1
|
Boyd LF, Jiang J, Ahmad J, Natarajan K, Margulies DH. Experimental Structures of Antibody/MHC-I Complexes Reveal Details of Epitopes Overlooked by Computational Prediction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1366-1380. [PMID: 38456672 PMCID: PMC10982845 DOI: 10.4049/jimmunol.2300839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
mAbs to MHC class I (MHC-I) molecules have proved to be crucial reagents for tissue typing and fundamental studies of immune recognition. To augment our understanding of epitopic sites seen by a set of anti-MHC-I mAb, we determined X-ray crystal structures of four complexes of anti-MHC-I Fabs bound to peptide/MHC-I/β2-microglobulin (pMHC-I). An anti-H2-Dd mAb, two anti-MHC-I α3 domain mAbs, and an anti-β2-microglobulin mAb bind pMHC-I at sites consistent with earlier mutational and functional experiments, and the structures explain allelomorph specificity. Comparison of the experimentally determined structures with computationally derived models using AlphaFold Multimer showed that although predictions of the individual pMHC-I heterodimers were quite acceptable, the computational models failed to properly identify the docking sites of the mAb on pMHC-I. The experimental and predicted structures provide insight into strengths and weaknesses of purely computational approaches and suggest areas that merit additional attention.
Collapse
Affiliation(s)
- Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
2
|
Vita R, Mody A, Overton JA, Buus S, Haley ST, Sette A, Mallajosyula V, Davis MM, Long DL, Willis RA, Peters B, Altman JD. Minimal Information about MHC Multimers (MIAMM). JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:531-537. [PMID: 35042788 PMCID: PMC8830768 DOI: 10.4049/jimmunol.2100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
With the goal of improving the reproducibility and annotatability of MHC multimer reagent data, we present the establishment of a new data standard: Minimal Information about MHC Multimers (https://miamm.lji.org/). Multimers are engineered reagents composed of a ligand and a MHC, which can be represented in a standardized format using ontology terminology. We provide an online Web site to host the details of the standard, as well as a validation tool to assist with the adoption of the standard. We hope that this publication will bring increased awareness of Minimal Information about MHC Multimers and drive acceptance, ultimately improving the quality and documentation of multimer data in the scientific literature.
Collapse
Affiliation(s)
- Randi Vita
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA;
| | - Apurva Mody
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
| | | | - Soren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| | - Dale L Long
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Richard A Willis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA
| | - John D Altman
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA
| |
Collapse
|
3
|
Achour A, Broggini L, Han X, Sun R, Santambrogio C, Buratto J, Visentin C, Barbiroli A, De Luca CMG, Sormanni P, Moda F, De Simone A, Sandalova T, Grandori R, Camilloni C, Ricagno S. Biochemical and biophysical comparison of human and mouse beta-2 microglobulin reveals the molecular determinants of low amyloid propensity. FEBS J 2019; 287:546-560. [PMID: 31420997 DOI: 10.1111/febs.15046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
Abstract
The molecular bases of amyloid aggregation propensity are still poorly understood, especially for proteins that display a stable folded native structure. A prototypic example is human beta-2 microglobulin (β2m), which, when accumulated in patients, gives rise to dialysis-related amyloidosis. Interestingly, although the physiologic concentration of β2m in mice is five times higher than that found in human patients, no amyloid deposits are observed in mice. Moreover, murine β2m (mβ2m) not only displays a lower amyloid propensity both in vivo and in vitro but also inhibits the aggregation of human β2m in vitro. Here, we compared human and mβ2m for their aggregation propensity, ability to form soluble oligomers, stability, three-dimensional structure and dynamics. Our results indicate that mβ2m low-aggregation propensity is due to two concomitant aspects: the low-aggregation propensity of its primary sequence combined with the absence of high-energy amyloid-competent conformations under native conditions. The identification of the specific properties determining the low-aggregation propensity of mouse β2m will help delineate the molecular risk factors which cause a folded protein to aggregate.
Collapse
Affiliation(s)
- Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, Solna, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Solna, Sweden
| | - Luca Broggini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Italy
| | - Xiao Han
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, Solna, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Solna, Sweden
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, Solna, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Solna, Sweden
| | - Carlo Santambrogio
- Dipartimento di Biotecnologie e Bioscienze, Università Milano-Bicocca, Italy
| | - Jeremie Buratto
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, Solna, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Solna, Sweden
| | | | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Italy
| | - Chiara Maria Giulia De Luca
- Divisione di Neurologia 5 - Neuropatologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Fabio Moda
- Divisione di Neurologia 5 - Neuropatologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, Solna, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Solna, Sweden
| | - Rita Grandori
- Dipartimento di Biotecnologie e Bioscienze, Università Milano-Bicocca, Italy
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Italy
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, Italy
| |
Collapse
|
4
|
Cloning and characterization of ovine beta2-microglobulin cDNAs. Vet Immunol Immunopathol 2008; 123:360-5. [PMID: 18400307 DOI: 10.1016/j.vetimm.2008.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 02/13/2008] [Accepted: 02/27/2008] [Indexed: 11/22/2022]
Abstract
Beta-2-microglobulin (beta(2)m) is the light chain of the major histocompatibility complex (MHC) class I cell surface heterodimer. beta(2)m is well conserved across most species with few polymorphisms seen within species. The aims of this study were to clone and express ovine beta(2)m and investigate if allelic variation of ovine beta(2)m exists. Ovine beta(2)m clones were isolated from five sheep of three breeds by reverse-transcription polymerase chain reaction (RT-PCR). Sequence analysis showed that four ovine beta(2)m sequences were obtained. Within breeds and individual animals there was evidence of allelic variation of ovine beta(2)m. An expression system was established to express one of the alleles with an ovine MHC class I cDNA clone in human embryo kidney cells (HEK293) and quail cells (QT35). Transfection experiments showed that ovine beta(2)m was expressed and directed the expression of ovine MHC class I heavy chain to the cell surface of the transfected cells. Both bovine and human beta(2)m supported ovine MHC class I heavy chain cell surface expression.
Collapse
|
5
|
Roden MM, Brims DR, Fedorov AA, DiLorenzo TP, Almo SC, Nathenson SG. Structural analysis of H2-Db class I molecules containing two different allelic forms of the type 1 diabetes susceptibility factor beta-2 microglobulin: Implications for the mechanism underlying variations in antigen presentation. Mol Immunol 2006; 43:1370-8. [PMID: 16229893 DOI: 10.1016/j.molimm.2005.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 08/23/2005] [Indexed: 11/21/2022]
Abstract
Beta-2 microglobulin (beta2m) is a member of the immunoglobulin-like domain superfamily that is an essential structural subunit of the MHC class I (MHC-I) molecule. beta2m was previously identified as a susceptibility factor for the development of type 1 diabetes (T1D) in NOD mice, whereby transgenic expression of the beta2ma variant, but not the beta2mb variant, restored diabetes susceptibility to normally resistant NOD.beta2mnull mice. Here we report the crystal structures and thermodynamic stabilities of the NOD MHC-I molecule H2-Db containing these two variants. Our results reveal subtle differences in the structures of the beta2m variants, namely in minor loop shifts and in variations in the hydrogen bonding networks at the interfaces between the components of the ternary complex. We also demonstrate that the thermodynamic stabilities of the beta2m variants in isolation differ. However, the conformation of the peptide in the MHC cleft is unchanged in beta2m allelic Db complexes, as are the TCR recognition surfaces. Thus, despite modest structural differences between allelic complexes, the evidence indicates that Db peptide presentation of the representative peptide is unchanged in the context of either beta2m allelic variant. These data suggest that other mechanisms, such as differential association of MHC-I in multiprotein complexes, are likely responsible for the effect of beta2m on T1D development.
Collapse
Affiliation(s)
- Matthew M Roden
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
6
|
Haugland O, Torgersen J, Syed M, Evensen O. Expression profiles of inflammatory and immune-related genes in Atlantic salmon (Salmo salar L.) at early time post vaccination. Vaccine 2005; 23:5488-99. [PMID: 16098640 DOI: 10.1016/j.vaccine.2005.07.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 06/26/2005] [Accepted: 07/19/2005] [Indexed: 11/19/2022]
Abstract
Vaccination of Atlantic salmon parr with oil-based vaccines will inevitably cause inflammation at the site of injection, albeit the underlying mechanisms are not very well understood or studied in any detail. Here, we report time-course changes in expression levels, assessed by real-time RT-PCR of IL-1 beta, Mx, two beta-2-microglobulin variants and MHC class II beta, from 2 to 19 days post vaccination with a multi-component oil-adjuvanted vaccine. Highly variable individual responses to vaccination make selection of high responders essential prior to subtractive analysis. Based on the above mentioned expression profiles, high-responding individuals at 2, 8 and 19 days post vaccination, were selected for subtractive analysis. Clustering of clones according to putative function, suggest an initial up-regulation of genes involved in metabolism and cell signalling, before onset of genes involved in inflammation. The lag-time for genes considered as inflammatory markers was more than 48 h, while they were found to constitute the major part of up-regulated transcripts by 8 days post vaccination. By day 19, immune-related genes like immunoglobulin and T cell-receptor genes, comprised a higher proportion of the up-regulated genes than at earlier time points.
Collapse
Affiliation(s)
- Oyvind Haugland
- Department of pathology, National Veterinary Institute, Oslo, Norway
| | | | | | | |
Collapse
|
7
|
Moore YF, Lambracht-Washington D, Tabaczewski P, Fischer Lindahl K. Murine MHC class Ib gene, H2-M2, encodes a conserved surface-expressed glycoprotein. Immunogenetics 2004; 56:1-11. [PMID: 15045471 DOI: 10.1007/s00251-004-0661-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 02/21/2004] [Indexed: 11/30/2022]
Abstract
We have determined the genomic sequence of H2-M2 in seven haplotypes from nine inbred strains of mice and in five wild-derived haplotypes. Except for the spretus haplotype sp1 with a premature stop codon, we found only limited polymorphism. Four of the five amino acid substitutions in the alpha-helices are at positions that would point out from the antigen-binding groove, indicating that the polymorphism might influence receptor recognition rather than antigen binding. The rat homologue, RT1.M2(lv1), has 89% identity to H2-M2 at the nucleotide level and 91% at the amino acid level, and it also encodes an intact MHC class I glycoprotein. Chimeric proteins with alpha(1)alpha(2) or alpha(3)-transmembrane domains encoded by H2-Q9 were detectable on the surface of transfectants with monoclonal antibodies against Qa2, and the full-length M2 protein, labeled by fusion with green fluorescent protein, was detectable with S19.8 monoclonal antibodies. The H2-M2 protein was thus expressed on the cell surface, even in TAP-deficient RMA-S cells at 37 degrees C, suggesting that it is TAP-independent. We conclude that H2-M2 is a conserved mouse class Ib gene that is translated to a surface-expressed MHC class I molecule with a function still to be elucidated.
Collapse
Affiliation(s)
- Yuki F Moore
- Howard Hughes Medical Institute and Center for Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA
| | | | | | | |
Collapse
|
8
|
Miska KB, Hellman L, Miller RD. Characterization of beta(2)-microglobulin coding sequence from three non-placental mammals: the duckbill platypus, the short-beaked echidna, and the grey short-tailed opossum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2003; 27:247-256. [PMID: 12590975 DOI: 10.1016/s0145-305x(02)00095-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To further characterize genes of immunological importance from non-placental mammals, cDNAs encoding beta(2)-microglobulin (beta(2)m) were isolated from two prototherians, the platypus and an echidna, and one metatherian, a grey short-tailed opossum. In addition, a second allele of beta(2)m was identified in another metatherian species, the brushtail possum. Analysis of the deduced translations revealed conservation of key residues in these molecules over a long evolutionary history. The types of nucleotide substitutions present among the various taxa are also consistent with purifying selection at this conserved locus. An evolutionary tree of beta(2)m was constructed that supports the classic view of evolution with prototherians as the basal mammalian group.
Collapse
Affiliation(s)
- Katarzyna B Miska
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
9
|
Hamilton-Williams EE, Serreze DV, Charlton B, Johnson EA, Marron MP, Mullbacher A, Slattery RM. Transgenic rescue implicates beta2-microglobulin as a diabetes susceptibility gene in nonobese diabetic (NOD) mice. Proc Natl Acad Sci U S A 2001; 98:11533-8. [PMID: 11572996 PMCID: PMC58764 DOI: 10.1073/pnas.191383798] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type 1 diabetes in both humans and nonobese diabetic (NOD) mice results from T-cell-mediated autoimmune destruction of insulin-producing pancreatic beta cells. Linkage studies have shown that type 1 diabetes in NOD mice is a polygenic disease involving more than 15 chromosomal susceptibility regions. Despite extensive investigation, the identification of individual susceptibility genes either within or outside the major histocompatibility complex region has proven problematic because of the limitations of linkage analysis. In this paper, we provide evidence implicating a single diabetes susceptibility gene, which lies outside the major histocompatibility complex region. Using allelic reconstitution by transgenic rescue, we show that NOD mice expressing the beta(2) microglobulin (beta(2)M)(a) allele develop diabetes, whereas NOD mice expressing a murine beta(2)M(b) or human allele are protected. The murine beta(2)M(a) allele differs from the beta(2)M(b) allele only at a single amino acid. Mechanistic studies indicate that the absence of the NOD beta(2)M(a) isoform on nonhematopoietic cells inhibits the development or activation of diabetogenic T cells.
Collapse
|
10
|
Matsumoto N, Mitsuki M, Tajima K, Yokoyama WM, Yamamoto K. The functional binding site for the C-type lectin-like natural killer cell receptor Ly49A spans three domains of its major histocompatibility complex class I ligand. J Exp Med 2001; 193:147-58. [PMID: 11148219 PMCID: PMC2193338 DOI: 10.1084/jem.193.2.147] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Natural killer (NK) cells express receptors that recognize major histocompatibility complex (MHC) class I molecules and regulate cytotoxicity of target cells. In this study, we demonstrate that Ly49A, a prototypical C-type lectin-like receptor expressed on mouse NK cells, requires species-specific determinants on beta2-microglobulin (beta2m) to recognize its mouse MHC class I ligand, H-2D(d). The involvement of beta2m in the interaction between Ly49A and H-2D(d) is also demonstrated by the functional effects of a beta2m-specific antibody. We also define three residues in alpha1/alpha2 and alpha3 domains of H-2D(d) that are critical for the recognition of H-2D(d) on target cells by Ly49A. In the crystal structure of the Ly49A/H-2D(d) complex, these residues are involved in hydrogen bonding to Ly49A in one of the two potential Ly49A binding sites on H-2D(d). These data unambiguously indicate that the functional effect of Ly49A as an MHC class I-specific NK cell receptor is mediated by binding to a concave region formed by three structural domains of H-2D(d), which partially overlaps the CD8 binding site.
Collapse
MESH Headings
- Animals
- Antigens, Ly
- Base Sequence
- Binding Sites
- CD8 Antigens/metabolism
- Carrier Proteins/chemistry
- Carrier Proteins/metabolism
- Cell Line
- DNA Primers/genetics
- H-2 Antigens/chemistry
- H-2 Antigens/genetics
- H-2 Antigens/metabolism
- Histocompatibility Antigen H-2D
- Humans
- In Vitro Techniques
- Killer Cells, Natural/immunology
- Lectins/metabolism
- Lectins, C-Type
- Ligands
- Macromolecular Substances
- Membrane Proteins/chemistry
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Mutagenesis, Site-Directed
- NK Cell Lectin-Like Receptor Subfamily A
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/metabolism
- Receptors, NK Cell Lectin-Like
- Transfection
- beta 2-Microglobulin/immunology
Collapse
Affiliation(s)
- N Matsumoto
- Laboratory of Molecular Medicine, Department of Integrated Biosciences, The University of Tokyo Graduate School of Frontier Sciences, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
11
|
Dabhi VM, Hovik R, Van Kaer L, Fischer Lindahl K. The Alloreactive T Cell Response Against the Class Ib Molecule H2-M3 Is Specific for High Affinity Peptides. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.10.5171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
MHC class Ib molecule H2-M3 presents N-formylated peptides to CD8+ CTLs. Endogenous formylated peptides can come from the N-terminus of each of the 13 proteins encoded by the mitochondrial genome. In peptide competition assays, two of these peptides bind with high affinity, six bind with intermediate affinity, three bind with low affinity, and two do not bind measurably. Alloreactive CTLs from M3-specific, mixed lymphocyte cultures responded strongly against the two peptides with high affinity for M3, occasionally to peptides with intermediate affinity, and not at all to the rest. Long term lines and CTL clones reacted with only the high affinity peptides, demonstrating that alloreactive CTLs depend on specific peptides and that peptide affinity for class I correlates with alloantigenicity.
Collapse
Affiliation(s)
| | - Rolf Hovik
- *Departments of Microbiology and Biochemistry, and
- †Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235; and
| | - Luc Van Kaer
- ‡Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- †Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235; and
| | - Kirsten Fischer Lindahl
- *Departments of Microbiology and Biochemistry, and
- †Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235; and
| |
Collapse
|
12
|
Abstract
The MHC class Ib molecule H2-M3 presents N-formylated peptides from the N terminus of proteins encoded by the mitochondrial genome to CTL. A panel of CTL specific for a peptide derived from a mitochondrial protein, either COI or ND1, was used to determine the optimal peptide length for sensitizing antigen-deficient target cells. All long-term CTL lines and most CTL clones lysed target cells sensitized with either a COI hexamer or an ND1 heptamer. Only 3 out of 12 anti-ND1 clones preferred an octamer or nonamer peptide and no CTL required to longer peptides. The CTL preference for short peptides matches a shortened groove in M3. The CTL all lysed lymphoblasts encoding the appropriate mitochondrial antigen, suggesting that these target cells express naturally processed, endogenous, formylated peptides, ranging from six to nine amino acids in length.
Collapse
Affiliation(s)
- V M Dabhi
- Howard Hughes Medical Institute, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235-9050, USA
| | | |
Collapse
|
13
|
Palmer DB, McVey JH, Purohit R, Picard J, Dyson PJ. Characterization of a recent retroposon insertion on mouse chromosome 2 and localization of the cognate parental gene to chromosome 11. Mamm Genome 1998; 9:103-6. [PMID: 9457668 DOI: 10.1007/s003359900697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genomic sequence on mouse Chromosome (Chr) 2 corresponding to a previously identified novel cDNA has been characterized. The genomic organization of this locus, adjacent to the beta 2 microglobulin gene, has the properties of a processed gene or retroposon including the presence of a short flanking direct repeat, a polyadenylation signal/poly A tract, and the absence of introns. Analysis of inbred and wild-derived Mus DNAs reveals the retroposon to be a feature only of M. m. domesticus subspecies, suggesting that the insertion event is relatively recent. This notion is supported by the presence of an open reading frame and the lack of sequence divergence in the flanking direct repeats. The complex chromatin configuration characteristic of this region in mouse and human is not, therefore, related to this cDNA. The cognate parental gene encoding the cDNA was mapped to Chr 11. A further, more ancient retroposon present in many Mus species localizes to Chr 17.
Collapse
Affiliation(s)
- D B Palmer
- Clinical Sciences Centre, RPMS, Hammersmith Hospital, London, UK
| | | | | | | | | |
Collapse
|
14
|
Shum BP, Azumi K, Zhang S, Kehrer SR, Raison RL, Detrich HW, Parham P. Unexpected beta2-microglobulin sequence diversity in individual rainbow trout. Proc Natl Acad Sci U S A 1996; 93:2779-84. [PMID: 8610117 PMCID: PMC39709 DOI: 10.1073/pnas.93.7.2779] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
For mammals beta2-microglobulin (beta2m), the light chain of major histocompatibility complex (MHC) class I molecules, is invariant (or highly conserved) and is encoded by a single gene unlinked to the MHC. We find that beta2m of a salmonid fish, the rainbow trout (Oncorhynchus mykiss), does not conform to the mammalian paradigm. Ten of 12 randomly selected beta2m cDNA clones from an individual fish have different nucleotide sequences. A complex restriction fragment length polymorphism pattern is observed with rainbow trout, suggesting multiple beta2m genes in the genome, in excess of the two genes expected from the ancestral salmonid tetraploidy. Additional duplication and diversification of the beta2m genes might have occurred subsequently. Variation in the beta2m cDNA sequences is mainly at sites that do not perturb the structure of the mature beta2m protein, showing that the observed diversity of the trout beta2m genes is not primarily a result of pathogen selection.
Collapse
Affiliation(s)
- B P Shum
- Department of Structural Biology, Standford University, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Hederer RA, Chandler PR, Dyson PJ, Antoniou AN, Millrain MM, Mellor AL, Simpson E, Robinson PJ. Acceptance of skin grafts between mice bearing different allelic forms of beta 2-microglobulin. Transplantation 1996; 61:299-304. [PMID: 8600640 DOI: 10.1097/00007890-199601270-00023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Single amino acid disparities in MHC class I molecules can elicit transplantation responses. Since beta 2 microglobulin (beta 2m) is noncovalently associated with class I antigens on the cell membrane we investigated whether the single amino acid polymorphism at position 85 (Asp-->Ala) in the mouse beta 2m molecule can cause skin graft rejection. A B2mb transgene was introduced into CBA(B2ma) mice which subsequently expressed both forms of beta 2m. Skin from these CBA beta 2mb transgenic mice was not rejected by the parental CBA strain. Previous studies showed that cytotoxic T lymphocyte (CTL) responses directed against beta 2mb use H2Kb as a restriction element. We therefore produced mice expressing H2Kb and H2Ab as well as beta 2mb by crossing CBA.beta 2mb mice with either CBA.Kb (CBK) transgenic mice or C3H.SW mice and used these as skin graft donors for beta 2mb negative littermates. In both cases rejection of transgenic skin only occurred when mice had received both a beta 2mb graft and an H2-disparate allograft lying adjacent in the same site. Introduction of the male specific antigen, H-Y, as a helper determinant did not result in rejection of beta 2mb skin. Neither did two CTL determinants (P91A and beta 2mb) on the same graft complement one another to elicit a transplantation response. Prior immunisation with tissues expressing the beta 2m disparity alone did not generate in vivo or in vitro beta 2mb-specific CTL responses, suggesting that this single amino acid difference is not sufficient to elicit a CTL or helper T cell response.
Collapse
Affiliation(s)
- R A Hederer
- MRC Clinical Sciences Centre, Royal Postgraduate Medical School, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pedersen LO, Stryhn A, Holter TL, Etzerodt M, Gerwien J, Nissen MH, Thøgersen HC, Buus S. The interaction of beta 2-microglobulin (beta 2m) with mouse class I major histocompatibility antigens and its ability to support peptide binding. A comparison of human and mouse beta 2m. Eur J Immunol 1995; 25:1609-16. [PMID: 7614989 DOI: 10.1002/eji.1830250621] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The function of major histocompatibility complex (MHC) class I molecules is to sample peptides derived from intracellular proteins and to present these peptides to CD8+ cytotoxic T lymphocytes. In this paper, biochemical assays addressing MHC class I binding of both peptide and beta 2-microglobulin (beta 2m) have been used to examine the assembly of the trimolecular MHC class I/beta 2m/peptide complex. Recombinant human beta 2m and mouse beta 2ma have been generated to compare the binding of the two beta 2m to mouse class I. It is frequently assumed that human beta 2m binds to mouse class I heavy chain with a much higher affinity than mouse beta 2m itself. We find that human beta 2m only binds to mouse class I heavy chain with slightly (about 3-fold) higher affinity than mouse beta 2m. In addition, we compared the effect of the two beta 2m upon peptide binding to mouse class I. The ability of human beta 2m to support peptide binding correlated well with its ability to saturate mouse class I heavy chains. Surprisingly, mouse beta 2m only facilitated peptide binding when mouse beta 2m was used in excess (about 20-fold) of what was needed to saturate the class I heavy chains. The inefficiency of mouse beta 2m to support peptide binding could not be attributed to a reduced affinity of mouse beta 2m/MHC class I complexes for peptides or to a reduction in the fraction of mouse beta 2m/MHC class I molecules participating in peptide binding. We have previously shown that only a minor fraction of class I molecules are involved in peptide binding, whereas most of class I molecules are involved in beta 2m binding. We propose that mouse beta 2m interacts with the minor peptide binding (i.e. the "empty") fraction with a lower affinity than human beta 2m does, whereas mouse and human beta 2m interact with the major peptide-occupied fraction with almost similar affinities. This would explain why mouse beta 2m is less efficient than human beta 2m in generating the peptide binding moiety, and identifies the empty MHC class I heavy chain as the molecule that binds human beta 2m preferentially.
Collapse
Affiliation(s)
- L O Pedersen
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Serreze DV, Prochazka M, Reifsnyder PC, Bridgett MM, Leiter EH. Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene. J Exp Med 1994; 180:1553-8. [PMID: 7931087 PMCID: PMC2191696 DOI: 10.1084/jem.180.4.1553] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Insulin-dependent diabetes mellitus (IDDM) in NOD/Lt mice represents a complex polygenic disease. NOR/Lt is a recombinant congenic strain (RCS) in which limited regions of the NOD/Lt genome have been replaced by genome from the C57BL/KsJ strain. NOR mice are insulitis resistant and diabetes free despite genetic identity with NOD at numerous chromosomal regions containing previously described insulin-dependent diabetes (Idd) genes, including the strongly diabetogenic H2g7 major histocompatibility complex (MHC) haplotype. The present study revealed BKs-derived genome on segments of chromosomes (Chr) 1, 2, 4, 5, 7, 11, 12, and 18, approximating 11.6% of the total NOR genome analyzed. (NOD x NOR)F2 segregation analysis was employed to identify chromosomal regions in NOR containing Idd resistance alleles. IDDM developed in 33% (10/30) of F1 females, and 29.3% (36/123) of F2 females aged to 1 yr. A previously unrecognized diabetes resistance locus (designated Idd13r) strongly protective in homozygous state was identified on NOR Chr 2 in linkage with the Il1 alpha structural gene. The existence of this locus was confirmed by construction of a NOD stock congenic for NOR-derived markers on Chr 2. Our analysis shows the utility of RCS and congenic stocks for the identification and isolation of non-MHC genes with strong antidiabetogenic functions.
Collapse
|
18
|
Ruiz RE, Hall BL, Doyle C, Ward FE. Baboon and cotton-top tamarin B2m cDNA sequences and the evolution of primate beta 2-microglobulin. Hum Immunol 1994; 39:188-94. [PMID: 8026986 DOI: 10.1016/0198-8859(94)90259-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nonhuman primates represent phylogenetic intermediates for studying the divergence of human and murine beta 2Ms. We report the nucleotide sequences of B2m cDNA clones from a baboon cell line, 26CB-1 (Papio hamadryas; primates: Cercopithecoidea), and a cotton-top tamarin cell line, 1605L (Saguinus oedipus; primates: Ceboidea). The baboon and tamarin B2m sequences indicate a very slow rate of B2m evolution in primates relative to that in murid rodents. Phenotypic evolution of beta 2M has also been very conservative in primates, with only 9-14 substitutions separating baboon or tamarin beta 2Ms from those of humans or orangutans. Analyses of silent and amino-acid-altering nucleotide substitutions provide evidence that negative selection has acted to limit variability in beta strands of primate beta 2Ms, while positive selection has promoted diversity in non-beta-strand regions of murine beta 2Ms. No evidence for the action of selection upon beta 2M residues that contact the class I heavy chain was found in primates or mice. The finding that different selective forces have operated upon primate and murine beta 2Ms suggests that beta 2M may have evolved to serve distinct functions in primates and mice.
Collapse
Affiliation(s)
- R E Ruiz
- Department of Biological Anthropology and Anatomy, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | |
Collapse
|