1
|
Zhang JJ, Fu H, Lin R, Zhou J, Haider A, Fang W, Elghazawy NH, Rong J, Chen J, Li Y, Ran C, Collier TL, Chen Z, Liang SH. Imaging Cholinergic Receptors in the Brain by Positron Emission Tomography. J Med Chem 2023; 66:10889-10916. [PMID: 37583063 PMCID: PMC10461233 DOI: 10.1021/acs.jmedchem.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/17/2023]
Abstract
Cholinergic receptors represent a promising class of diagnostic and therapeutic targets due to their significant involvement in cognitive decline associated with neurological disorders and neurodegenerative diseases as well as cardiovascular impairment. Positron emission tomography (PET) is a noninvasive molecular imaging tool that has helped to shed light on the roles these receptors play in disease development and their diverse functions throughout the central nervous system (CNS). In recent years, there has been a notable advancement in the development of PET probes targeting cholinergic receptors. The purpose of this review is to provide a comprehensive overview of the recent progress in the development of these PET probes for cholinergic receptors with a specific focus on ligand structure, radiochemistry, and pharmacology as well as in vivo performance and applications in neuroimaging. The review covers the structural design, pharmacological properties, radiosynthesis approaches, and preclinical and clinical evaluations of current state-of-the-art PET probes for cholinergic receptors.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hualong Fu
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruofan Lin
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ahmed Haider
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Weiwei Fang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Nehal H. Elghazawy
- Department
of Pharmaceutical, Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Jian Rong
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chongzhao Ran
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02114, United States
| | - Thomas L. Collier
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhen Chen
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Steven H. Liang
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Higher levels of different muscarinic receptors in the cortex and hippocampus from subjects with Alzheimer’s disease. J Neural Transm (Vienna) 2016; 124:273-284. [DOI: 10.1007/s00702-016-1625-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022]
|
3
|
Declercq LD, Vandenberghe R, Van Laere K, Verbruggen A, Bormans G. Drug Development in Alzheimer's Disease: The Contribution of PET and SPECT. Front Pharmacol 2016; 7:88. [PMID: 27065872 PMCID: PMC4814730 DOI: 10.3389/fphar.2016.00088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Clinical trials aiming to develop disease-altering drugs for Alzheimer’s disease (AD), a neurodegenerative disorder with devastating consequences, are failing at an alarming rate. Poorly defined inclusion-and outcome criteria, due to a limited amount of objective biomarkers, is one of the major concerns. Non-invasive molecular imaging techniques, positron emission tomography and single photon emission (computed) tomography (PET and SPE(C)T), allow visualization and quantification of a wide variety of (patho)physiological processes and allow early (differential) diagnosis in many disorders. PET and SPECT have the ability to provide biomarkers that permit spatial assessment of pathophysiological molecular changes and therefore objectively evaluate and follow up therapeutic response, especially in the brain. A number of specific PET/SPECT biomarkers used in support of emerging clinical therapies in AD are discussed in this review.
Collapse
Affiliation(s)
- Lieven D Declercq
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven Leuven, Belgium
| | - Alfons Verbruggen
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| |
Collapse
|
4
|
Colloby SJ, McKeith IG, Wyper DJ, O'Brien JT, Taylor JP. Regional covariance of muscarinic acetylcholine receptors in Alzheimer's disease using (R, R) [(123)I]-QNB SPECT. J Neurol 2015; 262:2144-53. [PMID: 26122542 DOI: 10.1007/s00415-015-7827-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/11/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is characterised by deficits in cholinergic neurotransmission and subsequent receptor changes. We investigated (123)I-iodo-quinuclidinyl-benzilate (QNB) SPECT images using spatial covariance analysis (SCA), to detect an M1/M4 receptor spatial covariance pattern (SCP) that distinguished AD from controls. Furthermore, a corresponding regional cerebral blood flow (rCBF) SCP was also derived. Thirty-nine subjects (15 AD and 24 healthy elderly controls) underwent (123)I-QNB and (99m)Tc-exametazime SPECT. Voxel SCA was simultaneously applied to the set of smoothed/registered scans, generating a series of eigenimages representing common intercorrelated voxels across subjects. Linear regression identified individual M1/M4 and rCBF SCPs that discriminated AD from controls. The M1/M4 SCP showed concomitant decreased uptake in medial temporal, inferior frontal, basal forebrain and cingulate relative to concomitant increased uptake in frontal poles, occipital, pre-post central and precuneus/superior parietal regions (F1,37 = 85.7, p < 0.001). A largely different perfusion SCP was obtained showing concomitant decreased rCBF in medial and superior temporal, precuneus, inferior parietal and cingulate relative to concomitant increased rCBF in cerebellum, pre-post central, putamen, fusiform and brain stem/midbrain regions (F1,37 = 77.5, p < 0.001). The M1/M4 SCP expression correlated with the duration of cognitive symptoms (r = 0.90, p < 0.001), whereas the rCBF SCP expression negatively correlated with MMSE, CAMCOG and CAMCOGmemory (r ≥ |0.63|, p ≤ 0.006). (123)I-QNB SPECT revealed an M1/M4 basocortical covariance pattern, distinct from rCBF, reflecting the duration of disease rather than current clinical symptoms. This approach could be more sensitive than univariate methods in characterising the cholinergic/rCBF changes that underpin the clinical phenotype of AD.
Collapse
Affiliation(s)
- Sean J Colloby
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | - Ian G McKeith
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - David J Wyper
- SINAPSE, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Level E4, Box 189, Cambridge, CB2 0QC, UK
| | - John-Paul Taylor
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
5
|
Abstract
Single photon emission computed tomography (SPECT) is a non-invasive functional neuroimaging technique that can be used in the diagnosis of dementia. This review describes some of the SPECT radiotracers available for imaging dementia patients and discusses recommendations for the clinical use of this imaging technique.
Collapse
Affiliation(s)
- S L Pimlott
- Radiopharmaceutical Research & Development, West of Scotland Radionuclide Dispensary, Western Infirmary, Dumbarton Road, Glasgow, UK
| | | |
Collapse
|
6
|
Pakrasi S, Colloby SJ, Firbank MJ, Perry EK, Wyper DJ, Owens J, McKeith IG, Williams ED, O'Brien JT. Muscarinic acetylcholine receptor status in Alzheimer’s disease assessed using (R, R) 123I-QNB SPECT. J Neurol 2007; 254:907-13. [PMID: 17361343 DOI: 10.1007/s00415-006-0473-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 09/14/2006] [Accepted: 10/03/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND One of the most characteristic changes in Alzheimer's disease (AD) is a deficit in cortical cholinergic neurotransmission and associated receptor changes. OBJECTIVE To investigate differences in the distribution of M1/M4 receptors using (R, R) (123)I-iodo-quinuclidinyl-benzilate (QNB) and single photon emission computed tomography (SPECT) in patients with mild/moderate AD and age-matched controls. Also, to compare (123)I-QNB uptake to the corresponding changes in regional cerebral blood flow (rCBF) in the same subjects. METHODS Forty two subjects (18 AD and 24 healthy elderly controls) underwent (123)IQNB and perfusion (99m)Tc-exametazime SPECT scanning. Image analysis was performed using statistical parametric mapping (SPM99) following intensity normalisation of each image to its corresponding mean whole brain uptake. Group differences and correlations were assessed using two sample t-tests and linear regression respectively. RESULTS Significant reductions in (123)I-QNB uptake were observed in regions of the frontal rectal gyrus, right parahippocampal gyrus, left hippocampus and areas of the left temporal lobe in AD compared to controls (height threshold of p < or = 0.001 uncorrected). Such regions were also associated with marked deficits in rCBF. No significant correlations were identified between imaging data and clinical variables. CONCLUSION Functional impairment as measured by rCBF is more widespread than changes in M1/M4 receptor density in mild/moderate AD, where there was little or no selective loss of M1/M4 receptors in these patients that was greater than the general functional deficits shown on rCBF scans.
Collapse
Affiliation(s)
- Sanjeet Pakrasi
- Institute for Ageing and Health, Newcastle University, Wolfson Research Centre, Newcastle General Hospital, Westgate Road, Newcastle upon Tyne, NE4 6BE, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ebmeier KP, Donaghey C, Dougall NJ. Neuroimaging in dementia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 67:43-72. [PMID: 16291019 DOI: 10.1016/s0074-7742(05)67002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- K P Ebmeier
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Morningside Park Edinburgh EH10 5HF, United Kingdom
| | | | | |
Collapse
|
8
|
Abstract
Dementia is a chronic brain syndrome with enormous impact on health care provision. Emission tomography (single photon emission computed tomography (SPECT) and positron emission tomography (PET)) provides a unique tool to investigate functional and neurochemical changes, both in those with established dementia and in those at risk of subsequent cognitive decline. Alzheimer's disease is characterized by bilateral temporoparietal hypoperfusion on SPECT and hypometabolism on PET, which may precede the onset of dementia as similar changes can be demonstrated in those with mild cognitive impairment and in those genetically at risk of developing Alzheimer's disease. In dementia with Lewy bodies medial parietal and occipital perfusion deficits are seen together with pre-synaptic and post-synaptic dopaminergic changes, most particularly a reduction in the striatal pre-synaptic dopamine transporter which can be visualized using appropriate ligands (e.g., (123)I-FP-CIT). Vascular dementia is associated with multiple, asymmetric, perfusion deficits in multi-infarct dementia. In contrast, subcortical vascular dementia is associated with reduced perfusion but preserved oxygen extraction fraction on PET. Fronto-temporal dementia is characterized by both hypometabolism and hypoperfusion in fronto-temporal lobes, though hypometabolism appears more extensive, affecting large areas of the cerebral hemispheres. Longitudinal studies of treatment response in Alzheimer's disease with cholinergic drugs have found changes in regional blood flow and nicotinic and muscarinic receptor function in those patients who respond to treatment. Currently, emission tomography is widely used for assisting with clinical differential diagnosis. Future developments will entail the development and application of more specific neurochemical ligands and those which bear a closer relationship to the underlying disease processes, including markers of tau, amyloid and synuclein pathology.
Collapse
Affiliation(s)
- Sanjeet Pakrasi
- Institute for Health and Ageing, Wolfson Research Centre, Newcastle General Hospital, Newcastle upon Tyne, NE4 6BE, UK.
| | | |
Collapse
|
9
|
Boundy KL, Barnden LR, Katsifis AG, Rowe CC. Reduced posterior cingulate binding of I-123 iodo-dexetimide to muscarinic receptors in mild Alzheimer’s disease. J Clin Neurosci 2005; 12:421-5. [PMID: 15925773 DOI: 10.1016/j.jocn.2004.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2004] [Indexed: 10/25/2022]
Abstract
Early detection of Alzheimer's disease (AD) allows timely pharmacological and social interventions. Alteration in muscarinic receptor binding was evaluated with I-123 iodo-dexetimide (IDEX) in early clinical stage AD. We studied 11 mild AD patients (Folstein Minimental State Examination Score 24-27, Clinical Dementia Rating 0.5-1.0) and 10 age- and sex-matched normal subjects with SPECT brain imaging after injection of 185 MBq of IDEX and 750 MBq of 99mTc-HMPAO. Using a voxel based approach (Statistical Parametric Mapping (SPM99) software), a deficit in IDEX binding was found in the posterior cingulate cortex in the mild AD group with p (corrected)=0.06 for the most significant voxel and p=0.0003 for the voxel cluster. Region of interest (ROI) analysis confirmed the SPM99 results. SPM99 found no deficit in the HMPAO scans, suggesting that neither atrophy nor hypoperfusion were major factors in the reduced IDEX binding. This study provides further evidence of the involvement of the posterior cingulate region and of muscarinic receptors in early Alzheimer's disease and suggests that this change may precede an alteration in blood flow.
Collapse
Affiliation(s)
- K L Boundy
- The Queen Elizabeth Hospital, Woodville, SA, Australia
| | | | | | | |
Collapse
|
10
|
Piggott MA, Owens J, O'Brien J, Colloby S, Fenwick J, Wyper D, Jaros E, Johnson M, Perry RH, Perry EK. Muscarinic receptors in basal ganglia in dementia with Lewy bodies, Parkinson's disease and Alzheimer's disease. J Chem Neuroanat 2003; 25:161-73. [PMID: 12706204 DOI: 10.1016/s0891-0618(03)00002-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Derivatives of the muscarinic antagonist 3-quinuclidinyl-4-iodobenzilate (QNB), particularly [123I]-(R,R)-I-QNB, are currently being assessed as in vivo ligands to monitor muscarinic receptors in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), relating changes to disease symptoms and to treatment response with cholinergic medication. To assist in the evaluation of in vivo binding, muscarinic receptor density in post-mortem human brain was measured by autoradiography with [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB and compared to M1 ([3H]pirenzepine) and M2 and M4 ([3H]AF-DX 384) receptor binding. Binding was calculated in tissue containing striatum, globus pallidus (GPe), claustrum, and cingulate and insula cortex, in cases of AD, DLB, Parkinson's disease (PD) and normal elderly controls. Pirenzepine, AF-DX 384 and (R,S)-I-QNB binding in the striatum correlated positively with increased Alzheimer-type pathology, and AF-DX 384 and (R,R)-I-QNB cortical binding correlated positively with increased Lewy body (LB) pathology; however, striatal pirenzepine binding correlated negatively with cortical LB pathology. M1 receptors were significantly reduced in striatum in DLB compared to AD, PD, and controls and there was a significant correlation between M1 and dopamine D2 receptor densities. [3H]AF-DX 384 binding was higher in the striatum and GPe in AD. Binding of [125I]-(R,R)-I-QNB, which may reflect increased muscarinic M4 receptors, was higher in cortex and claustrum in DLB and AD. [125I]-(R,S)-I-QNB binding was higher in the GPe in AD. Low M1 and D2 receptors in DLB imply altered regulation of the striatal projection neurons which express these receptors. Low density of striatal M1 receptors may relate to the extent of movement disorder in DLB, and to a reduced risk of parkinsonism with acetylcholinesterase inhibition.
Collapse
Affiliation(s)
- Margaret A Piggott
- MRC/University of Newcastle Centre in Clinical Brain Ageing, MRC Building, Newcastle General Hospital, Westgate Road, NE4 6BE, Newcastle-upon-Tyne, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Piggott M, Owens J, O'Brien J, Paling S, Wyper D, Fenwick J, Johnson M, Perry R, Perry E. Comparative distribution of binding of the muscarinic receptor ligands pirenzepine, AF-DX 384, (R,R)-I-QNB and (R,S)-I-QNB to human brain. J Chem Neuroanat 2002; 24:211-23. [PMID: 12297267 DOI: 10.1016/s0891-0618(02)00066-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Quinuclidinyl benzilate (QNB) and its derivatives are being developed to investigate muscarinic receptor changes in vivo in Alzheimer's disease and dementia with Lewy bodies. This is the first study of [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB binding in vitro in human brain. We have compared the in vitro binding of the muscarinic ligands [3H]pirenzepine and [3H]AF-DX 384, which have selectivity for the M1 and M2/M4 receptor subtypes, respectively, to the binding of [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB. This will provide a guide to the interpretation of in vivo SPET images generated with [123I]-(R,R)-I-QNB and [123I]-(R,S)-I-QNB. Binding was investigated in striatum, globus pallidus, thalamus and cerebellum, and cingulate, insula, temporal and occipital cortical areas, which show different proportions of muscarinic receptor subtypes, in post-mortem brain from normal individuals. M1 receptors are of high density in cortex and striatum and are relatively low in the thalamus and cerebellum, while M4 receptors are mainly expressed in the striatum, and M2 receptors are most evident in the cerebellum and thalamus. [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB density distribution patterns were consistent with binding to both M1 and M4 receptors, with [125I]-(R,R)-I-QNB additionally binding to a non-cholinergic site not displaceable by atropine. This distribution can be exploited by in vivo imaging, developing ligands for both SPET and PET, to reveal muscarinic receptor changes in Alzheimer's disease and dementia with Lewy bodies during the disease process and following cholinergic therapy.
Collapse
Affiliation(s)
- Margaret Piggott
- Newcastle General Hospital, MRC/University of Newcastle Centre Development in Clinical Brain Ageing, MRC Building, Westgate Road, NE4 6BE, Newcastle-upon-Tyne, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
McPherson DW, Breeden WK, Beets AL, Luo H, Sood V, Knapp FF. Stereoselective synthesis, in vitro, and initial in vivo evaluation of 1-methylpiperidin-4-yl alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (IPIP): a novel radioiodinated molecular probe with high affinity for the muscarinic receptor. Nucl Med Biol 2001; 28:959-73. [PMID: 11711316 DOI: 10.1016/s0969-8051(01)00252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
1-Methylpiperidin-4-yl alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (IPIP, Fig. 1) was investigated as a potential radioiodinated molecular probe targeted to the muscarinic receptor complex. The IPIP stereoisomers were synthesized via a chiral intermediate in >95% enantiomeric excess. The R-isomers demonstrated a M(1) to M(2) subtype selectivity of approximately 3 to 1 and the S-isomers demonstrated non-subtype selective binding in vitro. IPIP was radiolabeled with iodide-125 with an average radiochemical yield of 74.4% (+/-14.8, n = 5), specific activities >800 mCi/micromol, and radiochemical purities >97%. In vivo the Z-isomers demonstrated high uniform cerebral uptake suggesting non-subtype selective binding. In contrast, E-R-IPIP, after allowing a low uptake in M(2) rich areas to clear, demonstrated a retention of activity in M(1) and M(4) rich cerebral regions. In addition, the cerebral uptake of E-R-IPIP and Z-S-IPIP were inhibited by 70-90% via pretreatment with R-QNB, an established muscarinic antagonist. An ex vivo metabolism study demonstrated Z-S-IPIP was stable at the receptor site with an absence of radiolabeled metabolites.
Collapse
Affiliation(s)
- D W McPherson
- Nuclear Medicine Group, Life Sciences Division, Oak Ridge National Laboratory (ORNL), Post Office Box 2008, Building 4501, Oak Ridge, TN 37831-6229, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- W C Eckelman
- PET Department, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
14
|
Zubieta JK, Koeppe RA, Frey KA, Kilbourn MR, Mangner TJ, Foster NL, Kuhl DE. Assessment of muscarinic receptor concentrations in aging and Alzheimer disease with [11C]NMPB and PET. Synapse 2001; 39:275-87. [PMID: 11169777 DOI: 10.1002/1098-2396(20010315)39:4<275::aid-syn1010>3.0.co;2-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cerebral cholinergic deficits have been described in Alzheimer disease (AD) and as a result of normal aging. At the present time, there are very limited options for the quantification of cholinergic receptors with in vivo imaging techniques such as PET. In the present study, we examined the feasibility of utilizing [11C]N-methyl-4-piperidyl benzilate (NMPB), a nonselective muscarinic receptor ligand, in the study of aging and neurodegenerative processes associated with cholinergic dysfunction. Based on prior data describing the accuracy of various kinetic methods, we examined the concentration of muscarinic receptors with [11C]NMPB and PET using two- and three-compartment kinetic models. Eighteen healthy subjects and six patients diagnosed with probable AD were studied. Pixel-by-pixel two-compartment model fits showed acceptable precision in the study of normal aging, with comparable results to those obtained with a more complex and less precise three-compartment model. Normal aging was associated with a reduction in muscarinic receptor binding in neocortical regions and thalamus. In AD patients, the three-compartment model appeared capable of dissociating changes in tracer transport from changes in receptor binding, but suffered from statistical uncertainty, requiring normalization to a reference region, and therefore limiting its potential use in the study of neurodegenerative processes. After normalization, no regional changes in muscarinic receptor concentrations were observed in AD.
Collapse
Affiliation(s)
- J K Zubieta
- Department of Psychiatry, The University of Michigan, Neuroscience Building, 1103 East Huron Street, Ann Arbor, MI 48104-1687, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Volkow ND, Ding YS, Fowler JS, Gatley SJ. Imaging brain cholinergic activity with positron emission tomography: its role in the evaluation of cholinergic treatments in Alzheimer's dementia. Biol Psychiatry 2001; 49:211-20. [PMID: 11230872 DOI: 10.1016/s0006-3223(00)01112-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
One of the strategies in the treatment of Alzheimer's disease is the use of drugs that enhance cholinergic brain function, since it is believed that cholinergic dysfunction is one of the factors that contributes to cognitive deterioration. Positron emission tomography is a medical imaging method that can be used to measure the concentration, kinetics, and distribution of cholinergic-enhancing drugs directly in the human brain and assess the effects of the drugs at markers of cholinergic cell viability (vesicular transporters, acetylcholinesterase), at muscarininc and nicotinic receptors, at extracellular acetylcholine, at markers of brain function (glucose metabolism and blood flow), and on amyloid plaque burden in vivo in the brains of patients with Alzheimer's disease. In addition, these measures can be applied to assess the drugs' pharmacokinetic and pharmacodynamic properties in the human brain. Since the studies are done in living human subjects, positron emission tomography can evaluate the relationship between the drugs' biological, behavioral, and cognitive effects; monitor changes in brain function in response to chronic treatment; and determine if pharmacologic interventions are neuroprotective. Moreover, because positron emission tomography has the potential to identify Alzheimer's disease during early disease, it can be used to establish whether early interventions can prevent or delay further development.
Collapse
Affiliation(s)
- N D Volkow
- Medical Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | |
Collapse
|
16
|
McPherson DW, Greenbaum M, Luo H, Beets AL, Knapp FF. Evaluation of Z-(R,R)-IQNP for the potential imaging of m2 mAChR rich regions of the brain and heart. Life Sci 2000; 66:885-96. [PMID: 10714889 DOI: 10.1016/s0024-3205(99)00672-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alterations in the function or density of the m2 muscarinic (mAChR) subtype have been postulated to play an important role in various dementias such as Alzheimer's disease. The ability to image and quantify the m2 mAChR subtype is of importance for a better understanding of the m2 subtype function in various dementias. Z-(R)-1-Azabicyclo[2.2.2]oct-3-y (R)-alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (Z-(R,R)-IQNP) has demonstrated significant uptake in cerebral regions that contain a high concentration of m2 mAChR subtype in addition to heart tissue. The present study was undertaken to determine if the uptake of Z-(R,R)-IQNP in these regions is a receptor mediated process and to identify the radiospecies responsible for binding at the receptor site. A blocking study demonstrated cerebral and cardiac levels of activity were significantly reduced by pretreatment (2-3 mg/kg) of (R)-3-quinuclidinyl benzilate, dexetimide and scopolamine, established muscarinic antagonists. A direct comparison of the cerebral and cardiac uptake of [I-125]-Z-(R,R)-IQNP and [I-131]-E-(R,R)-IQNP (high uptake in ml, m4 rich mAChR cerebral regions) demonstrated Z-(R,R)-IQNP localized to a higher degree in cerebral and cardiac regions containing a high concentration of the m2 mAChR subtype as directly compared to E-(R,R)-IQNP. In addition, a study utilizing [I-123]-Z-(R,R)-IQNP, [I-131]-iododexetimide and [I-125]-R-3-quinuclidinyl S-4-iodobenzilate, Z-(R,R)-IQNP demonstrated significantly higher uptake and longer residence time in those regions which contain a high concentration of the m2 receptor subtype. Folch extraction of global brain and heart tissue at various times post injection of [I-125]-Z-(R,R)-IQNP demonstrated that approximately 80% of the activity was extracted in the lipid soluble fraction and identified as the parent ligand by TLC and HPLC analysis. These results demonstrate Z-(R,R)-IQNP has significant uptake, long residence time and high stability in cerebral and cardiac tissues containing high levels of the m2 mAChR subtype. These combined results strongly suggest that Z-(R,R)-IQNP is an attractive ligand for the in vivo imaging and evaluation of m2 rich cerebral and cardiac regions by SPECT.
Collapse
Affiliation(s)
- D W McPherson
- Nuclear Medicine Group, Life Sciences Division, Oak Ridge National Laboratory, TN 37831-6229, USA.
| | | | | | | | | |
Collapse
|
17
|
Sorger D, Schliebs R, Kämpfer I, Rossner S, Heinicke J, Dannenberg C, Georgi P. In vivo [125I]-iodobenzovesamicol binding reflects cortical cholinergic deficiency induced by specific immunolesion of rat basal forebrain cholinergic system. Nucl Med Biol 2000; 27:23-31. [PMID: 10755642 DOI: 10.1016/s0969-8051(99)00087-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, radiolabeled iodobenzovesamicol (IBVM), which is known to bind with high affinity to the vesicular acetylcholine transporter, was tested for its usefulness in imaging cortical cholinergic deficits in vivo. To induce reductions in cortical cholinergic input, the cholinergic immunotoxin 192IgG-saporin was employed. This has been shown to selectively and efficiently destroy basal forebrain cholinergic neurons in rats. The efficiency of the immunolesion was verified by histochemical acetylcholinesterase staining. [125I]-IBVM binding before and after lesioning was measured using autoradiography. Basal forebrain cholinergic cell loss resulted in a considerable reduction in [125I]-IBVM binding in the cholinoceptive target regions, but not in the striatum and cerebellum, brain regions that do not receive a cholinergic input by the basal forebrain cholinergic nuclei, suggesting that [123I]-IBVM has potential in imaging cortical cholinergic deficits in vivo, at least in animals.
Collapse
Affiliation(s)
- D Sorger
- Department of Nuclear Medicine, University of Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 1999; 22:273-80. [PMID: 10354606 DOI: 10.1016/s0166-2236(98)01361-7] [Citation(s) in RCA: 483] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The cholinergic system is one of the most important modulatory neurotransmitter systems in the brain and controls activities that depend on selective attention, which are an essential component of conscious awareness. Psychopharmacological and pathological evidence supports the concept of a 'cholinergic component' of conscious awareness. Drugs that antagonize muscarinic receptors induce hallucinations and reduce the level of consciousness, while the nicotinic receptor is implicated as being involved in the mechanism of action of general (inhalational) anaesthetics. In degenerative diseases of the brain, alterations in consciousness are associated with regional deficits in the cholinergic system. In Alzheimer's disease (AD), there is a loss of explicit (more than implicit) memory and hypoactivity of cholinergic projections to the hippocampus and cortex, while the visual hallucinations experienced by subjects with Dementia with Lewy bodies (DLB) are associated with reductions in neocortical ACh-related activity. In Parkinson's disease, the additional loss of pedunculopontine cholinergic neurones, which control REM (rapid eye movement) sleep or dreaming, is likely to contribute to REM abnormalities, which also occur in DLB. Widespread basal-forebrain and rostral brainstem cholinergic pathways, which include converging projections to the thalamus, appear to be located strategically for generating and integrating conscious awareness. Alleviation of a range of cognitive and non-cognitive symptoms by drugs that modulate the cholinergic system, which are being developed for the treatment of AD and related disorders, could be caused by changes in consciousness.
Collapse
Affiliation(s)
- E Perry
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, Westgate Road, Newcastle upon Tyne, UK NE4 6BE
| | | | | | | |
Collapse
|
19
|
Iacoboni M, Baron JC, Frackowiak RS, Mazziotta JC, Lenzi GL. Emission tomography contribution to clinical neurology. Clin Neurophysiol 1999; 110:2-23. [PMID: 10348316 DOI: 10.1016/s0013-4694(98)00097-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The role of functional neuroimaging techniques in furthering the understanding of pathophysiological mechanisms of neurological diseases and in the assessment of neurological patients is increasingly important. Here, we review data mainly from emission tomography techniques, namely positron emission tomography (PET) and single photon emission computerized tomography (SPECT), that have helped elucidate the pathophysiology of a number of neurological diseases and have suggested strategies in the treatment of neurological patients. We also suggest possible future developments of functional neuroimaging applied to clinical populations and briefly touch on the emerging role of functional magnetic resonance imaging (fMRI) in clinical neurology and neurosurgery.
Collapse
Affiliation(s)
- M Iacoboni
- Brain Mapping Division, Neuropsychiatric Institute, UCLA School of Medicine, University of California, Los Angeles 90033, USA
| | | | | | | | | |
Collapse
|
20
|
Sorger D, Kämpfer I, Schliebs R, Rossner S, Dannenberg C, Knapp WH. Iodo-QNB cortical binding and brain perfusion: effects of a cholinergic basal forebrain lesion in the rat. Nucl Med Biol 1999; 26:9-16. [PMID: 10096495 DOI: 10.1016/s0969-8051(98)00059-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study deals with the question of whether in vivo application of [125I]iodo-quinuclidinyl-benzilate (QNB) is able to demonstrate changes in cortical muscarinic receptor density induced by a cholinergic immunolesion of the rat basal forebrain cholinergic system, and whether the potential effects on IQNB distribution in vivo are also associated with effects on regional cerebral perfusion. Immunolesioned and control animals were injected with (R,S) [125]iodo-QNB and with [99mTc]-d,l-hexamethylpropyleneamine oxime (HMPAO). The cerebral distribution of both tracers was imaged using double tracer autoradiography. Impaired cholinergic transmission was paralleled by a 10-15% increase of [125I]iodo-QNB binding in the regions of cortex and hippocampus. The local cerebral blood flow remained unchanged after cholinergic lesion.
Collapse
Affiliation(s)
- D Sorger
- Department of Nuclear Medicine, University of Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Strijckmans V, Lee KS, Loc'h C, Ottaviani M, Zeeberg BR, Mazière B. Preparation and characterization of (R,S)-[76Br]BrQNB: An analogue of QNB for PET. J Labelled Comp Radiopharm 1998. [DOI: 10.1002/(sici)1099-1344(199704)39:4<339::aid-jlcr969>3.0.co;2-c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Strijckmans V, Luo H, Coulon C, McPherson DW, Loc'h C, Knapp FF, Mazière B. Z-(-,-)-[76Br]BrQNP: A high affinity PET radiotracer for central and cardiac muscarinic receptors. J Labelled Comp Radiopharm 1998. [DOI: 10.1002/(sici)1099-1344(199610)38:10<883::aid-jlcr902>3.0.co;2-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Yoshida T, Kuwabara Y, Ichiya Y, Sasaki M, Fukumura T, Ichimiya A, Takita M, Ogomori K, Masuda K. Cerebral muscarinic acetylcholinergic receptor measurement in Alzheimer's disease patients on 11C-N-methyl-4-piperidyl benzilate--comparison with cerebral blood flow and cerebral glucose metabolism. Ann Nucl Med 1998; 12:35-42. [PMID: 9559960 DOI: 10.1007/bf03165414] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We studied the cerebral muscarinic acetylcholinergic receptor (mACh-R) by means of 11C-N-methyl-4-piperidyl benzilate (11C-NMPB) and positron emission tomography (PET) in Alzheimer's disease (AD) cases, and the findings were compared with the cerebral blood flow (CBF) and the glucose metabolism (CMRGlc) to evaluate the relationship between the mACh-R and the CBF or the CMRGlc. The subjects consisted of 18 patients with AD and 18 age and sex matched normal volunteers. The patients were clinically diagnosed according to the criteria of the NINDS-ADRDA as having "probable AD" and were thus classified into two groups (mild and moderate AD) according to the severity of dementia determined by DSM-III-R. The CBF was measured by 99mTc-HMPAO SPECT, and the CMRGlc was measured by 18FDG PET. The 11C-NMPB uptake was evaluated by the graphical method and the ratio method (ROIs/Cerebellum). A significant mACh-R decrease and more severe CMRGlc decrease in the cortical region was seen in mild and moderate AD. The decrease in the CBF was not as obvious as that in the mACh-R and the CMRGlc. Our study thus suggested that the mACh-R decreased in patients with AD, and that the 18FDG PET was the most sensitive method for detecting the degenerative regions in patients with AD.
Collapse
Affiliation(s)
- T Yoshida
- Department of Radiology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Court JA, Lloyd S, Johnson M, Griffiths M, Birdsall NJ, Piggott MA, Oakley AE, Ince PG, Perry EK, Perry RH. Nicotinic and muscarinic cholinergic receptor binding in the human hippocampal formation during development and aging. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 101:93-105. [PMID: 9263584 DOI: 10.1016/s0165-3806(97)00052-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High-affinity nicotine, alpha-bungarotoxin (alpha BT) and muscarinic receptor binding was measured in the human hippocampal formation in a series of 57 cases aged between 24 weeks gestation and 100 years. Changes in nicotine receptor binding during development and aging were more striking than differences in alpha BT and muscarinic binding. Nicotine binding was higher at the late foetal stage than at any other subsequent time in all areas investigated. In the hippocampus a fall in binding then occurred within the first six months of life, with little or no subsequent fall during aging, whereas in the entorhinal cortex and the presubiculum the major loss of nicotine binding occurred after the fourth decade. alpha BT binding was significantly elevated in the CA 1 region, but in no other region of the hippocampus, in the late foetus, and there was also a fall in alpha BT binding in the entorhinal cortex during aging from the second decade. The modest changes in total muscarinic binding, which appeared to reflect those in M1 and M3 + 4 rather than M2 binding, were a rise in the entorhinal cortex between the foetal stage and childhood and a tendency for receptors to fall with age in the hippocampus and subicular complex. These findings implicate mechanisms controlling the expression of nicotinic receptors to a greater extent than muscarinic receptors in postnatal development and aging in the human hippocampus.
Collapse
Affiliation(s)
- J A Court
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Claus JJ, Dubois EA, Booij J, Habraken J, de Munck JC, van Herk M, Verbeeten B, van Royen EA. Demonstration of a reduction in muscarinic receptor binding in early Alzheimer's disease using iodine-123 dexetimide single-photon emission tomography. EUROPEAN JOURNAL OF NUCLEAR MEDICINE 1997; 24:602-8. [PMID: 9169565 DOI: 10.1007/bf00841396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Decreased muscarinic receptor binding has been suggested in single-photon emission tomography (SPET) studies of Alzheimer's disease. However, it remains unclear whether these changes are present in mildly demented patients, and the role of cortical atrophy in receptor binding assessment has not been investigated. We studied muscarinic receptor binding normalized to neostriatum with SPET using [123I]4-iododexetimide in five mildly affected patients with probable Alzheimer's disease and in five age-matched control subjects. Region of interest (ROI) analysis was performed in a consensus procedure blind to clinical diagnosis using matched magnetic resonance (MRI) images. Cortical atrophy was assessed by calculating percentages of cerebrospinal fluid in each ROI. An observer study with three observers was conducted to validate this method. Alzheimer patients showed statistically significantly less [123I]4-iododexetimide binding in left temporal and right temporo-parietal cortex compared with controls, independent of age, sex and cortical atrophy. Mean intra-observer variability was 3.6% and inter-observer results showed consistent differences in [123I]4-iododexetimide binding between observers. However, differences between patients and controls were comparable among observers and statistically significant in the same regions as in the consensus procedure. Using an MRI-SPET matching technique, we conclude that [123I]4-iododexetimide binding is reduced in patients with mild probable Alzheimer's disease in areas of temporal and temporo-parietal cortex.
Collapse
Affiliation(s)
- J J Claus
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ryding E. SPECT measurements of brain function in dementia; a review. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 1996; 168:54-8. [PMID: 8997421 DOI: 10.1111/j.1600-0404.1996.tb00374.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A brief review of the role of SPECT (single photon emission computed tomography) in the diagnosis of dementing brain disease is given. Between 1990 and 1995 some 100 original articles deal with SPECT measurements with radioactive tracers of brain function in demented patients. The main field is measurement of regional cerebral blood flow (rCBF) but there is an increasing number of studies concerning receptor functions in the demented brain.
Collapse
Affiliation(s)
- E Ryding
- Department of Clinical Neurophysiology, University Hospital of Lund, Sweden
| |
Collapse
|
27
|
Soricelli A, Postiglione A, Grivet-Fojaja MR, Mainenti PP, Discepolo A, Varrone A, Salvatore M, Lassen NA. Reduced cortical distribution volume of iodine-123 iomazenil in Alzheimer's disease as a measure of loss of synapses. EUROPEAN JOURNAL OF NUCLEAR MEDICINE 1996; 23:1323-8. [PMID: 8781136 DOI: 10.1007/bf01367587] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Iodine-123 labelled iomazenil (IMZ) is a specific tracer for the GABAA receptor, the dominant inhibitory synapse of the brain. The cerebral distribution volume (Vd) of IMZ may be taken as a quantitative measure of these synapses in Alzheimer's disease (AD), where synaptic loss tends indiscriminately to affect all cortical neurons, albeit more so in some areas than in others. In this pilot study we measured Vd in six patients with probable AD and in five age-matched controls using a brain-dedicated single-photon emission tomography scanner allowing all cortical levels to be sampled simultaneously. Reduced values were found in all regions except in the occipital (visual) cortex. In particular, temporal and parietal cortex Vd was significantly (P<0.02) reduced: temporal Vd averaged 69 ml/ml in normals and 51 ml/ml in AD, and parietal Vd averaged 71 ml/ml in normals and 48 ml/ml in AD. These results accord well with emission tomographic studies of blood flow or labelled glucose. This supports the idea that while only measuring a subpopulation of synapses, the IMZ method reflects synaptic loss and hence functional loss in AD. The method constitutes an in vivo version of synaptic quantitation that in histopathological studies has been shown to correlate closely with the mental deterioration in AD.
Collapse
Affiliation(s)
- A Soricelli
- Department of Diagnostic Imaging, University of Naples Federico II, Nuclear Medicine Center of the National Research Council, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Luo H, Hasan A, Sood V, McRee RC, Zeeberg B, Reba RC, McPherson DW, Knapp FF. Evaluation of 1-azabicyclo[2.2.2]oct-3-yl alpha-fluoroalkyl-alpha-hydroxy-alpha-phenylacetates as potential ligands for the study of muscarinic receptor density by positron emission tomography. Nucl Med Biol 1996; 23:267-76. [PMID: 8782236 DOI: 10.1016/0969-8051(95)02066-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Both 1-azabicyclo[2.2.2]oct-3-yl alpha-(1-fluoroeth-2-yl)-alpha-hydroxy-alpha-phenylacetate (FQNE, 5) and 1-azabicyclo[2.2.2]oct-3-yl alpha-(1-fluoropent-5-yl)-alpha-hydroxy-alpha-phenylacetate (FQNPe, 6) were prepared and evaluated as potential candidates for the determination of muscarinic cholinergic receptor (mAChR) density by positron emission tomography (PET). The results of in vitro binding assays demonstrated that although both 5 and 6 had high binding affinities for m1 and m2 mAChR subtypes, 6 displayed a higher affinity (nM, m1; KD, 0.45, m2; KD, 3.53) as compared to 5 (nM, m1; KD, 12.5, m2; KD, 62.8). It was observed that pretreatment of female Fisher rats with either 5 or 6 prior to the i.v. administration of Z-(-)(-)-[131I]-IQNP, a high-affinity muscarinic ligand, significantly blocked the uptake of radioactivity in the brain and heart measured 3 h postinjection of the radiolabeled ligand. These new fluoro QNB analogues represent important target ligands for evaluation as potential receptor imaging agents in conjunction with PET.
Collapse
Affiliation(s)
- H Luo
- Health Sciences Research Division, Oak Ridge National Laboratory (Ornl), TN 37831-6229, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kilbourn MR, Snyder SE, Sherman PS, Kuhl DE. In vivo studies of acetylcholinesterase activity using a labeled substrate, N-[11C]methylpiperdin-4-yl propionate ([11C]PMP). Synapse 1996; 22:123-31. [PMID: 8787128 DOI: 10.1002/(sici)1098-2396(199602)22:2<123::aid-syn5>3.0.co;2-f] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Two esters, N-[11C]methylpiperidyl acetate ([11C]AMP) and N-[11C]methylpiperidyl propionate ([11C]PMP), were synthesized in no-carrier-added forms and evaluated as in vivo substrates for brain acetylcholinesterase (AChE). After peripheral injection in mice, each ester showed rapid penetration into the brain and a regional retention of radioactivity (striatum > cortex, hippocampus > cerebellum) reflecting known levels of AChE activity in the brain. Regional brain distributions after [11C]PMP administration showed better discrimination between regions of high, intermediate, and low AChE activities. Chromatographic analysis of blood and brain tissue extracts showed rapid and nearly complete hydrolysis of [11C]PMP within 10 min after injection. For both [11C]AMP and [11C]PMP, retention of radioactivity in all regions was reduced by pretreatment with diisopropylfluorophosphate (DFP), a specific irreversible AChE inhibitor. DFP treatment also significantly increased the proportions of unhydrolyzed ester in both blood and brain. Radioactivity localization in brain after peripheral injection was thus dependent on AChE-catalyzed hydrolysis to the hydrophilic product N-[11C]methylpiperidinol. PET imaging of [11C]AMP or [11C]PMP distributions in monkey brain showed clear accumulation of radioactivity in areas of highest AChE activity (striatum, cortex). These esters are thus in vivo substrates for brain AChE, with potential applications as in vivo imaging agents of enzyme action in the human brain. [11C]PMP, the ester with a slower rate of hydrolysis, appears to be the better candidate radiotracer for further development.
Collapse
Affiliation(s)
- M R Kilbourn
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
30
|
Maziere M. Cholinergic neurotransmission studied in vivo using positron emission tomography or single photon emission computerized tomography. Pharmacol Ther 1995; 66:83-101. [PMID: 7630931 DOI: 10.1016/0163-7258(95)00003-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During the past decade, considerable efforts have been made in the development of radiopharmaceuticals for the in vivo study of the cholinergic neurotransmission using positron emission tomography or single photon emission computerized tomography. The main cholinergic radioligands, labelled with positron- or gamma-photon-emitting radionuclides, are reviewed with respect to use as in vivo markers of either acetylcholinesterase, vesicular acetylcholine transporter, brain and heart muscarinic receptors, or cholinergic nicotinic receptors. The main results obtained in the in vivo study of the physiology, pharmacology or pathology of the different steps of the cholinergic neurotransmission using single photon emission computerized tomography and positron emission tomography are discussed.
Collapse
Affiliation(s)
- M Maziere
- CNRS URA 1285, Service Hospitalier Frédéric Joliot, DRIPP, CEA, Orsay, France
| |
Collapse
|
31
|
Namba H, Irie T, Fukushi K, Iyo M. In vivo measurement of acetylcholinesterase activity in the brain with a radioactive acetylcholine analog. Brain Res 1994; 667:278-82. [PMID: 7697367 DOI: 10.1016/0006-8993(94)91507-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A novel method for visualization of brain acetylcholinesterase (AChE) in vivo has been developed. Following intravenous administration of a radiolabelled acetylcholine analog, N-methyl-3-piperidyl acetate, there was very good agreement between the distribution of radioactivity and AChE activity in the brain of rat and monkey. The method would be applicable for in vivo studies of human brain AChE activity in disorders of central cholinergic systems such as Alzheimer's disease.
Collapse
Affiliation(s)
- H Namba
- Division of Neurological Surgery, Chiba Cancer Center Hospital, Japan
| | | | | | | |
Collapse
|
32
|
Baumgold J, Pryzbyc RL, Reba RC. 3-alpha-Chlorimperialine: an M2-selective muscarinic receptor antagonist that penetrates into brain. Eur J Pharmacol 1994; 251:315-7. [PMID: 8149987 DOI: 10.1016/0014-2999(94)90417-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Muscarinic M2 receptors have been found to be severely depleted in post-mortem brains of Alzheimer's patients. This loss of receptor may represent a useful diagnostic marker, if it could be quantitatively imaged with single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. In order to develop a radioligand with selectivity for muscarinic M2 receptors, we now report that 3-alpha-chlorimperialine is a potent M2 receptor antagonist with a Ki of 0.32 nM at M2 receptors, a 12-fold selectivity for M2 over M1 receptors, and a 5-fold selectivity for M2 over M4 receptors. Furthermore, 2% of the injected dose of 3-alpha-chlorimperialine per gram tissue penetrates into brain within 30 min, then washes out gradually. Taken together, these studies demonstrate that 3-alpha-chlorimperialine is a potent M2-selective muscarinic antagonist that penetrates into brain and may be a useful substrate for radioiodination and subsequent imaging of brain muscarinic M2 receptors.
Collapse
Affiliation(s)
- J Baumgold
- Department of Radiology, George Washington University Medical Center, Washington, DC 20037
| | | | | |
Collapse
|