang Z, Deng J, Li L, Huang R, Ye T, Huang Y, Yang Y. An endometrial biomimetic extracellular matrix (ECM) for enhanced endometrial regeneration using hyaluronic acid hydrogel containing recombinant human type III collagen. Int J Biol Macromol 2024; 268:131723. [PMID: 38649072 DOI: 10.1016/j.ijbiomac.2024.131723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Endometrial injury poses a significant challenge in tissue regeneration, with type III collagen (COL III) playing a pivotal role in maintaining endometrial integrity and facilitating repair. Our study explored the utility of recombinant human type III collagen (RHC) as an intervention for endometrial damage. To address the challenges associated with the inherent instability and rapid degradation of COL III in vivo, we developed an RHC-HA hydrogel by conjugating RHC with hyaluronic acid (HA), thus ensuring a more stable and sustained delivery. Our findings suggested that the RHC-HA hydrogel significantly promoted endometrial regeneration and restored fertility. The hydrogel facilitated prolonged retention of RHC in the uterus, leading to a substantial improvement in the repair process. The synergistic interaction between RHC and HA greatly enhances cell proliferation and adhesion, surpassing the efficacy of HA or RHC alone. Additionally, the RHC-HA hydrogel demonstrated notable anti-fibrotic effects, which are crucial for preventing abnormalities during endometrial healing. These findings suggested that the RHC-HA hydrogel presented a therapeutic strategy in the treatment of uterine endometrial injuries, which may improve female reproductive health.
Collapse
Affiliation(s)
- Siying Wei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Huan Xia
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jingxian Deng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China.
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China.
| |
Collapse
|
4
|
Jakovljević A, Stamenković V, Poleksić J, Hamad MIK, Reiss G, Jakovcevski I, Andjus PR. The Role of Tenascin-C on the Structural Plasticity of Perineuronal Nets and Synaptic Expression in the Hippocampus of Male Mice. Biomolecules 2024; 14:508. [PMID: 38672524 PMCID: PMC11047978 DOI: 10.3390/biom14040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neuronal plasticity is a crucial mechanism for an adapting nervous system to change. It is shown to be regulated by perineuronal nets (PNNs), the condensed forms of the extracellular matrix (ECM) around neuronal bodies. By assessing the changes in the number, intensity, and structure of PNNs, the ultrastructure of the PNN mesh, and the expression of inhibitory and excitatory synaptic inputs on these neurons, we aimed to clarify the role of an ECM glycoprotein, tenascin-C (TnC), in the dorsal hippocampus. To enhance neuronal plasticity, TnC-deficient (TnC-/-) and wild-type (TnC+/+) young adult male mice were reared in an enriched environment (EE) for 8 weeks. Deletion of TnC in TnC-/- mice showed an ultrastructural reduction of the PNN mesh and an increased inhibitory input in the dentate gyrus (DG), and an increase in the number of PNNs with a rise in the inhibitory input in the CA2 region. EE induced an increased inhibitory input in the CA2, CA3, and DG regions; in DG, the change was also followed by an increased intensity of PNNs. No changes in PNNs or synaptic expression were found in the CA1 region. We conclude that the DG and CA2 regions emerged as focal points of alterations in PNNs and synaptogenesis with EE as mediated by TnC.
Collapse
Affiliation(s)
- Ana Jakovljević
- Center for Laser Microscopy, Institute for Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vera Stamenković
- Center for Integrative Brain Research, Seattle Children’s Research Institute, 1900 9th Ave, Seattle, WA 98125, USA;
| | - Joko Poleksić
- Institute of Anatomy “Niko Miljanic”, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Gebhard Reiss
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany;
| | - Igor Jakovcevski
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany;
| | - Pavle R. Andjus
- Center for Laser Microscopy, Institute for Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
5
|
Shim HE, Kim YJ, Park KH, Park H, Huh KM, Kang SW. Enhancing cartilage regeneration through spheroid culture and hyaluronic acid microparticles: A promising approach for tissue engineering. Carbohydr Polym 2024; 328:121734. [PMID: 38220328 DOI: 10.1016/j.carbpol.2023.121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Cell therapy using chondrocytes has shown promise for cartilage regeneration, but maintaining functional characteristics during in vitro culture and ensuring survival after transplantation are challenges. Three-dimensional (3D) cell culture methods, such as spheroid culture, and hydrogels can improve cell survival and functionality. In this study, a new method of culturing spheroids using hyaluronic acid (HA) microparticles was developed. The spheroids mixed with HA microparticles effectively maintained the functional characteristics of chondrocytes during in vitro culture, resulting in improved cell survival and successful cartilage formation in vivo following transplantation. This new method has the potential to improve cell therapy production for cartilage regeneration.
Collapse
Affiliation(s)
- Hye-Eun Shim
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Kyoung Hwan Park
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
6
|
De Fazio E, Pittarello M, Gans A, Ghosh B, Slika H, Alimonti P, Tyler B. Intrinsic and Microenvironmental Drivers of Glioblastoma Invasion. Int J Mol Sci 2024; 25:2563. [PMID: 38473812 PMCID: PMC10932253 DOI: 10.3390/ijms25052563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas are diffusely infiltrating brain tumors whose prognosis is strongly influenced by their extent of invasion into the surrounding brain tissue. While lower-grade gliomas present more circumscribed borders, high-grade gliomas are aggressive tumors with widespread brain infiltration and dissemination. Glioblastoma (GBM) is known for its high invasiveness and association with poor prognosis. Its low survival rate is due to the certainty of its recurrence, caused by microscopic brain infiltration which makes surgical eradication unattainable. New insights into GBM biology at the single-cell level have enabled the identification of mechanisms exploited by glioma cells for brain invasion. In this review, we explore the current understanding of several molecular pathways and mechanisms used by tumor cells to invade normal brain tissue. We address the intrinsic biological drivers of tumor cell invasion, by tackling how tumor cells interact with each other and with the tumor microenvironment (TME). We focus on the recently discovered neuronal niche in the TME, including local as well as distant neurons, contributing to glioma growth and invasion. We then address the mechanisms of invasion promoted by astrocytes and immune cells. Finally, we review the current literature on the therapeutic targeting of the molecular mechanisms of invasion.
Collapse
Affiliation(s)
- Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
| | - Matilde Pittarello
- Department of Medicine, Humanitas University School of Medicine, 20089 Rozzano, Italy;
| | - Alessandro Gans
- Department of Neurology, University of Milan, 20122 Milan, Italy;
| | - Bikona Ghosh
- School of Medicine and Surgery, Dhaka Medical College, Dhaka 1000, Bangladesh;
| | - Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Paolo Alimonti
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
7
|
Hasanzadeh E, Seifalian A, Mellati A, Saremi J, Asadpour S, Enderami SE, Nekounam H, Mahmoodi N. Injectable hydrogels in central nervous system: Unique and novel platforms for promoting extracellular matrix remodeling and tissue engineering. Mater Today Bio 2023; 20:100614. [PMID: 37008830 PMCID: PMC10050787 DOI: 10.1016/j.mtbio.2023.100614] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Repairing central nervous system (CNS) is difficult due to the inability of neurons to recover after damage. A clinically acceptable treatment to promote CNS functional recovery and regeneration is currently unavailable. According to recent studies, injectable hydrogels as biodegradable scaffolds for CNS tissue engineering and regeneration have exceptionally desirable attributes. Hydrogel has a biomimetic structure similar to extracellular matrix, hence has been considered a 3D scaffold for CNS regeneration. An interesting new type of hydrogel, injectable hydrogels, can be injected into target areas with little invasiveness and imitate several aspects of CNS. Injectable hydrogels are being researched as therapeutic agents because they may imitate numerous properties of CNS tissues and hence reduce subsequent injury and regenerate neural tissue. Because of their less adverse effects and cost, easier use and implantation with less pain, and faster regeneration capacity, injectable hydrogels, are more desirable than non-injectable hydrogels. This article discusses the pathophysiology of CNS and the use of several kinds of injectable hydrogels for brain and spinal cord tissue engineering, paying particular emphasis to recent experimental studies.
Collapse
Affiliation(s)
- Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, 2 Royal College Street, London, UK
| | - Amir Mellati
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Tang L, Fu C, Zhang A, Li X, Cao Y, Feng J, Liu H, Dong H, Wang W. Harnessing nanobiotechnology for cerebral ischemic stroke management. Biomater Sci 2023; 11:791-812. [PMID: 36545758 DOI: 10.1039/d2bm01790c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cerebral ischemic stroke remains one of the most serious neurological disorders that pose threats to human health, causing a large amount of long-term disability or even death throughout the world. Based on its physiologic and pathological features, there are limited available therapeutic options for effective ischemic stroke management. Encouragingly, a rapid advancement of nanobiotechnology is bringing new insights into exploring more alternative strategies against cerebral ischemic stroke, which can cleverly overcome the limitations related to conventional treatment methods. Therefore, this review focuses on the recent achievements of nanobiotechnology for ischemic stroke management, which emphasizes diverse targeted delivery strategies using various nanoplatforms including liposomes, micelles, polymeric nanoparticles, nanogels, inorganic nanomaterials, and cell-derived nano-vectors based on the pathophysiological features of ischemic stroke. Moreover, different therapeutic approaches against ischemic stroke such as neuroprotection, anti-inflammation, thrombolysis, increased blood-brain barrier penetration and reactive oxygen species scavenging are highlighted. Meanwhile, this review discusses how these versatile nanoplatforms were designed to assist in the treatment of ischemic stroke. Based on this, challenges, opportunities, and future perspectives using nanobiotechnology through rational design for effective ischemic stroke management are revealed.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Cong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Aining Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Xiyue Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yuqi Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Jingwen Feng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, 210009 Nanjing, China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| |
Collapse
|
9
|
Anwar MM, Özkan E, Gürsoy-Özdemir Y. The role of extracellular matrix alterations in mediating astrocyte damage and pericyte dysfunction in Alzheimer's disease: A comprehensive review. Eur J Neurosci 2022; 56:5453-5475. [PMID: 34182602 DOI: 10.1111/ejn.15372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
The brain is a highly vascularized tissue protected by the blood-brain barrier (BBB), a complex structure allowing only necessary substances to pass through into the brain while limiting the entrance of harmful toxins. The BBB comprises several components, and the most prominent features are tight junctions between endothelial cells (ECs), which are further wrapped in a layer of pericytes. Pericytes are multitasked cells embedded in a thick basement membrane (BM) that consists of a fibrous extracellular matrix (ECM) and are surrounded by astrocytic endfeet. The primary function of astrocytes and pericytes is to provide essential blood supply and vital nutrients to the brain. In Alzheimer's disease (AD), long-term neuroinflammatory cascades associated with infiltration of harmful neurotoxic proteins may lead to BBB dysfunction and altered ECM components resulting in brain homeostatic imbalance, synaptic damage, and declined cognitive functions. Moreover, BBB structure and functional integrity may be lost due to induced ECM alterations, astrocyte damage, and pericytes dysfunction, leading to amyloid-beta (Aβ) hallmarks deposition in different brain regions. Herein, we highlight how BBB, ECM, astrocytes, and pericytes dysfunction can play a leading role in AD's pathogenesis and discuss their impact on brain functions.
Collapse
Affiliation(s)
- Mai M Anwar
- Neuroscience Research Lab, Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.,Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority, Cairo, Egypt
| | - Esra Özkan
- Neuroscience Research Lab, Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Neuroscience Research Lab, Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.,Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
10
|
Babst N, Isbell LK, Rommel F, Tura A, Ranjbar M, Grisanti S, Tschuch C, Schueler J, Doostkam S, Reinacher PC, Duyster J, Kakkassery V, von Bubnoff N. CXCR4, CXCR5 and CD44 May Be Involved in Homing of Lymphoma Cells into the Eye in a Patient Derived Xenograft Homing Mouse Model for Primary Vitreoretinal Lymphoma. Int J Mol Sci 2022; 23:11757. [PMID: 36233057 PMCID: PMC9569795 DOI: 10.3390/ijms231911757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Primary vitreoretinal lymphoma (PVRL), a rare malignancy of the eye, is strongly related to primary central nervous system lymphoma (PCNSL). We hypothesized that lymphoma cells disseminate to the CNS and eye tissue via distinct homing receptors. The objective of this study was to test expression of CXCR4, CXCR5, CXCR7 and CD44 homing receptors on CD20 positive B-lymphoma cells on enucleated eyes using a PCNSL xenograft mouse model. Methods: We used indirect immunofluorescence double staining for CD20/CXCR4, CD20/CXCR5, CD20/CXCR7 and CD20/CD44 on enucleated eyes of a PCNSL xenograft mouse model with PVRL phenotype (PCNSL group) in comparison to a secondary CNS lymphoma xenograft mouse model (SCNSL group). Lymphoma infiltration was evaluated with an immunoreactive score (IRS). Results: 11/13 paired eyes of the PCNSL but none of the SCNSL group were infiltrated by CD20-positive cells. Particularly the choroid and to a lesser extent the retina of the PCNSL group were infiltrated by CD20+/CXCR4+, CD20+/CXCR5+, few CD20+/CD44+ but no CD20+/CXCR7+ cells. Expression of CXCR4 (p = 0.0205), CXCR5 (p = 0.0004) and CD44 (p < 0.0001) was significantly increased in the PCNSL compared to the SCNSL group. Conclusions: CD20+ PCNSL lymphoma cells infiltrating the eye co-express distinct homing receptors such as CXCR4 and CXCR5 in a PVRL homing mouse model. These receptors may be involved in PVRL homing into the eye.
Collapse
Affiliation(s)
- Neele Babst
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Lisa K. Isbell
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
| | - Felix Rommel
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Aysegul Tura
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Mahdy Ranjbar
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Cordula Tschuch
- Charles River Discovery Research Services GmbH, 79108 Freiburg, Germany
| | - Julia Schueler
- Charles River Discovery Research Services GmbH, 79108 Freiburg, Germany
| | - Soroush Doostkam
- Institute for Neuropathology, Medical Center—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
- Fraunhofer Institute for Laser Technology (ILT), 52074 Aachen, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Vinodh Kakkassery
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
11
|
Tarricone G, Carmagnola I, Chiono V. Tissue-Engineered Models of the Human Brain: State-of-the-Art Analysis and Challenges. J Funct Biomater 2022; 13:146. [PMID: 36135581 PMCID: PMC9501967 DOI: 10.3390/jfb13030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Neurological disorders affect billions of people across the world, making the discovery of effective treatments an important challenge. The evaluation of drug efficacy is further complicated because of the lack of in vitro models able to reproduce the complexity of the human brain structure and functions. Some limitations of 2D preclinical models of the human brain have been overcome by the use of 3D cultures such as cell spheroids, organoids and organs-on-chip. However, one of the most promising approaches for mimicking not only cell structure, but also brain architecture, is currently represented by tissue-engineered brain models. Both conventional (particularly electrospinning and salt leaching) and unconventional (particularly bioprinting) techniques have been exploited, making use of natural polymers or combinations between natural and synthetic polymers. Moreover, the use of induced pluripotent stem cells (iPSCs) has allowed the co-culture of different human brain cells (neurons, astrocytes, oligodendrocytes, microglia), helping towards approaching the central nervous system complexity. In this review article, we explain the importance of in vitro brain modeling, and present the main in vitro brain models developed to date, with a special focus on the most recent advancements in tissue-engineered brain models making use of iPSCs. Finally, we critically discuss achievements, main challenges and future perspectives.
Collapse
Affiliation(s)
- Giulia Tarricone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| |
Collapse
|
12
|
Wang S, Wang Y, Xiong J, Bao W, Li Y, Qin J, Han G, Hu S, Lei J, Yang Z, Qian Y, Dong S, Dong Z. Novel Brain-Stiffness-Mimicking Matrix Gel Enables Comprehensive Invasion Analysis of 3D Cultured GBM Cells. Front Mol Biosci 2022; 9:885806. [PMID: 35755807 PMCID: PMC9218788 DOI: 10.3389/fmolb.2022.885806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults, which is fast growing and tends to invade surrounding normal brain tissues. Uncovering the molecular and cellular mechanisms of GBM high invasion potential is of great importance for the treatment and prognostic prediction. However, the commonly used two-dimensional (2D) cell culture and analysis system suffers from lack of the heterogeneity and in vivo property of brain tissues. Here, we established a three-dimensional (3D) cell culture-based analysis system that could better recapitulate the heterogeneity of GBM and mimic the in vivo conditions in the brain. The GBM cell lines, DBTRG and U251, were cultured by hanging drop culture into the GBM multicellular spheroids, which were embedded in the optimized 3D brain-stiffness-mimicking matrix gel (0.5 mg/ml Collagen Ⅰ + 3 mg/ml Matrigel+ 3.3 mg/ml Hyaluronic Acid (HA)). The biochemical composition of the optimized matrix gel is similar to that of the brain microenvironment, and the elastic modulus is close to that of the brain tissue. The dynamics of the GBM spheroids was examined using high-content imaging for 60 h, and four metrics including invasion distance, invasion area, single-cell invasion velocity, and directionality were employed to quantify the invasion capacity. The result showed that DBTRG cells possess higher invasion capacity than U251 cells, which was consistent with the results of the classic transwell test. Transcriptome analysis of both cell lines was performed to explore the underlying molecular mechanisms. Our novel brain-stiffness-mimicking matrix gel enables comprehensive invasion analysis of the 3D cultured GBM cells and provides a model basis for in-depth exploration of the mechanisms regulating GBM invasion including the interaction between GBM cells and brain stroma.
Collapse
Affiliation(s)
- Shuowen Wang
- Brain Research Institute, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yiqi Wang
- Brain Research Institute, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin Xiong
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wendai Bao
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaqi Li
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Qin
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Guang Han
- Department of Radiation Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Hu
- Department of Thoracic Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Junrong Lei
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zehao Yang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu Qian
- Department of Thoracic Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Dong
- Department of Thoracic Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Dong
- Brain Research Institute, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Central Laboratory, Hubei Cancer Hospital, Wuhan, China
| |
Collapse
|
13
|
Khoonkari M, Liang D, Kamperman M, Kruyt FAE, van Rijn P. Physics of Brain Cancer: Multiscale Alterations of Glioblastoma Cells under Extracellular Matrix Stiffening. Pharmaceutics 2022; 14:pharmaceutics14051031. [PMID: 35631616 PMCID: PMC9145282 DOI: 10.3390/pharmaceutics14051031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
The biology and physics underlying glioblastoma is not yet completely understood, resulting in the limited efficacy of current clinical therapy. Recent studies have indicated the importance of mechanical stress on the development and malignancy of cancer. Various types of mechanical stress activate adaptive tumor cell responses that include alterations in the extracellular matrix (ECM) which have an impact on tumor malignancy. In this review, we describe and discuss the current knowledge of the effects of ECM alterations and mechanical stress on GBM aggressiveness. Gradual changes in the brain ECM have been connected to the biological and physical alterations of GBM cells. For example, increased expression of several ECM components such as glycosaminoglycans (GAGs), hyaluronic acid (HA), proteoglycans and fibrous proteins result in stiffening of the brain ECM, which alters inter- and intracellular signaling activity. Several mechanosensing signaling pathways have been identified that orchestrate adaptive responses, such as Hippo/YAP, CD44, and actin skeleton signaling, which remodel the cytoskeleton and affect cellular properties such as cell–cell/ECM interactions, growth, and migration/invasion of GBM cells. In vitro, hydrogels are used as a model to mimic the stiffening of the brain ECM and reconstruct its mechanics, which we also discuss. Overall, we provide an overview of the tumor microenvironmental landscape of GBM with a focus on ECM stiffening and its associated adaptive cellular signaling pathways and their possible therapeutic exploitation.
Collapse
Affiliation(s)
- Mohammad Khoonkari
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Dong Liang
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
| | - Marleen Kamperman
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Frank A. E. Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
- Correspondence: (F.A.E.K.); (P.v.R.)
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Correspondence: (F.A.E.K.); (P.v.R.)
| |
Collapse
|
14
|
Decellularised extracellular matrix-based biomaterials for repair and regeneration of central nervous system. Expert Rev Mol Med 2022; 23:e25. [PMID: 34994341 PMCID: PMC9884794 DOI: 10.1017/erm.2021.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The central nervous system (CNS), consisting of the brain and spinal cord, regulates the mind and functions of the organs. CNS diseases, leading to changes in neurological functions in corresponding sites and causing long-term disability, represent one of the major public health issues with significant clinical and economic burdens worldwide. In particular, the abnormal changes in the extracellular matrix under various disease conditions have been demonstrated as one of the main factors that can alter normal cell function and reduce the neuroregeneration potential in damaged tissue. Decellularised extracellular matrix (dECM)-based biomaterials have been recently utilised for CNS applications, closely mimicking the native tissue. dECM retains tissue-specific components, including proteoglycan as well as structural and functional proteins. Due to their unique composition, these biomaterials can stimulate sensitive repair mechanisms associated with CNS damages. Herein, we discuss the decellularisation of the brain and spinal cord as well as recellularisation of acellular matrix and the recent progress in the utilisation of brain and spinal cord dECM.
Collapse
|
15
|
Samanipour R, Tahmooressi H, Rezaei Nejad H, Hirano M, Shin SR, Hoorfar M. A review on 3D printing functional brain model. BIOMICROFLUIDICS 2022; 16:011501. [PMID: 35145569 PMCID: PMC8816519 DOI: 10.1063/5.0074631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/31/2021] [Indexed: 05/08/2023]
Abstract
Modern neuroscience increasingly relies on 3D models to study neural circuitry, nerve regeneration, and neural disease. Several different biofabrication approaches have been explored to create 3D neural tissue model structures. Among them, 3D bioprinting has shown to have great potential to emerge as a high-throughput/high precision biofabrication strategy that can address the growing need for 3D neural models. Here, we have reviewed the design principles for neural tissue engineering. The main challenge to adapt printing technologies for biofabrication of neural tissue models is the development of neural bioink, i.e., a biomaterial with printability and gelation properties and also suitable for neural tissue culture. This review shines light on a vast range of biomaterials as well as the fundamentals of 3D neural tissue printing. Also, advances in 3D bioprinting technologies are reviewed especially for bioprinted neural models. Finally, the techniques used to evaluate the fabricated 2D and 3D neural models are discussed and compared in terms of feasibility and functionality.
Collapse
Affiliation(s)
| | - Hamed Tahmooressi
- Department of Mechanical Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Hojatollah Rezaei Nejad
- Department of Electrical and Computer Engineering, Tufts University, 161 College Avenue, Medford, Massachusetts 02155, USA
| | | | - Su-Royn Shin
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, USA
- Authors to whom correspondence should be addressed: and
| | - Mina Hoorfar
- Faculty of Engineering, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
16
|
Papadas A, Cicala A, Kraus SG, Arauz G, Tong A, Deming D, Asimakopoulos F. Versican in Tumor Progression, Tumor–Host Interactions, and Cancer Immunotherapy. BIOLOGY OF EXTRACELLULAR MATRIX 2022:93-118. [DOI: 10.1007/978-3-030-99708-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
The Impact of Hyaluronic Acid on Tendon Physiology and Its Clinical Application in Tendinopathies. Cells 2021; 10:cells10113081. [PMID: 34831304 PMCID: PMC8625461 DOI: 10.3390/cells10113081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 01/17/2023] Open
Abstract
The physical-chemical, structural, hydrodynamic, and biological properties of hyaluronic acid within tendons are still poorly investigated. Medical history and clinical applications of hyaluronic acid for tendinopathies are still debated. In general, the properties of hyaluronic acid depend on several factors including molecular weight. Several preclinical and clinical experiences show a good efficacy and safety profile of hyaluronic acid, despite the absence of consensus in the literature regarding the classification according to molecular weight. In in vitro and preclinical studies, hyaluronic acid has shown physical-chemical properties, such as biocompatibility, mucoadhesivity, hygroscopicity, and viscoelasticity, useful to contribute to tendon healing. Additionally, in clinical studies, hyaluronic acid has been used with promising results in different tendinopathies. In this narrative review, findings encourage the clinical application of HA in tendinopathies such as rotator cuff, epicondylitis, Achilles, and patellar tendinopathy.
Collapse
|
18
|
Ferreira H, Amorim D, Lima AC, Pirraco RP, Costa-Pinto AR, Almeida R, Almeida A, Reis RL, Pinto-Ribeiro F, Neves NM. A biocompatible and injectable hydrogel to boost the efficacy of stem cells in neurodegenerative diseases treatment. Life Sci 2021; 287:120108. [PMID: 34717909 DOI: 10.1016/j.lfs.2021.120108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
AIMS Stem cell therapies emerged as treatment modalities with potential to cure neurodegenerative diseases (NDs). However, despite high expectations, their clinical use is still limited. Critical issues in treatment outcomes may be related to stem cells formulation and administration route. We develop a hydrogel as a cell carrier, consisting of compounds (phospholipids and hyaluronic acid-HA) naturally present in the central nervous system (CNS). The HA-based hydrogel physically crosslinked with liposomes is designed for direct injection into the CNS to significantly increase the bone marrow mesenchymal stem cells (BMSCs) bioavailability. MATERIALS AND METHODS Hydrogel compatibility is confirmed in vitro with BMSCs and in vivo through its intracerebroventricular injection in rats. To assess its efficacy, the main cause of chronic neurologic disability in young adults is selected, namely multiple sclerosis (MS). The efficacy of the developed formulation containing a lower number of cells than previously reported is demonstrated using an experimental autoimmune encephalomyelitis (EAE) rat model. KEY FINDINGS The distribution of the engineered hydrogel into corpus callosum can be ideal for NDs treatment, since damage of this white matter structure is responsible for important neuronal deficits. Moreover, the BMSCs-laden hydrogel significantly decreases disease severity and maximum clinical score and eliminated the relapse. SIGNIFICANCE The engineering of advanced therapies using this natural carrier can result in efficacious treatments for MS and related debilitating conditions.
Collapse
Affiliation(s)
- Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Diana Amorim
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Cláudia Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Rita Costa-Pinto
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Almeida
- Neurosurgery Department, Hospital de Braga, Braga, Portugal
| | - Armando Almeida
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
19
|
Linka K, Reiter N, Würges J, Schicht M, Bräuer L, Cyron CJ, Paulsen F, Budday S. Unraveling the Local Relation Between Tissue Composition and Human Brain Mechanics Through Machine Learning. Front Bioeng Biotechnol 2021; 9:704738. [PMID: 34485258 PMCID: PMC8415910 DOI: 10.3389/fbioe.2021.704738] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
The regional mechanical properties of brain tissue are not only key in the context of brain injury and its vulnerability towards mechanical loads, but also affect the behavior and functionality of brain cells. Due to the extremely soft nature of brain tissue, its mechanical characterization is challenging. The response to loading depends on length and time scales and is characterized by nonlinearity, compression-tension asymmetry, conditioning, and stress relaxation. In addition, the regional heterogeneity-both in mechanics and microstructure-complicates the comprehensive understanding of local tissue properties and its relation to the underlying microstructure. Here, we combine large-strain biomechanical tests with enzyme-linked immunosorbent assays (ELISA) and develop an extended type of constitutive artificial neural networks (CANNs) that can account for viscoelastic effects. We show that our viscoelastic constitutive artificial neural network is able to describe the tissue response in different brain regions and quantify the relevance of different cellular and extracellular components for time-independent (nonlinearity, compression-tension-asymmetry) and time-dependent (hysteresis, conditioning, stress relaxation) tissue mechanics, respectively. Our results suggest that the content of the extracellular matrix protein fibronectin is highly relevant for both the quasi-elastic behavior and viscoelastic effects of brain tissue. While the quasi-elastic response seems to be largely controlled by extracellular matrix proteins from the basement membrane, cellular components have a higher relevance for the viscoelastic response. Our findings advance our understanding of microstructure - mechanics relations in human brain tissue and are valuable to further advance predictive material models for finite element simulations or to design biomaterials for tissue engineering and 3D printing applications.
Collapse
Affiliation(s)
- Kevin Linka
- Institute of Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany
| | - Nina Reiter
- Institute of Applied Mechanics, Department Mechanical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jasmin Würges
- Institute of Applied Mechanics, Department Mechanical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Bräuer
- Institute of Functional and Clinical Anatomy, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian J Cyron
- Institute of Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany.,Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Department of Operative Surgery and Topographic Anatomy, Sechenov University, Moscow, Russia
| | - Silvia Budday
- Institute of Applied Mechanics, Department Mechanical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
20
|
Hayes AJ, Melrose J. Neural Tissue Homeostasis and Repair Is Regulated via CS and DS Proteoglycan Motifs. Front Cell Dev Biol 2021; 9:696640. [PMID: 34409033 PMCID: PMC8365427 DOI: 10.3389/fcell.2021.696640] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023] Open
Abstract
Chondroitin sulfate (CS) is the most abundant and widely distributed glycosaminoglycan (GAG) in the human body. As a component of proteoglycans (PGs) it has numerous roles in matrix stabilization and cellular regulation. This chapter highlights the roles of CS and CS-PGs in the central and peripheral nervous systems (CNS/PNS). CS has specific cell regulatory roles that control tissue function and homeostasis. The CNS/PNS contains a diverse range of CS-PGs which direct the development of embryonic neural axonal networks, and the responses of neural cell populations in mature tissues to traumatic injury. Following brain trauma and spinal cord injury, a stabilizing CS-PG-rich scar tissue is laid down at the defect site to protect neural tissues, which are amongst the softest tissues of the human body. Unfortunately, the CS concentrated in gliotic scars also inhibits neural outgrowth and functional recovery. CS has well known inhibitory properties over neural behavior, and animal models of CNS/PNS injury have demonstrated that selective degradation of CS using chondroitinase improves neuronal functional recovery. CS-PGs are present diffusely in the CNS but also form denser regions of extracellular matrix termed perineuronal nets which surround neurons. Hyaluronan is immobilized in hyalectan CS-PG aggregates in these perineural structures, which provide neural protection, synapse, and neural plasticity, and have roles in memory and cognitive learning. Despite the generally inhibitory cues delivered by CS-A and CS-C, some CS-PGs containing highly charged CS disaccharides (CS-D, CS-E) or dermatan sulfate (DS) disaccharides that promote neural outgrowth and functional recovery. CS/DS thus has varied cell regulatory properties and structural ECM supportive roles in the CNS/PNS depending on the glycoform present and its location in tissue niches and specific cellular contexts. Studies on the fruit fly, Drosophila melanogaster and the nematode Caenorhabditis elegans have provided insightful information on neural interconnectivity and the role of the ECM and its PGs in neural development and in tissue morphogenesis in a whole organism environment.
Collapse
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Wales, United Kingdom
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonard’s, NSW, Australia
| |
Collapse
|
21
|
Structural and Functional Modulation of Perineuronal Nets: In Search of Important Players with Highlight on Tenascins. Cells 2021; 10:cells10061345. [PMID: 34072323 PMCID: PMC8230358 DOI: 10.3390/cells10061345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
The extracellular matrix (ECM) of the brain plays a crucial role in providing optimal conditions for neuronal function. Interactions between neurons and a specialized form of ECM, perineuronal nets (PNN), are considered a key mechanism for the regulation of brain plasticity. Such an assembly of interconnected structural and regulatory molecules has a prominent role in the control of synaptic plasticity. In this review, we discuss novel ways of studying the interplay between PNN and its regulatory components, particularly tenascins, in the processes of synaptic plasticity, mechanotransduction, and neurogenesis. Since enhanced neuronal activity promotes PNN degradation, it is possible to study PNN remodeling as a dynamical change in the expression and organization of its constituents that is reflected in its ultrastructure. The discovery of these subtle modifications is enabled by the development of super-resolution microscopy and advanced methods of image analysis.
Collapse
|
22
|
Oh HJ, Kim J, Kim H, Choi N, Chung S. Microfluidic Reconstitution of Tumor Microenvironment for Nanomedical Applications. Adv Healthc Mater 2021; 10:e2002122. [PMID: 33576178 DOI: 10.1002/adhm.202002122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Nanoparticles have an extensive range of diagnostic and therapeutic applications in cancer treatment. However, their current clinical translation is slow, mainly due to the failure to develop preclinical evaluation techniques that can draw similar conclusions to clinical outcomes by adequately mimicking nanoparticle behavior in complicated tumor microenvironments (TMEs). Microfluidic methods offer significant advantages over conventional in vitro methods to resolve these challenges by recapitulating physiological cues of the TME such as the extracellular matrix, shear stress, interstitial flow, soluble factors, oxygen, and nutrient gradients. The methods are capable of de-coupling microenvironmental features, spatiotemporal controlling of experimental sequences, and high throughput readouts in situ. This progress report highlights the recent achievements of microfluidic models to reconstitute the physiological microenvironment, especially for nanomedical tools for cancer treatment.
Collapse
Affiliation(s)
- Hyun Jeong Oh
- School of Mechanical Engineering Korea University Seoul 02841 Republic of Korea
| | - Jaehoon Kim
- School of Mechanical Engineering Korea University Seoul 02841 Republic of Korea
| | - Hyunho Kim
- School of Mechanical Engineering Korea University Seoul 02841 Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology KIST School Korea University of Science and Technology (UST) Seoul 34113 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering Korea University Seoul 02841 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
23
|
Putavet DA, de Keizer PLJ. Residual Disease in Glioma Recurrence: A Dangerous Liaison with Senescence. Cancers (Basel) 2021; 13:1560. [PMID: 33805316 PMCID: PMC8038015 DOI: 10.3390/cancers13071560] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
With a dismally low median survival of less than two years after diagnosis, Glioblastoma (GBM) is the most lethal type of brain cancer. The standard-of-care of surgical resection, followed by DNA-damaging chemo-/radiotherapy, is often non-curative. In part, this is because individual cells close to the resection border remain alive and eventually undergo renewed proliferation. These residual, therapy-resistant cells lead to rapid recurrence, against which no effective treatment exists to date. Thus, new experimental approaches need to be developed against residual disease to prevent GBM survival and recurrence. Cellular senescence is an attractive area for the development of such new approaches. Senescence can occur in healthy cells when they are irreparably damaged. Senescent cells develop a chronic secretory phenotype that is generally considered pro-tumorigenic and pro-migratory. Age is a negative prognostic factor for GBM stage, and, with age, senescence steadily increases. Moreover, chemo-/radiotherapy can provide an additional increase in senescence close to the tumor. In light of this, we will review the importance of senescence in the tumor-supportive brain parenchyma, focusing on the invasion and growth of GBM in residual disease. We will propose a future direction on the application of anti-senescence therapies against recurrent GBM.
Collapse
Affiliation(s)
| | - Peter L. J. de Keizer
- Center for Molecular Medicine, Division LAB, University Medical Center Utrecht, 3584CG Utrecht, The Netherlands;
| |
Collapse
|
24
|
Anticancer Mechanism of Curcumin on Human Glioblastoma. Nutrients 2021; 13:nu13030950. [PMID: 33809462 PMCID: PMC7998496 DOI: 10.3390/nu13030950] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor and accounts for most adult brain tumors. Current available treatment options for GBM are multimodal, which include surgical resection, radiation, and chemotherapy. Despite the significant advances in diagnostic and therapeutic approaches, GBM remains largely resistant to treatment, with a poor median survival rate between 12 and 18 months. With increasing drug resistance, the introduction of phytochemicals into current GBM treatment has become a potential strategy to combat GBM. Phytochemicals possess multifarious bioactivities with multitarget sites and comparatively marginal toxicity. Among them, curcumin is the most studied compound described as a potential anticancer agent due to its multi-targeted signaling/molecular pathways properties. Curcumin possesses the ability to modulate the core pathways involved in GBM cell proliferation, apoptosis, cell cycle arrest, autophagy, paraptosis, oxidative stress, and tumor cell motility. This review discusses curcumin’s anticancer mechanism through modulation of Rb, p53, MAPK, P13K/Akt, JAK/STAT, Shh, and NF-κB pathways, which are commonly involved and dysregulated in preclinical and clinical GBM models. In addition, limitation issues such as bioavailability, pharmacokinetics perspectives strategies, and clinical trials were discussed.
Collapse
|
25
|
Fontanil T, Mohamedi Y, Espina-Casado J, Obaya ÁJ, Cobo T, Cal S. Hyalectanase Activities by the ADAMTS Metalloproteases. Int J Mol Sci 2021; 22:ijms22062988. [PMID: 33804223 PMCID: PMC8000579 DOI: 10.3390/ijms22062988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
The hyalectan family is composed of the proteoglycans aggrecan, versican, brevican and neurocan. Hyalectans, also known as lecticans, are components of the extracellular matrix of different tissues and play essential roles in key biological processes including skeletal development, and they are related to the correct maintenance of the vascular and central nervous system. For instance, hyalectans participate in the organization of structures such as perineural nets and in the regulation of neurite outgrowth or brain recovery following a traumatic injury. The ADAMTS (A Disintegrin and Metalloprotease domains, with thrombospondin motifs) family consists of 19 secreted metalloproteases. These enzymes also perform important roles in the structural organization and function of the extracellular matrix through interactions with other matrix components or as a consequence of their catalytic activity. In this regard, some of their preferred substrates are the hyalectans. In fact, ADAMTSs cleave hyalectans not only as a mechanism for clearance or turnover of proteoglycans but also to generate bioactive fragments which display specific functions. In this article we review some of the physiological and pathological effects derived from cleavages of hyalectans mediated by ADAMTSs.
Collapse
Affiliation(s)
- Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
- Departamento de Investigación, Instituto Ordóñez, 33012 Oviedo, Spain
| | - Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
| | - Jorge Espina-Casado
- Departamento de Química Física y Analítica, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Álvaro J. Obaya
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Asturiano de Odontología, 33006 Oviedo, Spain
- Correspondence: (T.C.); (S.C.); Tel.: +34-985966014 (T.C.); +34-985106282 (S.C.)
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
- Correspondence: (T.C.); (S.C.); Tel.: +34-985966014 (T.C.); +34-985106282 (S.C.)
| |
Collapse
|
26
|
Kiyokawa J, Kawamura Y, Ghouse SM, Acar S, Barçın E, Martínez-Quintanilla J, Martuza RL, Alemany R, Rabkin SD, Shah K, Wakimoto H. Modification of Extracellular Matrix Enhances Oncolytic Adenovirus Immunotherapy in Glioblastoma. Clin Cancer Res 2021; 27:889-902. [PMID: 33257429 PMCID: PMC7854507 DOI: 10.1158/1078-0432.ccr-20-2400] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Extracellular matrix (ECM) component hyaluronan (HA) facilitates malignant phenotypes of glioblastoma (GBM), however, whether HA impacts response to GBM immunotherapies is not known. Herein, we investigated whether degradation of HA enhances oncolytic virus immunotherapy for GBM. EXPERIMENTAL DESIGN Presence of HA was examined in patient and murine GBM. Hyaluronidase-expressing oncolytic adenovirus, ICOVIR17, and its parental virus, ICOVIR15, without transgene, were tested to determine if they increased animal survival and modulated the immune tumor microenvironment (TME) in orthotopic GBM. HA regulation of NF-κB signaling was examined in virus-infected murine macrophages. We combined ICOVIR17 with PD-1 checkpoint blockade and assessed efficacy and determined mechanistic contributions of tumor-infiltrating myeloid and T cells. RESULTS Treatment of murine orthotopic GBM with ICOVIR17 increased tumor-infiltrating CD8+ T cells and macrophages, and upregulated PD-L1 on GBM cells and macrophages, leading to prolonged animal survival, compared with control virus ICOVIR15. High molecular weight HA inhibits adenovirus-induced NF-κB signaling in macrophages in vitro, linking HA degradation to macrophage activation. Combining ICOVIR17 with anti-PD-1 antibody further extended the survival of GBM-bearing mice, achieving long-term remission in some animals. Mechanistically, CD4+ T cells, CD8+ T cells, and macrophages all contributed to the combination therapy that induced tumor-associated proinflammatory macrophages and tumor-specific T-cell cytotoxicity locally and systemically. CONCLUSIONS Our studies are the first to show that immune modulatory ICOVIR17 has a dual role of mediating degradation of HA within GBM ECM and subsequently modifying the immune landscape of the TME, and offers a mechanistic combination immunotherapy with PD-L1/PD-1 blockade that remodels innate and adaptive immune cells.
Collapse
Affiliation(s)
- Juri Kiyokawa
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Yoichiro Kawamura
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Shanawaz M Ghouse
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Simge Acar
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Erinç Barçın
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Jordi Martínez-Quintanilla
- Stem Cells and Cancer Laboratory, Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Robert L Martuza
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts
| | - Ramon Alemany
- ProCure Program, Catalan Institute of Oncology - ICO and Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Samuel D Rabkin
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts
| | - Khalid Shah
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts.
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts.
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Tang M, Rich JN, Chen S. Biomaterials and 3D Bioprinting Strategies to Model Glioblastoma and the Blood-Brain Barrier. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004776. [PMID: 33326131 PMCID: PMC7854518 DOI: 10.1002/adma.202004776] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/06/2020] [Indexed: 05/13/2023]
Abstract
Glioblastoma (GBM) is the most prevalent and lethal adult primary central nervous system cancer. An immunosuppresive and highly heterogeneous tumor microenvironment, restricted delivery of chemotherapy or immunotherapy through the blood-brain barrier (BBB), together with the brain's unique biochemical and anatomical features result in its universal recurrence and poor prognosis. As conventional models fail to predict therapeutic efficacy in GBM, in vitro 3D models of GBM and BBB leveraging patient- or healthy-individual-derived cells and biomaterials through 3D bioprinting technologies potentially mimic essential physiological and pathological features of GBM and BBB. 3D-bioprinted constructs enable investigation of cellular and cell-extracellular matrix interactions in a species-matched, high-throughput, and reproducible manner, serving as screening or drug delivery platforms. Here, an overview of current 3D-bioprinted GBM and BBB models is provided, elaborating on the microenvironmental compositions of GBM and BBB, relevant biomaterials to mimic the native tissues, and bioprinting strategies to implement the model fabrication. Collectively, 3D-bioprinted GBM and BBB models are promising systems and biomimetic alternatives to traditional models for more reliable mechanistic studies and preclinical drug screenings that may eventually accelerate the drug development process for GBM.
Collapse
Affiliation(s)
- Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jeremy N. Rich
- Division of Regenerative Medicine, Department of Medicine, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, Materials Science and Engineering Program, Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
28
|
Su M, Soomro SH, Jie J, Fu H. Effects of the extracellular matrix on myelin development and regeneration in the central nervous system. Tissue Cell 2021; 69:101444. [PMID: 33450651 DOI: 10.1016/j.tice.2020.101444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
Extracellular matrix (ECM) is a collection of extracellular molecules secreted by cells, providing structural and biochemical support for surrounding tissues. The ECM exerts biological effects by interacting with growth factors, signal receptors or adhesion molecules. In the case of myelin formation and regeneration, the combination of ECM and its receptors (for example, integrins) modulates signaling pathways such as PI3K, MAPK, etc., which in turn induces complex biological effects throughout various stages of myelination and regeneration. Studies have also found that myelin injury would cause changes in ECM composition and thus affecting the myelin regeneration process. Research on the ECM will provide a better understanding of how myelin is formed and regenerated, which will help to develop new therapies for demyelinating diseases. Future progress in this field will provide important information on how to modify the ECM to promote proliferation and differentiation of oligodendrocyte precursor cells (OPC), thereby stimulating myelin formation and regeneration and restoring normal neural function.
Collapse
Affiliation(s)
- Min Su
- Wuhan University, School of Basic Medical Sciences, Wuhan, China.
| | | | - Jifu Jie
- Health School of Bayinguoleng Mongolian Autonomous Prefecture, Xinjiang, China.
| | - Hui Fu
- Wuhan University, School of Basic Medical Sciences, Wuhan, China.
| |
Collapse
|
29
|
Shen S, Zhang Y, Zhang S, Wang B, Shang L, Shao J, Lin M, Cui Y, Sun S, Ge S. 6-Bromoindirubin-3'-oxime Promotes Osteogenic Differentiation of Periodontal Ligament Stem Cells and Facilitates Bone Regeneration in a Mouse Periodontitis Model. ACS Biomater Sci Eng 2020; 7:232-241. [PMID: 33320531 DOI: 10.1021/acsbiomaterials.0c01078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Effective bone tissue engineering is important to overcome the unmet clinical challenges of periodontal tissue regeneration. Successful bone tissue engineering comprises three key factors: stem cells, growth factors, and scaffolds. 6-Bromoindirubin-3'-oxime (BIO) is an inhibitor of glycogen synthase kinase-3 (GSK-3) that can activate the Wnt signaling pathway by enhancing β-catenin activity. In this study, the effects of BIO on the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells (PDLSCs) were investigated. Poly(lactic-co-glycolic acid) (PLGA) and hyaluronic acid (HA) emerged as promising biomaterials; thus, we developed a novel HA hydrogel embedded with BIO-encapsulated PLGA microspheres and injected the formulation into the gingival sulcus of mice with experimental periodontitis. The release speed of this system was fast in the first week and followed a sustained release phase until week 4. In vivo experiments showed that this PLGA-BIO-HA hydrogel system can inhibit periodontal inflammation, promote bone regeneration, and induce the expression of bone-forming markers alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteocalcin (OCN) in a mouse periodontitis model. Therefore, this PLGA-BIO-HA hydrogel system provides a promising therapeutic strategy for periodontal bone regeneration.
Collapse
Affiliation(s)
- Song Shen
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Yilin Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, China
| | - Songmei Zhang
- Eastman Institute for Oral Health, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, 14642 New York, United States
| | - Bing Wang
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Lingling Shang
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Jinlong Shao
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Meng Lin
- School of Chemistry and Chemical Engineering, Shandong University, 250012 Jinan, Shandong, China
| | - Yating Cui
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Shengjun Sun
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Shaohua Ge
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| |
Collapse
|
30
|
Papadas A, Arauz G, Cicala A, Wiesner J, Asimakopoulos F. Versican and Versican-matrikines in Cancer Progression, Inflammation, and Immunity. J Histochem Cytochem 2020; 68:871-885. [PMID: 32623942 PMCID: PMC7711242 DOI: 10.1369/0022155420937098] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Versican is an extracellular matrix proteoglycan with key roles in multiple facets of cancer development, ranging from proliferative signaling, evasion of growth-suppressor pathways, regulation of cell death, promotion of neoangiogenesis, and tissue invasion and metastasis. Multiple lines of evidence implicate versican and its bioactive proteolytic fragments (matrikines) in the regulation of cancer inflammation and antitumor immune responses. The understanding of the dynamics of versican deposition/accumulation and its proteolytic turnover holds potential for the development of novel immune biomarkers as well as approaches to reset the immune thermostat of tumors, thus promoting efficacy of modern immunotherapies. This article summarizes work from several laboratories, including ours, on the role of this central matrix proteoglycan in tumor progression as well as tumor-immune cell cross-talk.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
- Cellular & Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Garrett Arauz
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Joshua Wiesner
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| |
Collapse
|
31
|
Bettini S, Bonfrate V, Valli L, Giancane G. Paramagnetic Functionalization of Biocompatible Scaffolds for Biomedical Applications: A Perspective. Bioengineering (Basel) 2020; 7:E153. [PMID: 33260520 PMCID: PMC7711469 DOI: 10.3390/bioengineering7040153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 01/15/2023] Open
Abstract
The burst of research papers focused on the tissue engineering and regeneration recorded in the last years is justified by the increased skills in the synthesis of nanostructures able to confer peculiar biological and mechanical features to the matrix where they are dispersed. Inorganic, organic and hybrid nanostructures are proposed in the literature depending on the characteristic that has to be tuned and on the effect that has to be induced. In the field of the inorganic nanoparticles used for decorating the bio-scaffolds, the most recent contributions about the paramagnetic and superparamagnetic nanoparticles use was evaluated in the present contribution. The intrinsic properties of the paramagnetic nanoparticles, the possibility to be triggered by the simple application of an external magnetic field, their biocompatibility and the easiness of the synthetic procedures for obtaining them proposed these nanostructures as ideal candidates for positively enhancing the tissue regeneration. Herein, we divided the discussion into two macro-topics: the use of magnetic nanoparticles in scaffolds used for hard tissue engineering for soft tissue regeneration.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Innovation Engineering, University Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy;
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
| | - Valentina Bonfrate
- Department of Cultural Heritage, University of Salento, via D. Birago, 64, 73100 Lecce, Italy;
| | - Ludovico Valli
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
- Department of Biological and Environmental Sciences and Technology (DiSTeBA), University Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Gabriele Giancane
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
- Department of Cultural Heritage, University of Salento, via D. Birago, 64, 73100 Lecce, Italy;
| |
Collapse
|
32
|
Affiliation(s)
- Dong Gil Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyo Jung Sim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Eun Kyung Song
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Korea
| |
Collapse
|
33
|
Porras Hernández AM, Pohlit H, Sjögren F, Shi L, Ossipov D, Antfolk M, Tenje M. A simplified approach to control cell adherence on biologically derived in vitro cell culture scaffolds by direct UV-mediated RGD linkage. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:89. [PMID: 33057798 PMCID: PMC7560931 DOI: 10.1007/s10856-020-06446-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/30/2020] [Indexed: 05/11/2023]
Abstract
In this work, we present a method to fabricate a hyaluronic acid (HA) hydrogel with spatially controlled cell-adhesion properties based on photo-polymerisation cross-linking and functionalization. The approach utilises the same reaction pathway for both steps meaning that it is user-friendly and allows for adaptation at any stage during the fabrication process. Moreover, the process does not require any additional cross-linkers. The hydrogel is formed by UV-initiated radical addition reaction between acrylamide (Am) groups on the HA backbone. Cell adhesion is modulated by functionalising the adhesion peptide sequence arginine-glycine-aspartate onto the hydrogel surface via radical mediated thiol-ene reaction using the non-reacted Am groups. We show that 10 × 10 µm2 squares could be patterned with sharp features and a good resolution. The smallest area that could be patterned resulting in good cell adhesion was 25 × 25 µm2 squares, showing single-cell adhesion. Mouse brain endothelial cells adhered and remained in culture for up to 7 days on 100 × 100 µm2 square patterns. We see potential for this material combination for future use in novel organ-on-chip models and tissue engineering where the location of the cells is of importance and to further study endothelial cell biology.
Collapse
Affiliation(s)
- A M Porras Hernández
- Science for Life Laboratory, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - H Pohlit
- Science for Life Laboratory, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - F Sjögren
- Science for Life Laboratory, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - L Shi
- Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - D Ossipov
- Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
- Department of Biosciences and Nutrition (BioNut), Karolinska Institutet, Huddinge, Sweden
| | - M Antfolk
- BRIC-Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Tenje
- Science for Life Laboratory, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
34
|
Wilson E, Knudson W, Newell-Litwa K. Hyaluronan regulates synapse formation and function in developing neural networks. Sci Rep 2020; 10:16459. [PMID: 33020512 PMCID: PMC7536407 DOI: 10.1038/s41598-020-73177-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Neurodevelopmental disorders present with synaptic alterations that disrupt the balance between excitatory and inhibitory signaling. For example, hyperexcitability of cortical neurons is associated with both epilepsy and autism spectrum disorders. However, the mechanisms that initially establish the balance between excitatory and inhibitory signaling in brain development are not well understood. Here, we sought to determine how the extracellular matrix directs synapse formation and regulates synaptic function in a model of human cortical brain development. The extracellular matrix, making up twenty percent of brain volume, is largely comprised of hyaluronan. Hyaluronan acts as both a scaffold of the extracellular matrix and a space-filling molecule. Hyaluronan is present from the onset of brain development, beginning with neural crest cell migration. Through acute perturbation of hyaluronan levels during synaptogenesis, we sought to determine how hyaluronan impacts the ratio of excitatory to inhibitory synapse formation and the resulting neural activity. We used 3-D cortical spheroids derived from human induced pluripotent stem cells to replicate this neurodevelopmental window. Our results demonstrate that hyaluronan preferentially surrounds nascent excitatory synapses. Removal of hyaluronan increases the expression of excitatory synapse markers and results in a corresponding increase in the formation of excitatory synapses, while also decreasing inhibitory synapse formation. This increased excitatory synapse formation elevates network activity, as demonstrated by microelectrode array analysis. In contrast, the addition of purified hyaluronan suppresses excitatory synapse formation. These results establish that the hyaluronan extracellular matrix surrounds developing excitatory synapses, where it critically regulates synapse formation and the resulting balance between excitatory to inhibitory signaling.
Collapse
Affiliation(s)
- Emily Wilson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Warren Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Karen Newell-Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
35
|
Coogan KR, Stone PT, Sempertegui ND, Rao SS. Fabrication of micro-porous hyaluronic acid hydrogels through salt leaching. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Chou CH, Modo M. Characterization of gene expression changes in human neural stem cells and endothelial cells modeling a neurovascular microenvironment. Brain Res Bull 2020; 158:9-19. [PMID: 32092433 PMCID: PMC7103513 DOI: 10.1016/j.brainresbull.2020.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
Abstract
Angiogenesis-mediated neovascularization correlates with recovery after intracerebral implantation of neural stem cells (NSCs) in stroke. To elucidate NSCs' mechanism of action, it is essential to understand how these interact with the brain's vasculature after implantation. Using an all-human endothelial cell (EC, D3 cell line) and NSC (STROC05 and CTXOE03) co-culture model, fluorescently activated cell sorting (FACS) was used to isolate each cell type for a comparison of gene expression between monocultures of undifferentiated proliferating and differentiated non-proliferating cells. Gene expression for angiogenic factors (vascular endothelial growth factor, platelet derived growth factor, angiopoietin), as well as cell survival (brain derived neurotrophic factor, fibroblast growth factor) and migration (stromal cell-derived factor-1a) were measured and contrasted with the corresponding receptors on each cell type. The cellular source of extracellular matrix defining the basement membrane (vitronectin, fibronectin, laminin, collagen I and IV) and neuropil (hyaluronic acid, aggrecan, neurocan, thrombospondin, nidogen and brain associated link protein-1) was evaluated for NSCs and ECs. Co-culturing dramatically changed the expression profiles of each cell type in comparison to undifferentiated, but also differentiated cells. These results indicate that monocultures provide a poor model to investigate the cellular signaling involved in a tissue repair response. Co-cultures of NSCs and ECs forming vasculature-like structures (VLS) provide a more complex model to investigate NSC-induced neovascularization. These in vitro studies are essential to tease out individual cell signaling in NSCs and ECs to develop a mechanistic understanding of the efficacy of NSCs as a therapeutic for stroke.
Collapse
Affiliation(s)
- Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Radiology, University of Pittsburgh, Pittsburgh, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
37
|
Azbukina NV, Astakhova AA, Goriainov SV, Chistyakov VV, Sergeeva MG. Effects of High and Low Molecular Weight Hyaluronic Acids on the Omega-3 and Omega-6 Fatty Acid Release upon Activation of the Toll-Like Receptors in Astrocytes. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2020; 14:126-133. [DOI: 10.1134/s1990747819060035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 01/04/2025]
|
38
|
Shi W, Hass B, Kuss MA, Zhang H, Ryu S, Zhang D, Li T, Li YL, Duan B. Fabrication of versatile dynamic hyaluronic acid-based hydrogels. Carbohydr Polym 2020; 233:115803. [DOI: 10.1016/j.carbpol.2019.115803] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022]
|
39
|
Liu Z, Liu J, Cui X, Wang X, Zhang L, Tang P. Recent Advances on Magnetic Sensitive Hydrogels in Tissue Engineering. Front Chem 2020; 8:124. [PMID: 32211375 PMCID: PMC7068712 DOI: 10.3389/fchem.2020.00124] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering is a promising strategy for the repair and regeneration of damaged tissues or organs. Biomaterials are one of the most important components in tissue engineering. Recently, magnetic hydrogels, which are fabricated using iron oxide-based particles and different types of hydrogel matrices, are becoming more and more attractive in biomedical applications by taking advantage of their biocompatibility, controlled architectures, and smart response to magnetic field remotely. In this literature review, the aim is to summarize the current development of magnetically sensitive smart hydrogels in tissue engineering, which is of great importance but has not yet been comprehensively viewed.
Collapse
Affiliation(s)
- Zhongyang Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jianheng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
40
|
Zhou J, Lin Y, Lv J, Zhou L, Hu H, Yu L, Zhang Q, Yang H, Luo Z. Grafting with chondroitin sulfate on poly(vinyl alcohol) to improve antifouling property. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2020. [DOI: 10.1680/jbibn.19.00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Poly(vinyl alcohol) (PVA) hydrogels become muddy while used in artificial corneas. To enhance the antifouling property of PVA hydrogels, a PVA hydrogel was grafted with chondroitin sulfate (CdS) through a two-step reaction in this work. The surface chemical compositions, surface morphology and thermal property of the hydrogel were characterized by attenuated total reflectance FTIR, X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy and thermogravimetric analysis. It was confirmed that CdS was successfully grafted onto the surface of the PVA hydrogel through a two-step method. After grafting with p(GMA-CdS) (GMA: glycidyl methacrylate), both the thermal and mechanical properties of the PVA hydrogel became weaker and the PVA hydrogel became hydrophilic. The biocompatibility of the PVA-g-p(GMA-CdS) hydrogel could be considered as non-cytotoxic according to ISO 10993-5:2009. The antifouling property of the PVA-g-p(GMA-CdS) hydrogel, namely its anti-protein adsorption and anti-cell adhesion, was significantly improved due to surface hydration, steric exclusion effect and charge surface. The anti-protein adsorption of the PVA-g-p(GMA-CdS) hydrogel increased by about 33·48% in comparison with that of the PVA hydrogel and the anti-cell adhesion increased by about 67·92%. Overall, the PVA-g-p(GMA-CdS) hydrogel is an ideal biomaterial candidate for artificial corneas.
Collapse
Affiliation(s)
- Jinsheng Zhou
- Department of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yanming Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jing Lv
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Li Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Huiyuan Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Li Yu
- Shenzhen Eye Hospital, Shenzhen, China; Shenzhen Key Laboratory of Ophthalmology, Shenzhen, China
| | - Qilong Zhang
- Department of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Hui Yang
- Department of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhongkuan Luo
- Department of Materials Science and Engineering, Zhejiang University, Hangzhou, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
41
|
Srivastava T, Sherman LS, Back SA. Dysregulation of Hyaluronan Homeostasis During White Matter Injury. Neurochem Res 2020; 45:672-683. [PMID: 31542857 PMCID: PMC7060835 DOI: 10.1007/s11064-019-02879-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Although the extra cellular matrix (ECM) comprises a major proportion of the CNS parenchyma, new roles for the ECM in regeneration and repair responses to CNS injury have only recently been appreciated. The ECM undergoes extensive remodeling following injury to the developing or mature CNS in disorders that -include perinatal hypoxic-ischemic cerebral injury, multiple sclerosis and age-related vascular dementia. Here we focus on recently described mechanisms involving hyaluronan (HA), which negatively impact myelin repair after cerebral white matter injury. Injury induced depolymerization of hyaluronan (HA)-a component of the neural ECM-can inhibit myelin repair through the actions of specific sizes of HA fragments. These bioactive fragments selectively block the maturation of late oligodendrocyte progenitors via an immune tolerance-like pathway that suppresses pro-myelination signaling. We highlight emerging new pathophysiological roles of the neural ECM, particularly of those played by HA fragments (HAf) after injury and discuss strategies to promoter repair and regeneration of chronic myelination failure.
Collapse
Affiliation(s)
- Taasin Srivastava
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Stephen A Back
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
- Department of Pediatrics, Division of Pediatric Neuroscience, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd, Portland, OR, 97239-3098, USA.
| |
Collapse
|
42
|
Jiang J, Zhong X, Zhang H, Wang C. A novel corona core‑shell nanoparticle for enhanced intracellular drug delivery. Mol Med Rep 2020; 21:1965-1972. [PMID: 32319626 DOI: 10.3892/mmr.2020.10998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 12/23/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jianwei Jiang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiaoming Zhong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Hongyan Zhang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Chunlei Wang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
43
|
de Jong JM, Wang P, Oomkens M, Baron W. Remodeling of the interstitial extracellular matrix in white matter multiple sclerosis lesions: Implications for remyelination (failure). J Neurosci Res 2020; 98:1370-1397. [PMID: 31965607 DOI: 10.1002/jnr.24582] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) provides protection, rigidity, and structure toward cells. It consists, among others, of a wide variety of glycoproteins and proteoglycans, which act together to produce a complex and dynamic environment, most relevant in transmembrane events. In the brain, the ECM occupies a notable proportion of its volume and maintains the homeostasis of central nervous system (CNS). In addition, remodeling of the ECM, that is transient changes in ECM proteins regulated by matrix metalloproteinases (MMPs), is an important process that modulates cell behavior upon injury, thereby facilitating recovery. Failure of ECM remodeling plays an important role in the pathogenesis of multiple sclerosis (MS), a neurodegenerative demyelinating disease of the CNS with an inflammatory response against protective myelin sheaths that surround axons. Remyelination of denuded axons improves the neuropathological conditions of MS, but this regeneration process fails over time, leading to chronic disease progression. In this review, we uncover abnormal ECM remodeling in MS lesions by discussing ECM remodeling in experimental demyelination models, that is when remyelination is successful, and compare alterations in ECM components to the ECM composition and MMP expression in the parenchyma of demyelinated MS lesions, that is when remyelination fails. Inter- and intralesional differences in ECM remodeling in the distinct white matter MS lesions are discussed in terms of consequences for oligodendrocyte behavior and remyelination (failure). Hence, the review will aid to understand how abnormal ECM remodeling contributes to remyelination failure in MS lesions and assists in developing therapeutic strategies to promote remyelination.
Collapse
Affiliation(s)
- Jody M de Jong
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peng Wang
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michelle Oomkens
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
44
|
Xiong A, Spyrou A, Forsberg-Nilsson K. Involvement of Heparan Sulfate and Heparanase in Neural Development and Pathogenesis of Brain Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:365-403. [PMID: 32274718 DOI: 10.1007/978-3-030-34521-1_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain tumors are aggressive and devastating diseases. The most common type of brain tumor, glioblastoma (GBM), is incurable and has one of the worst five-year survival rates of all human cancers. GBMs are invasive and infiltrate healthy brain tissue, which is one main reason they remain fatal despite resection, since cells that have already migrated away lead to rapid regrowth of the tumor. Curative therapy for medulloblastoma (MB), the most common pediatric brain tumor, has improved, but the outcome is still poor for many patients, and treatment causes long-term complications. Recent advances in the classification of pediatric brain tumors reveal distinct subgroups, allowing more targeted therapy for the most aggressive forms, and sparing children with less malignant tumors the side-effects of massive treatment. Heparan sulfate proteoglycans (HSPGs), main components of the neurogenic niche, interact specifically with a large number of physiologically important molecules and vital roles for HS biosynthesis and degradation in neural stem cell differentiation have been presented. HSPGs are composed of a core protein with attached highly charged, sulfated disaccharide chains. The major enzyme that degrades HS is heparanase (HPSE), an important regulator of extracellular matrix (ECM) remodeling which has been suggested to promote the growth and invasion of other types of tumors. This is of clinical interest because GBM are highly invasive and children with metastatic MB at the time of diagnosis exhibit a worse outcome. Here we review the involvement of HS and HPSE in development of the nervous system and some of its most malignant brain tumors, glioblastoma and medulloblastoma.
Collapse
Affiliation(s)
- Anqi Xiong
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Insitutet, Stockholm, Sweden
| | - Argyris Spyrou
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
45
|
Chistyakov DV, Astakhova AA, Azbukina NV, Goriainov SV, Chistyakov VV, Sergeeva MG. High and Low Molecular Weight Hyaluronic Acid Differentially Influences Oxylipins Synthesis in Course of Neuroinflammation. Int J Mol Sci 2019; 20:ijms20163894. [PMID: 31405034 PMCID: PMC6719050 DOI: 10.3390/ijms20163894] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Accepted: 08/04/2019] [Indexed: 01/05/2023] Open
Abstract
Hyaluronic acid (HA), a major glycosaminoglycan of the extracellular matrix, has cell signaling functions that are dependent on its molecular weight. Anti-inflammatory effects for high-molecular-weight (HMW) HA and pro-inflammatory effects for low-molecular-weight (LMW) HA effects were found for various myeloid cells, including microglia. Astrocytes are cells of ectodermal origin that play a pivotal role in brain inflammation, but the link between HA with different molecular weights and an inflammatory response in these cells is not clear. We tested the effects of LMW and HMW HA in rat primary astrocytes, stimulated with Poly:IC (PIC, TLR3 agonist) and lipopolysaccharide (LPS, TLR4 agonist). Oxylipin profiles were measured by the UPLC-MS/MS analysis and metabolites HDoHEs (from docosahexaenoic acid), -HETEs, prostaglandins (from arachidonic acid), DiHOMEs and HODEs (from linoleic acid) were detected. Both, HMW and LMW HA downregulated the cyclooxygenase-mediated polyunsaturated fatty acids metabolism, LMW also reduced lipoxygenase-mediated fatty acid metabolism. Taken together, the data show that both LMW and HMW (i) influence themselves on cytokines (TNFα, IL-6, IL-10), enzymes iNOS, COX-2, and oxylipin levels in extracellular medium of cultured astrocytes, (ii) induced cellular adaptations in long-term applications, (iii) modulate TLR4- and TLR3-signaling pathways. The effects of HMW and LMW HA are predominantly revealed in TLR4– and TLR3- mediated responses, respectively.
Collapse
Affiliation(s)
- Dmitry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia.
- SREC PFUR Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia.
| | - Alina A Astakhova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Nadezda V Azbukina
- Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, Moscow 119234 Russia
| | - Sergei V Goriainov
- SREC PFUR Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Viktor V Chistyakov
- SREC PFUR Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| |
Collapse
|
46
|
Buckenmeyer MJ, Meder TJ, Prest TA, Brown BN. Decellularization techniques and their applications for the repair and regeneration of the nervous system. Methods 2019; 171:41-61. [PMID: 31398392 DOI: 10.1016/j.ymeth.2019.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 01/15/2023] Open
Abstract
A variety of surgical and non-surgical approaches have been used to address the impacts of nervous system injuries, which can lead to either impairment or a complete loss of function for affected patients. The inherent ability of nervous tissues to repair and/or regenerate is dampened due to irreversible changes that occur within the tissue remodeling microenvironment following injury. Specifically, dysregulation of the extracellular matrix (i.e., scarring) has been suggested as one of the major factors that can directly impair normal cell function and could significantly alter the regenerative potential of these tissues. A number of tissue engineering and regenerative medicine-based approaches have been suggested to intervene in the process of remodeling which occurs following injury. Decellularization has become an increasingly popular technique used to obtain acellular scaffolds, and their derivatives (hydrogels, etc.), which retain tissue-specific components, including critical structural and functional proteins. These advantageous characteristics make this approach an intriguing option for creating materials capable of stimulating the sensitive repair mechanisms associated with nervous system injuries. Over the past decade, several diverse decellularization methods have been implemented specifically for nervous system applications in an attempt to carefully remove cellular content while preserving tissue morphology and composition. Each application-based decellularized ECM product requires carefully designed treatments that preserve the unique biochemical signatures associated within each tissue type to stimulate the repair of brain, spinal cord, and peripheral nerve tissues. Herein, we review the decellularization techniques that have been applied to create biomaterials with the potential to promote the repair and regeneration of tissues within the central and peripheral nervous system.
Collapse
Affiliation(s)
- Michael J Buckenmeyer
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Tyler J Meder
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Travis A Prest
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Bryan N Brown
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| |
Collapse
|
47
|
Rauti R, Renous N, Maoz BM. Mimicking the Brain Extracellular Matrix
in Vitro
: A Review of Current Methodologies and Challenges. Isr J Chem 2019. [DOI: 10.1002/ijch.201900052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rossana Rauti
- Department of Biomedical Engineering Tel Aviv University Israel
| | - Noa Renous
- Department of Biomedical Engineering Tel Aviv University Israel
| | - Ben M. Maoz
- Department of Biomedical Engineering Tel Aviv University Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
- The Center for Nanoscience and Nanotechnology Tel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
48
|
Stephenson EL, Mishra MK, Moussienko D, Laflamme N, Rivest S, Ling CC, Yong VW. Chondroitin sulfate proteoglycans as novel drivers of leucocyte infiltration in multiple sclerosis. Brain 2019; 141:1094-1110. [PMID: 29506186 DOI: 10.1093/brain/awy033] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/04/2018] [Indexed: 12/28/2022] Open
Abstract
Multiple sclerosis presents with profound changes in the network of molecules involved in maintaining central nervous system architecture, the extracellular matrix. The extracellular matrix components, particularly the chondroitin sulfate proteoglycans, have functions beyond structural support including their potential interaction with, and regulation of, inflammatory molecules. To investigate the roles of chondroitin sulfate proteoglycans in multiple sclerosis, we used the experimental autoimmune encephalomyelitis model in a time course study. We found that the 4-sulfated glycosaminoglycan side chains of chondroitin sulfate proteoglycans, and the core protein of a particular family member, versican V1, were upregulated in the spinal cord of mice at peak clinical severity, correspondent with areas of inflammation. Versican V1 expression in the spinal cord rose progressively over the course of experimental autoimmune encephalomyelitis. A particular structure in the spinal cord and cerebellum that presented with intense upregulation of chondroitin sulfate proteoglycans is the leucocyte-containing perivascular cuff, an important portal of entry of immune cells into the central nervous system parenchyma. In these inflammatory perivascular cuffs, versican V1 and the glycosaminoglycan side chains of chondroitin sulfate proteoglycans were observed by immunohistochemistry within and in proximity to lymphocytes and macrophages as they migrated across the basement membrane into the central nervous system. Expression of versican V1 transcript was also documented in infiltrating CD45+ leucocytes and F4/80+ macrophages by in situ hybridization. To test the hypothesis that the chondroitin sulfate proteoglycans regulate leucocyte mobility, we used macrophages in tissue culture studies. Chondroitin sulfate proteoglycans significantly upregulated pro-inflammatory cytokines and chemokines in macrophages. Strikingly, and more potently than the toll-like receptor-4 ligand lipopolysaccharide, chondroitin sulfate proteoglycans increased the levels of several members of the matrix metalloproteinase family, which are implicated in the capacity of leucocytes to cross barriers. In support, the migratory capacity of macrophages in vitro in a Boyden chamber transwell assay was enhanced by chondroitin sulfate proteoglycans. Finally, using brain specimens from four subjects with multiple sclerosis with active lesions, we found chondroitin sulfate proteoglycans to be associated with leucocytes in inflammatory perivascular cuffs in all four patients. We conclude that the accumulation of chondroitin sulfate proteoglycans in the perivascular cuff in multiple sclerosis and experimental autoimmune encephalomyelitis boosts the activity and migration of leucocytes across the glia limitans into the central nervous system parenchyma. Thus, chondroitin sulfate proteoglycans represent a new class of molecules to overcome in order to reduce the inflammatory cascades and clinical severity of multiple sclerosis.
Collapse
Affiliation(s)
- Erin L Stephenson
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Manoj K Mishra
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Daniel Moussienko
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Nataly Laflamme
- Department of Molecular Medicine, CHU de Quebec Research Center, Laval University, Quebec, Canada
| | - Serge Rivest
- Department of Molecular Medicine, CHU de Quebec Research Center, Laval University, Quebec, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| |
Collapse
|
49
|
Moxon SR, Corbett NJ, Fisher K, Potjewyd G, Domingos M, Hooper NM. Blended alginate/collagen hydrogels promote neurogenesis and neuronal maturation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109904. [PMID: 31499954 PMCID: PMC6873778 DOI: 10.1016/j.msec.2019.109904] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/23/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022]
Abstract
Brain extracellular matrix (ECM) is complex, heterogeneous and often poorly replicated in traditional 2D cell culture systems. The development of more physiologically relevant 3D cell models capable of emulating the native ECM is of paramount importance for the study of human induced pluripotent stem cell (iPSC)-derived neurons. Due to its structural similarity with hyaluronic acid, a primary component of brain ECM, alginate is a potential biomaterial for 3D cell culture systems. However, a lack of cell adhesion motifs within the chemical structure of alginate has limited its application in neural culture systems. This study presents a simple and accessible method of incorporating collagen fibrils into an alginate hydrogel by physical mixing and controlled gelation under physiological conditions and tests the hypothesis that such a substrate could influence the behaviour of human neurons in 3D culture. Regulation of the gelation process enabled the penetration of collagen fibrils throughout the hydrogel structure as demonstrated by transmission electron microscopy. Encapsulated human iPSC-derived neurons adhered to the blended hydrogel as evidenced by the increased expression of α1, α2 and β1 integrins. Furthermore, immunofluorescence microscopy revealed that encapsulated neurons formed complex neural networks and matured into branched neurons expressing synaptophysin, a key protein involved in neurotransmission, along the neurites. Mechanical tuning of the hydrogel stiffness by modulation of the alginate ionic crosslinker concentration also influenced neuron-specific gene expression. In conclusion, we have shown that by tuning the physicochemical properties of the alginate/collagen blend it is possible to create different ECM-like microenvironments where complex mechanisms underpinning the growth and development of human neurons can be simulated and systematically investigated. Alginate and collagen are blended to create a bespoke hydrogel that mimics aspects of brain ECM. Encapsulated human pluripotent stem cell derived neurons adhere to the hydrogel matrix and form 3D neural networks. Neuronal differentiation and maturation is promoted within the hydrogel matrix. Mechanical properties of the hydrogel can be easily tuned to optimise neurogenesis. The hydrogel presents a platform for studying neuronal function and dysfunction in health and disease.
Collapse
Affiliation(s)
- Samuel R Moxon
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Nicola J Corbett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Kate Fisher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Geoffrey Potjewyd
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; School of Mechanical, Aerospace and Civil Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Marco Domingos
- School of Mechanical, Aerospace and Civil Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Nigel M Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|
50
|
Ravina K, Briggs DI, Kislal S, Warraich Z, Nguyen T, Lam RK, Zarembinski TI, Shamloo M. Intracerebral Delivery of Brain-Derived Neurotrophic Factor Using HyStem ®-C Hydrogel Implants Improves Functional Recovery and Reduces Neuroinflammation in a Rat Model of Ischemic Stroke. Int J Mol Sci 2018; 19:ijms19123782. [PMID: 30486515 PMCID: PMC6321015 DOI: 10.3390/ijms19123782] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Potential therapeutics aimed at neural repair and functional recovery are limited in their blood-brain barrier permeability and may exert systemic or off-target effects. We examined the effects of brain-derived neurotrophic factor (BDNF), delivered via an extended release HyStem®-C hydrogel implant or vehicle, on sensorimotor function, infarct volume, and neuroinflammation, following permanent distal middle cerebral artery occlusion (dMCAo) in rats. Eight days following dMCAo or sham surgery, treatments were implanted directly into the infarction site. Rats received either vehicle, BDNF-only (0.167 µg/µL), hydrogel-only, hydrogel impregnated with 0.057 µg/µL of BDNF (hydrogel + BDNFLOW), or hydrogel impregnated with 0.167 µg/µL of BDNF (hydrogel + BDNFHIGH). The adhesive removal test (ART) and 28-point Neuroscore (28-PN) were used to evaluate sensorimotor function up to two months post-ischemia. The hydrogel + BDNFHIGH group showed significant improvements on the ART six to eight weeks following treatment and their behavioral performance was consistently greater on the 28-PN. Infarct volume was reduced in rats treated with hydrogel + BDNFHIGH as were levels of microglial, phagocyte, and astrocyte marker immunoexpression in the corpus striatum. These data suggest that targeted intracerebral delivery of BDNF using hydrogels may mitigate ischemic brain injury and restore functional deficits by reducing neuroinflammation.
Collapse
Affiliation(s)
- Kristine Ravina
- Department of Neurosurgery, Stanford University School of Medicine, 1050 Arastradero Road, Building A, Palo Alto, CA 94304-1334, USA.
| | - Denise I Briggs
- Department of Neurosurgery, Stanford University School of Medicine, 1050 Arastradero Road, Building A, Palo Alto, CA 94304-1334, USA.
| | - Sezen Kislal
- Department of Neurosurgery, Stanford University School of Medicine, 1050 Arastradero Road, Building A, Palo Alto, CA 94304-1334, USA.
| | - Zuha Warraich
- Department of Neurosurgery, Stanford University School of Medicine, 1050 Arastradero Road, Building A, Palo Alto, CA 94304-1334, USA.
| | - Tiffany Nguyen
- Department of Neurosurgery, Stanford University School of Medicine, 1050 Arastradero Road, Building A, Palo Alto, CA 94304-1334, USA.
| | - Rachel K Lam
- Department of Neurosurgery, Stanford University School of Medicine, 1050 Arastradero Road, Building A, Palo Alto, CA 94304-1334, USA.
| | | | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, 1050 Arastradero Road, Building A, Palo Alto, CA 94304-1334, USA.
| |
Collapse
|